Solar eclipse of July 2, 2038

Last updated
Solar eclipse of July 2, 2038
SE2038Jul02A.png
Map
Type of eclipse
NatureAnnular
Gamma 0.0398
Magnitude 0.9911
Maximum eclipse
Duration60 s (1 min 0 s)
Coordinates 25°24′N21°54′W / 25.4°N 21.9°W / 25.4; -21.9
Max. width of band31 km (19 mi)
Times (UTC)
Greatest eclipse13:32:55
References
Saros 137 (37 of 70)
Catalog # (SE5000) 9593

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, July 2, 2038, [1] with a magnitude of 0.9911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6 days after apogee (on June 26, 2038, at 13:55 UTC), the Moon's apparent diameter will be smaller. [2]

Contents

Annularity will be visible from parts of Colombia, Venezuela, Grenada, Barbados, Western Sahara, Mauritania, northern Mali, southern Algeria, Niger, Chad, southwestern Sudan, South Sudan, southern Ethiopia, northeastern Kenya, and southwestern Somalia. A partial eclipse will be visible for parts of eastern North America, Central America, the Caribbean, northern South America, Africa, Western Europe, and the Middle East.

Images

SE2038Jul02A.gif
Animated path

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

July 2, 2038 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2038 July 02 at 10:37:36.5 UTC
First Umbral External Contact2038 July 02 at 11:39:19.0 UTC
First Central Line2038 July 02 at 11:40:07.8 UTC
Greatest Duration2038 July 02 at 11:40:07.8 UTC
First Umbral Internal Contact2038 July 02 at 11:40:56.5 UTC
First Penumbral Internal Contact2038 July 02 at 12:42:42.0 UTC
Greatest Eclipse2038 July 02 at 13:32:55.0 UTC
Equatorial Conjunction2038 July 02 at 13:33:00.0 UTC
Ecliptic Conjunction2038 July 02 at 13:33:21.9 UTC
Last Penumbral Internal Contact2038 July 02 at 14:23:09.1 UTC
Last Umbral Internal Contact2038 July 02 at 15:24:55.6 UTC
Last Central Line2038 July 02 at 15:25:41.5 UTC
Last Umbral External Contact2038 July 02 at 15:26:27.3 UTC
Last Penumbral External Contact2038 July 02 at 16:28:07.1 UTC
July 2, 2038 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.99113
Eclipse Obscuration0.98233
Gamma0.03975
Sun Right Ascension06h46m55.4s
Sun Declination+22°59'44.2"
Sun Semi-Diameter15'43.9"
Sun Equatorial Horizontal Parallax08.6"
Moon Right Ascension06h46m55.2s
Moon Declination+23°01'58.2"
Moon Semi-Diameter15'20.9"
Moon Equatorial Horizontal Parallax0°56'19.9"
ΔT77.8 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of June–July 2038
June 17
Descending node (full moon)
July 2
Ascending node (new moon)
July 16
Descending node (full moon)
Lunar eclipse chart close-2038Jun17.png SE2038Jul02A.png Lunar eclipse chart close-2038Jul16.png
Penumbral lunar eclipse
Lunar Saros 111
Annular solar eclipse
Solar Saros 137
Penumbral lunar eclipse
Lunar Saros 149

Eclipses in 2038

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 137

Inex

Triad

Solar eclipses of 2036–2039

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipses on February 27, 2036 and August 21, 2036 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2036 to 2039
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 July 23, 2036
SE2036Jul23P.png
Partial
−1.425122 January 16, 2037
SE2037Jan16P.png
Partial
1.1477
127 July 13, 2037
SE2037Jul13T.png
Total
−0.7246132 January 5, 2038
SE2038Jan05A.png
Annular
0.4169
137 July 2, 2038
SE2038Jul02A.png
Annular
0.0398142 December 26, 2038
SE2038Dec26T.png
Total
−0.2881
147 June 21, 2039
SE2039Jun21A.png
Annular
0.8312152 December 15, 2039
SE2039Dec15T.png
Total
−0.9458

Saros 137

This eclipse is a part of Saros series 137, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on May 25, 1389. It contains total eclipses from August 20, 1533 through December 6, 1695; the first set of hybrid eclipses from December 17, 1713 through February 11, 1804; the first set of annular eclipses from February 21, 1822 through March 25, 1876; the second set of hybrid eclipses from April 6, 1894 through April 28, 1930; and the second set of annular eclipses from May 9, 1948 through April 13, 2507. The series ends at member 70 as a partial eclipse on June 28, 2633. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 11 at 2 minutes, 55 seconds on September 10, 1569, and the longest duration of annularity will be produced by member 59 at 7 minutes, 5 seconds on February 28, 2435. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]

Series members 24–46 occur between 1801 and 2200:
242526
SE1804Feb11H.png
February 11, 1804
SE1822Feb21A.png
February 21, 1822
SE1840Mar04A.png
March 4, 1840
272829
SE1858Mar15A.png
March 15, 1858
SE1876Mar25A.png
March 25, 1876
SE1894Apr06H.png
April 6, 1894
303132
SE1912Apr17H.png
April 17, 1912
SE1930Apr28H.png
April 28, 1930
SE1948May09A.png
May 9, 1948
333435
SE1966May20A.png
May 20, 1966
SE1984May30A.png
May 30, 1984
SE2002Jun10A.png
June 10, 2002
363738
SE2020Jun21A.png
June 21, 2020
SE2038Jul02A.png
July 2, 2038
SE2056Jul12A.png
July 12, 2056
394041
SE2074Jul24A.png
July 24, 2074
SE2092Aug03A.png
August 3, 2092
SE2110Aug15A.png
August 15, 2110
424344
SE2128Aug25A.png
August 25, 2128
SE2146Sep06A.png
September 6, 2146
SE2164Sep16A.png
September 16, 2164
4546
SE2182Sep27A.png
September 27, 2182
SE2200Oct09A.png
October 9, 2200

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between July 1, 2000 and July 1, 2076
July 1–2April 19–20February 5–7November 24–25September 12–13
117119121123125
SE2000Jul01P.png
July 1, 2000
SE2004Apr19P.png
April 19, 2004
SE2008Feb07A.png
February 7, 2008
SE2011Nov25P.png
November 25, 2011
SE2015Sep13P.png
September 13, 2015
127129131133135
SE2019Jul02T.png
July 2, 2019
SE2023Apr20H.png
April 20, 2023
SE2027Feb06A.png
February 6, 2027
SE2030Nov25T.png
November 25, 2030
SE2034Sep12A.png
September 12, 2034
137139141143145
SE2038Jul02A.png
July 2, 2038
SE2042Apr20T.png
April 20, 2042
SE2046Feb05A.png
February 5, 2046
SE2049Nov25H.png
November 25, 2049
SE2053Sep12T.png
September 12, 2053
147149151153155
SE2057Jul01A.png
July 1, 2057
SE2061Apr20T.png
April 20, 2061
SE2065Feb05P.png
February 5, 2065
SE2068Nov24P.png
November 24, 2068
SE2072Sep12T.png
September 12, 2072
157
SE2076Jul01P.png
July 1, 2076

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1809Apr14A.gif
April 14, 1809
(Saros 116)
SE1820Mar14T.gif
March 14, 1820
(Saros 117)
SE1831Feb12A.gif
February 12, 1831
(Saros 118)
SE1842Jan11A.gif
January 11, 1842
(Saros 119)
SE1852Dec11T.gif
December 11, 1852
(Saros 120)
SE1863Nov11A.png
November 11, 1863
(Saros 121)
SE1874Oct10An.gif
October 10, 1874
(Saros 122)
SE1885Sep08T.png
September 8, 1885
(Saros 123)
SE1896Aug09T.png
August 9, 1896
(Saros 124)
SE1907Jul10A.png
July 10, 1907
(Saros 125)
SE1918Jun08T.png
June 8, 1918
(Saros 126)
SE1929May09T.png
May 9, 1929
(Saros 127)
SE1940Apr07A.png
April 7, 1940
(Saros 128)
SE1951Mar07A.png
March 7, 1951
(Saros 129)
SE1962Feb05T.png
February 5, 1962
(Saros 130)
SE1973Jan04A.png
January 4, 1973
(Saros 131)
SE1983Dec04A.png
December 4, 1983
(Saros 132)
SE1994Nov03T.png
November 3, 1994
(Saros 133)
SE2005Oct03A.png
October 3, 2005
(Saros 134)
SE2016Sep01A.png
September 1, 2016
(Saros 135)
SE2027Aug02T.png
August 2, 2027
(Saros 136)
SE2038Jul02A.png
July 2, 2038
(Saros 137)
SE2049May31A.png
May 31, 2049
(Saros 138)
SE2060Apr30T.png
April 30, 2060
(Saros 139)
SE2071Mar31A.png
March 31, 2071
(Saros 140)
SE2082Feb27A.png
February 27, 2082
(Saros 141)
SE2093Jan27T.png
January 27, 2093
(Saros 142)
SE2103Dec29A.png
December 29, 2103
(Saros 143)
SE2114Nov27A.png
November 27, 2114
(Saros 144)
SE2125Oct26T.png
October 26, 2125
(Saros 145)
SE2136Sep26T.png
September 26, 2136
(Saros 146)
Saros147 30van80 SE2147Aug26A.jpg
August 26, 2147
(Saros 147)
SE2158Jul25T.png
July 25, 2158
(Saros 148)
Saros149 29van71 SE2169Jun25T.jpg
June 25, 2169
(Saros 149)
Saros150 26van71 SE2180May24A.jpg
May 24, 2180
(Saros 150)
SE2191Apr23A.png
April 23, 2191
(Saros 151)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1806Dec10A.gif
December 10, 1806
(Saros 129)
SE1835Nov20T.gif
November 20, 1835
(Saros 130)
SE1864Oct30A.gif
October 30, 1864
(Saros 131)
SE1893Oct09A.png
October 9, 1893
(Saros 132)
SE1922Sep21T.png
September 21, 1922
(Saros 133)
SE1951Sep01A.png
September 1, 1951
(Saros 134)
SE1980Aug10A.png
August 10, 1980
(Saros 135)
SE2009Jul22T.png
July 22, 2009
(Saros 136)
SE2038Jul02A.png
July 2, 2038
(Saros 137)
SE2067Jun11A.png
June 11, 2067
(Saros 138)
SE2096May22T.png
May 22, 2096
(Saros 139)
SE2125May03A.png
May 3, 2125
(Saros 140)
SE2154Apr12A.png
April 12, 2154
(Saros 141)
SE2183Mar23T.png
March 23, 2183
(Saros 142)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of January 5, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 5, 2038, with a magnitude of 0.9728. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 6.8 days after perigee and 7 days before apogee.

<span class="mw-page-title-main">Solar eclipse of December 17, 2066</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 17, 2066, with a magnitude of 1.0416. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.1 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of November 14, 2031</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of May 21, 2031</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Wednesday, May 21, 2031, with a magnitude of 0.9589. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.8 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of March 7, 1951</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit between Wednesday, March 7 and Thursday, March 8, 1951, with a magnitude of 0.9896. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 5.5 days after perigee and 7.4 days before apogee.

<span class="mw-page-title-main">Solar eclipse of September 1, 1951</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Saturday, September 1, 1951, with a magnitude of 0.9747. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 5.4 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of October 14, 2042</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 14, 2042, with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 9 hours before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of February 16, 2045</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, February 16, 2045, with a magnitude of 0.9285. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.8 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of November 25, 2049</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, November 25, 2049, with a magnitude of 1.0057. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of July 12, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 12, 2056, with a magnitude of 0.9878. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, January 16, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 24, 2060</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 11, 2067</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 15, 2096</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Wednesday, November 14 and Thursday, November 15, 2096, with a magnitude of 0.9237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

References

  1. "July 2, 2038 Annular Solar Eclipse". timeanddate. Retrieved 14 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 14 August 2024.
  3. "Annular Solar Eclipse of 2038 Jul 02". EclipseWise.com. Retrieved 14 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 137". eclipse.gsfc.nasa.gov.