In astronomy, a calcium-rich supernova (or Calcium-rich transient, Ca-rich SN) is a subclass of supernovae that, in contrast to more well-known traditional supernova classes, are fainter and produce unusually large amounts of calcium. Since their luminosity is located in a gap between that of novae and other supernovae, they are also referred to as "gap" transients. Only around 15 events have been classified as a calcium-rich supernova (as of August 2017) – a combination of their intrinsic rarity and low luminosity make new discoveries and their subsequent study difficult. This makes calcium-rich supernovae one of the most mysterious supernova subclasses currently known.
A peculiar group of supernova that were unusually rich in calcium were identified by Alexei Filippenko and collaborators. Although they appeared somewhat similar to Type Ib and Ic supernovae, their spectra were dominated by calcium, without other signatures often seen in Type Ib and Ic supernovae, and the term calcium-rich was coined to describe them. [1] Subsequent discoveries led to the classification of empirically similar supernovae. [2] [3] They share characteristics such as quickly rising and fading light curves that peak in luminosity between novae and supernovae, and spectra that are dominated by calcium 2–3 months after initial explosion. [4]
The exact nature of the stellar systems and their subsequent explosions that give rise to calcium-rich supernovae are unknown. Despite appearing similar to Type Ib supernovae, it was noted that a different explosion mechanism was likely to be responsible for calcium-rich supernovae. [2] Since a large proportion of the galaxies from which they are thought to originate are early-type galaxies, and thus composed of old stellar populations, they are unlikely to contain many young, massive stars that give rise to Type Ib supernovae. [5] Supernova explosions in old stellar populations generally involved a white dwarf since these are old systems that can undergo thermonuclear explosion under the right circumstances, as is the case for Type Ia supernovae. However, because calcium-rich supernovae are much less luminous and fade more quickly than normal Type Ia supernovae, it is unlikely that the same mechanism is at play for both.
Another peculiarity of calcium-rich supernovae is that they appear to explode far away from galaxies, even reaching intergalactic space. Searches for faint dwarf galaxies at their locations have ruled that they are exploding in very low density environments, unlike other supernova types. [6] [7]
There are several theories that attempt to explain this behaviour. Binary systems of high-velocity stars, such as two white dwarfs or a white dwarf and a neutron star, that have been ejected from their galaxy either due to a neutron star kick [8] [9] or interaction with the supermassive black hole in their galaxy [10] [11] could produce explosions when they eventually merge (due to gravitational wave radiation) that would preferentially occur far from galaxies. Alternatively they have been suggested to be due to stars that reside in the intracluster medium within large galaxy groups or clusters, having been expelled from their galaxy during mergers or interactions. [7] The explosion would then be caused by the detonation of a low mass white dwarf during a merging event as part of a binary system, or the detonation of a helium shell on a white dwarf.
A calcium-rich supernova event expels several tenths of a solar mass in material at thousands of kilometres per second and reaches a peak luminosity equal to around 100–200 million times that of the Sun. Despite calcium-rich supernovae being comparatively rare and diminutive compared to other supernova types, they are thought to make a significant contribution to the production of calcium in the Universe. [12]
Designation | Date | Location | Redshift | Host galaxy | Ejecta mass | Reference |
---|---|---|---|---|---|---|
SN 2019bkc | March 2019 | 0.0209±0.0003 | unknown | 0.3±0.1 M☉ | [13] | |
SN 2005E | January 2005 | 2694±18 km/s | NGC 1032 | 0.275 M☉ | [14] | |
AT 2024mxe | August 2024 | 0.00913 ± 0.000002 | NGC 3689 | [15] | ||
A supernova is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.
A super-luminous supernova is a type of stellar explosion with a luminosity 10 or more times higher than that of standard supernovae. Like supernovae, SLSNe seem to be produced by several mechanisms, which is readily revealed by their light-curves and spectra. There are multiple models for what conditions may produce an SLSN, including core collapse in particularly massive stars, millisecond magnetars, interaction with circumstellar material, or pair-instability supernovae.
Messier 74 is a large spiral galaxy in the equatorial constellation Pisces. It is about 32 million light-years away from Earth. The galaxy contains two clearly defined spiral arms and is therefore used as an archetypal example of a grand design spiral galaxy. The galaxy's low surface brightness makes it the most difficult Messier object for amateur astronomers to observe. Its relatively large angular size and the galaxy's face-on orientation make it an ideal object for professional astronomers who want to study spiral arm structure and spiral density waves. It is estimated that M74 hosts about 100 billion stars.
A Type Ia supernova is a type of supernova that occurs in binary systems in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white dwarf.
Type Ib and Type Ic supernovae are categories of supernovae that are caused by the stellar core collapse of massive stars. These stars have shed or been stripped of their outer envelope of hydrogen, and, when compared to the spectrum of Type Ia supernovae, they lack the absorption line of silicon. Compared to Type Ib, Type Ic supernovae are hypothesized to have lost more of their initial envelope, including most of their helium. The two types are usually referred to as stripped core-collapse supernovae.
A Type II supernova or SNII results from the rapid collapse and violent explosion of a massive star. A star must have at least eight times, but no more than 40 to 50 times, the mass of the Sun (M☉) to undergo this type of explosion. Type II supernovae are distinguished from other types of supernovae by the presence of hydrogen in their spectra. They are usually observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies; those are generally composed of older, low-mass stars, with few of the young, very massive stars necessary to cause a supernova.
SN 2006gy was an extremely energetic supernova, also referred to as a hypernova, that was discovered on September 18, 2006. It was first observed by Robert Quimby and P. Mondol, and then studied by several teams of astronomers using facilities that included the Chandra, Lick, and Keck Observatories. In May 2007, NASA and several of the astronomers announced the first detailed analyses of the supernova, describing it as the "brightest stellar explosion ever recorded". In October 2007, Quimby announced that SN 2005ap had broken SN 2006gy's record as the brightest-ever recorded supernova, and several subsequent discoveries are brighter still. Time magazine listed the discovery of SN 2006gy as third in its Top 10 Scientific Discoveries for 2007.
A luminous red nova is a stellar explosion thought to be caused by the merging of two stars. They are characterised by a distinct red colour, and a light curve that fades slowly with resurgent brightness in the infrared. Luminous red novae are not related to standard novae, which are explosions that occur on the surface of white dwarf stars.
SCP 06F6 is an astronomical object of unknown type, discovered on 21 February 2006 in the constellation Boötes during a survey of galaxy cluster CL 1432.5+3332.8 with the Hubble Space Telescope's Advanced Camera for Surveys Wide Field Channel.
SN 2005E was a calcium-rich supernova first observed in January 2005 that scientists concluded was a new type of cosmic explosion. The explosion originated in the galaxy NGC 1032, approximately 100 million light years away.
NGC 5806 is an intermediate spiral galaxy in the constellation Virgo. It was discovered on February 24, 1786, by the astronomer John Herschel. It is located about 70 million light-years away from the Milky Way. It is a member of the NGC 5846 Group.
SN 2014J was a type-Ia supernova in Messier 82 discovered in mid-January 2014. It was the closest type-Ia supernova discovered for 42 years, and no subsequent supernova has been closer as of 2023. The supernova was discovered by chance during an undergraduate teaching session at the University of London Observatory. It peaked on 31 January 2014, reaching an apparent magnitude of 10.5. SN 2014J was the subject of an intense observing campaign by professional astronomers and was bright enough to be seen by amateur astronomers.
iPTF14atg is a type-Ia supernova discovered on 3 May 2015. The supernova is located in galaxy IC 831, some 300 Mly (92 Mpc) distant. The supernova is thought to have ignited on May 2 or 3. The supernova's shockwave slammed into a companion star, shocking it into producing an ultraviolet pulse. The companion star that was hit is suspected to be a red giant star. This detection of the UV signal represents the first time the collision event of a supernova shockwave upon a companion star has been detected. The supernova was discovered by the Intermediate Palomar Transient Factory (iPTF), a successor to the earlier Palomar Transient Factory, and based at the Palomar Observatory in California. The data was processed by collaborators in Europe, that lead to the supernova discovery.
ASASSN-15lh is an extremely luminous astronomical transient event discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN), with the appearance of a superluminous supernova event. It was first detected on June 14, 2015, located within a faint galaxy in the southern constellation Indus, and was the most luminous supernova-like object ever observed. At its peak, ASASSN-15lh was 570 billion times brighter than the Sun, and 20 times brighter than the combined light emitted by the Milky Way Galaxy. The emitted energy was exceeded by PS1-10adi.
A hypernova is a very energetic supernova which is believed to result from an extreme core collapse scenario. In this case, a massive star collapses to form a rotating black hole emitting twin astrophysical jets and surrounded by an accretion disk. It is a type of stellar explosion that ejects material with an unusually high kinetic energy, an order of magnitude higher than most supernovae, with a luminosity at least 10 times greater. Hypernovae release such intense gamma rays that they often appear similar to a type Ic supernova, but with unusually broad spectral lines indicating an extremely high expansion velocity. Hypernovae are one of the mechanisms for producing long gamma ray bursts (GRBs), which range from 2 seconds to over a minute in duration. They have also been referred to as superluminous supernovae, though that classification also includes other types of extremely luminous stellar explosions that have different origins.
SN 2013fs is a supernova, located in the spiral galaxy NGC 7610, discovered by the Intermediate Palomar Transient Factory sky survey at Palomar Observatory in October 2013. It was discovered approximately three hours from explosion and was observed in ultraviolet and X-ray wavelengths, among others, within several hours. Optical spectra were obtained beginning at six hours from explosion, making these the earliest such detailed observations ever made of a supernova.
iPTF14hls is an unusual supernova star that erupted continuously for about 1,000 days beginning in September 2014 before becoming a remnant nebula. It had previously erupted in 1954. None of the theories nor proposed hypotheses fully explain all the aspects of the object.
In astronomy, a fast blue optical transient (FBOT), or more specifically, luminous fast blue optical transient (LFBOT), is an explosive transient event similar to supernovae and gamma-ray bursts with high optical luminosity, rapid evolution, and predominantly blue emission. The origins of such explosions are currently unclear, with events occurring at not more than 0.1% of the typical core-collapse supernova rate. This class of transients initially emerged from large sky surveys at cosmological distances, yet in recent years a small number have been discovered in the local Universe, most notably AT 2018cow.
Ken'ichi Nomoto is a Japanese astrophysicist and astronomer, known for his research on stellar evolution, supernovae, and the origin of heavy elements.
UGC 9684 is a barred spiral galaxy with a ring structure in the Boötes constellation. It is located 250 million light-years from the Solar System and has an approximate diameter of 90,000 light-years.