US20090134897A1 - Apparatus and method for limiting over travel in a probe card assembly - Google Patents

Apparatus and method for limiting over travel in a probe card assembly Download PDF

Info

Publication number
US20090134897A1
US20090134897A1 US12/360,433 US36043309A US2009134897A1 US 20090134897 A1 US20090134897 A1 US 20090134897A1 US 36043309 A US36043309 A US 36043309A US 2009134897 A1 US2009134897 A1 US 2009134897A1
Authority
US
United States
Prior art keywords
probe card
card assembly
over travel
wafer
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/360,433
Inventor
Timothy E. Cooper
Benjamin N. Eldridge
Carl V. Reynolds
Ravindra Vaman Shenoy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FormFactor Inc
Original Assignee
FormFactor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FormFactor Inc filed Critical FormFactor Inc
Priority to US12/360,433 priority Critical patent/US20090134897A1/en
Publication of US20090134897A1 publication Critical patent/US20090134897A1/en
Assigned to HSBC BANK USA, NATIONAL ASSOCIATION reassignment HSBC BANK USA, NATIONAL ASSOCIATION SECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS Assignors: Astria Semiconductor Holdings, Inc., CASCADE MICROTECH, INC., FORMFACTOR, INC., MICRO-PROBE INCORPORATED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2887Features relating to contacting the IC under test, e.g. probe heads; chucks involving moving the probe head or the IC under test; docking stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07357Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with flexible bodies, e.g. buckling beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present invention relates to testing semiconductor devices.
  • Individual semiconductor (integrated circuit) devices are typically produced by creating several identical devices on a semiconductor wafer using known techniques of photolithography, deposition, diffusion and the like. These processes are intended to create a plurality of fully functional integrated circuit devices, after which the individual dies are singulated (severed) from the semiconductor wafer. In practice, physical defects in the wafer itself and/or defects in the processing of the wafer often lead to some of the dies being “good” (fully functional) and some of the dies being “bad” (non-fully functional).
  • a wafer tester or “prober” is used to make a plurality of discrete pressure connections to a like plurality of discrete connection pins (or bond pads) on the dies, In this manner, the semiconductor dies can be tested and exercised prior to singulating the dies from the wafer.
  • a conventional component of a wafer tester is a probe card assembly. In use, the wafer or device under test (DUT) and the probe card assembly are brought together so that the outboard tips of a plurality of probe elements are brought into electrical engagement with corresponding die pads on the wafer.
  • the present invention relates generally to testing semiconductor devices.
  • the invention relates to over travel stops for limiting over travel of a device to be tested with respect to probes of a probe card assembly.
  • Other aspects of the invention include feedback control of relative movement of the device and the probe card assembly and a probe card assembly with a flexible base for absorbing excessive over travel of the device with respect to the probe card assembly.
  • FIG. 1 is a side, partially cross-sectional, partially diagrammatic view of a semiconductor tester 5 with probe card assembly 10 positioned to engage with a semiconductor device 11 (“DUT”) in accordance with an exemplary embodiment of the present invention.
  • DUT semiconductor device 11
  • FIG. 2 is a side, partially cross-sectional view of the probe card assembly 10 of FIG. 1 shown in engagement with DUT 11 .
  • FIGS. 3 a - 3 f are side, cross-sectional views showing, in stages, the fabrication of probe tips 21 and stop plates 23 .
  • FIGS. 4 a - 4 c are side, partially cross-sectional views showing, in stages, fabrication and assembly of space transformer assembly 40 .
  • FIG. 5 is a bottom view of the probe card assembly 10 of FIG. 1 .
  • FIG. 6 is a side, partially cross-sectional view of a probe card assembly 45 positioned to engage with a semiconductor device 11 (“DUT”) in accordance with an alternative embodiment of the present invention.
  • FIG. 7 is a side, partially cross-sectional view of the probe card assembly 45 of FIG. 6 shown in engagement with DUT 11 .
  • FIG. 8 is a side, cross-sectional and partially diagrammatic view of a probe card assembly 56 in accordance with another embodiment of the present invention.
  • FIG. 9 is a plan, diagrammatic view of the probe card assembly 56 of FIG. 8 .
  • FIG. 10 is a side, cross-sectional view of a portion of probe card assembly 56 of FIG. 8 and positioned to engage with a wafer 71 .
  • FIG. 11 is a side, cross-sectional view of the probe card assembly 56 of FIG. 10 and shown in engagement with wafer 71 .
  • FIG. 12 illustrates an exemplary microprocessor based controller.
  • FIGS. 13 and 14 illustrate exemplary processes for controlling movement of a wafer into contact with a probe assembly.
  • FIGS. 15 a - 15 c illustrate a probe card assembly with a flexible base.
  • Tester 5 generally includes a probe card assembly 10 , support structure 12 , control apparatus 13 and a semiconductor device holder 18 .
  • Probe card assembly 10 is shown positioned to engage with and test a semiconductor device 11 (otherwise known as a device under test or “DUT”) in accordance with the present invention.
  • the exemplary probe card assembly 10 illustrated in FIG. 1 generally includes a base assembly 14 , a space transformer 15 , a plurality of probes 16 (eight of many shown), and a plurality of overtravel stop assemblies 17 .
  • Support structure 12 supports probe card assembly 10 and can be operable to move probe card assembly 10 toward DUT 11 or to hold probe card assembly 10 stationary while DUT 11 is moved toward probe card assembly 10 .
  • Holder 18 is connected with support structure 12 and is configured to hold DUT 11 stationary during the testing procedure while probe card assembly 10 is moved toward DUT 11 or to move DUT 11 toward probe card assembly 10 .
  • Semiconductor device holder 18 can be in any configuration that securely holds semiconductor device 11 during testing.
  • Holder 18 may also be configured to grasp a semiconductor device 11 from an indexing unit, move it into testing position, hold it and/or move it during testing, and then move it out of tester 5 to an output station.
  • Holder 18 is contemplated in one embodiment to include electronic connection apparatus for electronically connecting or facilitating such connection of semiconductor device 11 with control apparatus 13 .
  • Control apparatus 13 is connected with support structure 12 and DUT holder 18 and includes elements such as computer hardware and software for controlling movement of probe card assembly 10 and/or DUT 11 .
  • control apparatus 13 does not rely on computer components to control movement of probe card assembly 10 and/or DUT 11 , but instead provides any type of manual actuation apparatus including, but not limited to levers, linkages, a rack and pinion mechanism, cables, pulleys and/or similar devices for moving probe card assembly 10 and/or DUT 11 .
  • Control apparatus 13 is also electronically connected with probe card assembly 10 and connectable to DUT 11 (either individually or through holder 18 ) to send and receive data testing signals thereto and therefrom.
  • probe card assembly 10 is illustrated in FIG. I as comprising a base 14 and a space transformer 15
  • probe card assembly may be any type of probe card assembly.
  • probe card assembly 10 may be as simple as only a base 14 to which probes 16 and over travel stops 17 are directly attached.
  • probe card assembly 10 may comprise a more complex assembly of parts, such as the probe card assembly illustrated in U.S. Pat. No. 5,974,662, which is incorporated by reference herein in its entirety.
  • Probes 16 may be any type of probes, including without limitation needle probes, buckling beam probes (e.g., “COBRA” probes), bumps, posts, and spring probes, Nonexclusive examples of spring probes include the spring contacts described in U.S.
  • Patent Application Publication 200210055282 A1 U.S. patent application Ser. No. 09/032,473 (filed Feb. 26, 1998), U.S. patent application Ser. No. 10/262,712 (filed Jul. 24, 2002), U.S. Pat. No. 6,268,015, and U.S. Pat. No. 5,917,707, all of which are incorporated by reference in their entirety herein.
  • DUT 11 is a semiconductor wafer on which have been fabricated a plurality of integrated circuit chips or “dice” (not shown). Each individual die has a number of pins or bond pads 19 for providing power, ground, and signals such as data, address, control, etc. to the die. DUT 11 may contain many hundreds of bond pads 19 disposed in close proximity to one another (e.g. 5 mils center-to-center), and the bond pads may be arranged in configurations other than a single row near the edge of the die. Because of the close proximity of many bond pad arrays, the tips of probes 16 may often need to be spaced more closely to one another (relatively fine pitch) than the connections to their base assembly 14 .
  • Space transformer 15 facilitates making a reliable testing connection between the plurality of probes 16 and the corresponding bond pads 19 of DUT 11 by redirecting spatially indiscriminate input connections (not shown) from base assembly 14 to a specifically organized array of probes 16 that align with the mating array of bond pads 19 as shown, for example, in FIG. 1 .
  • the input connections (not shown) from base assembly 14 to space transformer 15 may be formed in any suitable manner.
  • Each of the exemplary plurality of probes 16 includes a resilient interconnecting wire element 20 and a probe tip 21 .
  • Each exemplary over travel stop assembly 17 includes a pair of substantially rigid posts 22 and a stop plates 23 .
  • Each post 22 is rigidly mounted in any suitable manner at one end to space transformer 15 , and at its opposing end is mounted to a stop plate 23 .
  • the resilient, spring-like wire elements 20 deform (as shown in FIG. 2 ).
  • the neighboring over travel stop assemblies 17 engage DUT 11 at a predetermined distance (a proximity limit) to physically limit how close DUT 11 and probe card assembly 10 can get, and consequently to ensure the proper pressure engagement between probe tips 21 and bond pads 19 .
  • FIGS. 3 a - 3 g and 4 a - 4 c there is shown an exemplary method for making a portion of probe card assembly 10 in accordance with one embodiment of the present invention.
  • a plurality of pits 26 are etched in a sacrificial substrate 27 , such as a semiconductor wafer, using known methods such as masking.
  • the number and arrangement of pits 26 correspond to the number and arrangement of bond pads on the corresponding DUT to be tested, These pits 26 will form the ends 28 of probe tips 21 .
  • an optional first mask layer (mask 31 ) is formed, using known methods, over sacrificial substrate 27 , proximal to pits 26 , and in a specific size and shape.
  • Mask 31 is preferably a photoresist material, such as SU8.
  • release (and/or seed) material 32 is formed over the substrate and mask 31 .
  • Release material 32 is applied to facilitate separation between sacrificial substrate 27 and mask 31 thereunder and the probe tips 21 and stop plates 23 formed on top thereof. Also, if the probe tips 21 and stop plates 23 are formed by electroplating, release material 32 will provide the conductive layer necessary for electroplating.
  • release material 32 comprises aluminum.
  • Other appropriate materials may be used for release material 32 including, but without limitation, copper, titanium, tungsten or alloys of these and/or other materials including materials made of two or more layers of such materials that function as described above. For purposes of illustration, the dimensions of certain elements shown in the figures may be exaggerated or not in proportion.
  • a second mask layer (mask 33 ) is formed in a specific pattern over sacrificial substrate 27 , mask 31 and release material 32 , as shown.
  • Mask 33 defines a plurality of cavities 35 and 36 that are sized and shaped to create probe tips 21 and stop plates 23 , respectively.
  • a preferably conductive material is then deposited into cavities 35 and 36 to form probe tips 21 and stop plates 23 , as shown in FIG. 3 e.
  • the material used to form tips 21 and plates 23 is generally desired to be conductive, non-oxidizing, and chemically non-reactive.
  • Examples of appropriate materials include, without limitation, palladium, gold, rhodium, nickel, cobalt, silver, platinum, conductive nitrides, conductive carbides, tungsten, titanium, molybdenum, rhenium, indium, osmium, rhodium, copper, refractory metals, and their alloys as well as alloys of these and/or other materials. Any appropriate method may be used to deposit such material into cavities 35 and 36 such as, but without limitation, chemical vapor deposition, physical vapor deposition, sputtering, electroless plating, electron beam deposition, and thermal evaporation.
  • a non-conductive material may be used for either or both of probe tips 21 and stop plates 23 such as aluminum oxide, aluminum nitride, etc.
  • a non-conductive material is used for probe tips 21
  • at least the ends 28 of tips 21 must be made conductive and must be electrically connected to wire elements 20 . This may be done in any suitable manner such as, and without limitation, by coating the exterior surface of probe tips 21 with a conductive material.
  • mask 33 is removed to expose the probe tips 21 and stop plate 23 , as shown in FIG. 3 f. Because the tips 21 and stop plates 23 are formed lithographically, they may be formed with relatively precise spatial relationships to each other.
  • interconnecting wire elements 20 connect probe tips 21 to space transformer 15 to form the plurality of probes 16
  • stop plates 23 are connected to and a fixed distance from space transformer 15 by posts 22 to form over travel stop assemblies 17 .
  • wire elements are formed and connected to space transformer 15 using the wire bond technique wherein each wire is made of a relatively soft, malleable material and is bonded in a known manner, at the desired location, to space transformer 15 ( FIG. 4 a ).
  • Posts 22 may be formed in like manner, but may be thicker to be rigid and/or made of a material that is more rigid. The wire may then be overcoated with a harder, resilient material. Exemplary descriptions of this technique are provided in U.S. Pat. Nos. 5,476,211, 5,917,707, and 6,336,269, which are hereby incorporated by reference.
  • elements 20 need not be wires.
  • elements 20 may be resilient spring-like structures formed lithographically by applying and patterning a masking layer to space transformer 15 and then depositing material in the openings in the masking layer or layers as generally illustrated in FIGS. 3 b and 3 e above.
  • elements 20 may be fashioned in a variety of shapes by molding the masking layer(s) to have the negative of the desired shape (an example of this technique is as described in U.S. Patent Application Publication 2002/0055282 A1, which is incorporated in its entirety herein by reference) or by using multiple masking layers with different patterned openings to define the negative of the desired shape of elements 20 (an examples of this technique are described in U.S. patent application Ser. No.
  • the invention is not limited to any particular type of probe. Rather, the present invention contemplates use of any appropriate probe including, without limitation, needle probes, buckling beam probes (e.g., “COBRA” probes), bumps, posts, and spring probes, examples of which are discussed above.
  • the probes may be made and assembled into an array in any manner. For example, probes may be made lithographically, by machining, by stamping, by molding, by microelectrical mechanical system (MEMS) processes, etc. and then assembled into an array. An example in which probes are made using a MEMS process and then assembled into an array is discussed in U.S. patent application Ser. No. 10/262,712 (filed Jul. 24, 2002), which is incorporated in its entirety herein by reference.
  • MEMS microelectrical mechanical system
  • the stop structures may also be made and assembled in of the foregoing ways.
  • posts 22 are made with sufficient rigidity that, upon engagement of over travel stop assemblies 17 with DUT 11 , posts 22 will not significantly deform and will physically stop further travel of DUT 11 toward probe card assembly 10 .
  • the assembly 38 ( FIG. 4 a ) of wire elements 20 and posts 22 extending from space transformer 15 is then brought together with the assembly 36 ( FIG. 3 f ) of probe tips 21 and stop plates 23 formed upon on sacrificial substrate 27 .
  • probe tips 21 and stop plates 23 are all sized and located on sacrificial substrate 27
  • wire elements 20 and posts 22 are all sized and located on space transformer 15 , so that each probe tip 21 aligns with a corresponding wire element 20 and each stop plate 23 aligns with a corresponding pair of posts 22 .
  • Probe tips 21 are then permanently bonded to wire elements 20 , and stop plates 23 are permanently bonded to posts 22 .
  • Such bonding may be performed in any appropriate manner such as, and without limitation, soldering or brazing.
  • Such connection methods are described with reference to FIGS. 8D and 8E in the U.S. Pat. No. 5,974,662 patent.
  • sacrificial substrate 27 is removed by any appropriate method such as, but without limitation, etching or dissolving.
  • the resulting space transformer assembly 40 may be joined with other components to form a probe card assembly 10 , such as the probe card assembly shown in FIG. 5 of the U.S. Pat. No. 5,974,662 patent.
  • the probe card assembly 10 of FIG. 1 shows just eight probes 16 and a pair of neighboring stop assemblies 17 .
  • Another configuration is shown in FIG. 5 where the probe card assembly 42 (bottom view) has two arrays 43 and 44 , each containing 48 probes 16 extending downwardly from space transformer 15 , and where there are six over travel stop assemblies 17 spaced around the outside of the two arrays 43 and 44 .
  • probe card assembly 42 or a similar probe card assembly may be used to test DUT's with fewer bond pads 19 than are contained in the corresponding array(s) of probes 16 .
  • Such excess probes 16 that do not contact a corresponding bond pad (or an inactive bond pad) can be deselected by software.
  • test system in which the probe card assembly of the present invention is incorporated may operate to move DUT II toward a stationary probe card assembly 10 or to move probe card assembly 10 toward a stationary DUT 11 or to move both DUT 11 and probe card assembly 10 towards each other. Further, such test system may be configured for such movement by the DUT 11 and/or probe card assembly 10 to be effected manually or automatically. It is contemplated that such test system will incorporate any appropriate configuration of machinery, computer hardware and software to effect such manual or automatic movement, to provide for adjustment of the limits, path and rate of such movement, and to receive, process and display output data produced during such movement and from the engagement between the DUT and the probe card assembly.
  • a probe card assembly 45 is shown in accordance with another embodiment of the present invention wherein the stop plates 46 and 47 of over travel stop assemblies 48 and 49 are held by resilient posts 50 .
  • the probe card assembly 45 shows just eight probes 16 and just two over travel stop assemblies 48 and 49 .
  • the invention contemplates any number of probes and stop assemblies to properly engage with the bond pads of a DUT 11 to be tested).
  • Posts 50 may be formed and connected to space transformer 15 using any appropriate method, including those techniques discussed herein for forming and connecting wire elements 20 .
  • posts 50 resilient is realized in the event that DUT 11 is at all non-planar, that any of stop plates 46 and 47 are or have become non-planar, that stop plates 46 and 47 of over travel stop assemblies 48 and 49 are or have become mutually non-planar, and/or that DUT 11 is not parallel to the plane of the stop plates 46 and 47 at the moment of engagement therewith.
  • FIG. 7 where, in exaggerated fashion, DUT 11 is shown to be non-planar at the moment of initial engagement, the resiliency of posts 50 allows the first stop plate 46 to engage, and its resilient posts will deform until the other stop plate 47 likewise engages.
  • posts 50 are made to be both rigid and resilient. That is, a portion of each post 50 is made resilient to enable a limited degree of give (as shown in FIG. 7 ) and another portion of each post is made rigid to define the maximum limit of give, and thus overtravel.
  • plates 23 are not rigid, but instead are somewhat resilient to provide a degree of “give” or “compliance” when DUT 11 engages with over travel stop assemblies 17 .
  • one or more over travel stop assemblies are wired to provide a signal that the corresponding DUT 11 has been engaged.
  • Such signal may simply indicate engagement or may signal the extent of engagement (e.g., by signaling a degree of force exerted by the wafer on the probes or the over travel stop).
  • Such output signal is contemplated to be received as input by computer components connected with the probe card assembly and displayed in any appropriate form and/or used to further control the overall probe testing operation. Typically, such output signal would be sent to the tester or prober, which would then stop movement of the probe card assembly toward the semiconductor wafer when the desired over travel limit is reached.
  • probe card assembly 56 includes over travel stop assemblies 57 that are wired to provide over travel position output signals.
  • probe card assembly 56 includes an array 58 of probes 59 and over travel stop assemblies 57 mounted to a spaced transformer 61 , which is electronically connected by various interconnection wire elements 62 and an interposer 63 to a probe card assembly 65 ,
  • An over travel control unit 66 is wired to the over travel stop assemblies 57 whereby the over travel output signals are transmitted to control unit 66 , which transmits corresponding signals to the tester/prober (not shown).
  • the allowable over travel is indicated at 67 .
  • FIG. 9 is a plan view of the probe card assembly 56 showing diagrammatically one exemplary placement of over travel stop assemblies 57 relative to the array 58 of probes 59 .
  • FIGS. 10 and 11 illustrate one exemplary arrangement for detecting completion of a desired amount of over travel of bond pads or pins 73 , 74 of wafer 71 with respect to probes 59 .
  • the over travel stop assemblies 57 are arranged in adjacent pairs.
  • probe card assembly 56 includes a pair of over travel stop assemblies 69 and 70 .
  • the bond pads or pins 73 , 74 comprise functioning pins 73 and dummy pins 74 .
  • Functioning pins 73 are functional in providing the desired power, ground and signal capabilities for their corresponding die 76 (or 77 ), while dummy pins 72 are shorted to ground.
  • probe tips 59 will engage with corresponding pins on the DUT 11 (device under test) 78 . Because of the resiliency of the wire element 80 of each probe 59 , each probe 59 will deform as necessary and engage with each of its corresponding pins 73 and 74 . It should be noted that there may or may not be a probe 59 that corresponds to a particular dummy pin 74 . It should also be noted that the contact plates of over travel assemblies 69 and 70 are preferably made to correspond to known locations of dummy pins 74 on wafer 71 .
  • a circuit will be completed and a corresponding signal will be generated and transmitted through control unit 66 to the prober/tester (not shown), and movement of probe card assembly 56 toward wafer 71 will stop.
  • the invention contemplates that the system software will be configured to control the testing operation in response to any desired contact combination. That is, in one embodiment, contact by any two adjacent over travel stop assemblies (i.e. 69 and 70 ) with dummy pins will cause movement of probe card assembly 56 to stop.
  • any one over travel stop assembly i.e. 69
  • any one over travel stop assembly i.e. 69
  • any one over travel stop assembly i.e. 69
  • any one over travel stop assembly i.e. 69
  • just one over travel stop assembly i.e. 69
  • over travel stop assemblies are wired as above and the output thus indicates which over travel stop assemblies have engaged with the DUT 11 and by how much.
  • Such output from just one or from a plurality of the over travel stop assemblies, is contemplated to be made available for display or other recognition by a human or machine. Thus, such output may simply be indicated by a single LED flashing or by a buzzer.
  • a display screen may diagrammatically indicate the entire probe card assembly layout and show by any appropriate display which over travel stop assemblies have been engaged and by how much.
  • the output signal may be received by a computer or other machine and acted upon.
  • a signal that an over travel stop assembly has engaged a bond pad or pin may cause the system to cease movement of the probe card assembly toward the DUT 11 , or visa versa, or movement for only another pre-programmed distance.
  • the output signal indicates the extent of engagement, such information can be used by the human user or the machine to adjust the limits of movement of the DUT relative to the probe card assembly, as well as the rate of such movement.
  • FIGS. 13 and 14 illustrate exemplary methods for automatically controlling movement of a wafer to be tested into contact with a probe card assembly
  • FIG. 12 illustrates a feedback controller 530 that may implement any of the processes of FIGS. 13 and 14
  • the exemplary feedback controller 530 illustrated in FIG. 12 is a microprocessor based controller and may be, for example, part of control apparatus 13 . As shown, it includes a digital memory 532 , a microprocessor 534 , and an input/output port 536 . Input data 538 is received and output data 540 is output through input/output port 536 .
  • the digital memory 532 may be any type of memory including an electronic memory, an optical memory, a magnetic memory, or some combination of the foregoing.
  • digital memory 532 may be a read only memory, or digital memory 532 may be a combination of a magnetic or optical disk and a random access memory.
  • Microprocessor 534 executes instructions (which may be in the form of software or microcode) stored in digital memory 532 .
  • FIGS. 13 and 14 which may be implemented in software and executed on a microprocessor based system such as the one illustrated in FIG. 12 , will be explained with reference to a probe card assembly 56 such as the one illustrated in FIGS. 8-11 in a tester 5 like the one illustrated in FIG. 1 .
  • a wafer such as exemplary wafer 71 is moved while probe card assembly 56 is held stationary.
  • the wafer could alternatively be held stationary and probe card assembly moved, or both the wafer and the probe card assembly could be moved.
  • the wafer 71 may be supported by any appropriate means, such as the wafer holder 18 illustrated in FIG. 1 , which itself is moved by any appropriate means, such as an electric motor (not shown).
  • Output data 540 ( FIG. 12 ) includes signals that control movement of the wafer 71 (e.g., by moving the wafer holder 18 ), and input data 538 includes signals from over travel control unit 66 or other sensors (e.g., the output of over travel control unit 66 may be directed to feedback controller 530 as input data 538 ).
  • the exemplary method illustrated in FIG. 13 utilizes one or more sensors for detecting when the wafer 71 has been moved into contact with the probes 71 and then further moved by a desired amount of over travel past first contact.
  • the sensor(s) is assumed to comprise over travel stop assemblies 69 , 70 wired to detect contact as illustrated in FIGS. 10 and 11 . It should be understood, however, that any sensor for detecting or estimating when the wafer 71 has been moved the desired over travel distance may be used.
  • Such sensors include by way of example acoustic sensors, optical sensors, etc., which may be used to detect, for example, when the over travel stops reach a particular position.
  • sensors may be used, and if a plurality of sensors are used, the sensors may be arranged in any pattern on probe card assembly 56 .
  • the pattern of four sensors 81 , 83 , 84 , 85 illustrated in FIG. 9 is but one exemplary pattern.
  • this exemplary method begins after wafer (e.g., wafer 71 shown in FIGS. 10 and 11 ) has been placed on a moveable holder (e.g., wafer holder 18 illustrated in FIG. 1 ), and pads or pins 73 , 74 of wafer have been aligned with probes 59 , as illustrated in FIG. 10 .
  • the first step 110 is to move the wafer 71 toward the probe card assembly 56 .
  • Determining whether pins 73 , 74 have reached the desired over-travel may be detected or estimated in any way.
  • stop structures 69 , 70 such as those illustrated in FIGS. 10 and 11 may be configured so that an over travel sensor 66 generates a signal when over travel stops 69 , 70 contact pins 73 , 74 . That signal may be input to controller 530 as input signal 538 .
  • other types of sensors may be used.
  • any number of sensors may be used, and if multiple sensors are used, they may be positioned in any suitable pattern. If multiple sensors are used, a signal indicating that the desired amount of over travel has been reached may be triggered by any one or more of the sensors in any desired pairing or sequence.
  • a over-travel-reached state may be found to be affirmative at step 112 when any one of the sensors 81 , 83 , 84 , 85 is activated.
  • the over-travel-reached state may be found to be affirmative at step 112 only after all four sensors 81 , 83 , 84 , 85 are activated.
  • the over-travel-reached state may be found at step 112 after a pair of sensors (e.g., opposite pairs 81 , 83 , or pairs 84 , 85 ) are activated. Many other combinations are possible.
  • this exemplary method also begins after a wafer (e.g., wafer 71 shown in FIGS. 10 and 11 ) has been placed on a moveable holder (e.g., wafer holder 18 illustrated in FIG. 1 ), and pads or pins 73 , 74 of wafer 71 have been aligned with probes 59 , as illustrated in FIG. 10 .
  • the first step 202 is to move the wafer 71 toward the probe card assembly 56 at an initial speed.
  • the force the wafer pads or pins 73 , 74 exert against probes 59 is determined at step 204 , and it is determined at step 206 whether the force exceeds a predetermined maximum force. (Of course, before first contact between the pads or pins 73 , 74 and probes 59 , the force is zero.) If yes, movement of the wafer 71 toward the probe card assembly 56 is stopped at step 210 (e.g., controller 530 issues control signals 540 that cause movement to stop).
  • step 206 the speed of the movement of the wafer 71 toward the probe card assembly 56 is adjusted in accordance with the force determined at step 204 (e.g., again the controller 530 issues control signal(s) 540 that adjusts the speed). Preferably, the speed is decreased as the force increases.
  • the steps of moving the wafer 71 toward the probe card assembly 56 (step 202 ), determining the force 204 , and adjusting the speed of the wafer 71 (step 208 ) are repeated until the force on the probes 56 exceeds the maximum force (step 206 ). It should be noted that step 208 is optional. That is, the process of FIG. 15 can be performed without adjusting the speed following a negative determination at step 206 .
  • sensors there are many different types of sensors that may be used to determine or estimate the force on a probe.
  • force measuring sensors e.g., a piezoelectric material.
  • force measuring device(s) may be connected directly to one or more probes 59 .
  • one or more such sensors may be used. If more than one is used, the step of determining the force 204 may comprise averaging the forces detected by all of the sensors.
  • FIGS. 15 a - 15 c illustrate a probe card assembly 446 in which base 414 is made of a flexible material.
  • the base 414 absorbs extra over travel
  • wafer holder 18 brings wafer 11 into first contact with probes 16 .
  • wafer holder 18 moves wafer 11 past the point of first contact by an over travel distance 41 .
  • wafer holder 18 moves wafer 11 beyond the desired over travel 41 by an additional over travel distance 441 .
  • the additional over travel 441 could cause excessive forces to be exerted on the over travel assemblies 17 and possibly the probes 16 .
  • FIG. 15 a - 15 c illustrate a probe card assembly 446 in which base 414 is made of a flexible material.
  • the base 414 may be made of any material that is sufficiently rigid to support probes 16 but sufficiently flexible to absorb all or part of over travel 441 . Examples of such materials include, without limitation, printed circuit board material, Mylar, organic materials, rubbers, and plastics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

Methods and apparatuses for testing semiconductor devices are disclosed. Over travel stops limit over travel of a device to be tested with respect to probes of a probe card assembly. Feedback control techniques are employed to control relative movement of the device and the probe card assembly. A probe card assembly includes flexible base for absorbing excessive over travel of the device to be tested with respect to the probe card assembly.

Description

    FIELD OF THE INVENTION
  • The present invention relates to testing semiconductor devices.
  • BACKGROUND OF THE INVENTION
  • Individual semiconductor (integrated circuit) devices (dies) are typically produced by creating several identical devices on a semiconductor wafer using known techniques of photolithography, deposition, diffusion and the like. These processes are intended to create a plurality of fully functional integrated circuit devices, after which the individual dies are singulated (severed) from the semiconductor wafer. In practice, physical defects in the wafer itself and/or defects in the processing of the wafer often lead to some of the dies being “good” (fully functional) and some of the dies being “bad” (non-fully functional). It is generally desirable to be able to identify which of the plurality of dies on the wafer are good dies prior to their packaging (encapsulation within a transfer-molded plastic, ceramic or metal package for subsequent integration into a circuit), and preferably prior to their being singulated from the wafer. To this end, a wafer tester or “prober” is used to make a plurality of discrete pressure connections to a like plurality of discrete connection pins (or bond pads) on the dies, In this manner, the semiconductor dies can be tested and exercised prior to singulating the dies from the wafer. A conventional component of a wafer tester is a probe card assembly. In use, the wafer or device under test (DUT) and the probe card assembly are brought together so that the outboard tips of a plurality of probe elements are brought into electrical engagement with corresponding die pads on the wafer.
  • SUMMARY OF THE INVENTION
  • The present invention relates generally to testing semiconductor devices. In one aspect, the invention relates to over travel stops for limiting over travel of a device to be tested with respect to probes of a probe card assembly. Other aspects of the invention include feedback control of relative movement of the device and the probe card assembly and a probe card assembly with a flexible base for absorbing excessive over travel of the device with respect to the probe card assembly.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side, partially cross-sectional, partially diagrammatic view of a semiconductor tester 5 with probe card assembly 10 positioned to engage with a semiconductor device 11 (“DUT”) in accordance with an exemplary embodiment of the present invention.
  • FIG. 2 is a side, partially cross-sectional view of the probe card assembly 10 of FIG. 1 shown in engagement with DUT 11.
  • FIGS. 3 a-3 f are side, cross-sectional views showing, in stages, the fabrication of probe tips 21 and stop plates 23.
  • FIGS. 4 a-4 c are side, partially cross-sectional views showing, in stages, fabrication and assembly of space transformer assembly 40.
  • FIG. 5 is a bottom view of the probe card assembly 10 of FIG. 1.
  • FIG. 6 is a side, partially cross-sectional view of a probe card assembly 45 positioned to engage with a semiconductor device 11 (“DUT”) in accordance with an alternative embodiment of the present invention.
  • FIG. 7 is a side, partially cross-sectional view of the probe card assembly 45 of FIG. 6 shown in engagement with DUT 11.
  • FIG. 8 is a side, cross-sectional and partially diagrammatic view of a probe card assembly 56 in accordance with another embodiment of the present invention.
  • FIG. 9 is a plan, diagrammatic view of the probe card assembly 56 of FIG. 8.
  • FIG. 10 is a side, cross-sectional view of a portion of probe card assembly 56 of FIG. 8 and positioned to engage with a wafer 71.
  • FIG. 11 is a side, cross-sectional view of the probe card assembly 56 of FIG. 10 and shown in engagement with wafer 71.
  • FIG. 12 illustrates an exemplary microprocessor based controller.
  • FIGS. 13 and 14 illustrate exemplary processes for controlling movement of a wafer into contact with a probe assembly.
  • FIGS. 15 a-15 c illustrate a probe card assembly with a flexible base.
  • DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, and any alterations or modifications in the illustrated device, and any further applications of the principles of the invention as illustrated therein are contemplated as would normally occur to one skilled in the art to which the invention relates.
  • Referring to FIG. 1, there is shown a semiconductor tester 5 for testing semiconductor devices. Tester 5 generally includes a probe card assembly 10, support structure 12, control apparatus 13 and a semiconductor device holder 18. Probe card assembly 10 is shown positioned to engage with and test a semiconductor device 11 (otherwise known as a device under test or “DUT”) in accordance with the present invention.
  • The exemplary probe card assembly 10 illustrated in FIG. 1 generally includes a base assembly 14, a space transformer 15, a plurality of probes 16 (eight of many shown), and a plurality of overtravel stop assemblies 17. Support structure 12 supports probe card assembly 10 and can be operable to move probe card assembly 10 toward DUT 11 or to hold probe card assembly 10 stationary while DUT 11 is moved toward probe card assembly 10. Holder 18 is connected with support structure 12 and is configured to hold DUT 11 stationary during the testing procedure while probe card assembly 10 is moved toward DUT 11 or to move DUT 11 toward probe card assembly 10. Semiconductor device holder 18 can be in any configuration that securely holds semiconductor device 11 during testing. Holder 18 may also be configured to grasp a semiconductor device 11 from an indexing unit, move it into testing position, hold it and/or move it during testing, and then move it out of tester 5 to an output station. Holder 18 is contemplated in one embodiment to include electronic connection apparatus for electronically connecting or facilitating such connection of semiconductor device 11 with control apparatus 13. Control apparatus 13 is connected with support structure 12 and DUT holder 18 and includes elements such as computer hardware and software for controlling movement of probe card assembly 10 and/or DUT 11. In alternative embodiments, control apparatus 13 does not rely on computer components to control movement of probe card assembly 10 and/or DUT 11, but instead provides any type of manual actuation apparatus including, but not limited to levers, linkages, a rack and pinion mechanism, cables, pulleys and/or similar devices for moving probe card assembly 10 and/or DUT 11. Control apparatus 13 is also electronically connected with probe card assembly 10 and connectable to DUT 11 (either individually or through holder 18) to send and receive data testing signals thereto and therefrom.
  • Although probe card assembly 10 is illustrated in FIG. I as comprising a base 14 and a space transformer 15, probe card assembly may be any type of probe card assembly. For example, probe card assembly 10 may be as simple as only a base 14 to which probes 16 and over travel stops 17 are directly attached. As another example, probe card assembly 10 may comprise a more complex assembly of parts, such as the probe card assembly illustrated in U.S. Pat. No. 5,974,662, which is incorporated by reference herein in its entirety. Probes 16 may be any type of probes, including without limitation needle probes, buckling beam probes (e.g., “COBRA” probes), bumps, posts, and spring probes, Nonexclusive examples of spring probes include the spring contacts described in U.S. Patent Application Publication 200210055282 A1, U.S. patent application Ser. No. 09/032,473 (filed Feb. 26, 1998), U.S. patent application Ser. No. 10/262,712 (filed Jul. 24, 2002), U.S. Pat. No. 6,268,015, and U.S. Pat. No. 5,917,707, all of which are incorporated by reference in their entirety herein.
  • DUT 11 is a semiconductor wafer on which have been fabricated a plurality of integrated circuit chips or “dice” (not shown). Each individual die has a number of pins or bond pads 19 for providing power, ground, and signals such as data, address, control, etc. to the die. DUT 11 may contain many hundreds of bond pads 19 disposed in close proximity to one another (e.g. 5 mils center-to-center), and the bond pads may be arranged in configurations other than a single row near the edge of the die. Because of the close proximity of many bond pad arrays, the tips of probes 16 may often need to be spaced more closely to one another (relatively fine pitch) than the connections to their base assembly 14. “Space transforming” (sometimes referred to as “pitch spreading”) may therefore be incorporated in the present application by a space transformer, representatively shown at 15 (comparable to element 506 in the U.S. Pat. No. 5,974,662 patent). Space transformer 15 facilitates making a reliable testing connection between the plurality of probes 16 and the corresponding bond pads 19 of DUT 11 by redirecting spatially indiscriminate input connections (not shown) from base assembly 14 to a specifically organized array of probes 16 that align with the mating array of bond pads 19 as shown, for example, in FIG. 1. The input connections (not shown) from base assembly 14 to space transformer 15 may be formed in any suitable manner.
  • Each of the exemplary plurality of probes 16 includes a resilient interconnecting wire element 20 and a probe tip 21. Each exemplary over travel stop assembly 17 includes a pair of substantially rigid posts 22 and a stop plates 23. Each post 22 is rigidly mounted in any suitable manner at one end to space transformer 15, and at its opposing end is mounted to a stop plate 23. As DUT 11 and probe card assembly 10 are brought together and probe tips 21 engage with corresponding bond pads 19, the resilient, spring-like wire elements 20 deform (as shown in FIG. 2). The neighboring over travel stop assemblies 17 engage DUT 11 at a predetermined distance (a proximity limit) to physically limit how close DUT 11 and probe card assembly 10 can get, and consequently to ensure the proper pressure engagement between probe tips 21 and bond pads 19.
  • Referring to FIGS. 3 a-3 g and 4 a-4 c, there is shown an exemplary method for making a portion of probe card assembly 10 in accordance with one embodiment of the present invention. As shown in FIG. 3 a, a plurality of pits 26 are etched in a sacrificial substrate 27, such as a semiconductor wafer, using known methods such as masking. The number and arrangement of pits 26 correspond to the number and arrangement of bond pads on the corresponding DUT to be tested, These pits 26 will form the ends 28 of probe tips 21. Referring to FIG. 3 b, an optional first mask layer (mask 31) is formed, using known methods, over sacrificial substrate 27, proximal to pits 26, and in a specific size and shape. Mask 31 is preferably a photoresist material, such as SU8.
  • Referring to FIG. 3 c, a release (and/or seed) material 32 is formed over the substrate and mask 31. Release material 32 is applied to facilitate separation between sacrificial substrate 27 and mask 31 thereunder and the probe tips 21 and stop plates 23 formed on top thereof. Also, if the probe tips 21 and stop plates 23 are formed by electroplating, release material 32 will provide the conductive layer necessary for electroplating. In one embodiment, release material 32 comprises aluminum. Other appropriate materials may be used for release material 32 including, but without limitation, copper, titanium, tungsten or alloys of these and/or other materials including materials made of two or more layers of such materials that function as described above. For purposes of illustration, the dimensions of certain elements shown in the figures may be exaggerated or not in proportion.
  • Referring to FIG. 3 d, a second mask layer (mask 33) is formed in a specific pattern over sacrificial substrate 27, mask 31 and release material 32, as shown. Mask 33 defines a plurality of cavities 35 and 36 that are sized and shaped to create probe tips 21 and stop plates 23, respectively. A preferably conductive material is then deposited into cavities 35 and 36 to form probe tips 21 and stop plates 23, as shown in FIG. 3 e. The material used to form tips 21 and plates 23 is generally desired to be conductive, non-oxidizing, and chemically non-reactive. Examples of appropriate materials include, without limitation, palladium, gold, rhodium, nickel, cobalt, silver, platinum, conductive nitrides, conductive carbides, tungsten, titanium, molybdenum, rhenium, indium, osmium, rhodium, copper, refractory metals, and their alloys as well as alloys of these and/or other materials. Any appropriate method may be used to deposit such material into cavities 35 and 36 such as, but without limitation, chemical vapor deposition, physical vapor deposition, sputtering, electroless plating, electron beam deposition, and thermal evaporation. Alternatively, a non-conductive material may be used for either or both of probe tips 21 and stop plates 23 such as aluminum oxide, aluminum nitride, etc. In the event a non-conductive material is used for probe tips 21, at least the ends 28 of tips 21 must be made conductive and must be electrically connected to wire elements 20. This may be done in any suitable manner such as, and without limitation, by coating the exterior surface of probe tips 21 with a conductive material. After formation of probe tips 21 and stop plates 23, mask 33 is removed to expose the probe tips 21 and stop plate 23, as shown in FIG. 3 f. Because the tips 21 and stop plates 23 are formed lithographically, they may be formed with relatively precise spatial relationships to each other.
  • Referring to FIG. 4 c, the assembly 36 of probe tips 21 and stop plates 23 of FIG. 3 f are shown having been connected to space transformer 15. More specifically, interconnecting wire elements 20 connect probe tips 21 to space transformer 15 to form the plurality of probes 16, and stop plates 23 are connected to and a fixed distance from space transformer 15 by posts 22 to form over travel stop assemblies 17. In one embodiment, such wire elements are formed and connected to space transformer 15 using the wire bond technique wherein each wire is made of a relatively soft, malleable material and is bonded in a known manner, at the desired location, to space transformer 15 (FIG. 4 a). Posts 22 may be formed in like manner, but may be thicker to be rigid and/or made of a material that is more rigid. The wire may then be overcoated with a harder, resilient material. Exemplary descriptions of this technique are provided in U.S. Pat. Nos. 5,476,211, 5,917,707, and 6,336,269, which are hereby incorporated by reference.
  • Alternatively, elements 20 need not be wires. For example, elements 20 may be resilient spring-like structures formed lithographically by applying and patterning a masking layer to space transformer 15 and then depositing material in the openings in the masking layer or layers as generally illustrated in FIGS. 3 b and 3 e above. Indeed, elements 20 may be fashioned in a variety of shapes by molding the masking layer(s) to have the negative of the desired shape (an example of this technique is as described in U.S. Patent Application Publication 2002/0055282 A1, which is incorporated in its entirety herein by reference) or by using multiple masking layers with different patterned openings to define the negative of the desired shape of elements 20 (an examples of this technique are described in U.S. patent application Ser. No. 09/032,473 (filed Feb. 26, 1998) and U.S. Pat. No. 6,268,015, both of which are also incorporated in their entirety herein by reference). Alternatively, such lithographic techniques may be used to build elements 20 over the tips 21 and posts 22 over stop plates 23 following the step illustrated in FIG. 3 e. All of the foregoing techniques may also be used to make posts 22.
  • As should be apparent from the foregoing, the invention is not limited to any particular type of probe. Rather, the present invention contemplates use of any appropriate probe including, without limitation, needle probes, buckling beam probes (e.g., “COBRA” probes), bumps, posts, and spring probes, examples of which are discussed above. Moreover, the probes may be made and assembled into an array in any manner. For example, probes may be made lithographically, by machining, by stamping, by molding, by microelectrical mechanical system (MEMS) processes, etc. and then assembled into an array. An example in which probes are made using a MEMS process and then assembled into an array is discussed in U.S. patent application Ser. No. 10/262,712 (filed Jul. 24, 2002), which is incorporated in its entirety herein by reference.
  • The stop structures may also be made and assembled in of the foregoing ways. Typically, posts 22 are made with sufficient rigidity that, upon engagement of over travel stop assemblies 17 with DUT 11, posts 22 will not significantly deform and will physically stop further travel of DUT 11 toward probe card assembly 10.
  • Referring again to the example illustrated in FIGS. 3 a-4 b, as shown in FIG. 4 b, the assembly 38 (FIG. 4 a) of wire elements 20 and posts 22 extending from space transformer 15 is then brought together with the assembly 36 (FIG. 3 f) of probe tips 21 and stop plates 23 formed upon on sacrificial substrate 27. As shown, probe tips 21 and stop plates 23 are all sized and located on sacrificial substrate 27, and wire elements 20 and posts 22 are all sized and located on space transformer 15, so that each probe tip 21 aligns with a corresponding wire element 20 and each stop plate 23 aligns with a corresponding pair of posts 22. Probe tips 21 are then permanently bonded to wire elements 20, and stop plates 23 are permanently bonded to posts 22. Such bonding may be performed in any appropriate manner such as, and without limitation, soldering or brazing. Such connection methods are described with reference to FIGS. 8D and 8E in the U.S. Pat. No. 5,974,662 patent.
  • Following connection of the probe tips 21 and stop plates 23 to wire elements 20 and posts 22, respectively, sacrificial substrate 27 is removed by any appropriate method such as, but without limitation, etching or dissolving. The resulting space transformer assembly 40 may be joined with other components to form a probe card assembly 10, such as the probe card assembly shown in FIG. 5 of the U.S. Pat. No. 5,974,662 patent.
  • In use, when DUT 11 and probe card assembly 10 are brought together and probe tips 21 engage with corresponding bond pads 19, the resilient, spring-like wire elements compress or deform (as shown in FIG. 2). To ensure that DUT 11 moves close enough to probe card assembly 10 to allow all of probes 16 to deform and achieve a sufficiently resistive spring force and thus reliable pressure contact with their corresponding bond pads 19, neighboring over travel stop assemblies 17 engage DUT 11 at a predetermined distance of travel to physically preclude additional over travel. With probe card assembly 10 constructed as described and shown in FIG. 1, the combined depth of pits 26 and the thickness of mask 31 corresponds to the over travel distance 41 (FIG. 1) permitted by the present invention.
  • The probe card assembly 10 of FIG. 1 shows just eight probes 16 and a pair of neighboring stop assemblies 17. Another configuration is shown in FIG. 5 where the probe card assembly 42 (bottom view) has two arrays 43 and 44, each containing 48 probes 16 extending downwardly from space transformer 15, and where there are six over travel stop assemblies 17 spaced around the outside of the two arrays 43 and 44. It is contemplated that probe card assembly 42 or a similar probe card assembly may be used to test DUT's with fewer bond pads 19 than are contained in the corresponding array(s) of probes 16. Such excess probes 16 that do not contact a corresponding bond pad (or an inactive bond pad) can be deselected by software.
  • The test system in which the probe card assembly of the present invention is incorporated may operate to move DUT II toward a stationary probe card assembly 10 or to move probe card assembly 10 toward a stationary DUT 11 or to move both DUT 11 and probe card assembly 10 towards each other. Further, such test system may be configured for such movement by the DUT 11 and/or probe card assembly 10 to be effected manually or automatically. It is contemplated that such test system will incorporate any appropriate configuration of machinery, computer hardware and software to effect such manual or automatic movement, to provide for adjustment of the limits, path and rate of such movement, and to receive, process and display output data produced during such movement and from the engagement between the DUT and the probe card assembly.
  • Alternative embodiments are contemplated wherein there are more or less than two posts 22 connecting and holding each stop plate 23. Alternative embodiments are contemplated wherein plates 23 are in shapes other than the relatively planar and rectangular configuration shown. Alternative embodiments are contemplated wherein posts 22 are not rigid, but instead are somewhat resilient to provide a degree of “give” or “compliance” when DUT 11 engages with over travel stop assemblies 17. For example, as shown in FIG. 6, a probe card assembly 45 is shown in accordance with another embodiment of the present invention wherein the stop plates 46 and 47 of over travel stop assemblies 48 and 49 are held by resilient posts 50. (Like probe card assembly 10 of FIG. 1, the probe card assembly 45 shows just eight probes 16 and just two over travel stop assemblies 48 and 49. The invention contemplates any number of probes and stop assemblies to properly engage with the bond pads of a DUT 11 to be tested). Posts 50 may be formed and connected to space transformer 15 using any appropriate method, including those techniques discussed herein for forming and connecting wire elements 20.
  • One benefit of making posts 50 resilient is realized in the event that DUT 11 is at all non-planar, that any of stop plates 46 and 47 are or have become non-planar, that stop plates 46 and 47 of over travel stop assemblies 48 and 49 are or have become mutually non-planar, and/or that DUT 11 is not parallel to the plane of the stop plates 46 and 47 at the moment of engagement therewith. Thus, referring to FIG. 7 where, in exaggerated fashion, DUT 11 is shown to be non-planar at the moment of initial engagement, the resiliency of posts 50 allows the first stop plate 46 to engage, and its resilient posts will deform until the other stop plate 47 likewise engages. The resiliency of posts 50 is selected to permit such deformation by one or a few of the posts when necessary, but to also still provide a physical over travel limit when all the over travel stop assemblies 48 are engaged, Alternative embodiments are contemplated where posts 50 are made to be both rigid and resilient. That is, a portion of each post 50 is made resilient to enable a limited degree of give (as shown in FIG. 7) and another portion of each post is made rigid to define the maximum limit of give, and thus overtravel. Alternative embodiments are also contemplated wherein plates 23 are not rigid, but instead are somewhat resilient to provide a degree of “give” or “compliance” when DUT 11 engages with over travel stop assemblies 17.
  • Alternative embodiments are contemplated wherein one or more over travel stop assemblies are wired to provide a signal that the corresponding DUT 11 has been engaged. Such signal may simply indicate engagement or may signal the extent of engagement (e.g., by signaling a degree of force exerted by the wafer on the probes or the over travel stop). For example, such signal may provide a binary output x: no contact (x=0), contact (x=1). Alternatively, a more detailed response may be provided by the output value x: no contact (x=0), contact (0<x≦1) where any x greater than 0 indicates contact and the value of x greater than 0 and less than or equal to 1 indicates the extent of travel of the DUT from initial contact up to and including the limit of travel. Such output signal is contemplated to be received as input by computer components connected with the probe card assembly and displayed in any appropriate form and/or used to further control the overall probe testing operation. Typically, such output signal would be sent to the tester or prober, which would then stop movement of the probe card assembly toward the semiconductor wafer when the desired over travel limit is reached.
  • An example of such assembly in shown in FIG. 8, where a probe card assembly 56 includes over travel stop assemblies 57 that are wired to provide over travel position output signals. Like probe card assembly 45 of FIG. 6 and similar to the probe card assembly 500 of FIG. 5 of the U.S. Pat. No. 5,974,662 patent, probe card assembly 56 includes an array 58 of probes 59 and over travel stop assemblies 57 mounted to a spaced transformer 61, which is electronically connected by various interconnection wire elements 62 and an interposer 63 to a probe card assembly 65, An over travel control unit 66 is wired to the over travel stop assemblies 57 whereby the over travel output signals are transmitted to control unit 66, which transmits corresponding signals to the tester/prober (not shown). The allowable over travel is indicated at 67. FIG. 9 is a plan view of the probe card assembly 56 showing diagrammatically one exemplary placement of over travel stop assemblies 57 relative to the array 58 of probes 59.
  • FIGS. 10 and 11 illustrate one exemplary arrangement for detecting completion of a desired amount of over travel of bond pads or pins 73, 74 of wafer 71 with respect to probes 59. Referring to FIG. 10, the over travel stop assemblies 57 are arranged in adjacent pairs. Thus, at each of the four sites of the probe card assembly 56 of this embodiment (FIG. 9), probe card assembly 56 includes a pair of over travel stop assemblies 69 and 70. In each die on the wafer 71 to be tested, the bond pads or pins 73, 74 comprise functioning pins 73 and dummy pins 74. (Pins 73, 74 in FIGS. 10 and 11 are shown as having slightly different heights due to inherent manufacturing imprecision.) Functioning pins 73 are functional in providing the desired power, ground and signal capabilities for their corresponding die 76 (or 77), while dummy pins 72 are shorted to ground.
  • In use, when wafer 71 and probe card assembly 56 are brought together, probe tips 59 will engage with corresponding pins on the DUT 11 (device under test) 78. Because of the resiliency of the wire element 80 of each probe 59, each probe 59 will deform as necessary and engage with each of its corresponding pins 73 and 74. It should be noted that there may or may not be a probe 59 that corresponds to a particular dummy pin 74. It should also be noted that the contact plates of over travel assemblies 69 and 70 are preferably made to correspond to known locations of dummy pins 74 on wafer 71. A circuit will be completed and a corresponding signal will be generated and transmitted through control unit 66 to the prober/tester (not shown), and movement of probe card assembly 56 toward wafer 71 will stop. The invention contemplates that the system software will be configured to control the testing operation in response to any desired contact combination. That is, in one embodiment, contact by any two adjacent over travel stop assemblies (i.e. 69 and 70) with dummy pins will cause movement of probe card assembly 56 to stop. Alternatively, referring to FIGS. 8 and 9, any one over travel stop assembly (i.e. 69) at one side 81 of array 58 and any one over travel stop assembly (i.e. 82) at another side 83 (or 84 or 85), can be programmed to stop movement of probe card assembly 56. Alternatively, just one over travel stop assembly (i.e. 69) could be programmed to stop movement of probe card assembly 56.
  • Alternative embodiments are contemplated wherein two or more over travel stop assemblies are wired as above and the output thus indicates which over travel stop assemblies have engaged with the DUT 11 and by how much. Such output, from just one or from a plurality of the over travel stop assemblies, is contemplated to be made available for display or other recognition by a human or machine. Thus, such output may simply be indicated by a single LED flashing or by a buzzer. Alternatively or in addition, a display screen may diagrammatically indicate the entire probe card assembly layout and show by any appropriate display which over travel stop assemblies have been engaged and by how much. Alternatively or in addition, the output signal may be received by a computer or other machine and acted upon. For example, a signal that an over travel stop assembly has engaged a bond pad or pin may cause the system to cease movement of the probe card assembly toward the DUT 11, or visa versa, or movement for only another pre-programmed distance. Where the output signal indicates the extent of engagement, such information can be used by the human user or the machine to adjust the limits of movement of the DUT relative to the probe card assembly, as well as the rate of such movement.
  • FIGS. 13 and 14 illustrate exemplary methods for automatically controlling movement of a wafer to be tested into contact with a probe card assembly, and FIG. 12 illustrates a feedback controller 530 that may implement any of the processes of FIGS. 13 and 14. The exemplary feedback controller 530 illustrated in FIG. 12 is a microprocessor based controller and may be, for example, part of control apparatus 13. As shown, it includes a digital memory 532, a microprocessor 534, and an input/output port 536. Input data 538 is received and output data 540 is output through input/output port 536. The digital memory 532 may be any type of memory including an electronic memory, an optical memory, a magnetic memory, or some combination of the foregoing. As just two examples, digital memory 532 may be a read only memory, or digital memory 532 may be a combination of a magnetic or optical disk and a random access memory. Microprocessor 534 executes instructions (which may be in the form of software or microcode) stored in digital memory 532.
  • The exemplary methods illustrated in FIGS. 13 and 14, which may be implemented in software and executed on a microprocessor based system such as the one illustrated in FIG. 12, will be explained with reference to a probe card assembly 56 such as the one illustrated in FIGS. 8-11 in a tester 5 like the one illustrated in FIG. 1. For purposes of discussion only, it is assumed that a wafer such as exemplary wafer 71 is moved while probe card assembly 56 is held stationary. Of course, the wafer could alternatively be held stationary and probe card assembly moved, or both the wafer and the probe card assembly could be moved. The wafer 71 may be supported by any appropriate means, such as the wafer holder 18 illustrated in FIG. 1, which itself is moved by any appropriate means, such as an electric motor (not shown). Output data 540 (FIG. 12) includes signals that control movement of the wafer 71 (e.g., by moving the wafer holder 18), and input data 538 includes signals from over travel control unit 66 or other sensors (e.g., the output of over travel control unit 66 may be directed to feedback controller 530 as input data 538).
  • The exemplary method illustrated in FIG. 13 utilizes one or more sensors for detecting when the wafer 71 has been moved into contact with the probes 71 and then further moved by a desired amount of over travel past first contact. For illustration purposes, the sensor(s) is assumed to comprise over travel stop assemblies 69, 70 wired to detect contact as illustrated in FIGS. 10 and 11. It should be understood, however, that any sensor for detecting or estimating when the wafer 71 has been moved the desired over travel distance may be used. Such sensors include by way of example acoustic sensors, optical sensors, etc., which may be used to detect, for example, when the over travel stops reach a particular position. It should also be noted that one to several such sensors may be used, and if a plurality of sensors are used, the sensors may be arranged in any pattern on probe card assembly 56. The pattern of four sensors 81, 83, 84, 85 illustrated in FIG. 9 is but one exemplary pattern.
  • Turning now to the exemplary method illustrated in FIG. 13, this exemplary method begins after wafer (e.g., wafer 71 shown in FIGS. 10 and 11) has been placed on a moveable holder (e.g., wafer holder 18 illustrated in FIG. 1), and pads or pins 73, 74 of wafer have been aligned with probes 59, as illustrated in FIG. 10. As shown in FIG. 13, the first step 110 is to move the wafer 71 toward the probe card assembly 56. At step 112, it is determined whether the pins 73, 74 on wafer 71 have been moved into contact with probes 59 and over traveled the desired distance. If no, movement of the wafer 71 toward the probe card assembly 56 continues (step 110). If yes, movement of the wafer 71 is stopped at step 114.
  • Determining whether pins 73, 74 have reached the desired over-travel (step 112) may be detected or estimated in any way. As just one example, stop structures 69, 70, such as those illustrated in FIGS. 10 and 11 may be configured so that an over travel sensor 66 generates a signal when over travel stops 69, 70 contact pins 73, 74. That signal may be input to controller 530 as input signal 538. As mentioned above, other types of sensors may be used. Also, any number of sensors may be used, and if multiple sensors are used, they may be positioned in any suitable pattern. If multiple sensors are used, a signal indicating that the desired amount of over travel has been reached may be triggered by any one or more of the sensors in any desired pairing or sequence. For example, referring to the exemplary pattern of sensors 81, 83, 84, 85 shown in FIG. 9, a over-travel-reached state may be found to be affirmative at step 112 when any one of the sensors 81, 83, 84, 85 is activated. As another nonexclusive example, the over-travel-reached state may be found to be affirmative at step 112 only after all four sensors 81, 83, 84, 85 are activated. As another example, the over-travel-reached state may be found at step 112 after a pair of sensors (e.g., opposite pairs 81, 83, or pairs 84, 85) are activated. Many other combinations are possible.
  • Turning now to the exemplary method illustrated in FIG. 14, this exemplary method also begins after a wafer (e.g., wafer 71 shown in FIGS. 10 and 11) has been placed on a moveable holder (e.g., wafer holder 18 illustrated in FIG. 1), and pads or pins 73, 74 of wafer 71 have been aligned with probes 59, as illustrated in FIG. 10. As shown in FIG. 14, the first step 202 is to move the wafer 71 toward the probe card assembly 56 at an initial speed. During this movement, the force the wafer pads or pins 73, 74 exert against probes 59 is determined at step 204, and it is determined at step 206 whether the force exceeds a predetermined maximum force. (Of course, before first contact between the pads or pins 73, 74 and probes 59, the force is zero.) If yes, movement of the wafer 71 toward the probe card assembly 56 is stopped at step 210 (e.g., controller 530 issues control signals 540 that cause movement to stop). If, however, the determined force is less than the maximum force (step 206), at step 206, the speed of the movement of the wafer 71 toward the probe card assembly 56 is adjusted in accordance with the force determined at step 204 (e.g., again the controller 530 issues control signal(s) 540 that adjusts the speed). Preferably, the speed is decreased as the force increases. The steps of moving the wafer 71 toward the probe card assembly 56 (step 202), determining the force 204, and adjusting the speed of the wafer 71 (step 208) are repeated until the force on the probes 56 exceeds the maximum force (step 206). It should be noted that step 208 is optional. That is, the process of FIG. 15 can be performed without adjusting the speed following a negative determination at step 206.
  • Again, there are many different types of sensors that may be used to determine or estimate the force on a probe. For example, over travel stops 69, 70 may be fitted with force measuring sensors (e.g., a piezoelectric material). Alternatively, force measuring device(s) may be connected directly to one or more probes 59. Also, one or more such sensors may be used. If more than one is used, the step of determining the force 204 may comprise averaging the forces detected by all of the sensors.
  • FIGS. 15 a-15 c illustrate a probe card assembly 446 in which base 414 is made of a flexible material. As will be seen, because the base 414 is flexible, it absorbs extra over travel, As shown in FIG. 15 a, wafer holder 18 brings wafer 11 into first contact with probes 16. As shown in FIG. 15 b, wafer holder 18 moves wafer 11 past the point of first contact by an over travel distance 41. As shown in FIG. 15 c, for whatever reason, wafer holder 18 moves wafer 11 beyond the desired over travel 41 by an additional over travel distance 441. Normally, the additional over travel 441 could cause excessive forces to be exerted on the over travel assemblies 17 and possibly the probes 16. As also shown in FIG. 16 c, however, the base flexes, absorbing all or at least part of the additional over travel 441, eliminating or at least reducing the excessive forces caused by the additional over travel 441. The base 414 may be made of any material that is sufficiently rigid to support probes 16 but sufficiently flexible to absorb all or part of over travel 441. Examples of such materials include, without limitation, printed circuit board material, Mylar, organic materials, rubbers, and plastics.
  • While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrated and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.

Claims (10)

1-28. (canceled)
29: A method of controlling relative movement between an electronic device to be tested and a probe card assembly, said method comprising:
effecting relative movement of said device and said probe card assembly;
detecting a desired amount of over travel between said wafer and said probe card assembly; and
upon detecting said desired amount of over travel, stopping said relative movement of said device and said probe card assembly.
30: The method of claim 29, wherein said detecting said desired amount of over travel comprises detecting contact between a stop structure on said probe card assembly and said device.
31: The method of claim 29, wherein said detecting said desired amount of over travel comprises detecting contact between a plurality of stop structures on said probe card assembly and said device.
32: A media for storing machine-executable instructions for causing a controller to perform a method of controlling relative movement of a device to be tested and a probe card assembly, said method comprising:
generating a control signal to effect relative movement of said device and said probe card assembly;
receiving an input signal indicating completion of a desired amount of over travel between said wafer and said probe card assembly; and
in response to said input signal, generating a control signal to stop said relative movement of said device and said probe card assembly.
33: A method of controlling relative movement between an electronic device to be tested and a probe card assembly, said method comprising:
effecting relative movement of said device and said probe card assembly;
determining a force of said device against said probe card assembly; and
stopping said movement when said force exceeds a maximum force.
34: The method of claim 33 further comprising. adjusting a speed of said movement in accordance with said force.
35: The method of claim 34, wherein said adjusting a speed of said movement in accordance with said force comprises decreasing said speed as said force increases.
36: A media for storing machine-executable instructions for causing a controller to perform a method of controlling relative movement of a device to be tested and a probe card assembly, said method comprising:
generating a control signal to effect relative movement of said device and said probe card assembly;
receiving an input signal corresponding to a force of said device against said probe card assembly; and
generating a control signal to stop said movement when said force exceeds a maximum force.
37: The media of 36, wherein said method further comprises generating a control signal to adjust a speed of said movement in accordance with said force.
US12/360,433 2002-12-16 2009-01-27 Apparatus and method for limiting over travel in a probe card assembly Abandoned US20090134897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/360,433 US20090134897A1 (en) 2002-12-16 2009-01-27 Apparatus and method for limiting over travel in a probe card assembly

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/321,743 US7084650B2 (en) 2002-12-16 2002-12-16 Apparatus and method for limiting over travel in a probe card assembly
US11/461,734 US7482822B2 (en) 2002-12-16 2006-08-01 Apparatus and method for limiting over travel in a probe card assembly
US12/360,433 US20090134897A1 (en) 2002-12-16 2009-01-27 Apparatus and method for limiting over travel in a probe card assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/461,734 Division US7482822B2 (en) 2002-12-16 2006-08-01 Apparatus and method for limiting over travel in a probe card assembly

Publications (1)

Publication Number Publication Date
US20090134897A1 true US20090134897A1 (en) 2009-05-28

Family

ID=32507122

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/321,743 Expired - Fee Related US7084650B2 (en) 2002-12-16 2002-12-16 Apparatus and method for limiting over travel in a probe card assembly
US11/461,734 Expired - Fee Related US7482822B2 (en) 2002-12-16 2006-08-01 Apparatus and method for limiting over travel in a probe card assembly
US12/360,433 Abandoned US20090134897A1 (en) 2002-12-16 2009-01-27 Apparatus and method for limiting over travel in a probe card assembly

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/321,743 Expired - Fee Related US7084650B2 (en) 2002-12-16 2002-12-16 Apparatus and method for limiting over travel in a probe card assembly
US11/461,734 Expired - Fee Related US7482822B2 (en) 2002-12-16 2006-08-01 Apparatus and method for limiting over travel in a probe card assembly

Country Status (8)

Country Link
US (3) US7084650B2 (en)
EP (1) EP1576377A2 (en)
JP (1) JP2006510028A (en)
KR (1) KR20050084326A (en)
CN (2) CN101140297A (en)
AU (1) AU2003301039A1 (en)
TW (1) TWI299088B (en)
WO (1) WO2004059331A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070126435A1 (en) * 2005-12-02 2007-06-07 Formfactor, Inc. Apparatus And Method For Adjusting An Orientation Of Probes
CN108682632A (en) * 2018-05-11 2018-10-19 德淮半导体有限公司 Semiconductor detection and its operating method

Families Citing this family (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8033838B2 (en) 1996-02-21 2011-10-11 Formfactor, Inc. Microelectronic contact structure
US5914613A (en) 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US6705876B2 (en) * 1998-07-13 2004-03-16 Formfactor, Inc. Electrical interconnect assemblies and methods
US6256882B1 (en) 1998-07-14 2001-07-10 Cascade Microtech, Inc. Membrane probing system
US6914423B2 (en) 2000-09-05 2005-07-05 Cascade Microtech, Inc. Probe station
US6965226B2 (en) 2000-09-05 2005-11-15 Cascade Microtech, Inc. Chuck for holding a device under test
DE20114544U1 (en) 2000-12-04 2002-02-21 Cascade Microtech, Inc., Beaverton, Oreg. wafer probe
US6850080B2 (en) * 2001-03-19 2005-02-01 Semiconductor Energy Laboratory Co., Ltd. Inspection method and inspection apparatus
US6970634B2 (en) * 2001-05-04 2005-11-29 Cascade Microtech, Inc. Fiber optic wafer probe
US6729019B2 (en) * 2001-07-11 2004-05-04 Formfactor, Inc. Method of manufacturing a probe card
US6933738B2 (en) * 2001-07-16 2005-08-23 Formfactor, Inc. Fiducial alignment marks on microelectronic spring contacts
AU2002327490A1 (en) 2001-08-21 2003-06-30 Cascade Microtech, Inc. Membrane probing system
US7084650B2 (en) * 2002-12-16 2006-08-01 Formfactor, Inc. Apparatus and method for limiting over travel in a probe card assembly
AU2003214772A1 (en) * 2003-02-05 2004-08-30 Systems On Silicon Manufacturing Co. Pte. Ltd. Probe card needle cleaning frequency optimization
KR100573089B1 (en) * 2003-03-17 2006-04-24 주식회사 파이컴 Probe and manufacturing method thereof
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7057404B2 (en) 2003-05-23 2006-06-06 Sharp Laboratories Of America, Inc. Shielded probe for testing a device under test
US7250626B2 (en) 2003-10-22 2007-07-31 Cascade Microtech, Inc. Probe testing structure
US7249702B2 (en) * 2003-12-04 2007-07-31 Kulicke And Soffa Industries, Inc. Multi-part capillary
US7187188B2 (en) 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support
KR20060126700A (en) 2003-12-24 2006-12-08 캐스케이드 마이크로테크 인코포레이티드 Active wafer probe
US7319335B2 (en) * 2004-02-12 2008-01-15 Applied Materials, Inc. Configurable prober for TFT LCD array testing
US7339368B2 (en) * 2004-07-21 2008-03-04 Intel Corporation Methods and apparatus for testing circuit boards
JP2008512680A (en) 2004-09-13 2008-04-24 カスケード マイクロテック インコーポレイテッド Double-sided probing structure
JP2006119024A (en) * 2004-10-22 2006-05-11 Tokyo Electron Ltd Probe and its manufacturing method
US7535247B2 (en) 2005-01-31 2009-05-19 Cascade Microtech, Inc. Interface for testing semiconductors
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
JP4216823B2 (en) * 2005-03-04 2009-01-28 田中貴金属工業株式会社 Probe pin and a blob card having the blob bin
EP2273279A1 (en) 2005-04-27 2011-01-12 Aehr Test Systems, Inc. Apparatus for testing electronic devices
US7471094B2 (en) * 2005-06-24 2008-12-30 Formfactor, Inc. Method and apparatus for adjusting a multi-substrate probe structure
US7498825B2 (en) * 2005-07-08 2009-03-03 Formfactor, Inc. Probe card assembly with an interchangeable probe insert
KR100701498B1 (en) * 2006-02-20 2007-03-29 주식회사 새한마이크로텍 Probe pin assembly for testing semiconductor and method for manufacturing the same
US7723999B2 (en) 2006-06-12 2010-05-25 Cascade Microtech, Inc. Calibration structures for differential signal probing
US7403028B2 (en) 2006-06-12 2008-07-22 Cascade Microtech, Inc. Test structure and probe for differential signals
US7764072B2 (en) 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
JP4522975B2 (en) * 2006-06-19 2010-08-11 東京エレクトロン株式会社 Probe card
CN101126626B (en) * 2006-08-18 2010-09-22 鸿富锦精密工业(深圳)有限公司 Planeness detecting instrument
US7825675B2 (en) * 2006-11-01 2010-11-02 Formfactor, Inc. Method and apparatus for providing active compliance in a probe card assembly
US7595651B2 (en) * 2007-02-13 2009-09-29 Mpi Corporation Cantilever-type probe card for high frequency application
DE102007013062A1 (en) * 2007-03-19 2008-10-09 Qimonda Ag Device and method for electrical contacting for testing semiconductor devices
DE102007015283A1 (en) * 2007-03-29 2008-10-02 Qimonda Ag Test device for semiconductor devices
US7876114B2 (en) 2007-08-08 2011-01-25 Cascade Microtech, Inc. Differential waveguide probe
CN101316014B (en) * 2007-10-17 2012-02-01 番禺得意精密电子工业有限公司 Electric connection device and assembly method thereof
US7800382B2 (en) 2007-12-19 2010-09-21 AEHR Test Ststems System for testing an integrated circuit of a device and its method of use
US7936177B2 (en) * 2008-03-07 2011-05-03 Formfactor, Inc. Providing an electrically conductive wall structure adjacent a contact structure of an electronic device
US8528885B2 (en) * 2008-04-21 2013-09-10 Formfactor, Inc. Multi-stage spring system
KR200449521Y1 (en) * 2008-05-16 2010-07-15 김동언 Tester for a cellular phone connect
US7888957B2 (en) 2008-10-06 2011-02-15 Cascade Microtech, Inc. Probing apparatus with impedance optimized interface
US8410806B2 (en) 2008-11-21 2013-04-02 Cascade Microtech, Inc. Replaceable coupon for a probing apparatus
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
JP2010175507A (en) * 2009-02-02 2010-08-12 Micronics Japan Co Ltd Electrical connection device
WO2011153298A1 (en) 2010-06-03 2011-12-08 Hsio Technologies, Llc Electrical connector insulator housing
WO2011139619A1 (en) 2010-04-26 2011-11-10 Hsio Technologies, Llc Semiconductor device package adapter
WO2014011232A1 (en) 2012-07-12 2014-01-16 Hsio Technologies, Llc Semiconductor socket with direct selective metalization
US8955215B2 (en) 2009-05-28 2015-02-17 Hsio Technologies, Llc High performance surface mount electrical interconnect
US9276336B2 (en) 2009-05-28 2016-03-01 Hsio Technologies, Llc Metalized pad to electrical contact interface
WO2010141311A1 (en) 2009-06-02 2010-12-09 Hsio Technologies, Llc Compliant printed circuit area array semiconductor device package
US9276339B2 (en) 2009-06-02 2016-03-01 Hsio Technologies, Llc Electrical interconnect IC device socket
US9232654B2 (en) 2009-06-02 2016-01-05 Hsio Technologies, Llc High performance electrical circuit structure
US9603249B2 (en) 2009-06-02 2017-03-21 Hsio Technologies, Llc Direct metalization of electrical circuit structures
US9699906B2 (en) 2009-06-02 2017-07-04 Hsio Technologies, Llc Hybrid printed circuit assembly with low density main core and embedded high density circuit regions
US8970031B2 (en) 2009-06-16 2015-03-03 Hsio Technologies, Llc Semiconductor die terminal
US8610265B2 (en) 2009-06-02 2013-12-17 Hsio Technologies, Llc Compliant core peripheral lead semiconductor test socket
US9196980B2 (en) 2009-06-02 2015-11-24 Hsio Technologies, Llc High performance surface mount electrical interconnect with external biased normal force loading
US8525346B2 (en) 2009-06-02 2013-09-03 Hsio Technologies, Llc Compliant conductive nano-particle electrical interconnect
US8988093B2 (en) 2009-06-02 2015-03-24 Hsio Technologies, Llc Bumped semiconductor wafer or die level electrical interconnect
US9613841B2 (en) 2009-06-02 2017-04-04 Hsio Technologies, Llc Area array semiconductor device package interconnect structure with optional package-to-package or flexible circuit to package connection
US9231328B2 (en) 2009-06-02 2016-01-05 Hsio Technologies, Llc Resilient conductive electrical interconnect
US8789272B2 (en) 2009-06-02 2014-07-29 Hsio Technologies, Llc Method of making a compliant printed circuit peripheral lead semiconductor test socket
WO2010141266A1 (en) 2009-06-02 2010-12-09 Hsio Technologies, Llc Compliant printed circuit peripheral lead semiconductor package
US9277654B2 (en) 2009-06-02 2016-03-01 Hsio Technologies, Llc Composite polymer-metal electrical contacts
WO2012078493A1 (en) 2010-12-06 2012-06-14 Hsio Technologies, Llc Electrical interconnect ic device socket
WO2010141264A1 (en) * 2009-06-03 2010-12-09 Hsio Technologies, Llc Compliant wafer level probe assembly
WO2010141296A1 (en) 2009-06-02 2010-12-09 Hsio Technologies, Llc Compliant printed circuit semiconductor package
US8987886B2 (en) 2009-06-02 2015-03-24 Hsio Technologies, Llc Copper pillar full metal via electrical circuit structure
WO2012074963A1 (en) 2010-12-01 2012-06-07 Hsio Technologies, Llc High performance surface mount electrical interconnect
US9930775B2 (en) 2009-06-02 2018-03-27 Hsio Technologies, Llc Copper pillar full metal via electrical circuit structure
US8912812B2 (en) 2009-06-02 2014-12-16 Hsio Technologies, Llc Compliant printed circuit wafer probe diagnostic tool
US8928344B2 (en) 2009-06-02 2015-01-06 Hsio Technologies, Llc Compliant printed circuit socket diagnostic tool
WO2010141295A1 (en) 2009-06-02 2010-12-09 Hsio Technologies, Llc Compliant printed flexible circuit
US9136196B2 (en) 2009-06-02 2015-09-15 Hsio Technologies, Llc Compliant printed circuit wafer level semiconductor package
US9318862B2 (en) 2009-06-02 2016-04-19 Hsio Technologies, Llc Method of making an electronic interconnect
US8981568B2 (en) 2009-06-16 2015-03-17 Hsio Technologies, Llc Simulated wirebond semiconductor package
US9320144B2 (en) 2009-06-17 2016-04-19 Hsio Technologies, Llc Method of forming a semiconductor socket
US8981809B2 (en) 2009-06-29 2015-03-17 Hsio Technologies, Llc Compliant printed circuit semiconductor tester interface
US8984748B2 (en) 2009-06-29 2015-03-24 Hsio Technologies, Llc Singulated semiconductor device separable electrical interconnect
KR101079384B1 (en) * 2009-08-10 2011-11-02 삼성전기주식회사 Examination apparatus for printed circuit board
KR101115958B1 (en) * 2009-12-11 2012-02-22 (주)기가레인 Probe card
KR101674135B1 (en) * 2010-01-13 2016-11-09 (주)엠투엔 Probe card
US10159154B2 (en) 2010-06-03 2018-12-18 Hsio Technologies, Llc Fusion bonded liquid crystal polymer circuit structure
US9350093B2 (en) 2010-06-03 2016-05-24 Hsio Technologies, Llc Selective metalization of electrical connector or socket housing
US9689897B2 (en) 2010-06-03 2017-06-27 Hsio Technologies, Llc Performance enhanced semiconductor socket
US8758067B2 (en) 2010-06-03 2014-06-24 Hsio Technologies, Llc Selective metalization of electrical connector or socket housing
TWI421504B (en) * 2010-07-02 2014-01-01 Isc Co Ltd Test probe for test and fabrication method thereof
JP2013064678A (en) * 2011-09-20 2013-04-11 Renesas Electronics Corp Method for manufacturing semiconductor integrated circuit device
WO2013134564A1 (en) * 2012-03-07 2013-09-12 Advantest Corporation Transferring electronic probe assemblies to space transformers
US9726590B2 (en) * 2012-06-29 2017-08-08 Hydrovision Asia Pte Ltd Suspended sediment meter
US9761520B2 (en) 2012-07-10 2017-09-12 Hsio Technologies, Llc Method of making an electrical connector having electrodeposited terminals
TWI452309B (en) * 2012-09-21 2014-09-11 Winbond Electronics Corp Package test method
US9395404B2 (en) * 2012-12-14 2016-07-19 Infineon Technologies Ag Method for testing semiconductor chips or semiconductor chip modules
JP6042761B2 (en) * 2013-03-28 2016-12-14 東京エレクトロン株式会社 Probe device
WO2014182633A1 (en) * 2013-05-06 2014-11-13 Formfactor A probe card assembly for testing electronic devices
CN104183515A (en) * 2013-05-24 2014-12-03 标准科技股份有限公司 Wafer testing machine stand
DE112014002974T5 (en) * 2013-06-24 2016-06-09 Dcg Systems, Inc. Probe-based data collection system with adaptive probe survey controlled by local properties of the sample
US10667410B2 (en) 2013-07-11 2020-05-26 Hsio Technologies, Llc Method of making a fusion bonded circuit structure
US10506722B2 (en) 2013-07-11 2019-12-10 Hsio Technologies, Llc Fusion bonded liquid crystal polymer electrical circuit structure
CN103412251A (en) * 2013-07-24 2013-11-27 昆山迈致治具科技有限公司 PCB performance detection jig with stroke-limiting mechanism
CN103412250A (en) * 2013-07-24 2013-11-27 昆山迈致治具科技有限公司 PCB limiting and testing fixture
CN103415158B (en) * 2013-07-24 2016-08-17 昆山迈致治具科技有限公司 A kind of pcb board heat insulation restricted driving journey heat pressing utensil
CN103412252A (en) * 2013-07-24 2013-11-27 昆山迈致治具科技有限公司 PCB performance detection jig with positioning and stroke-limiting functions
TWI506282B (en) * 2013-08-08 2015-11-01 Mjc Probe Inc Probe card
CN103487738A (en) * 2013-09-27 2014-01-01 昆山迈致治具科技有限公司 PCB performance detection jig with heat dissipation function, locating function and stroke limiting function
CN103487741A (en) * 2013-09-27 2014-01-01 昆山迈致治具科技有限公司 PCB performance detecting jig with heat dissipation and travel control mechanism
US9331059B2 (en) * 2013-12-10 2016-05-03 Infineon Technologies Ag Chip, chip package and die
US9880194B2 (en) * 2014-04-04 2018-01-30 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Actuator module for actuating a load
TWI603087B (en) 2014-06-25 2017-10-21 Dcg系統公司 Method for nanoprobing of electronic devices
CN104345182B (en) * 2014-10-29 2017-06-27 华中科技大学 A kind of multistation test fixture
US9559447B2 (en) 2015-03-18 2017-01-31 Hsio Technologies, Llc Mechanical contact retention within an electrical connector
US10466292B2 (en) 2016-01-08 2019-11-05 Aehr Test Systems Method and system for thermal control of devices in an electronics tester
JP6858945B2 (en) * 2016-06-09 2021-04-14 日本電産リード株式会社 Inspection jigs, inspection equipment, and probes
US10120020B2 (en) 2016-06-16 2018-11-06 Formfactor Beaverton, Inc. Probe head assemblies and probe systems for testing integrated circuit devices
EP4290243A3 (en) 2017-03-03 2024-02-28 AEHR Test Systems Electronics tester
US10330703B2 (en) * 2017-04-04 2019-06-25 Formfactor Beaverton, Inc. Probe systems and methods including electric contact detection
US10388579B2 (en) * 2017-09-21 2019-08-20 Texas Instruments Incorporated Multi-plate semiconductor wafer testing systems
CN108279368A (en) * 2018-01-23 2018-07-13 德淮半导体有限公司 Tester table and test method
CN110568231A (en) * 2018-06-06 2019-12-13 中华精测科技股份有限公司 Probe card device and three-dimensional signal switching structure thereof
KR102698002B1 (en) * 2018-12-11 2024-08-22 (주)포인트엔지니어링 Probe card and method for manufacturing the same
US20220003815A1 (en) * 2019-02-21 2022-01-06 Vuereal Inc. Probe structure for micro device inspection
CN114072682A (en) * 2019-03-20 2022-02-18 塞莱敦体系股份有限公司 Portable probe card assembly
US11293947B2 (en) 2019-04-26 2022-04-05 Formfactor, Inc. Probe on carrier architecture for vertical probe arrays
CN110045269A (en) * 2019-05-09 2019-07-23 肇庆学院 A kind of apparatus for testing chip and method
DE102019113277A1 (en) * 2019-05-20 2020-11-26 Tekon-Prüftechnik GmbH Test adapter
KR102347628B1 (en) * 2019-10-15 2022-01-06 (주)티에스이 Test apparatus for solar cell
US11395081B2 (en) * 2020-05-27 2022-07-19 xMEMS Labs, Inc. Acoustic testing method and acoustic testing system thereof
US11835575B2 (en) 2020-10-07 2023-12-05 Aehr Test Systems Electronics tester
KR20230124073A (en) * 2021-01-19 2023-08-24 인스티튜트 오브 플렉서블 일렉트로닉스 테크놀로지 오브 투, 저장 MicroLED defect detection flexible probe and its manufacturing method

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615573A (en) * 1983-10-28 1986-10-07 Honeywell Inc. Spring finger interconnect for IC chip carrier
US4784972A (en) * 1984-08-18 1988-11-15 Matsushita Electric Industrial Co. Ltd. Method of joining beam leads with projections to device electrodes
US4916002A (en) * 1989-01-13 1990-04-10 The Board Of Trustees Of The Leland Jr. University Microcasting of microminiature tips
US4965865A (en) * 1989-10-11 1990-10-23 General Signal Corporation Probe card for integrated circuit chip
US5019771A (en) * 1990-05-09 1991-05-28 Knights Technology, Inc. Contact sensing for integrated circuit testing
US5476211A (en) * 1993-11-16 1995-12-19 Form Factor, Inc. Method of manufacturing electrical contacts, using a sacrificial member
US5546375A (en) * 1992-07-15 1996-08-13 Canon Kabushiki Kaisha Method of manufacturing a tip for scanning tunneling microscope using peeling layer
US5550480A (en) * 1994-07-05 1996-08-27 Motorola, Inc. Method and means for controlling movement of a chuck in a test apparatus
US5555422A (en) * 1993-03-10 1996-09-10 Co-Operative Facility For Aging Tester Development Prober for semiconductor integrated circuit element wafer
US5574384A (en) * 1995-01-31 1996-11-12 Tabai Espec Corp. Combined board construction for burn-in and burn-in equipment for use with combined board
US5682064A (en) * 1993-08-16 1997-10-28 Micron Technology, Inc. Repairable wafer scale integration system
US5917707A (en) * 1993-11-16 1999-06-29 Formfactor, Inc. Flexible contact structure with an electrically conductive shell
US5974662A (en) * 1993-11-16 1999-11-02 Formfactor, Inc. Method of planarizing tips of probe elements of a probe card assembly
US6028437A (en) * 1997-05-19 2000-02-22 Si Diamond Technology, Inc. Probe head assembly
US6268015B1 (en) * 1998-12-02 2001-07-31 Formfactor Method of making and using lithographic contact springs
US6292005B1 (en) * 1998-07-07 2001-09-18 Advantest Corporatin Probe card for IC testing apparatus
US6336269B1 (en) * 1993-11-16 2002-01-08 Benjamin N. Eldridge Method of fabricating an interconnection element
US6344752B1 (en) * 1998-08-12 2002-02-05 Tokyo Electron Limited Contactor and production method for contractor
US6388456B1 (en) * 1999-04-16 2002-05-14 Advantest Corporation Probe card and manufactoring method therefor
US6469537B1 (en) * 1997-02-24 2002-10-22 Micron Technology, Inc. System for testing semiconductor wafers having interconnect with pressure sensing mechanism
US6518779B1 (en) * 1997-10-20 2003-02-11 Matsushita Electrical Industrial Do., Ltd. Probe card
US6677771B2 (en) * 2001-06-20 2004-01-13 Advantest Corp. Probe contact system having planarity adjustment mechanism
US6705876B2 (en) * 1998-07-13 2004-03-16 Formfactor, Inc. Electrical interconnect assemblies and methods
US6777968B1 (en) * 1999-10-06 2004-08-17 Tokyo Electron Limted Probing method and probing apparatus in which steady load is applied to main chuck

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988860A (en) 1982-11-12 1984-05-22 Matsushita Electric Ind Co Ltd Formation of metallic projection to metallic lead
JPS6447090A (en) 1987-08-18 1989-02-21 Seiko Epson Corp Circuit board
JPS6447090U (en) 1987-09-17 1989-03-23
JPH01235344A (en) * 1988-03-16 1989-09-20 Hitachi Ltd Semiconductor inspection apparatus and inspection of semiconductor wafer
JPH02161743A (en) * 1988-12-14 1990-06-21 Nec Corp Semiconductor tester
JPH03227544A (en) * 1990-02-01 1991-10-08 Nippon Telegr & Teleph Corp <Ntt> Wafer prober device
JPH06140479A (en) 1992-10-23 1994-05-20 Mitsubishi Denki Eng Kk Device for testing semiconductor integrated circuit
JPH06268035A (en) * 1993-03-10 1994-09-22 Eejingu Tesuta Kaihatsu Kyodo Kumiai Micro prober
JP3138366B2 (en) * 1993-07-20 2001-02-26 東京エレクトロン株式会社 Probe device
US6246247B1 (en) * 1994-11-15 2001-06-12 Formfactor, Inc. Probe card assembly and kit, and methods of using same
US7073254B2 (en) * 1993-11-16 2006-07-11 Formfactor, Inc. Method for mounting a plurality of spring contact elements
US20030199179A1 (en) * 1993-11-16 2003-10-23 Formfactor, Inc. Contact tip structure for microelectronic interconnection elements and method of making same
US6835898B2 (en) * 1993-11-16 2004-12-28 Formfactor, Inc. Electrical contact structures formed by configuring a flexible wire to have a springable shape and overcoating the wire with at least one layer of a resilient conductive material, methods of mounting the contact structures to electronic components, and applications for employing the contact structures
JP2799973B2 (en) * 1995-07-06 1998-09-21 日本電子材料株式会社 Vertically actuated probe card
CN1145802C (en) 1996-05-17 2004-04-14 福姆法克特公司 Microelectronic contact structure and method of making same
JPH11264839A (en) * 1998-03-17 1999-09-28 Denki Kagaku Kogyo Kk Probe card
US6888362B2 (en) * 2000-11-09 2005-05-03 Formfactor, Inc. Test head assembly for electronic components with plurality of contoured microelectronic spring contacts
US7396236B2 (en) * 2001-03-16 2008-07-08 Formfactor, Inc. Wafer level interposer
US6811406B2 (en) * 2001-04-12 2004-11-02 Formfactor, Inc. Microelectronic spring with additional protruding member
US6933738B2 (en) * 2001-07-16 2005-08-23 Formfactor, Inc. Fiducial alignment marks on microelectronic spring contacts
JP2003215161A (en) * 2002-01-22 2003-07-30 Tokyo Electron Ltd Probe, method of manufacturing probe, method and device for attaching probe, and probe card
US7084650B2 (en) * 2002-12-16 2006-08-01 Formfactor, Inc. Apparatus and method for limiting over travel in a probe card assembly

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615573A (en) * 1983-10-28 1986-10-07 Honeywell Inc. Spring finger interconnect for IC chip carrier
US4784972A (en) * 1984-08-18 1988-11-15 Matsushita Electric Industrial Co. Ltd. Method of joining beam leads with projections to device electrodes
US4916002A (en) * 1989-01-13 1990-04-10 The Board Of Trustees Of The Leland Jr. University Microcasting of microminiature tips
US4965865A (en) * 1989-10-11 1990-10-23 General Signal Corporation Probe card for integrated circuit chip
US5019771A (en) * 1990-05-09 1991-05-28 Knights Technology, Inc. Contact sensing for integrated circuit testing
US5546375A (en) * 1992-07-15 1996-08-13 Canon Kabushiki Kaisha Method of manufacturing a tip for scanning tunneling microscope using peeling layer
US5555422A (en) * 1993-03-10 1996-09-10 Co-Operative Facility For Aging Tester Development Prober for semiconductor integrated circuit element wafer
US5682064A (en) * 1993-08-16 1997-10-28 Micron Technology, Inc. Repairable wafer scale integration system
US5974662A (en) * 1993-11-16 1999-11-02 Formfactor, Inc. Method of planarizing tips of probe elements of a probe card assembly
US5917707A (en) * 1993-11-16 1999-06-29 Formfactor, Inc. Flexible contact structure with an electrically conductive shell
US5476211A (en) * 1993-11-16 1995-12-19 Form Factor, Inc. Method of manufacturing electrical contacts, using a sacrificial member
US6336269B1 (en) * 1993-11-16 2002-01-08 Benjamin N. Eldridge Method of fabricating an interconnection element
US5550480A (en) * 1994-07-05 1996-08-27 Motorola, Inc. Method and means for controlling movement of a chuck in a test apparatus
US5574384A (en) * 1995-01-31 1996-11-12 Tabai Espec Corp. Combined board construction for burn-in and burn-in equipment for use with combined board
US6469537B1 (en) * 1997-02-24 2002-10-22 Micron Technology, Inc. System for testing semiconductor wafers having interconnect with pressure sensing mechanism
US6028437A (en) * 1997-05-19 2000-02-22 Si Diamond Technology, Inc. Probe head assembly
US6518779B1 (en) * 1997-10-20 2003-02-11 Matsushita Electrical Industrial Do., Ltd. Probe card
US6292005B1 (en) * 1998-07-07 2001-09-18 Advantest Corporatin Probe card for IC testing apparatus
US6705876B2 (en) * 1998-07-13 2004-03-16 Formfactor, Inc. Electrical interconnect assemblies and methods
US6344752B1 (en) * 1998-08-12 2002-02-05 Tokyo Electron Limited Contactor and production method for contractor
US6268015B1 (en) * 1998-12-02 2001-07-31 Formfactor Method of making and using lithographic contact springs
US6388456B1 (en) * 1999-04-16 2002-05-14 Advantest Corporation Probe card and manufactoring method therefor
US6777968B1 (en) * 1999-10-06 2004-08-17 Tokyo Electron Limted Probing method and probing apparatus in which steady load is applied to main chuck
US6677771B2 (en) * 2001-06-20 2004-01-13 Advantest Corp. Probe contact system having planarity adjustment mechanism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070126435A1 (en) * 2005-12-02 2007-06-07 Formfactor, Inc. Apparatus And Method For Adjusting An Orientation Of Probes
US7671614B2 (en) * 2005-12-02 2010-03-02 Formfactor, Inc. Apparatus and method for adjusting an orientation of probes
CN108682632A (en) * 2018-05-11 2018-10-19 德淮半导体有限公司 Semiconductor detection and its operating method

Also Published As

Publication number Publication date
US7482822B2 (en) 2009-01-27
CN101140297A (en) 2008-03-12
CN1745308A (en) 2006-03-08
JP2006510028A (en) 2006-03-23
EP1576377A2 (en) 2005-09-21
US20040113640A1 (en) 2004-06-17
US7084650B2 (en) 2006-08-01
US20060261827A1 (en) 2006-11-23
KR20050084326A (en) 2005-08-26
AU2003301039A1 (en) 2004-07-22
CN100424513C (en) 2008-10-08
TW200416400A (en) 2004-09-01
TWI299088B (en) 2008-07-21
WO2004059331A3 (en) 2004-12-02
WO2004059331A2 (en) 2004-07-15

Similar Documents

Publication Publication Date Title
US7482822B2 (en) Apparatus and method for limiting over travel in a probe card assembly
EP1570277B1 (en) Method of making a socket to perform testing on integrated circuits and such a socket
JP5374568B2 (en) Probe head with membrane suspension probe
US7674112B2 (en) Resilient contact element and methods of fabrication
JP3727540B2 (en) Probe card for probing a wafer with raised contact elements
US7534654B2 (en) Socket for making with electronic component, particularly semiconductor device with spring packaging, for fixturing, testing, burning-in or operating such a component
US20080030214A1 (en) Probe head assembly for use in testing multiple wafer die
JP2003207523A (en) Contactor, manufacturing method thereof, and contact method
JP2010515057A (en) Rotating contact parts and manufacturing method
KR100523745B1 (en) Microprobe and Method for Manufacturing the Same Using MEMS and Electroplating Technology
US20070200572A1 (en) Structure for coupling probes of probe device to corresponding electrical contacts on product substrate
US20090278561A1 (en) Probe card having redistributed wiring probe needle structure and probe card module using the same
US8115504B2 (en) Microspring array having reduced pitch contact elements
JP2003273178A (en) Interconnect structure
KR100446551B1 (en) Volcano type probe, its manufacturing method and probe card having it

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: HSBC BANK USA, NATIONAL ASSOCIATION, CALIFORNIA

Free format text: SECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS;ASSIGNORS:FORMFACTOR, INC.;ASTRIA SEMICONDUCTOR HOLDINGS, INC.;CASCADE MICROTECH, INC.;AND OTHERS;REEL/FRAME:039184/0280

Effective date: 20160624