Podzol | |
---|---|
Podsol, Podosol, Spodosol, Espodossolo | |
Used in | WRB, USDA soil taxonomy, others |
WRB code | PZ |
Profile | O(Ah)EBhsC |
Key process | podzolization |
Parent material | quartz rich debris and sediment |
Climate | humid continental, subarctic, oceanic, equatorial |
H: common O: always, has humified organic matter mixed with minerals A: absent in most boreal podzols [1] E: common, is ashen grey and leached in Fe and Al B: always, receives Fe and Al through illuviation C: common |
In soil science, podzols, also known as podosols, spodosols, or espodossolos, are the typical soils of coniferous or boreal forests and also the typical soils of eucalypt forests and heathlands in southern Australia. In Western Europe, podzols develop on heathland, which is often a construct of human interference through grazing and burning. In some British moorlands with podzolic soils, cambisols are preserved under Bronze Age barrows. [2]
Podzol means "under-ash" and is derived from the Russian под (pod) + зола́ (zola); the full form is подзо́листая по́чва (podzolistaya pochva), meaning "under-ashed soil". The term was first given in mid-1875 by Vasily Dokuchaev. [3] [4] It refers to the common experience of Russian peasants of plowing up an apparent under-layer of ash (leached or E horizon) during first plowing of a virgin soil of that type. [5]
Podzols can occur on almost any parent material but generally derive from either quartz-rich sands and sandstone or sedimentary debris from magmatic rocks, provided there is high precipitation. [6] Most Podzols are poor soils for agriculture due to the sandy portion, resulting in a low level of moisture and nutrients. Some are sandy and excessively drained. Others have shallow rooting zones and poor drainage due to subsoil cementation. A low pH further compounds issues, along with phosphate deficiencies and aluminum toxicity. The best agricultural use of Podzols is for grazing, although well-drained loamy types can be very productive for crops if lime and fertilizer are used.
The E horizon (or Ae in Canadian soil classification system), which is usually 4 to 8 centimetres (1.6 to 3.1 in) thick, is low in Fe and Al oxides and humus. It is formed under moist, cool and acidic conditions, especially where the parent material, such as granite or sandstone, is rich in quartz. It is found under a layer of organic material in the process of decomposition, which is usually 5 to 10 centimetres (2.0 to 3.9 in) thick. In the middle, there is often a thin horizon of 0.5 to 1 centimetre (0.2 to 0.4 in). The bleached soil horizon, which always has a higher value than the horizons above and below it, goes over into a red or red-brown horizon (so-called Podzolic B). The colour is strongest in the upper part, and change at a depth of 50 to 100 centimetres (20 to 40 in) progressively to the part of the soil that is mainly not affected by processes; that is the parent material. The soil profiles are designated by the letters A (topsoil), E (eluviated soil), B (subsoil) and C (parent material).
In some Podzols, the E horizon is absent—either masked by biological activity or obliterated by disturbance. Podzols with little or no E horizon development are often classified as brown Podzolic soils, also called Umbrisols or Umbrepts .
Podzols cover about 4,850,000 square kilometres (1,870,000 sq mi) worldwide and are usually found under sclerophyllous woody vegetation. By extent Podzols are most common in temperate and boreal zones of the Northern Hemisphere but they can also be found in other settings including both temperate rainforests and tropical areas. [7]
In South America Podzols occur beneath Nothofagus betuloides forests in Tierra del Fuego. [8]
Podzolization (or Podsolization [9] ) is a complex soil formation process by which dissolved organic matter and ions of iron and aluminium, released through weathering of various minerals, form organo-mineral complexes (chelates) and are moved from the upper parts of the soil profile and deposit in the deeper parts of soil. Through this process, the eluvial horizon becomes bleached and of ash-grey colour. The complexes move with percolating water further down to illuviated horizons which are commonly coloured brown, red or black as they accumulate and consist of cemented sesquioxides and/or organic compounds. The podzolization is a typical soil formation process in Podzols. [9] [10]
Podzolization usually occurs under forest or heath vegetation and is common in cool and humid climates as these climates inhibit the activity of soil microbes in the topsoil. Overall, podzolization happens where the decomposition of organic matter is inhibited and as a result, acidic organic surface (mor) layers build up. Under these typically acidic conditions, nutrient deficiency further hampers the microbial degradation of organic complexing agents. [10] [11] Medium to coarse textured soils with base-poor parent material (usually rich in quartz) also promote podzolization, as they encourage percolating water flow. [11] [12]
The soil-forming process of podzolization can be broken down into two main steps:
In the topsoil of acidic soils, organic matter (mostly from plant litter, the humus layer and root exudates) together with Al- and Fe-ions, form organo-mineral complexes. These soluble chelates then relocate with percolating water from the A (or E horizon) to the B horizon. As a result of this, the E horizon (or Ae horizon in the Canadian system of soil classification) is left bleached and ash-grey in colour, while the B horizon becomes enriched with relocated organo-mineral complexes. The colour of B horizon is consequently red, brown or black, depending on the dominance of metal ions or organic matter. Usually, the boundary between the B and eluvial Ae (or E) horizon is very distinct, and sometimes a hardpan (or Ortstein [12] ) can form, as the relocated Fe and Al and organic matter increase mineral particles, cementing them into this compacted layer. [10] [11] [12]
There are several reasons why these organo-mineral complexes immobilize in the B horizon: If during the eluviation process more Al- or Fe-ions bind to the organic compounds, the complex can flocculate as the solubility of it decreases with increasing metal to carbon ratio. Apart from that, a higher pH (or higher Ca content) in the lower soil horizons can result in the breakdown of metal-humus complexes. In the lower soil layers, the organic complexing agents can be degraded by functioning microorganisms. Already established complexes in the B horizon can act as a filter, as they adsorb the traveling complexes from the upper soil horizons. A decreased water conductivity due to higher clay content can also result in the early flocculation of organo-mineral complexes. [10] [11]
The relocated substances can sometimes separate in the illuvial horizons. Then, organic substances are mostly enriched in the uppermost part of the illuvial horizon, whereas Fe- and Al-oxides are mostly found in the lower parts of the illuvial horizon. [10]
Podzolization also promotes the relocation of some nutrients (Cu, Fe, Mn, Mo and P) that sometimes brings them closer to plant roots. [10]
The definitions in different soil classification systems are quite different. Especially soils that show pronounced other soil-forming processes in addition to podzolization are handled in different ways. The following correlations refer to soils, which have undergone advanced podzolization but lack prominent other soil-forming processes.
The term Podzols is used in the World Reference Base for Soil Resources [15] (WRB) and in many national soil classification systems (in some of them, spelled Podsols).
In classical soil science, humus is the dark organic matter in soil that is formed by the decomposition of plant and animal matter. It is a kind of soil organic matter. It is rich in nutrients and retains moisture in the soil. Humus is the Latin word for "earth" or "ground".
Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support the life of plants and soil organisms. Some scientific definitions distinguish dirt from soil by restricting the former term specifically to displaced soil.
Chernozem, also called black soil, regur soil or black cotton soil, is a black-colored soil containing a high percentage of humus and high percentages of phosphorus and ammonia compounds. Chernozem is very fertile soil and can produce high agricultural yields with its high moisture-storage capacity. Chernozems are a Reference Soil Group of the World Reference Base for Soil Resources (WRB)
USDA soil taxonomy (ST) developed by the United States Department of Agriculture and the National Cooperative Soil Survey provides an elaborate classification of soil types according to several parameters and in several levels: Order, Suborder, Great Group, Subgroup, Family, and Series. The classification was originally developed by Guy Donald Smith, former director of the U.S. Department of Agriculture's soil survey investigations.
Gelisols are an order in USDA soil taxonomy. They are soils of very cold climates which are defined as containing permafrost within two meters of the soil surface. The word "Gelisol" comes from the Latin gelare meaning "to freeze", a reference to the process of cryoturbation that occurs from the alternating thawing and freezing characteristic of Gelisols.
A soil horizon is a layer parallel to the soil surface whose physical, chemical and biological characteristics differ from the layers above and beneath. Horizons are defined in many cases by obvious physical features, mainly colour and texture. These may be described both in absolute terms and in terms relative to the surrounding material, i.e. 'coarser' or 'sandier' than the horizons above and below.
The World Reference Base for Soil Resources (WRB) is an international soil classification system for naming soils and creating legends for soil maps. The currently valid version is the fourth edition 2022. It is edited by a working group of the International Union of Soil Sciences (IUSS).
This is an index of articles relating to soil.
Claypan is a dense, compact, slowly permeable layer in the subsoil. It has a much higher clay content than the overlying material, from which it is separated by a sharply defined boundary. The dense structure restricts root growth and water infiltration. Therefore, a perched water table might form on top of the claypan. In the Canadian classification system, claypan is defined as a clay-enriched illuvial B (Bt) horizon.
Brown earth is a type of soil. Brown earths are mostly located between 35° and 55° north of the Equator. The largest expanses cover western and central Europe, large areas of western and trans-Uralian Russia, the east coast of America and eastern Asia. Here, areas of brown earth soil types are found particularly in Japan, Korea, China, eastern Australia and New Zealand. Brown earths cover 45% of the land in England and Wales. They are common in lowland areas on permeable parent material. The most common vegetation types are deciduous woodland and grassland. Due to the reasonable natural fertility of brown earths, large tracts of deciduous woodland have been cut down and the land is now used for farming. They are normally located in regions with a humid temperate climate. Rainfall totals are moderate, usually below 76 cm per year, and temperatures range from 4 °C in the winter to 18 °C in the summer. They are well-drained fertile soils with a pH of between 5.0 and 6.5.
A gleysol or gley soil is a hydric soil that unless drained is saturated with groundwater for long enough to develop a characteristic gleyic colour pattern. The pattern is essentially made up of reddish, brownish, or yellowish colours at surfaces of soil particles and/or in the upper soil horizons mixed with greyish/blueish colours inside the peds and/or deeper in the soil. Gleysols are also known as Gleyzems, meadow soils, Aqu-suborders of Entisols, Inceptisols and Mollisols, or as groundwater soils and hydro-morphic soils.
Podsolisation is an extreme form of leaching which causes the eluviation of iron and aluminium sesquioxides.
Brown podzolic soils are a subdivision of the Podzolic soils in the British soil classification. Although classed with podzols because they have an iron-rich, or spodic horizon, they are, in fact intermediate between podzols and Brown earths. They are common on hilly land in western Europe, in climates where precipitation of more than about 900mm exceeds evapotranspiration for a large part of the year, and summers are relatively cool. The result is that leaching of the soil profile occurs; in which mobile chemicals are washed out of the topsoil, or A horizon, and accumulate lower down, in the B horizon.
The Canadian System of Soil Classification is more closely related to the American system than any other, but they differ in several ways. The Canadian system is designed to cover only Canadian soils. The Canadian system dispenses with the sub-order hierarchical level. Solonetzic and Gleysolic soils are differentiated at the order level.
A Stagnosol in the World Reference Base for Soil Resources (WRB) is soil with strong mottling of the soil profile due to redox processes caused by stagnating surface water.
The Polish Soil Classification is a soil classification system used to describe, classify and organize the knowledge about soils in Poland.
A Retisol is a Reference Soil Group of the World Reference Base for Soil Resources (WRB). Retisols are characterized by clay migration and an additional specific feature: The clay-poorer and lighter coloured eluvial horizon intercalates netlike into the clay-richer more intensely coloured illuvial horizon. The illuvial horizon is the diagnostic argic horizon, and the intercalation is called retic properties.
Mor humus is a form of forest floor humus occurring mostly in coniferous forests. Mor humus consists of evergreen needles and woody debris that litter the forest floor. This litter is slow to decompose, in part due to their chemical composition, but also because of the generally cool and wet conditions where mor humus is found. This results in low bacterial activity and an absence of earthworms and other soil fauna. Because of this, most of the organic matter decomposition in mor humus is carried out by fungi.
Moder is a forest floor type formed under mixed-wood and pure deciduous forests. Moder is a kind of humus whose properties are the transition between mor humus and mull humus types. Moders are similar to mors as they are made up of partially to fully humified organic components accumulated on the mineral soil. Compared to mulls, moders are zoologically active. In addition, moders present as in the middle of mors and mulls with a higher decomposition capacity than mull but lower than mor. Moders are characterized by a slow rate of litter decomposition by litter-dwelling organisms and fungi, leading to the accumulation of organic residues. Moder humus forms share the features of the mull and mor humus forms.
{{cite book}}
: CS1 maint: multiple names: authors list (link)