SERCA

Last updated

SERCA, or sarcoplasmic/endoplasmic reticulum Ca 2+-ATPase , or SR Ca 2+-ATPase , is a calcium ATPase-type P-ATPase. Its major function is to transport calcium from the cytosol into the sarcoplasmic reticulum.

Contents

Function

SERCA is a P-type ATPase. [1] It resides in the sarcoplasmic reticulum (SR) within myocytes. [1] It is a Ca2+ ATPase that transfers Ca2+ from the cytosol of the cell to the lumen of the SR. [1] This uses energy from ATP hydrolysis during muscle relaxation. [1]

There are 3 major domains on the cytoplasmic face of SERCA: the phosphorylation and nucleotide-binding domains, which form the catalytic site, and the actuator domain, which is involved in the transmission of major conformational changes.

In addition to its calcium-transporting functions, SERCA1 generates heat in brown adipose tissue and in skeletal muscles. [2] [3] Along with the heat it naturally produces due to its inefficiency in pumping Ca2+
ions, when it binds to a regulator called sarcolipin it stops pumping and functions solely as an ATP hydrolase. This mechanism of thermogenesis is widespread in mammals and in endothermic fishes. [4] [5]

Regulation

The rate at which SERCA moves Ca2+ across the SR membrane can be controlled by the regulatory protein phospholamban (PLB/PLN). SERCA is not as active when PLB is bound to it. Increased β-adrenergic stimulation reduces the association between SERCA and PLB by the phosphorylation of PLB by PKA. [6] When PLB is associated with SERCA, the rate of Ca2+ movement is reduced; upon dissociation of PLB, Ca2+ movement increases.

Activity regulation of SERCA can also involve phosphorylation of SERCA itself by interaction with GSK3β. Phosphorylation of SERCA2a at S663 was shown to reduce SERCA2a activity [7] .

Another protein, calsequestrin, binds calcium within the SR and helps to reduce the concentration of free calcium within the SR, which assists SERCA so that it does not have to pump against such a high concentration gradient. The SR has a much higher concentration of Ca2+ (10,000x) inside when compared to the cytoplasmic Ca2+ concentration. SERCA2 can be regulated by microRNAs, for instance miR-25 suppresses SERCA2 in heart failure.

For experimental purposes, SERCA can be inhibited by thapsigargin and induced by istaroxime.

SERCA function is upregulated in the skeletal muscle of rabbits [8] and in rodent myocardium [9] [10] by thyroid hormones. This mechanism may contribute to the proarrhythmogenic effect of thyrotoxicosis. [11]

Paralogs

There are 3 major paralogs, SERCA1-3, which are expressed at various levels in different cell types.

There are additional post-translational isoforms of both SERCA2 and SERCA3, which serve to introduce the possibility of cell-type-specific Ca2+-reuptake responses as well as increasing the overall complexity of the Ca2+ signaling mechanism.

Related Research Articles

<span class="mw-page-title-main">Sodium–potassium pump</span> Enzyme found in the membrane of all animal cells

The sodium–potassium pump is an enzyme found in the membrane of all animal cells. It performs several functions in cell physiology.

<span class="mw-page-title-main">Vasoconstriction</span> Narrowing of blood vessels due to the constriction of smooth muscle cells

Vasoconstriction is the narrowing of the blood vessels resulting from contraction of the muscular wall of the vessels, in particular the large arteries and small arterioles. The process is the opposite of vasodilation, the widening of blood vessels. The process is particularly important in controlling hemorrhage and reducing acute blood loss. When blood vessels constrict, the flow of blood is restricted or decreased, thus retaining body heat or increasing vascular resistance. This makes the skin turn paler because less blood reaches the surface, reducing the radiation of heat. On a larger level, vasoconstriction is one mechanism by which the body regulates and maintains mean arterial pressure.

<span class="mw-page-title-main">Sarcoplasmic reticulum</span> Menbrane-bound structure in muscle cells for storing calcium

The sarcoplasmic reticulum (SR) is a membrane-bound structure found within muscle cells that is similar to the smooth endoplasmic reticulum in other cells. The main function of the SR is to store calcium ions (Ca2+). Calcium ion levels are kept relatively constant, with the concentration of calcium ions within a cell being 10,000 times smaller than the concentration of calcium ions outside the cell. This means that small increases in calcium ions within the cell are easily detected and can bring about important cellular changes (the calcium is said to be a second messenger). Calcium is used to make calcium carbonate (found in chalk) and calcium phosphate, two compounds that the body uses to make teeth and bones. This means that too much calcium within the cells can lead to hardening (calcification) of certain intracellular structures, including the mitochondria, leading to cell death. Therefore, it is vital that calcium ion levels are controlled tightly, and can be released into the cell when necessary and then removed from the cell.

<span class="mw-page-title-main">Muscle contraction</span> Activation of tension-generating sites in muscle

Muscle contraction is the activation of tension-generating sites within muscle cells. In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as when holding something heavy in the same position. The termination of muscle contraction is followed by muscle relaxation, which is a return of the muscle fibers to their low tension-generating state.

Ryanodine receptors form a class of intracellular calcium channels in various forms of excitable animal tissue like muscles and neurons. There are three major isoforms of the ryanodine receptor, which are found in different tissues and participate in different signaling pathways involving calcium release from intracellular organelles. The RYR2 ryanodine receptor isoform is the major cellular mediator of calcium-induced calcium release (CICR) in animal cells.

<span class="mw-page-title-main">Phospholamban</span> Mammalian protein found in Homo sapiens

Phospholamban, also known as PLN or PLB, is a micropeptide protein that in humans is encoded by the PLN gene. Phospholamban is a 52-amino acid integral membrane protein that regulates the calcium (Ca2+) pump in cardiac muscle cells.

Myocardial contractility represents the innate ability of the heart muscle (cardiac muscle or myocardium) to contract. It is the maximum attainable value for the force of contraction of a given heart. The ability to produce changes in force during contraction result from incremental degrees of binding between different types of tissue, that is, between filaments of myosin (thick) and actin (thin) tissue. The degree of binding depends upon the concentration of calcium ions in the cell. Within an in vivo intact heart, the action/response of the sympathetic nervous system is driven by precisely timed releases of a catecholamine, which is a process that determines the concentration of calcium ions in the cytosol of cardiac muscle cells. The factors causing an increase in contractility work by causing an increase in intracellular calcium ions (Ca++) during contraction.

Calcium-induced calcium release (CICR) describes a biological process whereby calcium is able to activate calcium release from intracellular Ca2+ stores (e.g., endoplasmic reticulum or sarcoplasmic reticulum). Although CICR was first proposed for skeletal muscle in the 1970s, it is now known that CICR is unlikely to be the primary mechanism for activating SR calcium release. Instead, CICR is thought to be crucial for excitation-contraction coupling in cardiac muscle. It is now obvious that CICR is a widely occurring cellular signaling process present even in many non-muscle cells, such as in the insulin-secreting pancreatic beta cells, epithelium, and many other cells. Since CICR is a positive-feedback system, it has been of great interest to elucidate the mechanism(s) responsible for its termination.

<span class="mw-page-title-main">Calsequestrin</span> Calcium-binding protein

Calsequestrin is a calcium-binding protein that acts as a calcium buffer within the sarcoplasmic reticulum. The protein helps hold calcium in the cisterna of the sarcoplasmic reticulum after a muscle contraction, even though the concentration of calcium in the sarcoplasmic reticulum is much higher than in the cytosol. It also helps the sarcoplasmic reticulum store an extraordinarily high amount of calcium ions. Each molecule of calsequestrin can bind 18 to 50 Ca2+ ions. Sequence analysis has suggested that calcium is not bound in distinct pockets via EF-hand motifs, but rather via presentation of a charged protein surface. Two forms of calsequestrin have been identified. The cardiac form Calsequestrin-2 (CASQ2) is present in cardiac and slow skeletal muscle and the fast skeletal form Calsequestrin-1(CASQ1) is found in fast skeletal muscle. The release of calsequestrin-bound calcium (through a calcium release channel) triggers muscle contraction. The active protein is not highly structured, more than 50% of it adopting a random coil conformation. When calcium binds there is a structural change whereby the alpha-helical content of the protein increases from 3 to 11%. Both forms of calsequestrin are phosphorylated by casein kinase 2, but the cardiac form is phosphorylated more rapidly and to a higher degree. Calsequestrin is also secreted in the gut where it deprives bacteria of calcium ions..

<span class="mw-page-title-main">Calcium ATPase</span> Class of enzymes

Ca2+ ATPase is a form of P-ATPase that transfers calcium after a muscle has contracted. The two kinds of calcium ATPase are:

Plasma membrane Ca<sup>2+</sup> ATPase Transport protein

The plasma membrane Ca2+ ATPase (PMCA) is a transport protein in the plasma membrane of cells that functions as a calcium pump to remove calcium (Ca2+) from the cell. PMCA function is vital for regulating the amount of Ca2+ within all eukaryotic cells. There is a very large transmembrane electrochemical gradient of Ca2+ driving the entry of the ion into cells, yet it is very important that they maintain low concentrations of Ca2+ for proper cell signalling. Thus, it is necessary for cells to employ ion pumps to remove the Ca2+. The PMCA and the sodium calcium exchanger (NCX) are together the main regulators of intracellular Ca2+ concentrations. Since it transports Ca2+ into the extracellular space, the PMCA is also an important regulator of the calcium concentration in the extracellular space.

The Bowditch effect, also known as the Treppe phenomenon or Treppe effect or Staircase Phenomenon, is an autoregulation method by which myocardial tension increases with an increase in heart rate. It was first observed by Henry Pickering Bowditch in 1871.

ATP2A2 also known as sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) is an ATPase associated with Darier's disease and Acrokeratosis verruciformis.

<span class="mw-page-title-main">P-type ATPase</span>

The P-type ATPases, also known as E1-E2 ATPases, are a large group of evolutionarily related ion and lipid pumps that are found in bacteria, archaea, and eukaryotes. P-type ATPases are α-helical bundle primary transporters named based upon their ability to catalyze auto- (or self-) phosphorylation (hence P) of a key conserved aspartate residue within the pump and their energy source, adenosine triphosphate (ATP). In addition, they all appear to interconvert between at least two different conformations, denoted by E1 and E2. P-type ATPases fall under the P-type ATPase (P-ATPase) Superfamily (TC# 3.A.3) which, as of early 2016, includes 20 different protein families.

<span class="mw-page-title-main">ATP2A1</span> Protein-coding gene in the species Homo sapiens

Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (SERCA1) also known as Calcium pump 1, is an enzyme that in humans is encoded by the ATP2A1 gene.

<span class="mw-page-title-main">ATP2A3</span> Protein-coding gene in the species Homo sapiens

Sarcoplasmic/endoplasmic reticulum calcium ATPase 3 is an enzyme that in humans is encoded by the ATP2A3 gene.

<span class="mw-page-title-main">Sarcolipin</span> Protein-coding gene in the species Homo sapiens

Sarcolipin is a micropeptide protein that in humans is encoded by the SLN gene.

Calcium pumps are a family of ion transporters found in the cell membrane of all animal cells. They are responsible for the active transport of calcium out of the cell for the maintenance of the steep Ca2+ electrochemical gradient across the cell membrane. Calcium pumps play a crucial role in proper cell signalling by keeping the intracellular calcium concentration roughly 10,000 times lower than the extracellular concentration. Failure to do so is one cause of muscle cramps.

CXL 1020 is an experimental drug that is being investigated as a treatment for acute decompensated heart failure. CXL 1020 functions as a nitroxyl donor; nitroxyl is the reduced, protonated version of nitric oxide. Nitroxyl is capable of enhancing left ventricular contractility without increasing heart rate by modifying normal Ca2+ cycling through the sarcoplasmic reticulum as well as increasing the sensitivity of cardiac myofilaments to Ca2+.

<span class="mw-page-title-main">Istaroxime</span> Chemical compound

Istaroxime is an investigational drug under development for treatment of acute decompensated heart failure

References

  1. 1 2 3 4 Marín-García, José (2014-01-01), Marín-García, José (ed.), "Chapter 23 - Gene- and Cell-Based Therapy for Cardiovascular Disease", Post-Genomic Cardiology (Second Edition), Boston: Academic Press, pp. 783–833, doi:10.1016/b978-0-12-404599-6.00023-8, ISBN   978-0-12-404599-6 , retrieved 2020-12-28
  2. de Meis L; Oliveira GM; Arruda AP; Santos R; Costa RM; Benchimol M (2005). "The thermogenic activity of rat brown adipose tissue and rabbit white muscle Ca2+-ATPase". IUBMB Life. 57 (4–5): 337–45. doi: 10.1080/15216540500092534 . PMID   16036618.
  3. Arruda AP; Nigro M; Oliveira GM; de Meis L (June 2007). "Thermogenic activity of Ca2+-ATPase from skeletal muscle heavy sarcoplasmic reticulum: the role of ryanodine Ca2+ channel". Biochim. Biophys. Acta. 1768 (6): 1498–505. doi: 10.1016/j.bbamem.2007.03.016 . PMID   17466935.
  4. Bal, Naresh C.; Periasamy, Muthu (2020-03-02). "Uncoupling of sarcoendoplasmic reticulum calcium ATPase pump activity by sarcolipin as the basis for muscle non-shivering thermogenesis". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): 20190135. doi:10.1098/rstb.2019.0135. PMC   7017432 . PMID   31928193.
  5. Legendre, Lucas J.; Davesne, Donald (2020-03-02). "The evolution of mechanisms involved in vertebrate endothermy". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): 20190136. doi: 10.1098/rstb.2019.0136 . PMC   7017440 . PMID   31928191.
  6. MacLennan, David H.; Kranias, Evangelia G. (July 2003). "Phospholamban: a crucial regulator of cardiac contractility". Nature Reviews Molecular Cell Biology. 4 (7): 566–577. doi:10.1038/nrm1151. PMID   12838339. S2CID   3050392.
  7. Gonnot, Fabrice; Boulogne, Laura; Brun, Camille; Dia, Maya; Gouriou, Yves; Bidaux, Gabriel; Chouabe, Christophe; Crola Da Silva, Claire; Ducreux, Sylvie; Pillot, Bruno; Kaczmarczyk, Andrea; Leon, Christelle; Chanon, Stephanie; Perret, Coralie; Sciandra, Franck (2023-06-08). "SERCA2 phosphorylation at serine 663 is a key regulator of Ca2+ homeostasis in heart diseases". Nature Communications. 14 (1): 3346. doi:10.1038/s41467-023-39027-x. ISSN   2041-1723. PMC   10250397 . PMID   37291092.
  8. Arruda, AP; Oliveira, GM; Carvalho, DP; De Meis, L (November 2005). "Thyroid hormones differentially regulate the distribution of rabbit skeletal muscle Ca(2+)-ATPase (SERCA) isoforms in light and heavy sarcoplasmic reticulum". Molecular Membrane Biology. 22 (6): 529–37. doi: 10.1080/09687860500412257 . PMID   16373324. S2CID   29949157.
  9. Chang, KC; Figueredo, VM; Schreur, JH; Kariya, K; Weiner, MW; Simpson, PC; Camacho, SA (1 October 1997). "Thyroid hormone improves function and Ca2+ handling in pressure overload hypertrophy. Association with increased sarcoplasmic reticulum Ca2+-ATPase and alpha-myosin heavy chain in rat hearts". The Journal of Clinical Investigation. 100 (7): 1742–9. doi:10.1172/JCI119699. PMC   508357 . PMID   9312172.
  10. Kaasik, Allen; Minajeva, Ave; Paju, Kalju; Eimre, Margus; Seppet, Enn K. (1997). "Thyroid hormones differentially affect sarcoplasmic reticulum function in rat atria and ventricles". Molecular and Cellular Biochemistry. 176 (1/2): 119–126. doi:10.1023/A:1006887231150. PMID   9406153. S2CID   8199751.
  11. Müller, Patrick; Leow, Melvin Khee-Shing; Dietrich, Johannes W. (15 August 2022). "Minor perturbations of thyroid homeostasis and major cardiovascular endpoints—Physiological mechanisms and clinical evidence". Frontiers in Cardiovascular Medicine. 9: 942971. doi: 10.3389/fcvm.2022.942971 . PMC   9420854 . PMID   36046184.