Memnonia quadrangle

Last updated
Memnonia quadrangle
USGS-Mars-MC-16-MemnoniaRegion-mola.png
Map of Memnonia quadrangle from Mars Orbiter Laser Altimeter (MOLA) data. The highest elevations are red and the lowest are blue.
Coordinates 15°00′S157°30′W / 15°S 157.5°W / -15; -157.5
Image of the Memnonia Quadrangle (MC-16). The south includes heavily cratered highlands intersected, in the northeastern part, by Mangala Vallis. The north contains undulating wind-eroded deposits and the east contains lava flows from the Tharsis region. PIA00176-MC-16-MemnoniaRegion-19980605.jpg
Image of the Memnonia Quadrangle (MC-16). The south includes heavily cratered highlands intersected, in the northeastern part, by Mangala Vallis. The north contains undulating wind-eroded deposits and the east contains lava flows from the Tharsis region.

The Memnonia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Memnonia quadrangle is also referred to as MC-16 (Mars Chart-16). [1]

Contents

The quadrangle is a region of Mars that covers latitude -30° to 0° and longitude 135° to 180°. [2] The western part of Memnonia is a highly cratered highland region that exhibits a large range of crater degradation.

Memnonia includes these topographical regions of Mars:

Recently, evidence of water was found in the area. Layered sedimentary rocks were found in the wall and floor of Columbus Crater. These rocks could have been deposited by water or by wind. Hydrated minerals were found in some of the layers, so water may have been involved. [3]

Many ancient river valleys including Mangala Vallis, have been found in the Memnonia quadrangle. Mangala appears to have begun with the formation of a graben, a set of faults that may have exposed an aquifer. [4] Dark slope streaks and troughts (fossae) are present in this quadrangle. Part of the Medusae Fossae Formation is found in the Memnonia quadrangle.

Layers

Columbus Crater contains layers, also called strata. Many places on Mars show rocks arranged in layers. Sometimes the layers are of different colors. Light-toned rocks on Mars have been associated with hydrated minerals like sulfates. The Mars rover Opportunity examined such layers close-up with several instruments. Some layers are probably made up of fine particles because they seem to break up into fine dust. Other layers break up into large boulders so they are probably much harder. Basalt, a volcanic rock, is thought to in the layers that form boulders. Basalt has been identified on Mars in many places. Instruments on orbiting spacecraft have detected clay (also called phyllosilicate) in some layers. Recent research with an orbiting near-infrared spectrometer, which reveals the types of minerals present based on the wavelengths of light they absorb, found evidence of layers of both clay and sulfates in Columbus crater. [5] This is exactly what would appear if a large lake had slowly evaporated. [6] Moreover, because some layers contained gypsum, a sulfate which forms in relatively fresh water, life could have formed in the crater. [7]

Scientists are excited about finding hydrated minerals such as sulfates and clays on Mars because they are usually formed in the presence of water. [8] Places that contain clays and/or other hydrated minerals would be good places to look for evidence of life. [9]

Rock can form layers in a variety of ways. Volcanoes, wind, or water can produce layers. [10]

Mangala Vallis

Mangala Vallis is a major channel system that contains several basins which filled, then the overflow went through a series of spillways. [11] [12] One source of waters for the system was Memonia Fossae, but water also probably came from a large basin centered at 40 degrees S. [13] [14]

Craters

Impact craters generally have a rim with ejecta around them, in contrast volcanic craters usually do not have a rim or ejecta deposits. As craters get larger (greater than 10 km in diameter) they usually have a central peak. [15] The peak is caused by a rebound of the crater floor following the impact. [16] Sometimes craters will display layers. Since the collision that produces a crater is like a powerful explosion, rocks from deep underground are tossed unto the surface. Hence, craters can show us what lies deep under the surface. At times, bright rays surround craters because the impact has gone down to a bright layer of rocks, then thrown out the bright rocks on the darker surface. An image below from Mars Global Surveyor shows this.

Ridges

Ridges on Mars may be due to different causes. Long straight ridges are thought to be dikes. Curved and branched ridges may be examples of inverted topography, and groups of straight ridges that cross each other may be the result of impacts. These intersecting box-like ridges are called linear ridge networks. Linear ridge networks are found in various places on Mars in and around craters. [17] Ridges often appear as mostly straight segments that intersect in a lattice-like manner. They are hundreds of meters long, tens of meters high, and several meters wide. It is thought that impacts created fractures in the surface, these fractures later acted as channels for fluids. Fluids cemented the structures. With the passage of time, surrounding material was eroded away, thereby leaving hard ridges behind.

Yardangs

Yardangs are common in some regions on Mars, especially in what is called the "Medusae Fossae Formation." [18] They are formed by the action of wind on sand sized particles; hence they often point in the direction that the winds were blowing when they were formed.

Dark slope streaks

Many places on Mars show dark slope streaks on steep slopes like crater walls. It seems that the youngest streaks are dark; they become lighter with age. [19] Often they begin as a small narrow spot then widen and extend downhill for hundreds of meters. Several ideas have been advanced to explain the streaks. Some involve water. [20] or even the growth of organisms. [21] [22] The streaks appear in areas covered with dust. Much of the Martian surface is covered with dust. Fine dust settles out of the atmosphere covering everything. We know a lot about this dust because the solar panels of Mars Rovers get covered with dust. The power of the Rovers has been saved many times by the wind, in the form of dust devils, that have cleared the panels and boosted the power. From these observations with the Rovers, we know that the process of dust coming out of the atmosphere then returning happens over and over. [23]

It is most generally accepted that the streaks represent avalanches of dust. [24] The streaks appear in areas covered with dust. When a thin layer of dust is removed, the underlying surface is dark. Much of the Martian surface is covered with dust. Dust storms are frequent, especially when the spring season begins in the southern hemisphere. At that time, Mars is 40% closer to the Sun. The orbit of Mars is much more elliptical then the Earth's. That is the difference between the farthest point from the Sun and the closest point to the Sun is very great for Mars, but only slight for the Earth. Also, every few years, the entire planet is engulfed in a global dust storm. When NASA's Mariner 9 craft arrived there, nothing could be seen through the dust storm. [16] [25] Other global dust storms have also been observed, since that time. Dark streaks can be seen in the image below taken with HiRISE of the central mound in Nicholson Crater. At least one streak in the image splits into two when encountering an obstacle.

Research, published in January 2012 in Icarus, found that dark streaks were initiated by airblasts from meteorites traveling at supersonic speeds. The team of scientists was led by Kaylan Burleigh, an undergraduate at the University of Arizona. After counting some 65,000 dark streaks around the impact site of a group of five new craters, patterns emerged. The number of streaks was greatest closer to the impact site. So, the impact somehow probably caused the streaks. Also, the distribution of the streaks formed a pattern with two wings extending from the impact site. The curved wings resembled scimitars, curved knives. This pattern suggests that an interaction of airblasts from the group of meteorites shook dust loose enough to start dust avalanches that formed the many dark streaks. At first it was thought that the shaking of the ground from the impact caused the dust avalanches, but if that was the case the dark streaks would have been arranged symmetrically around the impacts, rather than being concentrated into curved shapes. [26] [27]

Fossa on Mars

Large troughs (long narrow depressions) are called fossae in the geographical language used for Mars. This term is derived from Latin; therefore fossa is singular and fossae is plural. [28] Troughs form when the crust is stretched until it breaks. The stretching can be due to the large weight of a nearby volcano. A trough often has two breaks with a middle section moving down, leaving steep cliffs along the sides; such a trough is called a graben. [29] Lake George, in northern New York State, is a lake that sits in a graben.

Other ideas have been suggested for the formation of fossae. There is evidence that they are associated with dikes of magma. Magma might move along, under the surface, breaking the rock and more importantly melting ice. The resulting action would cause a crack to form at the surface. Dikes caused both by tectonic stretching (extension) and by dikes are found in Iceland. [30] An example of a graben caused by a dike is shown below in the image Memnonia Fossae, as seen by HiRISE.

It appears that the water started coming out of the surface to form Mangala Vallis when a graben was formed. [4] [31]

Valles

There is enormous evidence that water once flowed in river valleys on Mars. Images of curved channels have been seen in images from Mars spacecraft dating back to the early 1970s with the Mariner 9 orbiter. [32] [33] [34] [35] Vallis (plural valles) is the Latin word for valley . It is used in planetary geology for the naming of landform features on other planets, including what could be old river valleys that were discovered on Mars, when probes were first sent to Mars. The Viking Orbiters caused a revolution in our ideas about water on Mars; huge river valleys were found in many areas. Space craft cameras showed that floods of water broke through dams, carved deep valleys, eroded grooves into bedrock, and traveled thousands of kilometers. [16] [36] [37] Some valles on Mars (Mangala Vallis, Athabasca Vallis, Granicus Vallis, and Tinjar Valles) clearly begin at graben. On the other hand, some of the large outflow channels begin in rubble-filled low areas called chaos or chaotic terrain. It has been suggested that massive amounts of water were trapped under pressure beneath a thick cryosphere (layer of frozen ground), then the water was suddenly released, perhaps when the cryosphere was broken by a fault. [38] [39]

Lava flows

Lava is common on Mars, as it is on many other planetary bodies.

Fifty Years of Mars Imaging: from Mariner 4 to HiRISE

On October 3, 2017, HiRISE acquired a picture of Mars in the Memnonia quadrangle of a spot that has been imaged by seven different cameras on different spacecraft over the past 50 years. [40] The pictures from the Red Planet started with one of the pictures from Mariner 4 in the summer of 1965. The following pictures show these pictures with their increasing resolution over the years. The resolution in the first image by Mariner 4 was 1.25 km/pixel; that compares to the approximate 50 cm/pixel resolution of HiRISE.

More features

Other Mars quadrangles

Interactive icon.svg Clickable image of the 30 cartographic quadrangles of Mars, defined by the USGS. [41] [44] Quadrangle numbers (beginning with MC for "Mars Chart") [45] and names link to the corresponding articles. North is at the top; 0°N180°W / 0°N 180°W / 0; -180 is at the far left on the equator. The map images were taken by the Mars Global Surveyor.
()

Interactive Mars map

Interactive image map of the global topography of Mars. Hover your mouse over the image to see the names of over 60 prominent geographic features, and click to link to them. Coloring of the base map indicates relative elevations, based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. Whites and browns indicate the highest elevations (+12 to +8 km); followed by pinks and reds (+8 to +3 km); yellow is 0 km; greens and blues are lower elevations (down to -8 km). Axes are latitude and longitude; Polar regions are noted.
(See also: Mars Rovers map and Mars Memorial map) (view * discuss) Mars Map.JPGCydonia MensaeGale craterHolden craterJezero craterLomonosov craterLyot craterMalea PlanumMaraldi craterMareotis TempeMie craterMilankovič craterSisyphi Planum
Interactive icon.svg Interactive image map of the global topography of Mars. Hover your mouse over the image to see the names of over 60 prominent geographic features, and click to link to them. Coloring of the base map indicates relative elevations, based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor . Whites and browns indicate the highest elevations (+12 to +8 km); followed by pinks and reds (+8 to +3 km); yellow is 0 km; greens and blues are lower elevations (down to −8 km). Axes are latitude and longitude; Polar regions are noted.

See also

Related Research Articles

Vallis or valles is the Latin word for valley. It is used in planetary geology to name landform features on other planets.

In planetary nomenclature, a fossa is a long, narrow depression (trough) on the surface of an extraterrestrial body, such as a planet or moon. The term, which means "ditch" or "trench" in Latin, is not a geological term as such but a descriptor term used by the United States Geological Survey (USGS) and the International Astronomical Union (IAU) for topographic features whose geology or geomorphology is uncertain due to lack of data or knowledge of the exact processes that formed them. Fossae are believed to be the result of a number of geological processes, such as faulting or subsidence. Many fossae on Mars are probably graben.

<span class="mw-page-title-main">Mangala Valles</span> Geographical feature on Mars

The Mangala Valles are a complex system of criss-crossing channels on Mars, located in the Tharsis region and in the Memnonia quadrangle. They originated in the Hesperian and Amazonian epochs. They are thought to be an outflow channel system, carved by catastrophic floods, and the release of vast quantities of water across the Martian surface. This flooding was probably initiated by tectonic stretching and the formation of a graben, Mangala Fossa, at the channels' head, perhaps breaching a pressurized aquifer trapped beneath a thick "cryosphere" beneath the surface. The Mangala Valles contain several basins; after they filled, the overflow went through a series of spillways. One source of waters for the system was the Memonia Fossae, but water also probably came from a large basin centered at 40 degrees S.

<span class="mw-page-title-main">Amazonis Planitia</span> Planitia on Mars

Amazonis Planitia is one of the smoothest plains on Mars. It is located between the Tharsis and Elysium volcanic provinces, to the west of Olympus Mons, in the Amazonis and Memnonia quadrangles, centered at 24.8°N 196.0°E. The plain's topography exhibits extremely smooth features at several different lengths of scale. A large part of the Medusae Fossae Formation lies in Amazonis Planitia.

<span class="mw-page-title-main">Medusae Fossae Formation</span> Large geological unit of uncertain origin on Mars

The Medusae Fossae Formation is a large geological formation of probable volcanic origin on the planet Mars. It is named for the Medusa of Greek mythology. "Fossae" is Latin for "trenches". The formation is a collection of soft, easily eroded deposits that extends discontinuously for more than 5,000 km along the equator of Mars. Its roughly-shaped regions extend from just south of Olympus Mons to Apollinaris Patera, with a smaller additional region closer to Gale Crater.

<span class="mw-page-title-main">Diacria quadrangle</span> Map of Mars

The Diacria quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is located in the northwestern portion of Mars' western hemisphere and covers 180° to 240° east longitude and 30° to 65° north latitude. The quadrangle uses a Lambert conformal conic projection at a nominal scale of 1:5,000,000 (1:5M). The Diacria quadrangle is also referred to as MC-2. The Diacria quadrangle covers parts of Arcadia Planitia and Amazonis Planitia.

<span class="mw-page-title-main">Arcadia quadrangle</span> Map of Mars

The Arcadia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is located in the north-central portion of Mars’ western hemisphere and covers 240° to 300° east longitude and 30° to 65° north latitude. The quadrangle uses a Lambert conformal conic projection at a nominal scale of 1:5,000,000 (1:5M). The Arcadia quadrangle is also referred to as MC-3. The name comes from a mountainous region in southern Greece. It was adopted by IAU, in 1958.

<span class="mw-page-title-main">Arabia quadrangle</span> Map of Mars

The Arabia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Arabia quadrangle is also referred to as MC-12.

<span class="mw-page-title-main">Syrtis Major quadrangle</span> One of a series of 30 quadrangle maps of Mars

The Syrtis Major quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Syrtis Major quadrangle is also referred to as MC-13.

<span class="mw-page-title-main">Amenthes quadrangle</span> Map of Mars

The Amenthes quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Amenthes quadrangle is also referred to as MC-14. The quadrangle covers the area from 225° to 270° west longitude and from 0° to 30° north latitude on Mars. Amenthes quadrangle contains parts of Utopia Planitia, Isidis Planitia, Terra Cimmeria, and Tyrrhena Terra.

<span class="mw-page-title-main">Elysium quadrangle</span> One of 30 quadrangle maps of Mars used by the US Geological Survey

The Elysium quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Elysium quadrangle is also referred to as MC-15.

<span class="mw-page-title-main">Amazonis quadrangle</span> Map of Mars

The Amazonis quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Amazonis quadrangle is also referred to as MC-8.

<span class="mw-page-title-main">Lunae Palus quadrangle</span> Quadrangle map of Mars

The Lunae Palus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is also referred to as MC-10. Lunae Planum and parts of Xanthe Terra and Chryse Planitia are found in the Lunae Palus quadrangle. The Lunae Palus quadrangle contains many ancient river valleys.

<span class="mw-page-title-main">Oxia Palus quadrangle</span> Map of Mars

The Oxia Palus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Oxia Palus quadrangle is also referred to as MC-11.

<span class="mw-page-title-main">Iapygia quadrangle</span> Map of Mars

The Iapygia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Iapygia quadrangle is also referred to as MC-21. It was named after the heel of the boot of Italy. That name was given by the Greeks It is part of a region of Italy named Apulia. The name Iapygia was approved in 1958.

<span class="mw-page-title-main">Phoenicis Lacus quadrangle</span> Map of Mars

The Phoenicis Lacus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Phoenicis Lacus quadrangle is also referred to as MC-17. Parts of Daedalia Planum, Sinai Planum, and Solis Planum are found in this quadrangle. Phoenicis Lacus is named after the phoenix which according to myth burns itself up every 500 years and then is reborn.

<span class="mw-page-title-main">Elysium Fossae</span> Martian geographical feature

The Elysium Fossae are a group of large troughs in the Elysium quadrangle of Mars at 24.8° north latitude and 213.7° west longitude. They are about 1,175 km long and are named after a classical albedo feature name.

HiWish is a program created by NASA so that anyone can suggest a place for the HiRISE camera on the Mars Reconnaissance Orbiter to photograph. It was started in January 2010. In the first few months of the program 3000 people signed up to use HiRISE. The first images were released in April 2010. Over 12,000 suggestions were made by the public; suggestions were made for targets in each of the 30 quadrangles of Mars. Selected images released were used for three talks at the 16th Annual International Mars Society Convention. Below are some of the over 4,224 images that have been released from the HiWish program as of March 2016.

The common surface features of Mars include dark slope streaks, dust devil tracks, sand dunes, Medusae Fossae Formation, fretted terrain, layers, gullies, glaciers, scalloped topography, chaos terrain, possible ancient rivers, pedestal craters, brain terrain, and ring mold craters.

<span class="mw-page-title-main">Yardangs on Mars</span> Aeolian formation

Yardangs are common in some regions on Mars, especially in the Medusae Fossae Formation. This formation is found in the Amazonis quadrangle and near the equator. They are formed by the action of wind on sand sized particles; hence they often point in the prevailing direction that the winds were blowing when they were formed. Yardangs exhibit very few impact craters, indicating that the surface exposed is relatively young and the process of erosion may be active. The easily eroded nature of the Medusae Fossae Formation suggests that it is composed of weakly cemented particles, and was most likely formed by the deposition of wind-blown dust or volcanic ash. Yardangs are parts of rock that have been sand blasted into long, skinny ridges by bouncing sand particles blowing in the wind. Layers are seen in parts of the formation. A resistant caprock on the top of yardangs has been observed in Viking, Mars Global Surveyor, and HiRISE photos. Images from spacecraft show that they have different degrees of hardness probably because of significant variations in the physical properties, composition, particle size, and/or cementation.

References

  1. Davies, M.E.; Batson, R.M.; Wu, S.S.C. "Geodesy and Cartography" in Kieffer, H.H.; Jakosky, B.M.; Snyder, C.W.; Matthews, M.S., Eds. Mars. University of Arizona Press: Tucson, 1992.
  2. USGS Astrogeology: Planetary Map Listing
  3. "HiRISE | Sedimentary Layers in Columbus Crater (PSP_010281_1510)". Hirise.lpl.arizona.edu. Retrieved 2012-08-04.
  4. 1 2 "Mars Channels and Valleys". Msss.com. Retrieved 2012-08-04.
  5. Cabrol, N. and E. Grin (eds.). 2010. Lakes on Mars. Elsevier.NY.
  6. Wray, J. et al. 2009. Columbus Crater and other possible plaelakes in Terra Sirenum, Mars. Lunar and Planetary Science Conference. 40: 1896.
  7. "Martian "Lake Michigan" Filled Crater, Minerals Hint". News.nationalgeographic.com. 2010-10-28. Archived from the original on December 5, 2009. Retrieved 2012-08-04.
  8. "Target Zone: Nilosyrtis? | Mars Odyssey Mission THEMIS". Themis.asu.edu. Retrieved 2012-08-04.
  9. "HiRISE | Craters and Valleys in the Elysium Fossae (PSP_004046_2080)". Hirise.lpl.arizona.edu. Retrieved 2012-08-04.
  10. "HiRISE | High Resolution Imaging Science Experiment". Hirise.lpl.arizona.edu?psp_008437_1750. Retrieved 2012-08-04.
  11. Cabrol, N. and E. Grin (eds.). 2010. Lakes on Mars. Elsevier. NY.
  12. Emrick, C. and R. De Hon. 1999. Flood discharge through Labou Vallis, Mars. Lunar Planet. Sci. Conf. XXX: Abstract #1893.
  13. Zimbelman, J. et al. 1992. Volatile history of Mangala Valles, Mars. J. Geophys. Res. 97: 18309-18317
  14. De Hon, R. 1994. Lacustrine sedimentation in lower Mangals Valles. Mars Lunar Planet. Sci. Conf. XXVII: 295-296
  15. "Stones, Wind, and Ice: A Guide to Martian Impact Craters". Lpi.usra.edu. Retrieved 2012-08-04.
  16. 1 2 3 Hugh H. Kieffer (1992). Mars. University of Arizona Press. ISBN   978-0-8165-1257-7 . Retrieved 7 March 2011.
  17. Head, J., J. Mustard. 2006. Breccia dikes and crater-related faults in impact craters on Mars: Erosion and exposure on the floor of a crater 75 km in diameter at the dichotomy boundary, Meteorit. Planet Science: 41, 1675-1690.
  18. SAO/NASA ADS Astronomy Abstract Service: Yardangs on Mars
  19. Schorghofer, N, et al. 2007. Three decades of slope streak activity on Mars. Icarus. 191:132-140.
  20. http://www.space.com/scienceastronomy/streaks_mars_021200.html [ dead link ]
  21. www.spcae.com https://web.archive.org/web/20150221231430/http://www.spcae.com/scienceastronomy/streaks_mars_021211.html. Archived from the original on February 21, 2015.{{cite web}}: Missing or empty |title= (help)
  22. http://www.space.com/scienceastronomy/streaks_mars_streaks_030328.html [ dead link ]
  23. "Mars Spirit Rover Gets Energy Boost From Cleaner Solar Panels". Sciencedaily.com. 2009-02-19. Retrieved 2012-08-04.
  24. Ferris, J. C.; Dohm, J.M.; Baker, V.R.; Maddock III, T. (2002). Dark Slope Streaks on Mars: Are Aqueous Processes Involved? Geophys. Res. Lett.,29(10), 1490, doi : 10.1029/2002GL014936
  25. Moore, Patrick (2 June 1990). Atlas of the Solar System. Crescent Books. ISBN   0-517-00192-6.
  26. Kaylan J. Burleigh, Henry J. Melosh, Livio L. Tornabene, Boris Ivanov, Alfred S. McEwen, Ingrid J. Daubar. Impact air blast triggers dust avalanches on Mars. Icarus, 2012; 217 (1): 194 doi : 10.1016/j.icarus.2011.10.026
  27. "Red Planet Report | What's up with Mars". Redplanet.asu.edu. Retrieved 2012-08-04.
  28. "Mars Art Gallery Martian Feature Name Nomenclature". Marsartgallery.com. Retrieved 2012-08-04.
  29. "HiRISE | Craters and Pit Crater Chains in Chryse Planitia (PSP_008641_2105)". Hirise.lpl.arizona.edu. Retrieved 2012-08-04.
  30. "HiRISE | Graben in Memnonia Fossae (PSP_005376_1575)". Hirise.lpl.arizona.edu. Retrieved 2012-08-04.
  31. Michael H. Carr (2006). The surface of Mars. Cambridge University Press. ISBN   978-0-521-87201-0 . Retrieved 21 March 2011.
  32. Baker, V. 1982. The Channels of Mars. Univ. of Tex. Press, Austin, TX
  33. Baker, V., R. Strom, R., V. Gulick, J. Kargel, G. Komatsu, V. Kale. 1991. Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352, 589–594.
  34. Carr, M. 1979. Formation of Martian flood features by release of water from confined aquifers. J. Geophys. Res. 84, 2995–300.
  35. Komar, P. 1979. Comparisons of the hydraulics of water flows in Martian outflow channels with flows of similar scale on Earth. Icarus 37, 156–181.
  36. Raeburn, P. 1998. Uncovering the Secrets of the Red Planet Mars. National Geographic Society. Washington D.C.
  37. Moore, P. et al. 1990. The Atlas of the Solar System. Mitchell Beazley Publishers NY, NY.
  38. Carr, M. 1979. Formation of martian flood features by release of water from confined aquifers. J. Geophys. Res. 84: 2995-3007.
  39. Hanna, J. and R. Phillips. 2005. Tectonic pressurization of aquifers in the formation of Mangala and Athabasca Valles on Mars. LPSC XXXVI. Abstract 2261.
  40. "HiRISE | Fifty Years of Mars Imaging: From Mariner 4 to HiRISE (ESP_052438_1560)".
  41. Morton, Oliver (2002). Mapping Mars: Science, Imagination, and the Birth of a World. New York: Picador USA. p. 98. ISBN   0-312-24551-3.
  42. "Online Atlas of Mars". Ralphaeschliman.com. Retrieved December 16, 2012.
  43. "PIA03467: The MGS MOC Wide Angle Map of Mars". Photojournal. NASA /Jet Propulsion Laboratory. February 16, 2002. Retrieved December 16, 2012.
  44. "Online Atlas of Mars". Ralphaeschliman.com. Retrieved December 16, 2012.
  45. "PIA03467: The MGS MOC Wide Angle Map of Mars". Photojournal. NASA /Jet Propulsion Laboratory. February 16, 2002. Retrieved December 16, 2012.