Solar eclipse of August 12, 2064

Last updated
Solar eclipse of August 12, 2064
SE2064Aug12T.png
Map
Type of eclipse
NatureTotal
Gamma −0.4652
Magnitude 1.0495
Maximum eclipse
Duration268 s (4 min 28 s)
Coordinates 10°54′S96°00′W / 10.9°S 96°W / -10.9; -96
Max. width of band184 km (114 mi)
Times (UTC)
Greatest eclipse17:46:06
References
Saros 146 (30 of 76)
Catalog # (SE5000) 9651

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, August 12, 2064, [1] with a magnitude of 1.0495. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.2 days before perigee (on August 14, 2064, at 21:30 UTC), the Moon's apparent diameter will be larger. [2]

Contents

The path of totality will be visible from parts of Chile and Argentina. A partial solar eclipse will also be visible for parts of eastern Oceania, Mexico, Central America, South America, and Antarctica. This eclipse will pass through the Chilean cities of Valparaíso and the capital Santiago.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

August 12, 2064 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2064 August 12 at 15:11:35.0 UTC
First Umbral External Contact2064 August 12 at 16:11:44.1 UTC
First Central Line2064 August 12 at 16:12:46.2 UTC
First Umbral Internal Contact2064 August 12 at 16:13:48.4 UTC
Greatest Duration2064 August 12 at 17:42:17.7 UTC
Greatest Eclipse2064 August 12 at 17:46:06.3 UTC
Ecliptic Conjunction2064 August 12 at 17:50:55.5 UTC
Equatorial Conjunction2064 August 12 at 18:08:08.1 UTC
Last Umbral Internal Contact2064 August 12 at 19:18:07.7 UTC
Last Central Line2064 August 12 at 19:19:12.1 UTC
Last Umbral External Contact2064 August 12 at 19:20:16.3 UTC
Last Penumbral External Contact2064 August 12 at 20:20:24.3 UTC
August 12, 2064 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.04946
Eclipse Obscuration1.10138
Gamma−0.46521
Sun Right Ascension09h32m49.7s
Sun Declination+14°33'07.1"
Sun Semi-Diameter15'47.0"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension09h32m02.7s
Moon Declination+14°07'45.3"
Moon Semi-Diameter16'19.3"
Moon Equatorial Horizontal Parallax0°59'54.2"
ΔT93.6 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of July–August 2064
July 28
Ascending node (full moon)
August 12
Descending node (new moon)
SE2064Aug12T.png
Partial lunar eclipse
Lunar Saros 120
Total solar eclipse
Solar Saros 146

Eclipses in 2064

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 146

Inex

Triad

Solar eclipses of 2062–2065

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipses on July 3, 2065 and December 27, 2065 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2062 to 2065
Ascending node Descending node
SarosMapGammaSarosMapGamma
121 March 11, 2062
SE2062Mar11P.png
Partial
−1.0238126 September 3, 2062
SE2062Sep03P.png
Partial
1.0191
131 February 28, 2063
SE2063Feb28A.png
Annular
−0.336136 August 24, 2063
SE2063Aug24T.png
Total
0.2771
141 February 17, 2064
SE2064Feb17A.png
Annular
0.3597146 August 12, 2064
SE2064Aug12T.png
Total
−0.4652
151 February 5, 2065
SE2065Feb05P.png
Partial
1.0336156 August 2, 2065
SE2065Aug02P.png
Partial
−1.2759

Saros 146

This eclipse is a part of Saros series 146, repeating every 18 years, 11 days, and containing 76 events. The series started with a partial solar eclipse on September 19, 1541. It contains total eclipses from May 29, 1938 through October 7, 2154; hybrid eclipses from October 17, 2172 through November 20, 2226; and annular eclipses from November 30, 2244 through August 10, 2659. The series ends at member 76 as a partial eclipse on December 29, 2893. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 26 at 5 minutes, 21 seconds on June 30, 1992, and the longest duration of annularity will be produced by member 63 at 3 minutes, 30 seconds on August 10, 2659. All eclipses in this series occur at the Moon’s descending node of orbit. [5]

Series members 16–37 occur between 1801 and 2200:
161718
SE1801Apr13P.png
March 13, 1812
SE1819Apr24P.png
March 24, 1830
SE1837May04P.png
April 3, 1848
192021
SE1855May16P.png
April 15, 1866
SE1873May26P.png
April 25, 1884
SE1902May07P.png
May 7, 1902
222324
SE1920May18P.png
May 18, 1920
SE1938May29T.png
May 29, 1938
SE1956Jun08T.png
June 8, 1956
252627
SE1974Jun20T.png
June 20, 1974
SE1992Jun30T.png
June 30, 1992
SE2010Jul11T.png
July 11, 2010
282930
SE2028Jul22T.png
July 22, 2028
SE2046Aug02T.png
August 2, 2046
SE2064Aug12T.png
August 12, 2064
313233
SE2082Aug24T.png
August 24, 2082
SE2100Sep04T.png
September 4, 2100
SE2118Sep15T.png
September 15, 2118
343536
SE2136Sep26T.png
September 26, 2136
SE2154Oct07T.png
October 7, 2154
SE2172Oct17H.png
October 17, 2172
37
SE2190Oct29H.png
October 29, 2190

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 1, 2011 and October 24, 2098
May 31–June 1March 19–20January 5–6October 24–25August 12–13
118120122124126
SE2011Jun01P.png
June 1, 2011
SE2015Mar20T.png
March 20, 2015
SE2019Jan06P.png
January 6, 2019
SE2022Oct25P.png
October 25, 2022
SE2026Aug12T.png
August 12, 2026
128130132134136
SE2030Jun01A.png
June 1, 2030
SE2034Mar20T.png
March 20, 2034
SE2038Jan05A.png
January 5, 2038
SE2041Oct25A.png
October 25, 2041
SE2045Aug12T.png
August 12, 2045
138140142144146
SE2049May31A.png
May 31, 2049
SE2053Mar20A.png
March 20, 2053
SE2057Jan05T.png
January 5, 2057
SE2060Oct24A.png
October 24, 2060
SE2064Aug12T.png
August 12, 2064
148150152154156
SE2068May31T.png
May 31, 2068
SE2072Mar19P.png
March 19, 2072
SE2076Jan06T.png
January 6, 2076
SE2079Oct24A.png
October 24, 2079
SE2083Aug13P.png
August 13, 2083
158160162164
SE2087Jun01P.png
June 1, 2087
SE2098Oct24P.png
October 24, 2098

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1802Aug28A.png
August 28, 1802
(Saros 122)
SE1813Jul27T.gif
July 27, 1813
(Saros 123)
SE1824Jun26T.png
June 26, 1824
(Saros 124)
SE1835May27A.gif
May 27, 1835
(Saros 125)
SE1846Apr25H.gif
April 25, 1846
(Saros 126)
SE1857Mar25T.png
March 25, 1857
(Saros 127)
SE1868Feb23A.gif
February 23, 1868
(Saros 128)
SE1879Jan22A.gif
January 22, 1879
(Saros 129)
SE1889Dec22T.png
December 22, 1889
(Saros 130)
SE1900Nov22A.png
November 22, 1900
(Saros 131)
SE1911Oct22A.png
October 22, 1911
(Saros 132)
SE1922Sep21T.png
September 21, 1922
(Saros 133)
SE1933Aug21A.png
August 21, 1933
(Saros 134)
SE1944Jul20A.png
July 20, 1944
(Saros 135)
SE1955Jun20T.png
June 20, 1955
(Saros 136)
SE1966May20A.png
May 20, 1966
(Saros 137)
SE1977Apr18A.png
April 18, 1977
(Saros 138)
SE1988Mar18T.png
March 18, 1988
(Saros 139)
SE1999Feb16A.png
February 16, 1999
(Saros 140)
SE2010Jan15A.png
January 15, 2010
(Saros 141)
SE2020Dec14T.png
December 14, 2020
(Saros 142)
SE2031Nov14H.png
November 14, 2031
(Saros 143)
SE2042Oct14A.png
October 14, 2042
(Saros 144)
SE2053Sep12T.png
September 12, 2053
(Saros 145)
SE2064Aug12T.png
August 12, 2064
(Saros 146)
SE2075Jul13A.png
July 13, 2075
(Saros 147)
SE2086Jun11T.png
June 11, 2086
(Saros 148)
SE2097May11T.png
May 11, 2097
(Saros 149)
Saros150 22van71 SE2108Apr11P.jpg
April 11, 2108
(Saros 150)
Saros151 20van72 SE2119Mar11A.jpg
March 11, 2119
(Saros 151)
Saros152 19van70 SE2130Feb08T.jpg
February 8, 2130
(Saros 152)
SE2141Jan08A.png
January 8, 2141
(Saros 153)
Saros154 14van71 SE2151Dec08A.jpg
December 8, 2151
(Saros 154)
Saros155 14van71 SE2162Nov07T.jpg
November 7, 2162
(Saros 155)
Saros156 10van69 SE2173Oct07A.jpg
October 7, 2173
(Saros 156)
SE2184Sep04A.png
September 4, 2184
(Saros 157)
Saros158 08van70 SE2195Aug05T.jpg
August 5, 2195
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1804Feb11H.png
February 11, 1804
(Saros 137)
SE1833Jan20A.gif
January 20, 1833
(Saros 138)
SE1861Dec31T.gif
December 31, 1861
(Saros 139)
SE1890Dec12H.gif
December 12, 1890
(Saros 140)
SE1919Nov22A.png
November 22, 1919
(Saros 141)
SE1948Nov01T.png
November 1, 1948
(Saros 142)
SE1977Oct12T.png
October 12, 1977
(Saros 143)
SE2006Sep22A.png
September 22, 2006
(Saros 144)
SE2035Sep02T.png
September 2, 2035
(Saros 145)
SE2064Aug12T.png
August 12, 2064
(Saros 146)
SE2093Jul23A.png
July 23, 2093
(Saros 147)
Saros148 27van75 SE2122Jul04T.jpg
July 4, 2122
(Saros 148)
Saros149 28van71 SE2151Jun14T.jpg
June 14, 2151
(Saros 149)
Saros150 26van71 SE2180May24A.jpg
May 24, 2180
(Saros 150)

Notes

  1. "August 12, 2064 Total Solar Eclipse". timeanddate. Retrieved 18 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 18 August 2024.
  3. "Total Solar Eclipse of 2064 Aug 12". EclipseWise.com. Retrieved 18 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 146". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of April 30, 2060</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, April 30, 2060, with a magnitude of 1.066. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 18 hours after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of September 2, 2035</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Saturday, September 1 and Sunday, September 2, 2035, with a magnitude of 1.032. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1977</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, October 12, 1977, with a magnitude of 1.0269. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.6 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 2, 2046</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, August 2, 2046, with a magnitude of 1.0531. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is greater than the Sun's, blocking all direct sunlight. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of July 24, 2055</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 24, 2055, with a magnitude of 1.0359. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of August 3, 2073</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, August 3, 2073, with a magnitude of 1.0294. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 5, 2057</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, January 5, 2057, with a magnitude of 1.0287. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 16, 2075</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 16, 2075, with a magnitude of 1.0311. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 27, 2093</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 27, 2093, with a magnitude of 1.034. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 4, 2100</span> Total solar eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, September 4, 2100, with a magnitude of 1.0402. It will be the last solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 12, 2053</span> Total eclipse

A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of March 20, 2053</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, March 20, 2053, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.6 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of February 17, 2064</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.5 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.4 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of May 31, 2068</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, May 31, 2068, with a magnitude of 1.011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 31, 2071</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, March 31, 2071, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 23, 2071</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, September 23, 2071, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 7, 2073</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, February 7, 2073, with a magnitude of 0.6768. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 24, 2082</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Monday, August 24, 2082, with a magnitude of 1.0452. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 21, 2099</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 21, 2099, with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

References