Named after | Joseph Wolstenholme |
---|---|
Publication year | 1995 [1] |
Author of publication | McIntosh, R. J. |
No. of known terms | 2 |
Conjectured no. of terms | Infinite |
Subsequence of | Irregular primes |
First terms | 16843, 2124679 |
Largest known term | 2124679 |
OEIS index |
|
In number theory, a Wolstenholme prime is a special type of prime number satisfying a stronger version of Wolstenholme's theorem. Wolstenholme's theorem is a congruence relation satisfied by all prime numbers greater than 3. Wolstenholme primes are named after mathematician Joseph Wolstenholme, who first described this theorem in the 19th century.
Interest in these primes first arose due to their connection with Fermat's Last Theorem. Wolstenholme primes are also related to other special classes of numbers, studied in the hope to be able to generalize a proof for the truth of the theorem to all positive integers greater than two.
The only two known Wolstenholme primes are 16843 and 2124679 (sequence A088164 in the OEIS ). There are no other Wolstenholme primes less than 1011. [2]
Wolstenholme prime can be defined in a number of equivalent ways.
A Wolstenholme prime is a prime number p > 7 that satisfies the congruence
where the expression in left-hand side denotes a binomial coefficient. [3] In comparison, Wolstenholme's theorem states that for every prime p > 3 the following congruence holds:
A Wolstenholme prime is a prime p that divides the numerator of the Bernoulli number Bp−3. [4] [5] [6] The Wolstenholme primes therefore form a subset of the irregular primes.
A Wolstenholme prime is a prime p such that (p, p–3) is an irregular pair. [7] [8]
A Wolstenholme prime is a prime p such that [9]
i.e. the numerator of the harmonic number expressed in lowest terms is divisible by p3.
The search for Wolstenholme primes began in the 1960s and continued over the following decades, with the latest results published in 2022. The first Wolstenholme prime 16843 was found in 1964, although it was not explicitly reported at that time. [10] The 1964 discovery was later independently confirmed in the 1970s. This remained the only known example of such a prime for almost 20 years, until the discovery announcement of the second Wolstenholme prime 2124679 in 1993. [11] Up to 1.2×107, no further Wolstenholme primes were found. [12] This was later extended to 2×108 by McIntosh in 1995 [5] and Trevisan & Weber were able to reach 2.5×108. [13] The latest result as of 2022 is that there are only those two Wolstenholme primes up to 1011. [14]
It is conjectured that infinitely many Wolstenholme primes exist. It is conjectured that the number of Wolstenholme primes ≤ x is about ln ln x, where ln denotes the natural logarithm. For each prime p ≥ 5, the Wolstenholme quotient is defined as
Clearly, p is a Wolstenholme prime if and only if Wp ≡ 0 (mod p). Empirically one may assume that the remainders of Wp modulo p are uniformly distributed in the set {0, 1, ..., p–1}. By this reasoning, the probability that the remainder takes on a particular value (e.g., 0) is about 1/p. [5]
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime.
In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number ap − a is an integer multiple of p. In the notation of modular arithmetic, this is expressed as
In number theory, Euler's theorem states that, if n and a are coprime positive integers, then is congruent to modulo n, where denotes Euler's totient function; that is
The Fermat primality test is a probabilistic test to determine whether a number is a probable prime.
In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is, the factorial satisfies
In mathematics, p-adic analysis is a branch of number theory that deals with the mathematical analysis of functions of p-adic numbers.
In mathematics, a Cunningham chain is a certain sequence of prime numbers. Cunningham chains are named after mathematician A. J. C. Cunningham. They are also called chains of nearly doubled primes.
In number theory, a Wieferich prime is a prime number p such that p2 divides 2p − 1 − 1, therefore connecting these primes with Fermat's little theorem, which states that every odd prime p divides 2p − 1 − 1. Wieferich primes were first described by Arthur Wieferich in 1909 in works pertaining to Fermat's Last Theorem, at which time both of Fermat's theorems were already well known to mathematicians.
In number theory, a Wilson prime is a prime number such that divides , where "" denotes the factorial function; compare this with Wilson's theorem, which states that every prime divides . Both are named for 18th-century English mathematician John Wilson; in 1770, Edward Waring credited the theorem to Wilson, although it had been stated centuries earlier by Ibn al-Haytham.
In number theory, a Wall–Sun–Sun prime or Fibonacci–Wieferich prime is a certain kind of prime number which is conjectured to exist, although none are known.
Lucas pseudoprimes and Fibonacci pseudoprimes are composite integers that pass certain tests which all primes and very few composite numbers pass: in this case, criteria relative to some Lucas sequence.
In mathematics, Wolstenholme's theorem states that for a prime number , the congruence
In mathematics, Ramanujan's congruences are the congruences for the partition function p(n) discovered by Srinivasa Ramanujan:
In number theory, Lucas's theorem expresses the remainder of division of the binomial coefficient by a prime number p in terms of the base p expansions of the integers m and n.
In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. In the standard notation of modular arithmetic this congruence is written as
In number theory, the Fermat quotient of an integer a with respect to an odd prime p is defined as
In mathematics, the Pocklington–Lehmer primality test is a primality test devised by Henry Cabourn Pocklington and Derrick Henry Lehmer. The test uses a partial factorization of to prove that an integer is prime.
In mathematics, Kummer's congruences are some congruences involving Bernoulli numbers, found by Ernst Eduard Kummer.
In mathematics, a congruence is an equivalence relation on the integers. The following sections list important or interesting prime-related congruences.
In mathematics, specifically in number theory, Newman's conjecture is a conjecture about the behavior of the partition function modulo any integer. Specifically, it states that for any integers m and r such that , the value of the partition function satisfies the congruence for infinitely many non-negative integers n. It was formulated by mathematician Morris Newman in 1960. It is unsolved as of 2020.