Solar eclipse of September 22, 1968

Last updated
Solar eclipse of September 22, 1968
SE1968Sep22T.png
Map
Type of eclipse
NatureTotal
Gamma 0.9451
Magnitude 1.0099
Maximum eclipse
Duration40 s (0 min 40 s)
Coordinates 56°12′N64°00′E / 56.2°N 64°E / 56.2; 64
Max. width of band104 km (65 mi)
Times (UTC)
Greatest eclipse11:18:46
References
Saros 124 (52 of 73)
Catalog # (SE5000) 9439

A total solar eclipse occurred at the Moon's descending node of orbit on Sunday, September 22, 1968, [1] with a magnitude of 1.0099. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.4 days before perigee (on September 25, 1968, at 21:20 UTC), the Moon's apparent diameter was larger. [2]

Contents

Totality was visible from the Soviet Union (today's Russia and Kazakhstan) and Xinjiang in Northwestern China. A partial eclipse was visible for parts of Europe, Northeast Africa, West Asia, Central Asia, and South Asia.

Observation

Soviet Union

A company named Opton proposed to the Sternberg Astronomical Institute to observe this solar eclipse in Sary Shagan on the west bank of Lake Balkhash, and also wrote to the Soviet Ministry of Railways for help to get to the destination faster. The observation team obtained spectrum of the corona. Students also assisted in taking pictures of the corona with MTO-1000 lens. [3]

China

This is the first total solar eclipse visible in the country since the founding of the People's Republic of China. It occurred during the Cultural Revolution, when astronomers including Zhang Yuzhe who organized observations of the total solar eclipse of June 19, 1936 and September 21, 1941 were excluded from key positions. The Chinese Academy of Sciences sent a team of 200 including Zhang Kuisan (张魁三), the then deputy director of the Geophysics Bureau to Xinjiang. The observation was code-named "532", named after the time February 1953 when Mao Zedong visited the Purple Mountain Observatory in Nanjing. The travel to Ürümqi by train first took 3 days, and another 7 days by car to the optical observation site Zhaosu Town (Mongolküre Town), Zhaosu County and the radio observation site Kashgar. Gravity measurements were also conducted in mountain caves. In order to avoid the turmoil of the Cultural Revolution, Zhou Enlai sent Liu Xiyao to lead the army to the local area and provide the whole team with meals and accommodation. The observation team completed the first monochromatic light observation and high-resolution radio observation of the sun in China. This was also the first time in China that a solar eclipse was observed by plane. Shanghai Scientific and Educational Film Studio also produced a science and education film of the total solar eclipse. [4] [5]

The Soviet Union and China were the only two countries the path of this total solar eclipse passed. Due to the Sino-Soviet split, the two countries did not conduct any joint observations. About half a year after the eclipse, on January 23, 1969, the People's Daily published an article claiming that the observation of this eclipse "achieved brilliant results", repeatedly criticized the Soviet Union of "obstructing" it, and also mentioned that the Soviet Union "plundered data" of the annular solar eclipse of April 19, 1958. [6] [7]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [8]

September 22, 1968 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1968 September 22 at 09:07:22.9 UTC
Equatorial Conjunction1968 September 22 at 10:22:09.4 UTC
First Umbral External Contact1968 September 22 at 10:44:14.2 UTC
First Central Line1968 September 22 at 10:44:37.1 UTC
First Umbral Internal Contact1968 September 22 at 10:45:00.3 UTC
Ecliptic Conjunction1968 September 22 at 11:08:44.2 UTC
Greatest Eclipse1968 September 22 at 11:18:46.0 UTC
Greatest Duration1968 September 22 at 11:20:13.7 UTC
Last Umbral Internal Contact1968 September 22 at 11:53:04.0 UTC
Last Central Line1968 September 22 at 11:53:29.7 UTC
Last Umbral External Contact1968 September 22 at 11:53:55.1 UTC
Last Penumbral External Contact1968 September 22 at 13:30:26.7 UTC
September 22, 1968 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.00990
Eclipse Obscuration1.01989
Gamma0.94507
Sun Right Ascension11h58m11.0s
Sun Declination+00°11'49.6"
Sun Semi-Diameter15'56.3"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension11h59m58.7s
Moon Declination+01°00'16.0"
Moon Semi-Diameter16'01.1"
Moon Equatorial Horizontal Parallax0°58'47.3"
ΔT38.9 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of September–October 1968
September 22
Descending node (new moon)
October 6
Ascending node (full moon)
SE1968Sep22T.png Lunar eclipse chart close-1968Oct06.png
Total solar eclipse
Solar Saros 124
Total lunar eclipse
Lunar Saros 136

Eclipses in 1968

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 124

Inex

Triad

Solar eclipses of 1968–1971

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [9]

The partial solar eclipse on July 22, 1971 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1968 to 1971
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 March 28, 2968
SE1968Mar28P.png
Partial
−1.037124 September 22, 1968
SE1968Sep22T.png
Total
0.9451
129 March 18, 1969
SE1969Mar18A.png
Annular
−0.2704134 September 11, 1969
SE1969Sep11A.png
Annular
0.2201
139
C72pct (4321372614).jpg
Totality in Williamston, NC
USA
March 7, 1970
SE1970Mar07T.png
Total
0.4473144 August 31, 1970
SE1970Aug31A.png
Annular
−0.5364
149 February 25, 1971
SE1971Feb25P.png
Partial
1.1188154 August 20, 1971
SE1971Aug20P.png
Partial
−1.2659

Saros 124

This eclipse is a part of Saros series 124, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on March 6, 1049. It contains total eclipses from June 12, 1211 through September 22, 1968, and a hybrid eclipse on October 3, 1986. There are no annular eclipses in this set. The series ends at member 73 as a partial eclipse on May 11, 2347. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 39 at 5 minutes, 46 seconds on May 3, 1734. All eclipses in this series occur at the Moon’s descending node of orbit. [10]

Series members 43–64 occur between 1801 and 2200:
434445
SE1806Jun16T.png
June 16, 1806
SE1824Jun26T.png
June 26, 1824
SE1842Jul08T.png
July 8, 1842
464748
SE1860Jul18T.png
July 18, 1860
SE1878Jul29T.png
July 29, 1878
SE1896Aug09T.png
August 9, 1896
495051
SE1914Aug21T.png
August 21, 1914
SE1932Aug31T.png
August 31, 1932
SE1950Sep12T.png
September 12, 1950
525354
SE1968Sep22T.png
September 22, 1968
SE1986Oct03H.png
October 3, 1986
SE2004Oct14P.png
October 14, 2004
555657
SE2022Oct25P.png
October 25, 2022
SE2040Nov04P.png
November 4, 2040
SE2058Nov16P.png
November 16, 2058
585960
SE2076Nov26P.png
November 26, 2076
SE2094Dec07P.png
December 7, 2094
Saros124 60van73 SE2112Dec19P.jpg
December 19, 2112
616263
Saros124 61van73 SE2130Dec30P.jpg
December 30, 2130
Saros124 62van73 SE2149Jan09P.jpg
January 9, 2149
Saros124 63van73 SE2167Jan21P.jpg
January 21, 2167
64
Saros124 64van73 SE2185Jan31P.jpg
January 31, 2185

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between July 11, 1953 and July 11, 2029
July 10–11April 29–30February 15–16December 4September 21–23
116118120122124
SE1953Jul11P.png
July 11, 1953
SE1957Apr30A.png
April 30, 1957
SE1961Feb15T.png
February 15, 1961
SE1964Dec04P.png
December 4, 1964
SE1968Sep22T.png
September 22, 1968
126128130132134
SE1972Jul10T.png
July 10, 1972
SE1976Apr29A.png
April 29, 1976
SE1980Feb16T.png
February 16, 1980
SE1983Dec04A.png
December 4, 1983
SE1987Sep23A.png
September 23, 1987
136138140142144
SE1991Jul11T.png
July 11, 1991
SE1995Apr29A.png
April 29, 1995
SE1999Feb16A.png
February 16, 1999
SE2002Dec04T.png
December 4, 2002
SE2006Sep22A.png
September 22, 2006
146148150152154
SE2010Jul11T.png
July 11, 2010
SE2014Apr29A.png
April 29, 2014
SE2018Feb15P.png
February 15, 2018
SE2021Dec04T.png
December 4, 2021
SE2025Sep21P.png
September 21, 2025
156
SE2029Jul11P.png
July 11, 2029

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1805Jan01P.gif
January 1, 1805
(Saros 109)
SE1826Oct31P.gif
October 31, 1826
(Saros 111)
SE1848Aug28P.gif
August 28, 1848
(Saros 113)
SE1859Jul29P.gif
July 29, 1859
(Saros 114)
SE1870Jun28P.gif
June 28, 1870
(Saros 115)
SE1881May27P.gif
May 27, 1881
(Saros 116)
SE1892Apr26T.png
April 26, 1892
(Saros 117)
SE1903Mar29A.png
March 29, 1903
(Saros 118)
SE1914Feb25A.png
February 25, 1914
(Saros 119)
SE1925Jan24T.png
January 24, 1925
(Saros 120)
SE1935Dec25A.png
December 25, 1935
(Saros 121)
SE1946Nov23P.png
November 23, 1946
(Saros 122)
SE1957Oct23T.png
October 23, 1957
(Saros 123)
SE1968Sep22T.png
September 22, 1968
(Saros 124)
SE1979Aug22A.png
August 22, 1979
(Saros 125)
SE1990Jul22T.png
July 22, 1990
(Saros 126)
SE2001Jun21T.png
June 21, 2001
(Saros 127)
SE2012May20A.png
May 20, 2012
(Saros 128)
SE2023Apr20H.png
April 20, 2023
(Saros 129)
SE2034Mar20T.png
March 20, 2034
(Saros 130)
SE2045Feb16A.png
February 16, 2045
(Saros 131)
SE2056Jan16A.png
January 16, 2056
(Saros 132)
SE2066Dec17T.png
December 17, 2066
(Saros 133)
SE2077Nov15A.png
November 15, 2077
(Saros 134)
SE2088Oct14A.png
October 14, 2088
(Saros 135)
SE2099Sep14T.png
September 14, 2099
(Saros 136)
SE2110Aug15A.png
August 15, 2110
(Saros 137)
SE2121Jul14A.png
July 14, 2121
(Saros 138)
SE2132Jun13T.png
June 13, 2132
(Saros 139)
SE2143May14A.png
May 14, 2143
(Saros 140)
SE2154Apr12A.png
April 12, 2154
(Saros 141)
SE2165Mar12T.png
March 12, 2165
(Saros 142)
SE2176Feb10A.png
February 10, 2176
(Saros 143)
SE2187Jan09A.png
January 9, 2187
(Saros 144)
SE2197Dec09T.png
December 9, 2197
(Saros 145)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1824Jan01A.gif
January 1, 1824
(Saros 119)
SE1852Dec11T.gif
December 11, 1852
(Saros 120)
SE1881Nov21A.gif
November 21, 1881
(Saros 121)
SE1910Nov02P.png
November 2, 1910
(Saros 122)
SE1939Oct12T.png
October 12, 1939
(Saros 123)
SE1968Sep22T.png
September 22, 1968
(Saros 124)
SE1997Sep02P.png
September 2, 1997
(Saros 125)
SE2026Aug12T.png
August 12, 2026
(Saros 126)
SE2055Jul24T.png
July 24, 2055
(Saros 127)
SE2084Jul03A.png
July 3, 2084
(Saros 128)
SE2113Jun13T.png
June 13, 2113
(Saros 129)
SE2142May25T.png
May 25, 2142
(Saros 130)
SE2171May05A.png
May 5, 2171
(Saros 131)
SE2200Apr14T.png
April 14, 2200
(Saros 132)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of December 4, 2002</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 4, 2002, with a magnitude of 1.0244. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a narrow corridor in southern Africa, the Indian Ocean and southern Australia. A partial eclipse was seen from the much broader path of the Moon's penumbra, including most of Africa and Australia. During the sunset after the eclipse many observers in Australia saw numerous and unusual forms of a green flash.

<span class="mw-page-title-main">Solar eclipse of June 21, 2001</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, June 21, 2001, with a magnitude of 1.0495. It was the first solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring 2.2 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of March 9, 1997</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Sunday, March 9, 1997, with a magnitude of 1.042. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in eastern Russia, Northern Mongolia, northern tip of Xinjiang and Northeastern China and eastern tip of Kazakhstan.

<span class="mw-page-title-main">Solar eclipse of February 16, 1980</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Saturday, February 16, 1980, with a magnitude of 1.0434. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 24 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of February 15, 1961</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, February 15, 1961, with a magnitude of 1.036. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 21 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 19, 1958</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Saturday, April 19, 1958, with a magnitude of 0.9408. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.2 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of October 24, 1995</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, October 24, 1995, with a magnitude of 1.0213. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality went through Iran, Afghanistan, Pakistan, India, southwestern tip of Bangladesh, Burma, Thailand, Cambodia, Vietnam, Spratly Islands, northeastern tip of Sabah of Malaysia, Philippines and Indonesia.

<span class="mw-page-title-main">Solar eclipse of June 11, 1983</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, June 11, 1983, with a magnitude of 1.0524. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 48 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of September 23, 2033</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, September 23, 2033, with a magnitude of 0.689. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 23, 1987</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, September 23, 1987, with a magnitude of 0.9634. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in the Soviet Union, China, southwestern Mongolia, Okinawa Islands of Japan except Kume Island and the southwestern tip of Kerama Islands, the Federal States of Micronesia, Papua New Guinea, Solomon Islands, Rotuma Islands of Fiji, Wallis Islands and West Samoa. Occurring only 5 days after apogee, the Moon's apparent diameter was relatively small.

<span class="mw-page-title-main">Solar eclipse of March 28, 1968</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit between Thursday, March 28 and Friday, March 29, 1968, with a magnitude of 0.899. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 4, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 4, 2040, with a magnitude of 0.8074. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 22, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, July 22, 2047, with a magnitude of 0.3604. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 4, 1943</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Thursday, February 4 and Friday, February 5, 1943, with a magnitude of 1.0331. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 22 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of September 12, 2053</span> Total eclipse

A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 22, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, May 22, 2058, with a magnitude of 0.4141. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 21, 1941</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, September 21, 1941, with a magnitude of 1.0379. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.25 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 9, 1948</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit between Saturday, May 8 and Sunday, May 9, 1948, with a magnitude of 0.9999. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 7 days after apogee and 6.7 days before perigee.

<span class="mw-page-title-main">Solar eclipse of August 31, 1932</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Wednesday, August 31 and Thursday, September 1, 1932, with a magnitude of 1.0257. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3 days before perigee, the Moon's apparent diameter was smaller.

References

  1. "September 22, 1968 Total Solar Eclipse". timeanddate. Retrieved 8 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 8 August 2024.
  3. "Полное солнечное затмение 22 сентября 1968 г." Archived from the original on 3 January 2010.
  4. "20世纪中国日全食观测小史". 16 July 2009. Archived from the original on 17 October 2020.
  5. "《新闻调查》 19970314 寻踪日全食". China Network Television. Archived from the original on 10 July 2015.
  6. "用毛泽东思想探索太阳的奥秘——记我国首次大规模日全食综合观测队". People's Daily . 23 January 1969. 一九五八年苏修打着"中苏日环食联合观测"的幌子,来我国掠取日环食资料。观测结束后,把一台破烂不堪的射电望远镜天线留在中国,还美其名曰"帮助中国发展射电天文学"。后来,赫鲁晓夫修正主义集团把这个破烂的射电望远镜天线也要了回去。
  7. "我国大规模日全食综合观测取得辉煌成果". People's Daily . 23 January 1969.
  8. "Total Solar Eclipse of 1968 Sep 22". EclipseWise.com. Retrieved 8 August 2024.
  9. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  10. "NASA - Catalog of Solar Eclipses of Saros 124". eclipse.gsfc.nasa.gov.