Somatostatin receptor 2

Last updated

SSTR2
Identifiers
Aliases SSTR2 , Somatostatin receptor 2
External IDs OMIM: 182452; MGI: 98328; HomoloGene: 37427; GeneCards: SSTR2; OMA:SSTR2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001050

NM_001042606
NM_009217

RefSeq (protein)

NP_001041

NP_001036071
NP_033243

Location (UCSC) Chr 17: 73.17 – 73.18 Mb Chr 11: 113.51 – 113.52 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Somatostatin receptor type 2 is a protein that in humans is encoded by the SSTR2 gene. [5]

Contents

The SSTR2 gene is located on chromosome 17 on the long arm in position 25.1 in humans. [6] It is also found in most other vertebrates. [7]

The somatostatin receptor 2 (SSTR2), which belongs to the G-protein coupled receptor family, is a protein which is most highly expressed in the pancreas (both alpha- and beta-cells), but also in other tissues such as the cerebrum and kidney and in lower amount in the jejunum, colon and liver. [8] [9] [10] In the pancreas, after binding to somatostatin, it inhibits the secretion of peptide hormones from pancreatic islets. [8] During development, it stimulates neuronal migration and axon outgrowth. [8]

The somatostatin receptor 2 is expressed in most tumors. [11] Patients with neuroendocrine tumors that over-express the somatostatin receptor 2 have an improved prognosis. [12] The over expression of SSTR2 in tumors can be exploited to selectively deliver radio-peptides to tumors to either detect or destroy them. [13] Somatostatin receptor 2 also has the ability to stimulate apoptosis in many cells including cancer cells. [14] The somatostatin receptor 2 is also being looked at as a possible target in cancer treatment for its ability to inhibit tumor growth. [15]

Function

The gene for somatostatin receptor 2, SSTR2 for short, is responsible for making a receptor for the signalling peptide, somatostatin (SST). Production occurs in the central nervous system, especially the hypothalamus, as well as the digestive system, and pancreas. [16] SSTR2 is a receptor for somatostatin-14 and -28 respectively. The numbers 14 and 28 represent the amount of amino acids in each protein sequence. [16] All somatostatin receptors including SSTR2 may have different specific functions, but all fall under the same receptor super family, the G-protein binding family and all of which are a major inhibitor for other hormones. [17] For all somatostatin inhibitors, somatostatin-14 and -28 work by binding to the receptor with the help of a G-protein. This inhibits adenylyl cyclase and calcium channels. These proteins are released in various parts of the human body and vary in the amount emitted from each organ system. In secretory cells this protein is in a greater volume compared to amount released from activated immune and inflammatory cells. These proteins have a tendency of being emitted in response to items such as: ions, nutrients, neuropeptides, neurotransmitters, hormones, growth factors, and cytokines. [18]

In general, somatostatin can put a cell in cycle arrest using the phosphotyrosine phosphatase dependent regulation of nitrogen-activated protein kinase, this process can lead to a halt in the cell cycle or apoptosis of the cell and is used as a tumor suppressor in the genome. This hormone is also known to perform agonist-dependent endocytosis, which allows a cell to take in receptors, ions, and other molecules. [18]

Because this protein is found in multiple organs, it has a different specific role in each organ or organ system. A major function of the protein made by the gene SSTR2 is pancreatic interaction with the alpha and beta cells. In the delta cells of the pancreas, this hormone inhibits the secretion of both glucagon and insulin in the alpha and beta cells when stimulated by basic nutrients like sugars, proteins, and fats. [19] In fact, this protein, is the dominant one out of all of the somatostatins in the pancreas. In the stomach, it reduces activity of the digestive tract by inhibiting secretion of gastric acid, pepsin, bile, and colonic acid when in the presence of luminal nutrients; all of these secretions are needed for proper digestion. It also represses motor activity in the gut by blocking segmentation of the intestines, gallbladder contraction, and emptying of the bowels. This inhibition by somatostatin allows the body to uptake the maximum amount of nutrients in the digestive system. [20] Along with the gut and pancreas, SSTR2 also inhibits secretion of neurotransmitters in the central and peripheral nervous system. These hormones include dopamine, norepinephrine, thyrotropin-releasing hormone, and corticotropin-releasing hormone. Many of these hormones help the body maintain homeostasis or react properly to a stimulus such as something pleasurable or a stress in the environment. Because of which, the receptors for somatostatin type 2 impact the body's locomotor, sensory, autonomic, and cognitive functions.

Interactions

Somatostatin receptor 2 has been shown to interact with SHANK2. [21]

Clinical significance

The somatostatin hormone itself can negatively affect the uptake of hormones in the body and may play a role in some hormonal conditions. Somatostatin 2 receptors have been found in concentration on the surface of tumor cells, particularly those associated with the neuroendocrine system where the overexpression of somatostatin can lead to many complications [22] [23] Due to this, these receptors are considered a prospective aid for the detection of tumors, especially in patients who present with conditions like hypothyroidism and Cushing's syndrome. [24] [25] A synthetic version of the somatostatin hormone, octreotide, has been successfully used in combination with radio-peptide tracers to locate adrenal gland tumors through scintigraphic imaging. [26]  A similar method may be utilized to carry and more accurately administer radioactive treatments to tumors. [26]  Octreotide and other analogs are preferred for this use due to their possessing of an extended half life compared to the naturally-occurring hormone allowing for more flexibility when used for such treatments. [25]

The association of somatostatin 2 receptors on tumors has also led to the suggestion of possible alternatives to current tumor treatment methods. The binding of synthetic somatostatin hormones such as octreotide to receptors has been seen to reduce the production of hormones and is now being considered for use in the treatment of some pituitary tumors. One group suggests that the treatment method would be particularly effective against thyrotropin-secreting pituitary adenomas (TSHomas), though further inquiries and clinical trials are needed. [24]

SSTR2 is also being investigated for its potential use as a reporter gene for the visualization of regional gene expression. One study tested this by comparing the PET/CT and light imaging results of laboratory rats' musculature obtained through the use of a human somatostatin receptor 2 vector and a control luciferase vector. [26]  The study suggests that somatostatin receptor genes could be an effective substitute for the current viral-based vectors since the sstr genes elicits less of an immune response and has overall been well tolerated by the trial patients' bodies. This form of treatment may be especially useful for the study of gene expression in larger mammals whose larger body mass may obstruct clear visualization of deep tissue areas. [26]  The use of sstr2 and sstr5 as biomarkers to track the progress of and treat neuroendocrine tumors displaying circulating tumor cells is also being investigated due to these cells' somatostatin receptor gene expressivity. [23]

Therapeutic targeting

Most pituitary adenomas express SSTR2, but other somatostatin receptors are also found. [27] Somatostatin analogs (i.e. Octreotide, Lanreotide ) are used to stimulate these receptors, and thus to inhibit further tumor proliferation. [28]

Discovery

There is a group of somatostatin receptors called the somatostatin receptor family. All of the members of the somatostatin receptor family are proteins that sit on the surface of the cell membrane and are responsible for the communication between cells. [29] In 1972, [30] scientists were on the trek to discover more information on the hypothalamus and its "release factors." [30] Studies showed patterns of inhibitory activity of the hypothalamus release factors which led scientists in the direction to discover somatostatin, known as the somatropin release-inhibiting factor, or SRIF. We now know that the SRIF is located at 3q28 (long arm of the third chromosome at the twenty-eighth position) in humans. [30] Peering into location 3q28, the majority of proteins code for the pancreas, ovaries, and prostate along with other components of the endocrine system and nervous system, [31] so it can be drawn that the receptor family has great influence among these systems. The family was first discovered in a segment of a rat's pituitary gland known as the tumor cell line. [32] A cell line is grown as a culture under controlled conditions, so the first discovery was found by culturing these cells in controlled conditions and in an environment outside of its norm. There, researchers found that the tumor cell line expresses a cell dividing inhibitor known as the transforming growth factor beta (TGF-beta) [33] and also acts as an inhibitor to the milk producing hormone in female mammals, prolactin, and growth hormones. Researchers studied the activity of the receptors by conducting an assay with Ligand binding studies, [32] which basically means they were conducting studies to see how prevalent the binding of the receptors occurred. [34] [32] Differences in how prevalently they receptors bonded revealed the existence of multiple receptors. [32] Based on the ligand binding affinity and the receptors' signaling mechanisms, the receptor family was divided into 2 different groups, and within those groups, 5 subgroups. The group with a high affinity binding were classified under the SRIF1 group with sst2, sst3, and sst5 in the subgroup, while the receptors with low affinity binding were classified under the SRIF2 group with sst1 and sst4 in the subgroup. Manipulations with the somatostatin receptors are used for many therapies in both the endocrine and nervous system, and now that we know the groups and subgroups of the receptor family, therapy treatment is much more efficient and effective. For example, as you continue reading the article, you will notice the importance and advancements of oncology and tumor treatments, as well as other ways the somatostatin receptors are working and advancing the world of medicine. [35]

The somatostatin receptor 2 is found on the chromosome 17. [36] Information was gathered and determined from a sample of individuals, and conclusions were drawn upon location and other information regarding the SSRT2 protein. [36]

Gene:SSTR2
Title:somatostatin receptor 2
Location:73,165,021..73,171,955
Length:6,935 nt
[Positional Info]
NC_000017.11 position:73,168,608
Gene position:3,588

Isoforms

Like other proteins, the somatostatin receptor 2 also has variants. Somatostatin receptor 2 exists in two isoforms that are different in carboxy-terimini compositions and size. Alternative splicing of the somatostatin receptor 2 mRNA resulted in two variants, somatostatin receptor 2a (SSTR2A) and somatostatin receptor 2b (SSTR2B). In a rodent, somatostatin receptor 2a is longer compared to the shorter somatostatin receptor 2b. Isoform a and isoform b sequences are different, beginning at the C-terminal regulatory domains. [37] Studies have shown that carboxy-terminal splicing has occurred in many other transmembrane receptors, along with prostaglandin E receptor (EP3). [38] These variants, SST2A receptor and SST2B receptor are seen in some brain and spinal cord areas in a rodent. [39] Somatostatin receptor 2a has a shorter transcript, but is longer than somatostatin receptor 2b and has a unique C- terminus compared to Somatostatin Receptor 2b. [38] SSTRB receptor has approximately 300 nucleotides between carboxyl terminus and transmembrane segments fewer than the original Somatostatin receptor 2. SST2A receptor is made up of 369 amino acids and 346 amino acids make up the SST2B receptor. [40]  Somatostatin receptor 2a and somatostatin receptor 2b were found in the medulla oblongata, mesencephalon, testis, cortex, hypothalamus, hippocampus and pituitary of a rodent, using reverse transcription polymerase chain reaction (RT-PCR). [37] Somatostatin receptor 2a is highly evident in the cortex, but the somatostatin receptor 2b is not seen as much. The medulla oblongata shows equal amounts of the two variants being expressed. The Somatostatin receptor 2a was found mostly in far down layers of the cerebral cortex, in the human brain. This variant of the Somatostatin receptor was found with the use of immunohistochemistry. [41] The difference in ratios of the isoforms imply a tissue-specific control of transcription. Somatostatin receptor 2b is not shown expressed without somatostatin receptor 2a in the brain. [37]

Related Research Articles

<span class="mw-page-title-main">Endocrine system</span> Hormone-producing glands of a body

The endocrine system is a messenger system in an organism comprising feedback loops of hormones that are released by internal glands directly into the circulatory system and that target and regulate distant organs. In vertebrates, the hypothalamus is the neural control center for all endocrine systems.

<span class="mw-page-title-main">Somatostatin</span> Peptide hormone that regulates the endocrine system

Somatostatin, also known as growth hormone-inhibiting hormone (GHIH) or by several other names, is a peptide hormone that regulates the endocrine system and affects neurotransmission and cell proliferation via interaction with G protein-coupled somatostatin receptors and inhibition of the release of numerous secondary hormones. Somatostatin inhibits insulin and glucagon secretion.

<span class="mw-page-title-main">Pituitary adenoma</span> Tumor of the pituitary gland

Pituitary adenomas are tumors that occur in the pituitary gland. Most pituitary tumors are benign, approximately 35% are invasive and just 0.1% to 0.2% are carcinomas. Pituitary adenomas represent from 10% to 25% of all intracranial neoplasms and the estimated prevalence rate in the general population is approximately 17%.

<span class="mw-page-title-main">Octreotide</span> Octapeptide that mimics natural somatostatin pharmacologically

Octreotide, sold under the brand name Sandostatin among others, is an octapeptide that mimics natural somatostatin pharmacologically, though it is a more potent inhibitor of growth hormone, glucagon, and insulin than the natural hormone. It was first synthesized in 1979 by the chemist Wilfried Bauer, and binds predominantly to the somatostatin receptors SSTR2 and SSTR5.

<span class="mw-page-title-main">Estrogen receptor</span> Proteins activated by the hormone estrogen

Estrogen receptors (ERs) are a group of proteins found inside cells. They are receptors that are activated by the hormone estrogen (17β-estradiol). Two classes of ER exist: nuclear estrogen receptors, which are members of the nuclear receptor family of intracellular receptors, and membrane estrogen receptors (mERs), which are mostly G protein-coupled receptors. This article refers to the former (ER).

Growth hormone–releasing hormone (GHRH), also known as somatocrinin among other names in its endogenous form and as somatorelin (INN) in its pharmaceutical form, is a releasing hormone of growth hormone (GH). It is a 44-amino acid peptide hormone produced in the arcuate nucleus of the hypothalamus.

The prolactin receptor (PRLR) is a type I cytokine receptor encoded in humans by the PRLR gene on chromosome 5p13-14. It is the receptor for prolactin (PRL). The PRLR can also bind to and be activated by growth hormone (GH) and human placental lactogen (hPL). The PRLR is expressed in the mammary glands, pituitary gland, and other tissues. It plays an important role in lobuloalveolar development of the mammary glands during pregnancy and in lactation.

<span class="mw-page-title-main">Neuroendocrine tumor</span> Tumors of the endocrine and nervous systems

Neuroendocrine tumors (NETs) are neoplasms that arise from cells of the endocrine (hormonal) and nervous systems. They most commonly occur in the intestine, where they are often called carcinoid tumors, but they are also found in the pancreas, lung, and the rest of the body.

Somatostatinomas are a tumor of the delta cells of the endocrine pancreas that produces somatostatin. Increased levels of somatostatin inhibit pancreatic hormones and gastrointestinal hormones. Thus, somatostatinomas are associated with mild diabetes mellitus, steatorrhoea and gallstones, and achlorhydria. Somatostatinomas are commonly found in the head of pancreas. Only ten percent of somatostatinomas are functional tumours [9], and 60–70% of tumours are malignant. Nearly two-thirds of patients with malignant somatostatinomas will present with metastatic disease.

<span class="mw-page-title-main">Enteroendocrine cell</span> Cell that produces gastrointestinal hormones

Enteroendocrine cells are specialized cells of the gastrointestinal tract and pancreas with endocrine function. They produce gastrointestinal hormones or peptides in response to various stimuli and release them into the bloodstream for systemic effect, diffuse them as local messengers, or transmit them to the enteric nervous system to activate nervous responses. Enteroendocrine cells of the intestine are the most numerous endocrine cells of the body. They constitute an enteric endocrine system as a subset of the endocrine system just as the enteric nervous system is a subset of the nervous system. In a sense they are known to act as chemoreceptors, initiating digestive actions and detecting harmful substances and initiating protective responses. Enteroendocrine cells are located in the stomach, in the intestine and in the pancreas. Microbiota play key roles in the intestinal immune and metabolic responses in these enteroendocrine cells via their fermentation product, acetate.

<span class="mw-page-title-main">GPER</span> Protein-coding gene in the species Homo sapiens

G protein-coupled estrogen receptor 1 (GPER), also known as G protein-coupled receptor 30 (GPR30), is a protein that in humans is encoded by the GPER gene. GPER binds to and is activated by the female sex hormone estradiol and is responsible for some of the rapid effects that estradiol has on cells.

<span class="mw-page-title-main">KiSS1-derived peptide receptor</span> Mammalian protein found in Homo sapiens

The KiSS1-derived peptide receptor is a G protein-coupled receptor which binds the peptide hormone kisspeptin (metastin). Kisspeptin is encoded by the metastasis suppressor gene KISS1, which is expressed in a variety of endocrine and gonadal tissues. Activation of the kisspeptin receptor is linked to the phospholipase C and inositol trisphosphate second messenger cascades inside the cell.

<span class="mw-page-title-main">Somatostatin receptor 5</span> Protein-coding gene in the species Homo sapiens

Somatostatin receptor type 5 is a protein that in humans is encoded by the SSTR5 gene.

<span class="mw-page-title-main">Somatostatin receptor 1</span> Protein-coding gene in the species Homo sapiens

Somatostatin receptor type 1 is a protein that in humans is encoded by the SSTR1 gene.

<span class="mw-page-title-main">Somatostatin receptor 3</span> Protein-coding gene in the species Homo sapiens

Shekel Somatostatin receptor type 3 is a protein that in humans is encoded by the SSTR3 gene.

<span class="mw-page-title-main">Somatostatin receptor 4</span> Protein-coding gene in the species Homo sapiens

Somatostatin receptor type 4 is a protein that in humans is encoded by the SSTR4 gene.

<span class="mw-page-title-main">PTTG1</span> Protein-coding gene in the species Homo sapiens

Securin is a protein that in humans is encoded by the PTTG1 gene.

Membrane progesterone receptors (mPRs) are a group of cell surface receptors and membrane steroid receptors belonging to the progestin and adipoQ receptor (PAQR) family which bind the endogenous progestogen and neurosteroid progesterone, as well as the neurosteroid allopregnanolone. Unlike the progesterone receptor (PR), a nuclear receptor which mediates its effects via genomic mechanisms, mPRs are cell surface receptors which rapidly alter cell signaling via modulation of intracellular signaling cascades. The mPRs mediate important physiological functions in male and female reproductive tracts, liver, neuroendocrine tissues, and the immune system as well as in breast and ovarian cancer.

<span class="mw-page-title-main">Somatostatin receptor antagonist</span> Class of chemical compounds

Somatostatin receptor antagonists are a class of chemical compounds that work by imitating the structure of the neuropeptide somatostatin. The somatostatin receptors are G protein-coupled receptors. Somatostatin receptor subtypes in humans are sstr1, 2A, 2 B, 3, 4 and 5. While normally expressed in the gastrointestinal (GI) tract, pancreas, hypothalamus, and central nervous system (CNS), they are expressed in different types of tumours. The predominant subtype in cancer cells is the ssrt2 subtype, which is expressed in neuroblastomas, meningiomas, medulloblastomas, breast carcinomas, lymphomas, renal cell carcinomas, paragangliomas, small cell lung carcinomas and hepatocellular carcinomas.

<span class="mw-page-title-main">Somatostatin inhibitor</span> Class of pharmaceuticals

Somatostatin receptor antagonists are a class of chemical compounds that work by imitating the structure of the neuropeptide somatostatin, which is an endogenous hormone found in the human body. The somatostatin receptors are G protein-coupled receptors. Somatostatin receptor subtypes in humans include sstr1, 2A, 2 B, 3, 4, and 5. While normally expressed in the gastrointestinal (GI) tract, pancreas, hypothalamus, and central nervous system (CNS), they are expressed in different types of tumours. The predominant subtype in cancer cells is the ssrt2 subtype, which is expressed in neuroblastomas, meningiomas, medulloblastomas, breast carcinomas, lymphomas, renal cell carcinomas, paragangliomas, small cell lung carcinomas, and hepatocellular carcinomas.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000180616 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000047904 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Yamada Y, Stoffel M, Espinosa R, Xiang KS, Seino M, Seino S, et al. (February 1993). "Human somatostatin receptor genes: localization to human chromosomes 14, 17, and 22 and identification of simple tandem repeat polymorphisms". Genomics. 15 (2): 449–52. doi:10.1006/geno.1993.1088. PMID   8449518.
  6. "SSTR2 Symbol Report". HUGO Gene Nomenclature Committee.
  7. "ortholog_gene_6752[group] – Gene". NCBI.
  8. 1 2 3 Universal protein resource accession number P30874 for "SSTR2 – Somatostatin receptor type 2 – Homo sapiens (Human)" at UniProt.
  9. "SSTR2 Gene". GeneCards Human Gene Database Gene.
  10. "SSTR2 somatostatin receptor 2 [Homo sapiens (human)] – Gene". NCBI.
  11. Reubi JC, Waser B, Schaer JC, Laissue JA (July 2001). "Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands". European Journal of Nuclear Medicine. 28 (7): 836–46. doi:10.1007/s002590100541. PMID   11504080. S2CID   8727308.
  12. Wang Y, Wang W, Jin K, Fang C, Lin Y, Xue L, et al. (March 2017). "Somatostatin receptor expression indicates improved prognosis in gastroenteropancreatic neuroendocrine neoplasm, and octreotide long-acting release is effective and safe in Chinese patients with advanced gastroenteropancreatic neuroendocrine tumors". Oncology Letters. 13 (3): 1165–1174. doi:10.3892/ol.2017.5591. PMC   5403486 . PMID   28454229.
  13. "SSTR2 – Clinical: Somatostatin Receptor 2 (SSTR2), Immunostain, Technical Component Only". mayomedicallaboratories.com. Retrieved 10 November 2018.
  14. Teijeiro R, Rios R, Costoya JA, Castro R, Bello JL, Devesa J, et al. (2002). "Activation of human somatostatin receptor 2 promotes apoptosis through a mechanism that is independent from induction of p53". Cellular Physiology and Biochemistry. 12 (1): 31–8. doi:10.1159/000047824. PMID   11914546. S2CID   33281755.
  15. Callison JC, Walker RC, Massion PP (2011). "Somatostatin Receptors in Lung Cancer: From Function to Molecular Imaging and Therapeutics". Journal of Lung Cancer. 10 (2): 69–76. doi:10.6058/jlc.2011.10.2.69. PMC   4319675 . PMID   25663834.
  16. 1 2 Kailey B, van de Bunt M, Cheley S, Johnson PR, MacDonald PE, Gloyn AL, et al. (November 2012). "SSTR2 is the functionally dominant somatostatin receptor in human pancreatic β- and α-cells". American Journal of Physiology. Endocrinology and Metabolism. 303 (9): E1107-16. doi:10.1152/ajpendo.00207.2012. PMC   3492856 . PMID   22932785.
  17. "Somatostatin". vivo.colostate.edu. Retrieved 7 November 2018.
  18. 1 2 Patel YC (July 1999). "Somatostatin and its receptor family". Frontiers in Neuroendocrinology. 20 (3): 157–98. doi:10.1006/frne.1999.0183. PMID   10433861. S2CID   44720470.
  19. Bhandari S, Watson N, Long E, Sharpe S, Zhong W, Xu SZ, et al. (August 2008). "Expression of somatostatin and somatostatin receptor subtypes 1-5 in human normal and diseased kidney". The Journal of Histochemistry and Cytochemistry. 56 (8): 733–43. doi:10.1369/jhc.2008.950998. PMC   2443611 . PMID   18443363.
  20. Carroll RG (2007). "Endocrine System". Elsevier's Integrated Physiology. Elsevier. pp. 157–176. doi:10.1016/b978-0-323-04318-2.50019-4. ISBN   9780323043182.
  21. Zitzer H, Hönck HH, Bächner D, Richter D, Kreienkamp HJ (November 1999). "Somatostatin receptor interacting protein defines a novel family of multidomain proteins present in human and rodent brain". The Journal of Biological Chemistry. 274 (46): 32997–3001. doi: 10.1074/jbc.274.46.32997 . PMID   10551867.
  22. "Joint Program in Nuclear Medicine". med.harvard.edu. Retrieved 16 November 2018.
  23. 1 2 Childs A, Vesely C, Ensell L, Lowe H, Luong TV, Caplin ME, et al. (December 2016). "Expression of somatostatin receptors 2 and 5 in circulating tumour cells from patients with neuroendocrine tumours". British Journal of Cancer. 115 (12): 1540–1547. doi:10.1038/bjc.2016.377. PMC   5155369 . PMID   27875519.
  24. 1 2 Yu B, Zhang Z, Song H, Chi Y, Shi C, Xu M (April 2017). "Clinical Importance of Somatostatin Receptor 2 (SSTR2) and Somatostatin Receptor 5 (SSTR5) Expression in Thyrotropin-Producing Pituitary Adenoma (TSHoma)". Medical Science Monitor. 23: 1947–1955. doi:10.12659/MSM.903377. PMC   5411020 . PMID   28434012. (Retracted, see doi:10.12659/MSM.912715, PMID   30142144 . If this is an intentional citation to a retracted paper, please replace {{ retracted |...}} with {{ retracted |...|intentional=yes}}.)
  25. 1 2 Kennedy JW, Dluhy RG (1997). "The biology and clinical relevance of somatostatin receptor scintigraphy in adrenal tumor management". The Yale Journal of Biology and Medicine. 70 (5–6): 565–75. PMC   2589262 . PMID   9825485.
  26. 1 2 3 4 Hofmann M, Gazdhar A, Weitzel T, Schmid R, Krause T (December 2006). "PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 569 (2): 509–11. Bibcode:2006NIMPA.569..509H. doi:10.1016/j.nima.2006.08.161.
  27. Miller GM, Alexander JM, Bikkal HA, Katznelson L, Zervas NT, Klibanski A (April 1995). "Somatostatin receptor subtype gene expression in pituitary adenomas". The Journal of Clinical Endocrinology and Metabolism. 80 (4): 1386–92. doi:10.1210/jcem.80.4.7714115. PMID   7714115.
  28. Zatelli MC, Ambrosio MR, Bondanelli M, Uberti EC (April 2007). "Control of pituitary adenoma cell proliferation by somatostatin analogs, dopamine agonists and novel chimeric compounds" (PDF). European Journal of Endocrinology. 156 (Suppl 1): S29-35. doi: 10.1530/eje.1.02352 . PMID   17413185.
  29. "The Virtual Cell Textbook – Cell Biology". ibiblio.org. Retrieved 7 November 2018.
  30. 1 2 3 Møller LN, Stidsen CE, Hartmann B, Holst JJ (September 2003). "Somatostatin receptors". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1616 (1): 1–84. doi: 10.1016/S0005-2736(03)00235-9 . PMID   14507421.
  31. "Chromosome 3". atlasgeneticsoncology.org. Retrieved 9 November 2018.
  32. 1 2 3 4 "Somatostatin receptors". IUPHAR/BPS Guide to Pharmacology.
  33. Yamashita H, Okadome T, Franzén P, ten Dijke P, Heldin CH, Miyazono K (January 1995). "A rat pituitary tumor cell line (GH3) expresses type I and type II receptors and other cell surface binding protein(s) for transforming growth factor-beta". The Journal of Biological Chemistry. 270 (2): 770–4. doi: 10.1074/jbc.270.2.770 . PMID   7822309.
  34. "Definition of Assay". MedicineNet. Retrieved 9 November 2018.
  35. "Prolactin". You and Your Hormones. Society for Endocrinology. Retrieved 7 November 2018.
  36. 1 2 "SSTR2 somatostatin receptor 2 [Homo sapiens (human)]". NCBI.
  37. 1 2 3 Vanetti M, Ziólkowska B, Wang X, Horn G, Höllt V (November 1994). "mRNA distribution of two isoforms of somatostatin receptor 2 (mSSTR2A and mSSTR2B) in mouse brain". Brain Research. Molecular Brain Research. 27 (1): 45–50. doi:10.1016/0169-328X(94)90182-1. PMID   7877453.
  38. 1 2 Schulz S, Schmidt H, Händel M, Schreff M, Höllt V (November 1998). "Differential distribution of alternatively spliced somatostatin receptor 2 isoforms (sst2A and sst2B) in rat spinal cord". Neuroscience Letters. 257 (1): 37–40. doi:10.1016/s0304-3940(98)00803-9. PMID   9857960. S2CID   36912019.
  39. Patel YC, Greenwood M, Kent G, Panetta R, Srikant CB (April 1993). "Multiple gene transcripts of the somatostatin receptor SSTR2: tissue selective distribution and cAMP regulation". Biochemical and Biophysical Research Communications. 192 (1): 288–94. doi:10.1006/bbrc.1993.1412. PMID   8386508.
  40. Møller LN, Stidsen CE, Hartmann B, Holst JJ (September 2003). "Somatostatin receptors". Biochimica et Biophysica Acta. 1616 (1): 1–84. doi: 10.1016/S0005-2736(03)00235-9 . PMID   14507421.
  41. Cole SL, Schindler M (2000). "Characterisation of somatostatin sst2 receptor splice variants". Journal of Physiology, Paris. 94 (3–4): 217–37. doi:10.1016/S0928-4257(00)00207-2. PMID   11088000. S2CID   27216476.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.