Humus

Last updated

Humus has a characteristic black or dark brown color and is an accumulation of organic carbon. Besides the three major soil horizons of (A) surface/topsoil, (B) subsoil, and (C) substratum, some soils have an organic horizon (O) on the very surface. Hard bedrock (R) is not in a strict sense soil. Soil Horizons.svg
Humus has a characteristic black or dark brown color and is an accumulation of organic carbon. Besides the three major soil horizons of (A) surface/topsoil, (B) subsoil, and (C) substratum, some soils have an organic horizon (O) on the very surface. Hard bedrock (R) is not in a strict sense soil.

In classical [1] soil science, humus is the dark organic matter in soil that is formed by the decomposition of plant and animal matter. It is a kind of soil organic matter. It is rich in nutrients and retains moisture in the soil. Humus is the Latin word for "earth" or "ground". [2]

Contents

In agriculture, "humus" sometimes also is used to describe mature or natural compost extracted from a woodland or other spontaneous source for use as a soil conditioner. [3] It is also used to describe a topsoil horizon that contains organic matter (humus type, [4] humus form, [5] or humus profile [6] ).

Humus has many nutrients that improve the health of soil, nitrogen being the most important. The ratio of carbon to nitrogen (C:N) of humus commonly ranges between 8:1 and 15:1 with the median being about 12:1. [7] It also significantly improves (decreases) the bulk density of soil. [8] Humus is amorphous and lacks the cellular structure characteristic of organisms. [9]

A similar material, also called humus and often used as fertilizer after composting and if not judged contaminated by pathogens, toxic heavy metals, and persistent organic pollutants according to standard tolerance levels, [10] is the solid residue of sewage sludge treatment, which is a secondary phase in the wastewater treatment process. [11]

Description

The primary materials needed for the process of humification are plant detritus and dead animals and microbes, excreta of all soil-dwelling organisms, and also black carbon resulting from past fires. [12] The composition of humus varies with that of primary (plant) materials and secondary microbial and animal products. The decomposition rate of the different compounds will affect the composition of the humus. [13]

It is difficult to define humus precisely because it is a very complex substance which is still not fully understood. Humus is different from decomposing soil organic matter. The latter looks rough and has visible remains of the original plant or animal matter. Fully humified humus, on the contrary, has a uniformly dark, spongy, and jelly-like appearance, and is amorphous; it may gradually decay over several years or persist for millennia. [14] It has no determinate shape, structure, or quality. However, when examined under a microscope, humus may reveal tiny plant, animal, or microbial remains that have been mechanically, but not chemically, degraded. [15] This suggests an ambiguous boundary between humus and soil organic matter, leading some authors to contest the use of the term humus and derived terms such as humic substances or humification, proposing the Soil Continuum Model (SCM). [16] However, humus can be considered as having distinct properties, mostly linked to its richness in functional groups, justifying its maintenance as a specific term. [17]

Fully formed humus is essentially a collection of very large and complex molecules formed in part from lignin and other polyphenolic molecules of the original plant material (foliage, wood, bark), in part from similar molecules that have been produced by microbes. [18] During decomposition processes these polyphenols are modified chemically so that they are able to join up with one another to form very large molecules. Some parts of these molecules are modified in such a way that protein molecules, amino acids, and amino sugars are able to attach themselves to the polyphenol “base” molecule. As protein contains both nitrogen and sulfur, this attachment gives humus a moderate content of these two important plant nutrients. [19]

Radiocarbon and other dating techniques have shown that the polyphenolic base of humus (mostly lignin and black carbon) can be very old, but the protein and carbohydrate attachments much younger, while to the light of modern concepts and methods the situation appears much more complex and unpredictable than previously thought. [20] It seems that microbes are able to pull protein off humus molecules rather more readily than they are able to break the polyphenolic base molecule itself. As protein is removed its place may be taken by younger protein, or this younger protein may attach itself to another part of the humus molecule. [21]

The most useful functions of humus are in improving soil structure, all the more when associated with cations (e.g. calcium), [22] and in providing a very large surface area that can hold nutrient elements until required by plants, an ion exchange function comparable to that of clay particles. [23]

Soil carbon sequestration is a major property of the soil, also considered as an ecosystem service. [24] Only when it becomes stable and acquires its multi-century permanence, mostly via multiple interactions with the soil matrix, molecular soil humus should be considered to be of significance in removing the atmosphere’s current carbon dioxide overload. [25]

There is little data available on the composition of humus because it is a complex mixture that is challenging for researchers to analyze. Researchers in the 1940s and 1960s tried using chemical separation to analyze plant and humic compounds in forest and agricultural soils, but this proved impossible because extractants interacted with the analysed organic matter and created many artefacts. [26] Further research has been done in more recent years, though it remains an active field of study. [27]

Humification

Microorganisms decompose a large portion of the soil organic matter into inorganic minerals that the roots of plants can absorb as nutrients. This process is termed mineralization . In this process, nitrogen (nitrogen cycle) and the other nutrients (nutrient cycle) in the decomposed organic matter are recycled. Depending on the conditions in which the decomposition occurs, a fraction of the organic matter does not mineralize and instead is transformed by a process called humification. Prior to modern analytical methods, early evidence led scientists to believe that humification resulted in concatenations of organic polymers resistant to the action of microorganisms, [28] however recent research has demonstrated that microorganisms are capable of digesting humus. [29]

Humification can occur naturally in soil or artificially in the production of compost. Organic matter is humified by a combination of saprotrophic fungi, bacteria, microbes and animals such as earthworms, nematodes, protozoa, and arthropods. [30] [ circular reference ] Plant remains, including those that animals digested and excreted, contain organic compounds: sugars, starches, proteins, carbohydrates, lignins, waxes, resins, and organic acids. Decay in the soil begins with the decomposition of sugars and starches from carbohydrates, which decompose easily as detritivores initially invade the dead plant organs, while the remaining cellulose and lignin decompose more slowly. [31] [ page needed ] Simple proteins, organic acids, starches, and sugars decompose rapidly, while crude proteins, fats, waxes, and resins remain relatively unchanged for longer periods of time.

Lignin, which is quickly transformed by white-rot fungi, [32] is one of the primary precursors of humus, [33] together with by-products of microbial [34] and animal [35] activity. The humus produced by humification is thus a mixture of compounds and complex biological chemicals of plant, animal, or microbial origin that has many functions and benefits in soil. Some judge earthworm humus (vermicompost) to be the optimal organic manure. [36]

Stability

Much of the humus in most soils has persisted for more than 100 years, rather than having been decomposed into CO2, and can be regarded as stable; this organic matter has been protected from decomposition by microbial or enzyme action because it is hidden (occluded) inside small aggregates of soil particles, or tightly sorbed or complexed to clays. [37] Most humus that is not protected in this way is decomposed within 10 years and can be regarded as less stable or more labile.

Stable humus contributes few plant-available nutrients in soil, but it helps maintain its physical structure. [38] A very stable form of humus is formed from the slow oxidation (redox) of soil carbon after the incorporation of finely powdered charcoal into the topsoil. This process is speculated to have been important in the formation of the unusually fertile Amazonian terra preta do Indio . [39] [ page needed ] However, recent work [40] suggests that complex soil organic molecules may be much less stable than previously thought: “the available evidence does not support the formation of large-molecular-size and persistent ‘humic substances’ in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds.″

Horizons

Humus has a characteristic black or dark brown color and is organic due to an accumulation of organic carbon. Soil scientists use the capital letters O, A, B, C, and E to identify the master horizons, and lowercase letters for distinctions of these horizons. Most soils have three major horizons: the surface horizon (A), the subsoil (B), and the substratum (C). Some soils have an organic horizon (O) on the surface, but this horizon can also be buried. The master horizon (E) is used for subsurface horizons that have significantly lost minerals (eluviation). Bedrock, which is not soil, uses the letter R.

Benefits of soil organic matter and humus

The importance of chemically stable humus is thought by some to be the fertility it provides to soils in both a physical and chemical sense, [41] though some agricultural experts put a greater focus on other features of it, such as its ability to suppress disease. [42] It helps the soil retain moisture [43] by increasing microporosity [44] and encourages the formation of good soil structure. [45] [46] The incorporation of oxygen into large organic molecular assemblages generates many active, negatively charged sites that bind to positively charged ions (cations) of plant nutrients, making them more available to the plant by way of ion exchange. [47] Humus allows soil organisms to feed and reproduce and is often described as the "life-force" of the soil. [48] [49]

See also

Related Research Articles

<span class="mw-page-title-main">Compost</span> Mixture used to improve soil fertility

Compost is a mixture of ingredients used as plant fertilizer and to improve soil's physical, chemical, and biological properties. It is commonly prepared by decomposing plant and food waste, recycling organic materials, and manure. The resulting mixture is rich in plant nutrients and beneficial organisms, such as bacteria, protozoa, nematodes, and fungi. Compost improves soil fertility in gardens, landscaping, horticulture, urban agriculture, and organic farming, reducing dependency on commercial chemical fertilizers. The benefits of compost include providing nutrients to crops as fertilizer, acting as a soil conditioner, increasing the humus or humic acid contents of the soil, and introducing beneficial microbes that help to suppress pathogens in the soil and reduce soil-borne diseases.

<span class="mw-page-title-main">Soil</span> Mixture of organic matter, minerals, gases, liquids, and organisms that together support life

Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support the life of plants and soil organisms. Some scientific definitions distinguish dirt from soil by restricting the former term specifically to displaced soil.

<span class="mw-page-title-main">Decomposition</span> Process in which organic substances are broken down into simpler organic matter

Decomposition or rot is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is essential for recycling the finite matter that occupies physical space in the biosphere. Bodies of living organisms begin to decompose shortly after death. Animals, such as earthworms, also help decompose the organic materials. Organisms that do this are known as decomposers or detritivores. Although no two organisms decompose in the same way, they all undergo the same sequential stages of decomposition. The science which studies decomposition is generally referred to as taphonomy from the Greek word taphos, meaning tomb. Decomposition can also be a gradual process for organisms that have extended periods of dormancy.

<span class="mw-page-title-main">Biological carbon fixation</span> Series of interconnected biochemical reactions

Biological carbon fixation, or сarbon assimilation, is the process by which living organisms convert inorganic carbon to organic compounds. These organic compounds are then used to store energy and as structures for other biomolecules. Carbon is primarily fixed through photosynthesis, but some organisms use chemosynthesis in the absence of sunlight. Chemosynthesis is carbon fixation driven by chemical energy rather than from sunlight. 

<span class="mw-page-title-main">Humic substance</span> Major component of natural organic matter

Humic substances (HS) are coloured recalcitrant organic compounds naturally formed during long-term decomposition and transformation of biomass residues. The colour of humic substances varies from yellow to brown to black. The term comes from humus, which in turn comes from the Latin word humus, meaning "soil, earth". Humic substances represent the major part of organic matter in soil, peat, coal, and sediments, and are important components of dissolved natural organic matter (NOM) in lakes, rivers, and sea water.

Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have come from the feces and remains of organisms such as plants and animals. Organic molecules can also be made by chemical reactions that do not involve life. Basic structures are created from cellulose, tannin, cutin, and lignin, along with other various proteins, lipids, and carbohydrates. Organic matter is very important in the movement of nutrients in the environment and plays a role in water retention on the surface of the planet.

<span class="mw-page-title-main">Podzol</span> Typical soils of coniferous or boreal forests

In soil science, podzols, also known as podosols, spodosols, or espodossolos, are the typical soils of coniferous or boreal forests and also the typical soils of eucalypt forests and heathlands in southern Australia. In Western Europe, podzols develop on heathland, which is often a construct of human interference through grazing and burning. In some British moorlands with podzolic soils, cambisols are preserved under Bronze Age barrows.

<i>Terra preta</i> Very dark, fertile Amazonian anthropogenic soil

Terra preta is a type of very dark, fertile anthropogenic soil (anthrosol) found in the Amazon Basin. It is also known as "Amazonian dark earth" or "Indian black earth". In Portuguese its full name is terra preta do índio or terra preta de índio. Terra mulata is lighter or brownish in color.

Glomalin is a hypothetical glycoprotein produced abundantly on hyphae and spores of arbuscular mycorrhizal (AM) fungi in soil and in roots. Glomalin was proposed in 1996 by Sara F. Wright, a scientist at the USDA Agricultural Research Service, but it was not isolated and described yet. The name comes from Glomerales, an order of fungi. Most AM fungi are of the division Glomeromycota. An elusive substance, it is mostly assumed to have a glue-like effect on soil, but it has not been isolated yet.

<span class="mw-page-title-main">Dissolved organic carbon</span> Organic carbon classification

Dissolved organic carbon (DOC) is the fraction of organic carbon operationally defined as that which can pass through a filter with a pore size typically between 0.22 and 0.7 micrometers. The fraction remaining on the filter is called particulate organic carbon (POC).

<span class="mw-page-title-main">Soil biology</span> Study of living things in soil

Soil biology is the study of microbial and faunal activity and ecology in soil. Soil life, soil biota, soil fauna, or edaphon is a collective term that encompasses all organisms that spend a significant portion of their life cycle within a soil profile, or at the soil-litter interface. These organisms include earthworms, nematodes, protozoa, fungi, bacteria, different arthropods, as well as some reptiles, and species of burrowing mammals like gophers, moles and prairie dogs. Soil biology plays a vital role in determining many soil characteristics. The decomposition of organic matter by soil organisms has an immense influence on soil fertility, plant growth, soil structure, and carbon storage. As a relatively new science, much remains unknown about soil biology and its effect on soil ecosystems.

Soil chemistry is the study of the chemical characteristics of soil. Soil chemistry is affected by mineral composition, organic matter and environmental factors. In the early 1870s a consulting chemist to the Royal Agricultural Society in England, named J. Thomas Way, performed many experiments on how soils exchange ions, and is considered the father of soil chemistry. Other scientists who contributed to this branch of ecology include Edmund Ruffin, and Linus Pauling.

Bulk soil is soil outside the rhizosphere that is not penetrated by plant roots. The bulk soil is like an ecosystem, it is made up of many things such as: nutrients, ions, soil particles, and root exudates. There are many different interactions that occur between all the members of the bulk soil. Natural organic compounds are much lower in bulk soil than in the rhizosphere. Furthermore, bulk soil inhabitants are generally smaller than identical species in the rhizosphere. The main two aspects of bulk soil are its chemistry and microbial community composition.

<span class="mw-page-title-main">Carbon-to-nitrogen ratio</span> Chemical ratio in organic materials

A carbon-to-nitrogen ratio is a ratio of the mass of carbon to the mass of nitrogen in organic residues. It can, amongst other things, be used in analysing sediments and soil including soil organic matter and soil amendments such as compost.

In soil science, mineralization is the decomposition of the chemical compounds in organic matter, by which the nutrients in those compounds are released in soluble inorganic forms that may be available to plants. Mineralization is the opposite of immobilization.

Soil organic matter (SOM) is the organic matter component of soil, consisting of plant and animal detritus at various stages of decomposition, cells and tissues of soil microbes, and substances that soil microbes synthesize. SOM provides numerous benefits to the physical and chemical properties of soil and its capacity to provide regulatory ecosystem services. SOM is especially critical for soil functions and quality.

<span class="mw-page-title-main">Fungal extracellular enzyme activity</span> Enzymes produced by fungi and secreted outside their cells

Extracellular enzymes or exoenzymes are synthesized inside the cell and then secreted outside the cell, where their function is to break down complex macromolecules into smaller units to be taken up by the cell for growth and assimilation. These enzymes degrade complex organic matter such as cellulose and hemicellulose into simple sugars that enzyme-producing organisms use as a source of carbon, energy, and nutrients. Grouped as hydrolases, lyases, oxidoreductases and transferases, these extracellular enzymes control soil enzyme activity through efficient degradation of biopolymers.

Seventeen elements or nutrients are essential for plant growth and reproduction. They are carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg), iron (Fe), boron (B), manganese (Mn), copper (Cu), zinc (Zn), molybdenum (Mo), nickel (Ni) and chlorine (Cl). Nutrients required for plants to complete their life cycle are considered essential nutrients. Nutrients that enhance the growth of plants but are not necessary to complete the plant's life cycle are considered non-essential, although some of them, such as silicon (Si), have been shown to improve nutrent availability, hence the use of stinging nettle and horsetail macerations in Biodynamic agriculture. With the exception of carbon, hydrogen and oxygen, which are supplied by carbon dioxide and water, and nitrogen, provided through nitrogen fixation, the nutrients derive originally from the mineral component of the soil. The Law of the Minimum expresses that when the available form of a nutrient is not in enough proportion in the soil solution, then other nutrients cannot be taken up at an optimum rate by a plant. A particular nutrient ratio of the soil solution is thus mandatory for optimizing plant growth, a value which might differ from nutrient ratios calculated from plant composition.

<span class="mw-page-title-main">Mor humus</span> Humus formed in coniferous forests

Mor humus is a form of forest floor humus occurring mostly in coniferous forests. Mor humus consists of evergreen needles and woody debris that litter the forest floor. This litter is slow to decompose, in part due to their chemical composition, but also because of the generally cool and wet conditions where mor humus is found. This results in low bacterial activity and an absence of earthworms and other soil fauna. Because of this, most of the organic matter decomposition in mor humus is carried out by fungi.

The term humus form is not the same as the term humus. Forest humus form describes the various arrangement of organic and mineral horizons at the top of soil profiles. It can be composed entirely of organic horizons, meaning an absence of the mineral horizon. Experts worldwide have developed different types of classifications over time, and humus forms are mainly categorized into mull, mor, and moder orders in the ecosystems of British Columbia. Mull humus form is distinguishable from the other two forms in formation, nutrient cycling, productivity, etc.

References

  1. Popkin, Gabriel (27 July 2021), A soil-science revolution upends plans to fight climate change, Quanta Magazine , retrieved 9 June 2024, "The latest edition of The Nature and Properties of Soils, published in 2016, cites Lehmann's 2015 paper and acknowledges that "our understanding of the nature and genesis of soil humus has advanced greatly since the turn of the century, requiring that some long-accepted concepts be revised or abandoned."
  2. "Humus" . Retrieved 9 June 2024 via Dictionary.com Random House Dictionary Unabridged.
  3. "Humus". Encyclopaedia Britannica Online. 2011. Retrieved 9 June 2024.
  4. Chertov, Oleg G.; Komarov, Alexander S.; Crocker, Graham; Grace, Peter; Klir, Jan; Körschens, Martin; Poulton, Paul R.; Richter, Daniel (1997). "Simulating trends of soil organic carbon in seven long-term experiments using the SOMM model of the humus types". Geoderma. 81 (1–2): 121–135. Bibcode:1997Geode..81..121C. doi:10.1016/S0016-7061(97)00085-2 . Retrieved 9 June 2024.
  5. Brêthes, Alain; Brun, Jean-Jacques; Jabiol, Bernard; Ponge, Jean-François; Toutain, François (1995). "Classification of forest humus forms: a French proposal". Annales des Sciences Forestières. 52 (6): 535–46. doi:10.1051/forest:19950602 . Retrieved 16 June 2024.
  6. Bernier, Nicolas (1998). "Earthworm feeding activity and development of the humus profile". Biology and Fertility of Soils. 26 (3): 215–23. Bibcode:1998BioFS..26..215B. doi:10.1007/s003740050370 . Retrieved 16 June 2024.
  7. Brady, Nyle C. (1984). The nature and properties of soils (9th ed.). New York, New York: Macmillan Publishing Company. p. 269. ISBN   978-0029460306 . Retrieved 1 September 2024.
  8. Bauer, Armand (1974). "Influence of soil organic matter on bulk density and available water capacity of soils" (PDF). Farm Research. 31 (5): 44–52. Retrieved 23 June 2024.
  9. Whitehead, D. C.; Tinsley, J. (1963). "The biochemistry of humus formation". Journal of the Science of Food and Agriculture . 14 (12): 849–57. Bibcode:1963JSFA...14..849W. doi:10.1002/jsfa.2740141201 . Retrieved 23 June 2024.
  10. Brinton, William F. (2020). "Compost quality standards and guidelines, final report" (PDF). Cornell University . Ithaca, New York. Retrieved 7 July 2024.
  11. "Sewage treatment" (PDF). Retrieved 30 June 2024.
  12. Guggenberger, Georg (2005). "Humification and mineralization in soils". In Buscot, François; Varma, Ajit (eds.). Microorganisms in soils: roles in genesis and Functions (PDF). Soil biology. Vol. 3. Dordrecht, The Netherlands: Springer. pp. 85–106. doi:10.1007/3-540-26609-7_4. ISBN   978-3-540-26609-9. Archived from the original (PDF) on 7 July 2024. Retrieved 7 July 2024.
  13. Kögel-Knabner, Ingrid; Zech, Wolfgang; Hatcher, Patrick G. (1988). "Chemical composition of the organic matter in forest soils: the humus layer". Journal of Plant Nutrition and Soil Science. 151 (5): 331–40. doi:10.1002/jpln.19881510512 . Retrieved 14 July 2024.
  14. Waksman, Selman A. (1936). Humus: origin, chemical composition and importance in nature. Baltimore, Maryland: Williams & Wilkins. ISBN   9780598966629 . Retrieved 14 July 2024.
  15. Bernier, Nicolas; Ponge, Jean-François (1994). "Humus form dynamics during the sylvogenetic cycle in a mountain spruce forest". Soil Biology and Biochemistry . 26 (2): 183–220. Bibcode:1994SBiBi..26..183B. doi:10.1016/0038-0717(94)90161-9 . Retrieved 14 July 2024.
  16. Lehmann, Johannes; Kleber, Markus (2015). "The contentious nature of soil organic matter" (PDF). Nature . 528 (7580): 60–68. Bibcode:2015Natur.528...60L. doi:10.1038/nature16069. PMID   26595271 . Retrieved 14 July 2024.
  17. Ponge, Jean-François (2022). "Humus: dark side of life or intractable "aether"?". Pedosphere. 32 (4): 660–64. Bibcode:2022Pedos..32..660P. doi:10.1016/S1002-0160(21)60013-9 . Retrieved 14 July 2024.
  18. Dou, Sen; Shan, Jun; Song, Xiangyun; Cao, Rui; Wu, Meng; Li, Chenglin; Guan, Song (April 2020). "Are humic substances soil microbial residues or unique synthesized compounds? A perspective on their distinctiveness". Pedosphere. 30 (2): 159–67. Bibcode:2020Pedos..30..159D. doi:10.1016/S1002-0160(20)60001-7 . Retrieved 21 July 2024.
  19. Das, Subhasich; Bhattacharya, Satya Sundar (2017). "Significance of soil organic matter in relation to plants and their products". In Siddiqui, Mohammed Wasim; Bansal, Vasudha (eds.). Plant secondary metabolites. Volume 3. Their roles in stress ecophysiology. Palm Bay, Florida: Apple Academic Press. pp. 39–61. ISBN   978-1-77188-356-6 . Retrieved 26 August 2024.
  20. Piccolo, Alessandro (December 2002). "The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science". Advances in Agronomy. 75: 57–134. doi:10.1016/S0065-2113(02)75003-7. ISBN   978-0-12-000793-6 . Retrieved 4 August 2024.
  21. Paul, Eldor A. (2016). "The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization" (PDF). Soil Biology and Biochemistry . 98: 109–26. Bibcode:2016SBiBi..98..109P. doi:10.1016/j.soilbio.2016.04.001 . Retrieved 11 August 2024.
  22. Huang, Xue Ru; Li, H.; Li, Song; Xiong, Hailing; Jiang, Xianjun (May 2016). "Role of cationic polarization in humus-increased soil aggregate stability". European Journal of Soil Science. 67 (3): 341–50. Bibcode:2016EuJSS..67..341H. doi:10.1111/ejss.12342 . Retrieved 11 August 2024.
  23. Shoba, V. N.; Chudnenko, K. V. (August 2014). "Ion exchange properties of humus acids". Eurasian Soil Science. 47 (8): 761–71. Bibcode:2014EurSS..47..761S. doi:10.1134/S1064229314080110 . Retrieved 11 August 2024.
  24. Lal, Rattan; Negassa, Wakene; Lorenz, Klaus (August 2015). "Carbon sequestration in soil". Current Opinion in Environmental Sustainability . 15: 79–86. Bibcode:2015COES...15...79L. doi:10.1016/j.cosust.2015.09.002 . Retrieved 18 August 2024.
  25. Dynarski, Katherine A.; Bossio, Deborah A.; Scow, Kate M. (13 November 2020). "Dynamic stability of soil carbon: reassessing the "permanence" of soil carbon sequestration". Frontiers in Environmental Science . 8 (714701). doi: 10.3389/fenvs.2020.514701 .
  26. Kleber, Markus; Lehmann, Johannes (8 March 2019). "Humic substances extracted by alkali are invalid proxies for the dynamics and functions of organic matter in terrestrial and aquatic ecosystems". Journal of Environmental Quality . 48 (2): 207–16. Bibcode:2019JEnvQ..48..207K. doi:10.2134/jeq2019.01.0036. PMID   30951127 . Retrieved 25 August 2024.
  27. Baveye, Philippe C.; Wander, Michelle (6 March 2019). "The (bio)chemistry of soil humus and humic substances: why is the "new view" still considered novel after more than 80 years?". Frontiers in Environmental Science . 7 (27). doi: 10.3389/fenvs.2019.00027 .
  28. Brady, Nyle C. (1984). The nature and properties of soils (9th ed.). New York, New York: Macmillan Publishing Company. p. 265. ISBN   978-0029460306 . Retrieved 1 September 2024.
  29. Popkin, Gabriel (2021). "A soil-science revolution upends plans to fight climate change". Quanta Magazine . Retrieved 1 September 2024. Soil researchers have concluded that even the largest, most complex molecules can be quickly devoured by soil's abundant and voracious microbes
  30. Soil biology
  31. Berg, B.; McClaugherty, C. (2007). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration (2nd ed.). Springer. ISBN   978-3-540-74922-6.
  32. Levin, L.; Forchiassin, F.; Ramos, A. M. (2002). "Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii". Mycologia. 94 (3): 377–383. doi:10.2307/3761771. JSTOR   3761771. PMID   21156508.
  33. González-Pérez, M.; Vidal Torrado, P.; Colnago, L. A.; Martin-Neto, L.; Otero, X. L.; Milori, D. M. B. P.; Haenel Gomes, F. (2008). "13C NMR and FTIR spectroscopy characterization of humic acids in spodosols under tropical rain forest in southeastern Brazil". Geoderma. 146 (3–4): 425–433. Bibcode:2008Geode.146..425G. doi:10.1016/j.geoderma.2008.06.018.
  34. Knicker, H.; Almendros, G.; González-Vila, F. J.; Lüdemann, H. D.; Martin, F. (1995). "13C and 15N NMR analysis of some fungal melanins in comparison with soil organic matter". Organic Geochemistry. 23 (11–12): 1023–1028. Bibcode:1995OrGeo..23.1023K. doi:10.1016/0146-6380(95)00094-1.
  35. Muscoloa, A.; Bovalob, F.; Gionfriddob, F.; Nardi, S. (1999). "Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism". Soil Biology and Biochemistry. 31 (9): 1303–1311. Bibcode:1999SBiBi..31.1303M. doi:10.1016/S0038-0717(99)00049-8.
  36. "Vermiculture/Vermicompost". Agri.And.Nic.in. Port Blair: Department of Agriculture, Andaman & Nicobar Administration. 18 June 2011. Archived from the original on 17 January 2016. Retrieved 17 April 2009.
  37. Dungait, J. A.; Hopkins, D. W.; Gregory, A. S.; Whitmore, A. P. (2012). "Soil organic matter turnover is governed by accessibility not recalcitrance" (PDF). Global Change Biology. 18 (6): 1781–1796. Bibcode:2012GCBio..18.1781D. doi:10.1111/j.1365-2486.2012.02665.x. S2CID   86741232 . Retrieved 30 August 2014.[ permanent dead link ]
  38. Oades, J. M. (1984). "Soil organic matter and structural stability: Mechanisms and implications for management". Plant and Soil. 76 (1–3): 319–337. Bibcode:1984PlSoi..76..319O. doi:10.1007/BF02205590. S2CID   7195036.
  39. Lehmann, J.; Kern, D. C.; Glaser, B.; Woods, W. I. (2004). Amazonian Dark Earths: Origin, Properties, Management. Springer. ISBN   978-1-4020-1839-8.
  40. Lehmann, Johannes (1 December 2015). "The contentious nature of soil organic matter". Nature. 528 (7580): 60–68. Bibcode:2015Natur.528...60L. doi: 10.1038/nature16069 . PMID   26595271. S2CID   205246638.
  41. Hargitai, L. (1993). "The soil of organic matter content and humus quality in the maintenance of soil fertility and in environmental protection". Landscape and Urban Planning. 27 (2–4): 161–167. Bibcode:1993LUrbP..27..161H. doi:10.1016/0169-2046(93)90044-E.
  42. Hoitink, H. A.; Fahy, P. C. (1986). "Basic for the control of soilborne plant pathogens with composts". Annual Review of Phytopathology. 24: 93–114. doi:10.1146/annurev.py.24.090186.000521.
  43. C.Michael Hogan. 2010. Abiotic factor. Encyclopedia of Earth. eds Emily Monosson and C. Cleveland. National Council for Science and the Environment Archived 8 June 2013 at the Wayback Machine . Washington DC
  44. De Macedo, J. R.; Do Amaral, Meneguelli; Ottoni, T. B.; Araujo, Jorge Araújo; de Sousa Lima, J. (2002). "Estimation of field capacity and moisture retention based on regression analysis involving chemical and physical properties in Alfisols and Ultisols of the state of Rio de Janeiro". Communications in Soil Science and Plant Analysis. 33 (13–14): 2037–2055. Bibcode:2002CSSPA..33.2037D. doi:10.1081/CSS-120005747. S2CID   98466747.
  45. Hempfling, R.; Schulten, H. R.; Horn, R. (1990). "Relevance of humus composition to the physical/mechanical stability of agricultural soils: a study by direct pyrolysis-mass spectrometry". Journal of Analytical and Applied Pyrolysis. 17 (3): 275–281. Bibcode:1990JAAP...17..275H. doi:10.1016/0165-2370(90)85016-G.
  46. Soil Development: Soil Properties Archived 28 November 2012 at the Wayback Machine
  47. 1 2 Szalay, A. (1964). "Cation exchange properties of humic acids and their importance in the geochemical enrichment of UO2++ and other cations". Geochimica et Cosmochimica Acta. 28 (10): 1605–1614. Bibcode:1964GeCoA..28.1605S. doi:10.1016/0016-7037(64)90009-2.
  48. 1 2 Elo, S.; Maunuksela, L.; Salkinoja-Salonen, M.; Smolander, A.; Haahtela, K. (2006). "Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity". FEMS Microbiology Ecology. 31 (2): 143–152. doi: 10.1111/j.1574-6941.2000.tb00679.x . PMID   10640667.
  49. 1 2 Vreeken-Buijs, M. J.; Hassink, J.; Brussaard, L. (1998). "Relationships of soil microarthropod biomass with organic matter and pore size distribution in soils under different land use". Soil Biology and Biochemistry. 30 (1): 97–106. Bibcode:1998SBiBi..30...97V. doi:10.1016/S0038-0717(97)00064-3.
  50. Eyheraguibel, B.; Silvestrea, J. Morard (2008). "Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize" (PDF). Bioresource Technology. 99 (10): 4206–4212. Bibcode:2008BiTec..99.4206E. doi:10.1016/j.biortech.2007.08.082. PMID   17962015.
  51. Zandonadi, D. B.; Santos, M. P.; Busato, J. G.; Peres, L. E. P.; Façanha, A. R. (2013). "Plant physiology as affected by humified organic matter". Theoretical and Experimental Plant Physiology. 25: 13–25. doi: 10.1590/S2197-00252013000100003 .
  52. Olness, A.; Archer, D. (2005). "Effect of organic carbon on available water in soil". Soil Science. 170 (2): 90–101. Bibcode:2005SoilS.170...90O. doi:10.1097/00010694-200502000-00002. S2CID   95336837.
  53. Effect of Organic Carbon on Available Water in Soil : Soil Science
  54. Kikuchi, R. (2004). "Deacidification effect of the litter layer on forest soil during snowmelt runoff: laboratory experiment and its basic formularization for simulation modeling". Chemosphere. 54 (8): 1163–1169. Bibcode:2004Chmsp..54.1163K. doi:10.1016/j.chemosphere.2003.10.025. PMID   14664845.
  55. Caesar-Tonthat, T. C. (2002). "Soil binding properties of mucilage produced by a basidiomycete fungus in a model system". Mycological Research (Submitted manuscript). 106 (8): 930–937. doi:10.1017/S0953756202006330.
  56. Huang, D. L.; Zeng, G. M.; Feng, C. L.; Hu, S.; Jiang, X. Y.; Tang, L.; Su, F. F.; Zhang, Y.; Zeng, W.; Liu, H. L. (2008). "Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity". Environmental Science and Technology. 42 (13): 4946–4951. Bibcode:2008EnST...42.4946H. doi:10.1021/es800072c. PMID   18678031.
  57. Amelung, W.; Bossio, D.; de Vries, W.; Kögel-Knabner, I.; Lehmann, J.; Amundson, R.; Bol, R.; Collins, C.; Lal, R.; Leifeld, J.; Minasny, B. (27 October 2020). "Towards a global-scale soil climate mitigation strategy". Nature Communications. 11 (1): 5427. Bibcode:2020NatCo..11.5427A. doi: 10.1038/s41467-020-18887-7 . ISSN   2041-1723. PMC   7591914 . PMID   33110065.
  58. Tang, Chunyu; Li, Yuelei; Song, Jingpeng; Antonietti, Markus; Yang, Fan (25 June 2021). "Artificial humic substances improve microbial activity for binding CO2". iScience. 24 (6): 102647. Bibcode:2021iSci...24j2647T. doi:10.1016/j.isci.2021.102647. ISSN   2589-0042. PMC   8387571 . PMID   34466779.