List of sequenced plastomes

Last updated
The 156 kb plastome gene map of Nicotiana tabacum. CtDNA.svg
The 156 kb plastome gene map of Nicotiana tabacum .
The 154 kb plastid genome map of a model flowering plant (Arabidopsis thaliana: Brassicaceae). Plastomap of Arabidopsis thaliana.svg
The 154 kb plastid genome map of a model flowering plant ( Arabidopsis thaliana : Brassicaceae).
The highly reduced, 27 kb plastome map of the parasitic Hydnora visseri. Plastome map of Hydnora visseri.svg
The highly reduced, 27 kb plastome map of the parasitic Hydnora visseri .

A plastome is the genome of a plastid, a type of organelle found in plants and in a variety of protoctists. The number of known plastid genome sequences grew rapidly in the first decade of the twenty-first century. For example, 25 chloroplast genomes were sequenced for one molecular phylogenetic study. [1]

Contents

The flowering plants are especially well represented in complete chloroplast genomes. As of January, 2017, all of their orders are represented except Commelinales, Picramniales, Huerteales, Escalloniales, Bruniales, and Paracryphiales.

A compilation of most complete plastid genomes is maintained by the NCBI in a public repository. [2]

Plants

Bryophytes s.l.

Sequenced Plastomes
Species VarietySize (bp) Genes ReferenceNotes
Aneura mirabilis 108,007 [3] [4] parasitic liverwort; plastome contains many pseudogenes
Anthoceros formosae 161,162122 [5] hornwort; extensive RNA editing of plastome
Marchantia polymorpha 121,024 [6] liverwort
Nothoceros aenigmaticus 153,208124 [7] hornwort
Pellia endiviifolia 120,546123 [8] liverwort
Physcomitrella patens 122,890118 [9] moss
Ptilidium pulcherrimum 119,007122 [10] liverwort
Tortula ruralis 122,630 [11] moss

Ferns and Lycophytes

Sequenced Plastomes
Species VarietySize (bp) Genes ReferenceFamilyNotes
Adiantum capillus-veneris 150,568 [12] Pteridaceae
Alsophila spinulosa 156,661117 [13] Cyatheaceae
Angiopteris evecta 153,901 [14] Marattiaceae
Equisetum arvense 133,309 Equisetaceae
Huperzia lucidula 154,373 [15] Lycopodiaceae
Isoetes flaccida 145,303 Isoetaceae
Psilotum nudum 138,829117 [16] Psilotaceae
Selaginella uncinata 138,829 [17] Selaginellaceae
Sequenced fern and lycophyte plastomes without information about size, number of genes and / or references.
Species VarietySize (bp) Genes ReferenceFamilyNotes
Equisetum hyemale Equisetaceae
Lygodium japonicum Lygodiaceae
Marsilea crenata Marsileaceae
Ophioglossum californicum Ophioglossaceae
Selaginella moellendorffii Selaginellaceae

Gymnosperms

Sequenced Plastomes
Species VarietySize (bp) Genes ReferenceFamilyNotes
Cryptomeria japonica 131,810114 [18] Cupressaceae
Cycas micronesica [19] Cycadaceae
Cycas taitungensis 163,403133 [20] Cycadaceae
Ephedra equisetina Ephedraceae
Ginkgo biloba 156,945134 [21] Ginkgoaceae
Gnetum parvifolium Gnetaceae
Picea engelmannii Se404-851123,542114 [22] Pinaceae
Picea glauca PG29123,266114 [23] Pinaceae
Picea glauca WS77111123,421114 [24] Pinaceae
Picea sitchensis Q903124,049114 [25] Pinaceae
Pinus koraiensis 116,866 Pinaceae
Pinus thunbergii 119,707 [26] Pinaceae
Podocarpus macrophyllus Podocarpaceae
Welwitschia mirabilis 119,726101 [27] Welwitschiaceae

Flowering plants

This sortable table is expected to compile complete plastid genomes representing the largest range of sizes, number of genes, and angiosperm families.

Sequenced plastomes with complete genome size, number of unique genes, reference and publication year.
Species Size (bp) Genes ReferenceYearFamilyNotes
Acorus americanus 153,819 [19] 2007 Acoraceae
Agrostis stolonifera 135,584110 [28] 2010 Poaceae
Alniphyllum eberhardtii 155,384113 [29] 2017 Styracaceae
Alstroemeria aurea155,510112 [30] 2013 Alstroemeriaceae
Amborella trichopoda 162,686 [31] 2003 Amborellaceae
Anethum graveolens 153,356 [19] 2007 Apiaceae
Arabidopsis thaliana 154,478 [32] 1999 Brassicaceae
Atropa belladonna 156,687 [33] 2002 Solanaceae
Brachypodium distachyon 135,199110 [28] 2010 Poaceae
Buxus microphylla 159,010113 [34] 2007 Buxaceae
Calycanthus floridus var. glaucus153,337115 [35] 2003 Calycanthaceae
Carpinus tientaiensis160,104114 [36] 2017 Betulaceae
Chloranthus spicatus 157,772113 [34] 2007 Chloranthaceae
Citrus sinensis var. 'Ridge Pineapple'155,189 [37] 2006 Rutaceae
Cocos nucifera 154,731130 [38] 2013 Arecaceae
Coffea arabica 155,189 [39] 2007 Rubiaceae
Coix lacryma-jobi 140,745 [40] 2009 Poaceae
Conopholis americana 45,67342 [41] 2013 Orobanchaceae Non-photosynthetic parasite
Cucumis sativus 155,293 [42] 2007 Cucurbitaceae
Cuscuta exaltata125,373 [43] 2007 Convolvulaceae
Cuscuta gronovii86,74486 [44] 2007 Convolvulaceae
Cuscuta reflexa 121,52198 [44] 2007 Convolvulaceae
Cypripedium formosanum 178,131 [45] 2015 Orchidaceae
Cytinus hypocistis 19,40023 [46] 2016 Cytinaceae Holoparasitic
Daucus carota 155,911 [47] 2006 Apiaceae
Dioscorea elephantipes 152,609112 [34] 2007 Dioscoreaceae
Drimys granadensis 160,604113 [48] 2006 Winteraceae
Epifagus virginiana 70,02842 [49] 1992 Orobanchaceae
Epipogium aphyllum 30,65027 [50] 2015 Orchidaceae Mycoheterotrophic
Epipogium roseum19,04729 [50] 2015 Orchidaceae Mycoheterotrophic
Erodium carvifolium116,935107 [51] 2016 Geraniaceae
Erodium chrysanthum168,94696 [51] 2016 Geraniaceae
Erodium texanum 130,812106 [52] 2011 Geraniaceae
Eucalyptus globulus subsp. globulus160,286 [53] 2005 Myrtaceae
Fagopyrum esculentum ssp. ancestrale159,599 [54] 2008 Polygonaceae
Geranium palmatum155,794105 [52] 2011 Geraniaceae
Glycine max 152,218 [55] 2005 Fabaceae
Gossypium barbadense 160,317114 [56] 2006 Malvaceae
Gossypium hirsutum 160,301 [57] 2006 Malvaceae
Helianthus annuus 151,104 [58] 2007 Asteraceae
Hordeum vulgare subsp. vulgare136,482110 [28] 2010 Poaceae
Hydnora visseri 27,23324 [59] 2016 Aristolochiaceae Non-photosynthetic holoparasite
Illicium oligandrum148,552113 [34] 2007 Schisandraceae (sensu APG III)
Ipomoea purpurea 162,046 [43] 2007 Convolvulaceae
Jasminum nudiflorum 165,121 [60] 2007 Oleaceae
Juglans regia 160,367129 [61] 2017 Juglandaceae
Lactuca sativa 152,765 [58] 2007 Asteraceae
Lemna minor 165,955 [62] 2008 Araliaceae
Licania alba162,467112 [63] 2014 Chrysobalanaceae
Lilium longiflorum 152,793114 [30] 2013 Liliaceae
Liriodendron tulipifera 159,866 [48] [64] 2006 Magnoliaceae
Lolium perenne 135,282110 [28] 2010 Poaceae
Lonicera japonica 155,078 [1] 2010 Caprifoliaceae
Lotus japonicus 150,519 [65] 2000 Fabaceae
Manihot esculenta 161,453 [66] 2008 Euphorbiaceae
Monotropa hypopitys 35,33645 [67] 2016 Ericaceae Mycoheterotrophic
Monsonia speciosa 128,787106 [52] 2011 Geraniaceae
Morus indica156,599 [68] 2006 Moraceae
Musa balbisiana 169,503113 [69] 2016 Musaceae
Nandina domestica 156,599 [70] 2006 Berberidaceae
Neottia nidus-avis 92,06056 [71] 2011 Orchidaceae Mycoheterotrophic
Nelumbo nucifera 163,330 [1] 2010 Nelumbonaceae
Nicotiana tabacum 155,943113 [72] 1986 Solanaceae
Nuphar advena 160,866117 [73] 2007 Nymphaeaceae
Nymphaea alba 159,930 [74] 2004 Nymphaeaceae
Oenothera argillicola strain Douthat 1165,055113 [75] 2008 Onagraceae
Oenothera biennis strain suaveolens Grado164,807113 [75] 2008 Onagraceae
Oenothera elata subsp. hookeri strain johansen Standard165,728113 [75] 2008 Onagraceae
Oenothera glazioviana strain r/r-lamarckiana Sweden165,225113 [75] 2008 Onagraceae
Oenothera parviflora strain atrovirens Standard163,365113 [75] 2008 Onagraceae
Oryza sativa indica 93-11134,496 [76] 2005 Poaceae
Oryza sativa japonica Nipponbare134,551110 [77] [28] 1989 Poaceae
Oryza sativa japonica PA64S134,551 [76] 2005 Poaceae
Osyris alba 147,253101 [78] 2015 Santalaceae Hemiparasitic
Panax ginseng 156,318 [79] 2004 Araliaceae
Pelargonium × hortorum 217,942 [80] 2006 Geraniaceae
Petrosavia stellaris103,83558 [81] 2014 Petrosaviaceae Mycoheterotrophic
Phalaenopsis aphrodite subsp. formosana148,964 [82] 2006 Orchidaceae
Phaseolus vulgaris 'Negro Jamapa'150,285 [83] 2007 Fabaceae
Pilostyles aethiopica11,3485 [84] 2016 Apodanthaceae Endo-holoparasite
Pilostyles hamiltonii15,1675 [84] 2016 Apodanthaceae Endo-holoparasite
Piper cenocladum 160,624113 [48] 2006 Piperaceae
Platanus occidentalis 161,791 [70] 2006 Platanaceae
Populus alba 156,505 [85] 2006 Salicaceae
Ranunculus macranthus155,158117 [73] 2007 Ranunculaceae
Rhizanthella gardneri 59,19033 [86] 2011 Orchidaceae Subterranean mycoheterotroph
Saccharum officinarum 141,182110 [28] 2010 Poaceae
Sciaphila densiflora21,48528 [87] 2015 Triuridaceae Mycoheterotrophic
Solanum tuberosum 155,298 [88] 2006 Solanaceae
Sorghum bicolor 140,754110 [28] 2010 Poaceae
Spinacia oleracea 150,725 [89] 2001 Amaranthaceae
Trachelium caeruleum 162,321 [90] 2008 Campanulaceae
Trifolium subterraneum 144,763111 [91] 2008 Fabaceae
Triticum aestivum cv. Chinese Spring134,545110 [92] [93] [28] 2000 Poaceae
Typha latifolia 165,572113 [28] 2010 Typhaceae
Vaccinium macrocarpon 176,045147 [94] 2013 Ericaceae
Viscum album 128,92196 [78] 2015 Viscaceae Hemiparasitic
Viscum minimum131,01699 [78] 2015 Viscaceae Hemiparasitic
Vitis vinifera 160,928 [95] 2006 Vitaceae
Yucca schidigera 156,158 [21] 2005 Asparagaceae (sensu APG III)
Zea mays 140,384110 [96] [28] 2010 Poaceae
Sequenced plastomes without information about size, number of genes and / or references.
Species Size (bp) Genes ReferenceYearFamilyNotes
Acorus calamus 153,821 Acoraceae
Aethionema cordifolium Brassicaceae
Aethionema grandiflorum Brassicaceae
Antirrhinum majus [1] 2010 Plantaginaceae
Arabis hirsuta Brassicaceae
Aucuba japonica [1] 2010 Garryaceae
Bambusa oldhamii 139,350 Poaceae
Barbarea verna Brassicaceae
Berberidopsis corallina [1] 2010 Berberidopsidaceae
Brassica rapa Brassicaceae
Bulnesia arborea [1] 2010 Zygophyllaceae
Capsella bursa-pastoris Brassicaceae
Carica papaya Caricaceae
Ceratophyllum demersum [97] 2007 Ceratophyllaceae
Cornus florida [1] 2010 Cornaceae
Crucihimalya wallichii Brassicaceae
Cuscuta obtusiflora Convolvulaceae
Cuscuta reflexa Convolvulaceae
Dendrocalamus latiflorus 139,365 Poaceae
Dillenia indica [1] 2010 Dilleniaceae
Draba nemorosa Brassicaceae
Ehretia acuminata [1] 2010 Boraginaceae
Elaeis oleifera [19] 2007 Arecaceae
Euonymus americanus [1] 2010 Celastraceae
Festuca arundinacea Poaceae
Ficus sp. [1] 2010 Moraceae
Guizotia abyssinica Asteraceae
Gunnera manicata [1] 2010 Gunneraceae
Hedyosmum unpublished Chloranthaceae
Heuchera sanguinea [1] 2010 Saxifragaceae
Ilex cornuta [1] 2010 Aquifoliaceae
Lepidium virginicum Brassicaceae
Liquidambar styraciflua (syn. Altingia styraciflua) [1] 2010 Altingiaceae
Lobularia maritima Brassicaceae
Lotus corniculatus Fabaceae
Medicago truncatulata 124,033 Fabaceae
Megaleranthis saniculifolia 159,924 Ranunculaceae
Meliosma cuneifolia [1] 2010 Sabiaceae
Nasturtium officinale Brassicaceae
Olimarabidopsis pumila Brassicaceae
Phoenix dactylifera Arecaceae
Nerium oleander 154,903 Apocynaceae
Nicotiana sylvestris 155,941 Solanaceae
Nicotiana tomentosiformis 155,745 Solanaceae
Oryza nivara 134,494 Poaceae
Oxalis latifolia [1] 2010 Oxalidaceae
Passiflora biflora [19] 2007 Passifloraceae
Phoradendron leucarpum [1] 2010 Viscaceae
Plumbago auriculata [1] 2010 Plumbaginaceae
Populus trichocarpa [98] 2006 Salicaceae
Quercus nigra [1] 2010 Fagaceae
Rhododendron simsii [1] 2010 Ericaceae
Scaevola aemula [19] 2007 Goodeniaceae
Solanum bulbocastanum 155,371 Solanaceae
Solanum lycopersicum 155,460 Solanaceae
Staphylea colchica [1] 2010 Staphyleaceae
Trithuria (syn. Hydatella )unpublished Hydatellaceae
Trochodendron aralioides [1] 2010 Trochodendraceae
Ximenia americana 2010 Ximeniaceae [99]

Green algae

Sequenced Plastomes
Species VarietySize (bp) Genes Reference
Bryopsis plumosa 106,859115 [100]
Chaetosphaeridium globosum 131,183124 [101]
Chara vulgaris
Chlamydomonas reinhardtii 203,39599
Chlorella vulgaris 150,613209 [102]
Chlorokybus atmophyticus 201,76370 [103]
Dunaliella salina CCAP 19/18269,044102 [104]
Emiliania huxleyi 105,309150
Helicosporidium 37,45454 [105]
Leptosira terrestris 195,081117 [106]
Mesostigma viride 42,424
Monomastix 114,52894 [107]
Nephroselmis olivacea 200,799127 [108]
Oedogonium cardiacum 196,547103 [109]
Oltmannsiellopsis viridis 151,933105 [110]
Ostreococcus tauri 71,66686 [111]
Pseudendoclonium akinetum 195,867105 [112]
Pycnococcus provasolii80,21198 [107]
Pyramimonas parkeae101,605110 [107]
Scenedesmus obliquus 161,45296 [113]
Staurastrum punctulatum [114]
Stigeoclonium helveticum 223,90297 [115]
Tydemania expeditionis 105,200125 [100]
Ulva sp.UNA0007182899,983102 [116]
Volvox carteri420,65091 [117]
Zygnema circumcarinatum

Red algae

Sequenced Plastomes
Species VarietySize (bp) Genes ReferenceYearTaxonNotes
Ahnfeltia plicata 190,451205 (coding) [118] 2016 Ahnfeltiales
Apophlaea sinclairii 182,437189 (coding) [118] 2016 Hildenbrandiales
Asparagopsis taxiformis 177,091203 (coding) [118] 2016
Bangiopsis subsimplex 204,784194 (coding) [118] 2016
Calliarthron tuberculosum178,981238 [119] 2013
Ceramium japonicum 171,634199 (coding) [118] 2016
Chondrus crispus 180,086240 [119] 2013 Gigartinales
Cyanidioschyzon merolae 10D149,987243 [120] 2003
Cyanidium caldarium RK1164,921230 [121] 2000
Erythrotrichia carnea 210,691191 (coding) [118] 2016
Galdieria sulphuraria 074W167,741233 [122] 2015
Gelidium elegans174,748234 [123] 2016
Gelidium sinicolaUC276620177,095232 [124] 2019May be synonymous with G. coulteri
Gelidium vagum179,853234 [123] 2016
Gracilaria changii183,855231 [125] 2018 Gracilariales
Gracilaria chorda182,459201 (coding) [118] 2016 Gracilariales
Gracilaria salicornia179,757235 [126] 2014 Gracilariales
Gracilaria tenuistipitata var. liui183,883238 [127] 2004 Gracilariales
Gracilaria vermiculophylla180,254239unpublished Gracilariales
Grateloupia filicina 195,990265unpublished
Grateloupia taiwanensis 191,270266 [128] 2013
Hildenbrandia rivularis 189,725184 (coding) [118] 2016
Hildenbrandia rubra 180,141190 (coding) [118] 2016
Kumanoa americana 184,025234 [129] 2018
Palmaria palmata 192,960245 [129] 2018
Plocamium cartilagineum 171,392197 (coding) [118] 2016
Porphyra pulchra194,175251 [123] 2016 Bangiales
Porphyra purpurea 191,028253 [130] 1993 Bangiales
Porphyra umbilicalis 190,173250 [131] 2017 Bangiales
Porphyridium purpureum NIES 2140217,694260 [132] 2014
Porphyridium sordidum 259,429227 [118] 2016
Pyropia fucicola 187,282 [133] 2015Partial genome
Pyropia haitanensis PH 38195,597254 [134] 2013
Pyropia kanakaensis 189,931 [133] 2015Partial genome
Pyropia perforata189,789247 [133] 2015
Pyropia yezoensis 191,952264 [134] 2013
Rhodochaete parvula 221,665195 (coding) [118] 2016
Rhodymenia pseudopalmata 194,153201 (coding) [118] 2016
Riquetophycus sp.180,384202 (coding) [118] 2016
Schimmelmannia schousboei 181,030202 (coding) [118] 2016
Schizymenia dubyi 183,959204 (coding) [118] 2016
Sebdenia flabellata 192,140205 (coding) [118] 2016
Sporolithon durum 191,464239 [123] 2016
Thorea hispida175,193228 [129] 2018
Vertebrata lanosa 167,158192 [135] 2015Also assigned to genus Polysiphonia

Glaucophytes

Sequenced Plastomes
Species VarietySize (bp) Genes Reference
Cyanophora paradoxa [136]

Meta-algae and apicomplexans

Meta-algae are organisms with photosynthetic organelles of secondary or tertiary endosymbiotic origin, and their close non-photosynthetic, plastid-bearing, relatives. Apicomplexans are a secondarily non-photosynthetic group of chromalveoates which retain a reduced plastid organelle.

Photosynthetic chromalveolates

Dinoflagellate plastid genomes are not organised into a single circular DNA molecule like other plastid genomes, but into an array of mini-circles.

Sequenced Plastomes
Species VarietySize (bp) Genes ReferenceNotes
Chromera velia
Chroomonas mesostigmaticaCCMP1168139,403189 [137]
Chroomonas placoideaCCAP978/8139,432186 [137] Contains 3 annotated pseudogenes
Cryptomonas curvataCNUKR128,285182 [137]
Cryptomonas parameciumCCAP977/2a77,717115 [138]
Emiliania huxleyi CCMP 373105,309154 [139]
Guillardia theta 121,524167 [140]
Heterosigma akashiwo NIES 293159,370198 [141]
Odontella sinensis 119,704175 [142]
Phaeodactylum tricornutum 117,369170 [143]
Rhodomonas salina CCMP1319135,854183 [144]
Storeatula sp.CCMP1868140,953187 [137]
Teleaulax amphioxeia HACCP-CR01129,772179 [145]
Thalassiosira pseudonana 128,814180 [143]

Chlorarachniophytes

Sequenced Plastomes
Species VarietySize (bp) Genes Reference
Bigelowiella natans 69,16698 [146]
Gymnochlora stellataCCMP205367,45197 [147]
Lotharella oceanicaCCMP62270,99794 [148]
Lotharella vacuolataCCMP24071,55795 [147]
Partenskyella glossopodiaRCC36572,62099 [147]

Euglenophytes

Sequenced Plastomes
Species VarietySize (bp) Genes Reference
Astasia longa 73.2kb84
Euglena gracilis 143.2kb128 [149]

Apicomplexans

Sequenced Plastomes
Species VarietySize (bp) Genes Reference
Chromera velia
Eimeria tenella Penn State34.8kb65 [150]
Plasmodium falciparum 34.7kb68
Theileria parva Mugaga39.6kb71
Toxoplasma gondii RH35.0kb65

Nucleomorph genomes

In some photosynthetic organisms that ability was acquired via symbiosis with a unicellular green alga (chlorophyte) or red alga (rhodophyte). In some such cases not only does the chloroplast of the former unicellular alga retain its own genome, but a remnant of the alga is also retained. When this retains a nucleus and a nuclear genome it is termed a nucleomorph.

Sequenced Nucleomorph Genomes
Species VarietySize (bp) Genes Reference
Amorphochlora amoebiformis 373,958340 [151]
Bigelowiella natans CCMP 621442,036426 (344 protein coding) [152] [153]
Chroomonas mesostigmatica CCMP1168702,852581 (505 protein coding) [154]
Cryptomonas paramecium 487,066519 (466 protein coding) [155]
Guillardia theta 672,788743 (632 protein coding) [156]
Hemiselmis andersenii 571,872525 (471 protein coding) [157]
Lotharella oceanica 612,592654 (608 protein coding) [158]
Lotharella vacuolata 431,876359 [151]

Cyanelle genomes

The unicellular eukaryote Paulinella chromatophora possesses an organelle (the cyanelle) which represents an independent case of the acquisition of photosynthesis by cyanobacterial endosymbiosis. (Note: the term cyanelle is also applied to the plastids of glaucophytes.)

Sequenced Cyanelle Genomes
Species VarietySize (bp) Genes Reference
Paulinella chromatophora 1.02Mb867 [159]

See also

Related Research Articles

<span class="mw-page-title-main">Chloroplast</span> Plant organelle that conducts photosynthesis

A chloroplast is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. Chloroplasts have a high concentration of chlorophyll pigments which capture the energy from sunlight and convert it to chemical energy and release oxygen. The chemical energy created is then used to make sugar and other organic molecules from carbon dioxide in a process called the Calvin cycle. Chloroplasts carry out a number of other functions, including fatty acid synthesis, amino acid synthesis, and the immune response in plants. The number of chloroplasts per cell varies from one, in some unicellular algae, up to 100 in plants like Arabidopsis and wheat.

<span class="mw-page-title-main">Symbiogenesis</span> Evolutionary theory holding that eukaryotic organelles evolved through symbiosis with prokaryotes

Symbiogenesis is the leading evolutionary theory of the origin of eukaryotic cells from prokaryotic organisms. The theory holds that mitochondria, plastids such as chloroplasts, and possibly other organelles of eukaryotic cells are descended from formerly free-living prokaryotes taken one inside the other in endosymbiosis. Mitochondria appear to be phylogenetically related to Rickettsiales bacteria, while chloroplasts are thought to be related to cyanobacteria.

<span class="mw-page-title-main">Cryptomonad</span> Group of algae and colorless flagellates

The cryptomonads are a group of algae, most of which have plastids. They are traditionally considered a division of algae among phycologists, under the name of Cryptophyta. They are common in freshwater, and also occur in marine and brackish habitats. Each cell is around 10–50 μm in size and flattened in shape, with an anterior groove or pocket. At the edge of the pocket there are typically two slightly unequal flagella. Some may exhibit mixotrophy. They are classified as clade Cryptomonada, which is divided into two classes: heterotrophic Goniomonadea and phototrophic Cryptophyceae. The two groups are united under three shared morphological characteristics: presence of a periplast, ejectisomes with secondary scroll, and mitochondrial cristae with flat tubules. Genetic studies as early as 1994 also supported the hypothesis that Goniomonas was sister to Cryptophyceae. A study in 2018 found strong evidence that the common ancestor of Cryptomonada was an autotrophic protist.

<span class="mw-page-title-main">Plastid</span> Plant cell organelles that perform photosynthesis and store starch

A plastid is a membrane-bound organelle found in the cells of plants, algae, and some other eukaryotic organisms. Plastids are considered to be intracellular endosymbiotic cyanobacteria.

<span class="mw-page-title-main">Horizontal gene transfer</span> Transfer of genes from unrelated organisms

Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the evolution of many organisms. HGT is influencing scientific understanding of higher-order evolution while more significantly shifting perspectives on bacterial evolution.

<span class="mw-page-title-main">Nucleomorph</span>

Nucleomorphs are small, vestigial eukaryotic nuclei found between the inner and outer pairs of membranes in certain plastids. They are thought to be vestiges of red and green algal nuclei that were engulfed by a larger eukaryote. Because the nucleomorph lies between two sets of membranes, nucleomorphs support the endosymbiotic theory and are evidence that the plastids containing them are complex plastids. Having two sets of membranes indicate that the plastid, a prokaryote, was engulfed by a eukaryote, an alga, which was then engulfed by another eukaryote, the host cell, making the plastid an example of secondary endosymbiosis.

<span class="mw-page-title-main">Comparative genomics</span> Field of biological research

Comparative genomics is a branch of biological research that examines genome sequences across a spectrum of species, spanning from humans and mice to a diverse array of organisms from bacteria to chimpanzees. This large-scale holistic approach compares two or more genomes to discover the similarities and differences between the genomes and to study the biology of the individual genomes. Comparison of whole genome sequences provides a highly detailed view of how organisms are related to each other at the gene level. By comparing whole genome sequences, researchers gain insights into genetic relationships between organisms and study evolutionary changes. The major principle of comparative genomics is that common features of two organisms will often be encoded within the DNA that is evolutionarily conserved between them. Therefore, Comparative genomics provides a powerful tool for studying evolutionary changes among organisms, helping to identify genes that are conserved or common among species, as well as genes that give unique characteristics of each organism. Moreover, these studies can be performed at different levels of the genomes to obtain multiple perspectives about the organisms.

<span class="mw-page-title-main">Sequence homology</span> Shared ancestry between DNA, RNA or protein sequences

Sequence homology is the biological homology between DNA, RNA, or protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments of DNA can have shared ancestry because of three phenomena: either a speciation event (orthologs), or a duplication event (paralogs), or else a horizontal gene transfer event (xenologs).

Indel (insertion-deletion) is a molecular biology term for an insertion or deletion of bases in the genome of an organism. Indels ≥ 50 bases in length are classified as structural variants.

<span class="mw-page-title-main">Hydnoroideae</span> A subfamily of flowering plants comprising parasitic taxa

Hydnoroideae is a subfamily of parasitic flowering plants in the order Piperales. Traditionally, and as recently as the APG III system it given family rank under the name Hydnoraceae. It is now submerged in the Aristolochiaceae. It contains two genera, Hydnora and Prosopanche:

<span class="mw-page-title-main">Archaeplastida</span> Clade of eukaryotes containing land plants and some algae

The Archaeplastida are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes. It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans. The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by phagocytosis of a cyanobacterium. All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae. Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.

<span class="mw-page-title-main">Rafflesiaceae</span> Family of flowering plants

The Rafflesiaceae are a family of rare parasitic plants comprising 36 species in 3 genera found in the tropical forests of east and southeast Asia, including Rafflesia arnoldii, which has the largest flowers of all plants. The plants are endoparasites of vines in the genus Tetrastigma (Vitaceae) and lack stems, leaves, roots, and any photosynthetic tissue. They rely entirely on their host plants for both water and nutrients, and only then emerge as flowers from the roots or lower stems of the host plants.

The Mesostigmatophyceae are a class of basal green algae found in freshwater. In a narrow circumscription, the class contains a single genus, Mesostigma. AlgaeBase then places the order within its circumscription of Charophyta. A clade containing Chlorokybus and Spirotaenia may either be added, or treated as a sister, with Chlorokybus placed in a separate class, Chlorokybophyceae. When broadly circumscribed, Mesostigmatophyceae may be placed as sister to all other green algae, or as sister to all Streptophyta.

<span class="mw-page-title-main">UTC clade</span>

The UTC clade is a grouping of Chlorophyta.

<span class="mw-page-title-main">Chloroplast DNA</span> DNA located in cellular organelles called chloroplasts

Chloroplast DNA (cpDNA), also known as plastid DNA (ptDNA) is the DNA located in chloroplasts, which are photosynthetic organelles located within the cells of some eukaryotic organisms. Chloroplasts, like other types of plastid, contain a genome separate from that in the cell nucleus. The existence of chloroplast DNA was identified biochemically in 1959, and confirmed by electron microscopy in 1962. The discoveries that the chloroplast contains ribosomes and performs protein synthesis revealed that the chloroplast is genetically semi-autonomous. The first complete chloroplast genome sequences were published in 1986, Nicotiana tabacum (tobacco) by Sugiura and colleagues and Marchantia polymorpha (liverwort) by Ozeki et al. Since then, tens of thousands of chloroplast genomes from various species have been sequenced.

Jeffrey Donald Palmer is a Distinguished Professor of Biology at Indiana University Bloomington.

<span class="mw-page-title-main">Plastid evolution</span> Evolution

A plastid is a membrane-bound organelle found in plants, algae and other eukaryotic organisms that contribute to the production of pigment molecules. Most plastids are photosynthetic, thus leading to color production and energy storage or production. There are many types of plastids in plants alone, but all plastids can be separated based on the number of times they have undergone endosymbiotic events. Currently there are three types of plastids; primary, secondary and tertiary. Endosymbiosis is reputed to have led to the evolution of eukaryotic organisms today, although the timeline is highly debated.

<span class="mw-page-title-main">Genome skimming</span> Method of genome sequencing

Genome skimming is a sequencing approach that uses low-pass, shallow sequencing of a genome, to generate fragments of DNA, known as genome skims. These genome skims contain information about the high-copy fraction of the genome. The high-copy fraction of the genome consists of the ribosomal DNA, plastid genome (plastome), mitochondrial genome (mitogenome), and nuclear repeats such as microsatellites and transposable elements. It employs high-throughput, next generation sequencing technology to generate these skims. Although these skims are merely 'the tip of the genomic iceberg', phylogenomic analysis of them can still provide insights on evolutionary history and biodiversity at a lower cost and larger scale than traditional methods. Due to the small amount of DNA required for genome skimming, its methodology can be applied in other fields other than genomics. Tasks like this include determining the traceability of products in the food industry, enforcing international regulations regarding biodiversity and biological resources, and forensics.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (March 2010). "Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots". Proceedings of the National Academy of Sciences of the United States of America. 107 (10): 4623–8. Bibcode:2010PNAS..107.4623M. doi: 10.1073/pnas.0907801107 . PMC   2842043 . PMID   20176954.
  2. "Index of /refseq/release/plastid". ftp.ncbi.nlm.nih.gov. Retrieved 2017-01-08.
  3. Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG, DePamphilis CW, Boore JL, Goffinet B (February 2008). "Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis". Molecular Biology and Evolution. 25 (2): 393–401. doi: 10.1093/molbev/msm267 . PMID   18056074.
  4. Plastid genome evolution of the non-photosynthetic liverwort Aneura mirabilis (Malmb.) Wickett & Goffinet (Aneuraceae)
  5. Kugita M, Kaneko A, Yamamoto Y, Takeya Y, Matsumoto T, Yoshinaga K (January 2003). "The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants". Nucleic Acids Research. 31 (2): 716–21. doi:10.1093/nar/gkg155. PMC   140519 . PMID   12527781.
  6. K Ohyama, Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Chang Z, Aota SI, Inokuchi H, Ozeki H (2003). "Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA". Nature. 322 (6079): 716–721. Bibcode:1986Natur.322..572O. doi:10.1038/322572a0. S2CID   4311952.
  7. Villarreal JC, Forrest LL, Wickett N, Goffinet B (March 2013). "The plastid genome of the hornwort Nothoceros aenigmaticus (Dendrocerotaceae): phylogenetic signal in inverted repeat expansion, pseudogenization, and intron gain". American Journal of Botany. 100 (3): 467–77. doi:10.3732/ajb.1200429. PMID   23416362.
  8. Grosche C, Funk HT, Maier UG, Zauner S (2012). "The chloroplast genome of Pellia endiviifolia: gene content, RNA-editing pattern, and the origin of chloroplast editing". Genome Biology and Evolution. 4 (12): 1349–57. doi:10.1093/gbe/evs114. PMC   3542565 . PMID   23221608.
  9. Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M (September 2003). "Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus". Nucleic Acids Research. 31 (18): 5324–31. doi:10.1093/nar/gkg726. PMC   203311 . PMID   12954768.
  10. Laura L. Forrest; Norman J. Wickett, Cymon J. Cox & Bernard Goffinet (2011). "Deep sequencing of Ptilidium (Ptilidiaceae) suggests evolutionary stasis in liverwort plastid genome structure" (PDF). Plant Ecology and Evolution. 144 (1): 29–43. doi:10.5091/plecevo.2011.535. hdl: 10400.1/5518 .
  11. Oliver MJ, Murdock AG, Mishler BD, Kuehl JV, Boore JL, Mandoli DF, Everett KD, Wolf PG, Duffy AM, Karol KG (February 2010). "Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes". BMC Genomics. 11: 143. doi: 10.1186/1471-2164-11-143 . PMC   2841679 . PMID   20187961.
  12. Wolf PG, Rowe CA, Sinclair RB, Hasebe M (April 2003). "Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L". DNA Research. 10 (2): 59–65. doi: 10.1093/dnares/10.2.59 . PMID   12755170.
  13. Gao L, Yi X, Yang YX, Su YJ, Wang T (June 2009). "Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes". BMC Evolutionary Biology. 9 (1): 130. Bibcode:2009BMCEE...9..130G. doi: 10.1186/1471-2148-9-130 . PMC   2706227 . PMID   19519899.
  14. Roper JM, Hansen SK, Wolf PG, Karol KG, Mandoli DF, Everett KD, Kuehl J, Boore JL (2007). "The Complete Plastid Genome Sequence of Angiopteris evecta (G. Forst.) Hoffm. (Marattiaceae)". American Fern Journal. 97 (2): 95–106. doi: 10.1640/0002-8444(2007)97[95:TCPGSO]2.0.CO;2 .
  15. Wolf PG, Karol KG, Mandoli DF, Kuehl J, Arumuganathan K, Ellis MW, Mishler BD, Kelch DG, Olmstead RG, Boore JL (May 2005). "The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae)". Gene. 350 (2): 117–28. doi:10.1016/j.gene.2005.01.018. PMID   15788152.
  16. Wakasugi, T (1998). "Complete nucleotide sequence of the plastid genome from a fern, Psilotum nudum". Endocytobiology and Cell Research. 13 (Supplement): 147. See External links below.
  17. Tsuji S, Ueda K, Nishiyama T, Hasebe M, Yoshikawa S, Konagaya A, Nishiuchi T, Yamaguchi K (March 2007). "The chloroplast genome from a lycophyte (microphyllophyte), Selaginella uncinata, has a unique inversion, transpositions and many gene losses". Journal of Plant Research. 120 (2): 281–90. Bibcode:2007JPlR..120..281T. doi:10.1007/s10265-006-0055-y. PMID   17297557. S2CID   7691300.
  18. Hirao T, Watanabe A, Kurita M, Kondo T, Takata K (June 2008). "Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species". BMC Plant Biology. 8: 70. doi: 10.1186/1471-2229-8-70 . PMC   2443145 . PMID   18570682.
  19. 1 2 3 4 5 6 Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL (December 2007). "Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns". Proceedings of the National Academy of Sciences of the United States of America. 104 (49): 19369–74. Bibcode:2007PNAS..10419369J. doi: 10.1073/pnas.0709121104 . PMC   2148296 . PMID   18048330.
  20. Wu CS, Wang YN, Liu SM, Chaw SM (June 2007). "Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants". Molecular Biology and Evolution. 24 (6): 1366–79. doi: 10.1093/molbev/msm059 . PMID   17383970.
  21. 1 2 Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chumley TW, Boore JL, Jansen RK, depamphilis CW (October 2005). "Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone". Molecular Biology and Evolution. 22 (10): 1948–63. doi: 10.1093/molbev/msi191 . PMID   15944438.
  22. Lin, Diana; Coombe, Lauren; Jackman, Shaun D.; Gagalova, Kristina K.; Warren, René L.; Hammond, S. Austin; McDonald, Helen; Kirk, Heather; Pandoh, Pawan; Zhao, Yongjun; Moore, Richard A. (2019-06-13). Stajich, Jason E. (ed.). "Complete Chloroplast Genome Sequence of an Engelmann Spruce ( Picea engelmannii , Genotype Se404-851) from Western Canada". Microbiology Resource Announcements. 8 (24): e00382–19, /mra/8/24/MRA.00382–19.atom. doi:10.1128/MRA.00382-19. ISSN   2576-098X. PMC   6588038 . PMID   31196920.
  23. Jackman, Shaun D.; Warren, René L.; Gibb, Ewan A.; Vandervalk, Benjamin P.; Mohamadi, Hamid; Chu, Justin; Raymond, Anthony; Pleasance, Stephen; Coope, Robin; Wildung, Mark R.; Ritland, Carol E. (January 2016). "Organellar Genomes of White Spruce ( Picea glauca ): Assembly and Annotation". Genome Biology and Evolution. 8 (1): 29–41. doi:10.1093/gbe/evv244. ISSN   1759-6653. PMC   4758241 . PMID   26645680.
  24. Lin, Diana; Coombe, Lauren; Jackman, Shaun D.; Gagalova, Kristina K.; Warren, René L.; Hammond, S. Austin; Kirk, Heather; Pandoh, Pawan; Zhao, Yongjun; Moore, Richard A.; Mungall, Andrew J. (2019-06-06). Rokas, Antonis (ed.). "Complete Chloroplast Genome Sequence of a White Spruce ( Picea glauca , Genotype WS77111) from Eastern Canada". Microbiology Resource Announcements. 8 (23): e00381–19, /mra/8/23/MRA.00381–19.atom. doi:10.1128/MRA.00381-19. ISSN   2576-098X. PMC   6554609 . PMID   31171622.
  25. Coombe, Lauren; Warren, René L.; Jackman, Shaun D.; Yang, Chen; Vandervalk, Benjamin P.; Moore, Richard A.; Pleasance, Stephen; Coope, Robin J.; Bohlmann, Joerg; Holt, Robert A.; Jones, Steven J. M. (2016-09-15). Budak, Hikmet (ed.). "Assembly of the Complete Sitka Spruce Chloroplast Genome Using 10X Genomics' GemCode Sequencing Data". PLOS ONE. 11 (9): e0163059. Bibcode:2016PLoSO..1163059C. doi: 10.1371/journal.pone.0163059 . ISSN   1932-6203. PMC   5025161 . PMID   27632164.
  26. Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (October 1994). "Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii". Proceedings of the National Academy of Sciences of the United States of America. 91 (21): 9794–8. Bibcode:1994PNAS...91.9794W. doi: 10.1073/pnas.91.21.9794 . PMC   44903 . PMID   7937893.
  27. McCoy SR, Kuehl JV, Boore JL, Raubeson LA (May 2008). "The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates". BMC Evolutionary Biology. 8 (1): 130. Bibcode:2008BMCEE...8..130M. doi: 10.1186/1471-2148-8-130 . PMC   2386820 . PMID   18452621.
  28. 1 2 3 4 5 6 7 8 9 10 Guisinger et al, Implications of the Plastid Genome Sequence of Typha (Typhaceae, Poales) for Understanding Genome Evolution in Poaceae, J Mol Evol 70: 149–166 (2010)
  29. Yan M, Moore MJ, Meng A, Yao X, Wang H (2016-09-21). "The first complete plastome sequence of the basal asterid family Styracaceae (Ericales) reveals a large inversion". Plant Systematics and Evolution. 303 (1): 61–70. doi:10.1007/s00606-016-1352-0. ISSN   0378-2697. S2CID   25942874.
  30. 1 2 Kim JS, Kim JH (2013-06-18). "Comparative genome analysis and phylogenetic relationship of order Liliales insight from the complete plastid genome sequences of two Lilies (Lilium longiflorum and Alstroemeria aurea)". PLOS ONE. 8 (6): e68180. Bibcode:2013PLoSO...868180K. doi: 10.1371/journal.pone.0068180 . PMC   3688979 . PMID   23950788.
  31. Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (September 2003). "Analysis of the Amborella trichopoda chloroplast genome sequence suggests that amborella is not a basal angiosperm". Molecular Biology and Evolution. 20 (9): 1499–505. doi: 10.1093/molbev/msg159 . PMID   12832641.
  32. Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (October 1999). "Complete structure of the chloroplast genome of Arabidopsis thaliana". DNA Research. 6 (5): 283–90. doi: 10.1093/dnares/6.5.283 . PMID   10574454.
  33. Schmitz-Linneweber C, Regel R, Du TG, Hupfer H, Herrmann RG, Maier RM (September 2002). "The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation". Molecular Biology and Evolution. 19 (9): 1602–12. doi:10.1093/oxfordjournals.molbev.a004222. PMID   12200487. S2CID   1111063.
  34. 1 2 3 4 Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV, Boore JL, Jansen RK (November 2007). "Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae)". Molecular Phylogenetics and Evolution. 45 (2): 547–63. Bibcode:2007MolPE..45..547H. doi:10.1016/j.ympev.2007.06.004. PMID   17644003.
  35. Goremykin V, Hirsch-Ernst KI, Wölfl S, Hellwig FH (2003). "The chloroplast genome of the basal angiosperm Calycanthus fertilis – structural and phylogenetic analyses". Plant Systematics and Evolution. 242 (1–4): 119–135. Bibcode:2003PSyEv.242..119G. doi:10.1007/s00606-003-0056-4. S2CID   44377635.
  36. Yang Y, Wang M, Lu Z, Xie X, Feng S (2017-01-04). "Characterization of the complete chloroplast genome of Carpinus tientaiensis". Conservation Genetics Resources. 9 (2): 339–341. Bibcode:2017ConGR...9..339Y. doi:10.1007/s12686-016-0668-y. ISSN   1877-7252. S2CID   5184815.
  37. Bausher MG, Singh ND, Lee SB, Jansen RK, Daniell H (September 2006). "The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms". BMC Plant Biology. 6: 21. doi: 10.1186/1471-2229-6-21 . PMC   1599732 . PMID   17010212.
  38. Huang YY, Matzke AJ, Matzke M (2013-08-30). "Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera)". PLOS ONE. 8 (8): e74736. Bibcode:2013PLoSO...874736H. doi: 10.1371/journal.pone.0074736 . PMC   3758300 . PMID   24023703.
  39. Samson N, Bausher MG, Lee SB, Jansen RK, Daniell H (March 2007). "The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms". Plant Biotechnology Journal. 5 (2): 339–53. doi:10.1111/j.1467-7652.2007.00245.x. PMC   3473179 . PMID   17309688.
  40. Leseberg CH, Duvall MR (October 2009). "The complete chloroplast genome of Coix lacryma-jobi and a comparative molecular evolutionary analysis of plastomes in cereals". Journal of Molecular Evolution. 69 (4): 311–8. Bibcode:2009JMolE..69..311L. doi:10.1007/s00239-009-9275-9. PMID   19777151. S2CID   24418374.
  41. Wicke S, Müller KF, de Pamphilis CW, Quandt D, Wickett NJ, Zhang Y, Renner SS, Schneeweiss GM (October 2013). "Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family". The Plant Cell. 25 (10): 3711–25. doi:10.1105/tpc.113.113373. PMC   3877813 . PMID   24143802.
  42. Plader W, Yukawa Y, Sugiura M, Malepszy S (2007). "The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: its composition and comparative analysis". Cellular & Molecular Biology Letters. 12 (4): 584–94. doi:10.2478/s11658-007-0029-7. PMC   6275786 . PMID   17607527.
  43. 1 2 McNeal JR, Kuehl JV, Boore JL, de Pamphilis CW (October 2007). "Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta". BMC Plant Biology. 7: 57. doi: 10.1186/1471-2229-7-57 . PMC   2216012 . PMID   17956636.
  44. 1 2 Funk HT, Berg S, Krupinska K, Maier UG, Krause K (August 2007). "Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii". BMC Plant Biology. 7: 45. doi: 10.1186/1471-2229-7-45 . PMC   2089061 . PMID   17714582.
  45. Lin CS, Chen JJ, Huang YT, Chan MT, Daniell H, Chang WJ, Hsu CT, Liao DC, Wu FH, Lin SY, Liao CF, Deyholos MK, Wong GK, Albert VA, Chou ML, Chen CY, Shih MC (March 2015). "The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family". Scientific Reports. 5: 9040. Bibcode:2015NatSR...5E9040L. doi:10.1038/srep09040. PMC   4356964 . PMID   25761566.
  46. Roquet C, Coissac É, Cruaud C, Boleda M, Boyer F, Alberti A, Gielly L, Taberlet P, Thuiller W, Van Es J, Lavergne S (July 2016). "Understanding the evolution of holoparasitic plants: the complete plastid genome of the holoparasite Cytinus hypocistis (Cytinaceae)". Annals of Botany. 118 (5): 885–896. doi:10.1093/aob/mcw135. PMC   5055816 . PMID   27443299.
  47. Ruhlman T, Lee SB, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (August 2006). "Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms". BMC Genomics. 7: 222. doi: 10.1186/1471-2164-7-222 . PMC   1579219 . PMID   16945140.
  48. 1 2 3 Cai Z, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson JE, dePamphilis CW, Boore JL, Jansen RK (October 2006). "Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids". BMC Evolutionary Biology. 6 (1): 77. Bibcode:2006BMCEE...6...77C. doi: 10.1186/1471-2148-6-77 . PMC   1626487 . PMID   17020608.
  49. Wolfe KH, Morden CW, Palmer JD (November 1992). "Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant". Proceedings of the National Academy of Sciences of the United States of America. 89 (22): 10648–52. Bibcode:1992PNAS...8910648W. doi: 10.1073/pnas.89.22.10648 . PMC   50398 . PMID   1332054.
  50. 1 2 Schelkunov MI, Shtratnikova VY, Nuraliev MS, Selosse MA, Penin AA, Logacheva MD (January 2015). "Exploring the limits for reduction of plastid genomes: a case study of the mycoheterotrophic orchids Epipogium aphyllum and Epipogium roseum". Genome Biology and Evolution. 7 (4): 1179–91. doi:10.1093/gbe/evv019. PMC   4419786 . PMID   25635040.
  51. 1 2 Blazier JC, Jansen RK, Mower JP, Govindu M, Zhang J, Weng ML, Ruhlman TA (June 2016). "Variable presence of the inverted repeat and plastome stability in Erodium". Annals of Botany. 117 (7): 1209–20. doi:10.1093/aob/mcw065. PMC   4904181 . PMID   27192713.
  52. 1 2 3 Guisinger MM, Kuehl JV, Boore JL, Jansen RK (January 2011). "Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage". Molecular Biology and Evolution. 28 (1): 583–600. doi: 10.1093/molbev/msq229 . PMID   20805190.
  53. Steane DA (2005). "Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae)". DNA Research. 12 (3): 215–20. doi: 10.1093/dnares/dsi006 . PMID   16303753.
  54. Logacheva MD, Samigullin TH, Dhingra A, Penin AA (May 2008). "Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale -a wild ancestor of cultivated buckwheat". BMC Plant Biology. 8: 59. doi: 10.1186/1471-2229-8-59 . PMC   2430205 . PMID   18492277.
  55. Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG, Jansen RK (September 2005). "Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes". Plant Molecular Biology. 59 (2): 309–22. doi:10.1007/s11103-005-8882-0. PMID   16247559. S2CID   3332004.
  56. Ibrahim RI, Azuma J, Sakamoto M (October 2006). "Complete nucleotide sequence of the cotton (Gossypium barbadense L.) chloroplast genome with a comparative analysis of sequences among 9 dicot plants". Genes & Genetic Systems. 81 (5): 311–21. doi: 10.1266/ggs.81.311 . PMID   17159292.
  57. Lee SB, Kaittanis C, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (March 2006). "The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms". BMC Genomics. 7: 61. doi: 10.1186/1471-2164-7-61 . PMC   1513215 . PMID   16553962.
  58. 1 2 Timme RE, Kuehl JV, Boore JL, Jansen RK (March 2007). "A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats". American Journal of Botany. 94 (3): 302–12. doi: 10.3732/ajb.94.3.302 . PMID   21636403.
  59. Naumann J, Der JP, Wafula EK, Jones SS, Wagner ST, Honaas LA, Ralph PE, Bolin JF, Maass E, Neinhuis C, Wanke S, dePamphilis CW (January 2016). "Detecting and Characterizing the Highly Divergent Plastid Genome of the Nonphotosynthetic Parasitic Plant Hydnora visseri (Hydnoraceae)". Genome Biology and Evolution. 8 (2): 345–63. doi:10.1093/gbe/evv256. PMC   4779604 . PMID   26739167.
  60. Lee HL, Jansen RK, Chumley TW, Kim KJ (May 2007). "Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions". Molecular Biology and Evolution. 24 (5): 1161–80. doi: 10.1093/molbev/msm036 . PMID   17329229.
  61. Hu Y, Woeste KE, Zhao P (2017-01-01). "Juglans and Their Contribution to Chloroplast Phylogeny". Frontiers in Plant Science. 7: 1955. doi: 10.3389/fpls.2016.01955 . PMC   5216037 . PMID   28111577.
  62. Mardanov AV, Ravin NV, Kuznetsov BB, Samigullin TH, Antonov AS, Kolganova TV, Skyabin KG (June 2008). "Complete sequence of the duckweed (Lemna minor) chloroplast genome: structural organization and phylogenetic relationships to other angiosperms". Journal of Molecular Evolution. 66 (6): 555–64. Bibcode:2008JMolE..66..555M. doi:10.1007/s00239-008-9091-7. PMID   18463914. S2CID   10044367.
  63. Malé PJ, Bardon L, Besnard G, Coissac E, Delsuc F, Engel J, Lhuillier E, Scotti-Saintagne C, Tinaut A, Chave J (September 2014). "Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family". Molecular Ecology Resources. 14 (5): 966–75. doi:10.1111/1755-0998.12246. PMID   24606032. S2CID   26777683.
  64. Liang H, Carlson JE, Leebens-Mack JH, Wall PK, Mueller LA, Buzgo M, Landherr LL, Hu Y, DiLoreto DS, Ilut DC, Field D, Tanksley SD, Ma H, Claude (2008). "An EST database for Liriodendron tulipifera L. floral buds: the first EST resource for functional and comparative genomics in Liriodendron". Tree Genetics & Genomes. 4 (3): 419–433. doi:10.1007/s11295-007-0120-2. S2CID   44266336.
  65. Kato T, Kaneko T, Sato S, Nakamura Y, Tabata S (December 2000). "Complete structure of the chloroplast genome of a legume, Lotus japonicus". DNA Research. 7 (6): 323–30. doi: 10.1093/dnares/7.6.323 . PMID   11214967.
  66. Daniell H, Wurdack KJ, Kanagaraj A, Lee SB, Saski C, Jansen RK (March 2008). "The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron". Theoretical and Applied Genetics. 116 (5): 723–37. doi:10.1007/s00122-007-0706-y. PMC   2587239 . PMID   18214421.
  67. Ravin NV, Gruzdev EV, Beletsky AV, Mazur AM, Prokhortchouk EB, Filyushin MA, Kochieva EZ, Kadnikov VV, Mardanov AV, Skryabin KG (November 2016). "The loss of photosynthetic pathways in the plastid and nuclear genomes of the non-photosynthetic mycoheterotrophic eudicot Monotropa hypopitys". BMC Plant Biology. 16 (Suppl 3): 238. doi: 10.1186/s12870-016-0929-7 . PMC   5123295 . PMID   28105941.
  68. Ravi V, Khurana JP, Tyagi AK, Khurana P (2006). "The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis". Tree Genetics & Genomes. 3 (1): 49–59. doi:10.1007/s11295-006-0051-3. S2CID   22104273.
  69. Shetty SM, Md Shah MU, Makale K, Mohd-Yusuf Y, Khalid N, Othman RY (July 2016). "Complete Chloroplast Genome Sequence of Corroborates Structural Heterogeneity of Inverted Repeats in Wild Progenitors of Cultivated Bananas and Plantains". The Plant Genome. 9 (2). doi: 10.3835/plantgenome2015.09.0089 . PMID   27898825.
  70. 1 2 Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE (August 2006). "Rapid and accurate pyrosequencing of angiosperm plastid genomes". BMC Plant Biology. 6: 17. doi: 10.1186/1471-2229-6-17 . PMC   1564139 . PMID   16934154.
  71. Logacheva MD, Schelkunov MI, Penin AA (2011-01-01). "Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis". Genome Biology and Evolution. 3: 1296–303. doi:10.1093/gbe/evr102. PMC   3228488 . PMID   21971517.
  72. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (September 1986). "The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression". The EMBO Journal. 5 (9): 2043–2049. doi:10.1002/j.1460-2075.1986.tb04464.x. PMC   1167080 . PMID   16453699.
  73. 1 2 Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, Jansen RK (June 2007). "Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus". BMC Genomics. 8: 174. doi: 10.1186/1471-2164-8-174 . PMC   1925096 . PMID   17573971.
  74. Goremykin VV, Hirsch-Ernst KI, Wölfl S, Hellwig FH (July 2004). "The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm". Molecular Biology and Evolution. 21 (7): 1445–54. doi: 10.1093/molbev/msh147 . PMID   15084683.
  75. 1 2 3 4 5 Greiner S, Wang X, Rauwolf U, Silber MV, Mayer K, Meurer J, Haberer G, Herrmann RG (April 2008). "The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. sequence evaluation and plastome evolution". Nucleic Acids Research. 36 (7): 2366–78. doi:10.1093/nar/gkn081. PMC   2367718 . PMID   18299283.
  76. 1 2 Yu J, Wang J, Lin W, Li S, Li H, Zhou J, et al. (February 2005). "The Genomes of Oryza sativa: a history of duplications". PLOS Biology. 3 (2): e38. doi: 10.1371/journal.pbio.0030038 . PMC   546038 . PMID   15685292.
  77. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY (June 1989). "The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals". Molecular & General Genetics. 217 (2–3): 185–94. doi:10.1007/BF02464880. PMID   2770692. S2CID   36458326.
  78. 1 2 3 Petersen G, Cuenca A, Seberg O (August 2015). "Plastome Evolution in Hemiparasitic Mistletoes". Genome Biology and Evolution. 7 (9): 2520–32. doi:10.1093/gbe/evv165. PMC   4607522 . PMID   26319577.
  79. Kim KJ, Lee HL (August 2004). "Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants". DNA Research. 11 (4): 247–61. doi: 10.1093/dnares/11.4.247 . PMID   15500250.
  80. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (November 2006). "The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants". Molecular Biology and Evolution. 23 (11): 2175–90. doi: 10.1093/molbev/msl089 . PMID   16916942.
  81. Logacheva MD, Schelkunov MI, Nuraliev MS, Samigullin TH, Penin AA (January 2014). "The plastid genome of mycoheterotrophic monocot Petrosavia stellaris exhibits both gene losses and multiple rearrangements". Genome Biology and Evolution. 6 (1): 238–46. doi:10.1093/gbe/evu001. PMC   3914687 . PMID   24398375.
  82. Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, Chaw SM (February 2006). "The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications". Molecular Biology and Evolution. 23 (2): 279–91. doi: 10.1093/molbev/msj029 . PMID   16207935.
  83. Guo X, Castillo-Ramírez S, González V, Bustos P, Fernández-Vázquez JL, Santamaría RI, Arellano J, Cevallos MA, Dávila G (July 2007). "Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts". BMC Genomics. 8: 228. doi: 10.1186/1471-2164-8-228 . PMC   1940014 . PMID   17623083.
  84. 1 2 Bellot S, Renner SS (December 2015). "The Plastomes of Two Species in the Endoparasite Genus Pilostyles (Apodanthaceae) Each Retain Just Five or Six Possibly Functional Genes". Genome Biology and Evolution. 8 (1): 189–201. doi:10.1093/gbe/evv251. PMC   4758247 . PMID   26660355.
  85. Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K (October 2006). "Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts". Transgenic Research. 15 (5): 637–46. doi:10.1007/s11248-006-9009-3. PMID   16952016. S2CID   39294451.
  86. Delannoy E, Fujii S, Colas des Francs-Small C, Brundrett M, Small I (July 2011). "Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes". Molecular Biology and Evolution. 28 (7): 2077–86. doi:10.1093/molbev/msr028. PMC   3112369 . PMID   21289370.
  87. Lam VK, Soto Gomez M, Graham SW (July 2015). "The Highly Reduced Plastome of Mycoheterotrophic Sciaphila (Triuridaceae) Is Colinear with Its Green Relatives and Is under Strong Purifying Selection". Genome Biology and Evolution. 7 (8): 2220–36. doi:10.1093/gbe/evv134. PMC   4558852 . PMID   26170229.
  88. Chung HJ, Jung JD, Park HW, Kim JH, Cha HW, Min SR, Jeong WJ, Liu JR (December 2006). "The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence". Plant Cell Reports. 25 (12): 1369–79. doi:10.1007/s00299-006-0196-4. PMID   16835751. S2CID   24055793.
  89. Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG, Mache R (February 2001). "The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization". Plant Molecular Biology. 45 (3): 307–15. doi:10.1023/A:1006478403810. PMID   11292076. S2CID   28271437.
  90. Haberle RC, Fourcade HM, Boore JL, Jansen RK (April 2008). "Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes". Journal of Molecular Evolution. 66 (4): 350–61. Bibcode:2008JMolE..66..350H. CiteSeerX   10.1.1.174.5498 . doi:10.1007/s00239-008-9086-4. PMID   18330485. S2CID   18228097.
  91. Cai Z, et al. (2008). "Extensive Reorganization of the Plastid Genome of Trifolium subterraneum (Fabaceae) Is Associated with Numerous Repeated Sequences and Novel DNA Insertions". J Mol Evol. 67 (6): 696–704. Bibcode:2008JMolE..67..696C. doi:10.1007/s00239-008-9180-7. PMID   19018585. S2CID   36486188.
  92. Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, et al. (2000). "Chinese Spring Wheat (Triticum aestivum L.) Chloroplast Genome: Complete Sequence and Contig Clones". Plant Molecular Biology Reporter. 18 (3): 243–253. doi:10.1007/BF02823995. S2CID   41773993.
  93. Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (January 2002). "Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA". Molecular Genetics and Genomics. 266 (5): 740–6. doi:10.1007/s00438-001-0606-9. PMID   11810247. S2CID   22434780.
  94. Fajardo D, Senalik D, Ames M, Zhu H, Steffan SA, Harbut R, Polashock J, Vorsa N, Gillespie E, Kron K, Zalapa JE (2013). "Complete plastid genome sequence of Vaccinium macrocarpon: structure, gene content, and rearrangements revealed by next generation sequencing". Tree Genetics & Genomes. 9 (2): 489–498. doi:10.1007/s11295-012-0573-9. S2CID   17130517.
  95. Jansen RK, Kaittanis C, Saski C, Lee SB, Tomkins J, Alverson AJ, Daniell H (April 2006). "Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids". BMC Evolutionary Biology. 6 (1): 32. Bibcode:2006BMCEE...6...32J. doi: 10.1186/1471-2148-6-32 . PMC   1479384 . PMID   16603088.
  96. Maier RM, Neckermann K, Igloi GL, Kössel H (September 1995). "Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing". Journal of Molecular Biology. 251 (5): 614–28. doi:10.1006/jmbi.1995.0460. PMID   7666415.
  97. Moore MJ, Bell CD, Soltis PS, Soltis DE (December 2007). "Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms". Proceedings of the National Academy of Sciences of the United States of America. 104 (49): 19363–8. Bibcode:2007PNAS..10419363M. doi: 10.1073/pnas.0708072104 . PMC   2148295 . PMID   18048334.
  98. Gerald A. Tuskan, et alii (110 authors). 2006. "The genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray)". Science 313 (5793):1596-1604.
  99. Nickrent DL, Malécot V, Vidal-Russell R, Der JP (2010). "A revised classification of Santalales". Taxon. 59 (2): 538–558. doi:10.1002/tax.592019. S2CID   85950875.
  100. 1 2 Leliaert F, Lopez-Bautista JM (March 2015). "The chloroplast genomes of Bryopsis plumosa and Tydemania expeditiones (Bryopsidales, Chlorophyta): compact genomes and genes of bacterial origin". BMC Genomics. 16 (1): 204. doi: 10.1186/s12864-015-1418-3 . PMC   4487195 . PMID   25879186.
  101. Turmel M, Otis C, Lemieux C (August 2002). "The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants". Proceedings of the National Academy of Sciences of the United States of America. 99 (17): 11275–80. Bibcode:2002PNAS...9911275T. doi: 10.1073/pnas.162203299 . PMC   123247 . PMID   12161560.
  102. Wakasugi T, Nagai T, Kapoor M, Sugita M, Ito M, Ito S, Tsudzuki J, Nakashima K, Tsudzuki T, Suzuki Y, Hamada A, Ohta T, Inamura A, Yoshinaga K, Sugiura M (May 1997). "Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division". Proceedings of the National Academy of Sciences of the United States of America. 94 (11): 5967–72. Bibcode:1997PNAS...94.5967W. doi: 10.1073/pnas.94.11.5967 . PMC   20890 . PMID   9159184.
  103. Turmel M, Otis C, Lemieux C (May 2007). "An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus". BMC Genomics. 8: 137. doi: 10.1186/1471-2164-8-137 . PMC   1894977 . PMID   17537252.
  104. Smith DR, et al. (May 2010). "The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA". BMC Plant Biology. 10: 83. doi: 10.1186/1471-2229-10-83 . PMC   3017802 . PMID   20459666.
  105. de Koning AP, Keeling PJ (April 2006). "The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured". BMC Biology. 4: 12. doi: 10.1186/1741-7007-4-12 . PMC   1463013 . PMID   16630350.
  106. de Cambiaire JC, Otis C, Turmel M, Lemieux C (July 2007). "The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae". BMC Genomics. 8: 213. doi: 10.1186/1471-2164-8-213 . PMC   1931444 . PMID   17610731.
  107. 1 2 3 Turmel M, Gagnon MC, O'Kelly CJ, Otis C, Lemieux C (March 2009). "The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids". Molecular Biology and Evolution. 26 (3): 631–48. doi: 10.1093/molbev/msn285 . PMID   19074760.
  108. Turmel M, Otis C, Lemieux C (August 1999). "The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes". Proceedings of the National Academy of Sciences of the United States of America. 96 (18): 10248–53. Bibcode:1999PNAS...9610248T. doi: 10.1073/pnas.96.18.10248 . PMC   17874 . PMID   10468594.
  109. Brouard JS, Otis C, Lemieux C, Turmel M (June 2008). "Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae): unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer". BMC Genomics. 9: 290. doi: 10.1186/1471-2164-9-290 . PMC   2442088 . PMID   18558012.
  110. Pombert JF, Lemieux C, Turmel M (February 2006). "The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes". BMC Biology. 4: 3. doi: 10.1186/1741-7007-4-3 . PMC   1402334 . PMID   16472375.
  111. Robbens S, Derelle E, Ferraz C, Wuyts J, Moreau H, Van de Peer Y (April 2007). "The complete chloroplast and mitochondrial DNA sequence of Ostreococcus tauri: organelle genomes of the smallest eukaryote are examples of compaction". Molecular Biology and Evolution. 24 (4): 956–68. doi: 10.1093/molbev/msm012 . PMID   17251180.
  112. Pombert JF, Otis C, Lemieux C, Turmel M (September 2005). "The chloroplast genome sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) reveals unusual structural features and new insights into the branching order of chlorophyte lineages". Molecular Biology and Evolution. 22 (9): 1903–18. doi: 10.1093/molbev/msi182 . PMID   15930151.
  113. de Cambiaire JC, Otis C, Lemieux C, Turmel M (April 2006). "The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands". BMC Evolutionary Biology. 6 (1): 37. Bibcode:2006BMCEE...6...37D. doi: 10.1186/1471-2148-6-37 . PMC   1513399 . PMID   16638149.
  114. Turmel M, Otis C, Lemieux C (October 2005). "The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales". BMC Biology. 3: 22. doi: 10.1186/1741-7007-3-22 . PMC   1277820 . PMID   16236178.
  115. Bélanger AS, Brouard JS, Charlebois P, Otis C, Lemieux C, Turmel M (November 2006). "Distinctive architecture of the chloroplast genome in the chlorophycean green alga Stigeoclonium helveticum". Molecular Genetics and Genomics. 276 (5): 464–77. doi:10.1007/s00438-006-0156-2. PMID   16944205. S2CID   19489840.
  116. Melton JT, Leliaert F, Tronholm A, Lopez-Bautista JM (2015). "The complete chloroplast and mitochondrial genomes of the green macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta)". PLOS ONE. 10 (4): e0121020. Bibcode:2015PLoSO..1021020M. doi: 10.1371/journal.pone.0121020 . PMC   4388391 . PMID   25849557.
  117. Smith DR, Lee RW (March 2009). "The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA". BMC Genomics. 10 (132): 132. doi: 10.1186/1471-2164-10-132 . PMC   2670323 . PMID   19323823.
  118. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Lee J, Cho CH, Park SI, Choi JW, Song HS, West JA, Bhattacharya D, Yoon HS (September 2016). "Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants". BMC Biology. 14 (1): 75. doi: 10.1186/s12915-016-0299-5 . PMC   5010701 . PMID   27589960.
  119. 1 2 Janouškovec J, Liu SL, Martone PT, Carré W, Leblanc C, Collén J, Keeling PJ (2013-03-25). Bhattacharya D (ed.). "Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers". PLOS ONE. 8 (3): e59001. Bibcode:2013PLoSO...859001J. doi: 10.1371/journal.pone.0059001 . PMC   3607583 . PMID   23536846.
  120. Ohta N, Matsuzaki M, Misumi O, Miyagishima SY, Nozaki H, Tanaka K, Shin-I T, Kohara Y, Kuroiwa T (April 2003). "Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae". DNA Research. 10 (2): 67–77. doi: 10.1093/dnares/10.2.67 . PMID   12755171.
  121. Glöckner G, Rosenthal A, Valentin K (October 2000). "The structure and gene repertoire of an ancient red algal plastid genome". Journal of Molecular Evolution. 51 (4): 382–90. Bibcode:2000JMolE..51..382G. CiteSeerX   10.1.1.566.2529 . doi:10.1007/s002390010101. PMID   11040290. S2CID   23064129.
  122. Jain K, Krause K, Grewe F, Nelson GF, Weber AP, Christensen AC, Mower JP (December 2014). "Extreme features of the Galdieria sulphuraria organellar genomes: a consequence of polyextremophily?". Genome Biology and Evolution. 7 (1): 367–80. doi:10.1093/gbe/evu290. PMC   4316638 . PMID   25552531.
  123. 1 2 3 4 Lee J, Kim KM, Yang EC, Miller KA, Boo SM, Bhattacharya D, Yoon HS (March 2016). "Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes". Scientific Reports. 6 (1): 23744. Bibcode:2016NatSR...623744L. doi:10.1038/srep23744. PMC   4814812 . PMID   27030297.
  124. Boo GH, Hughey JR (February 2019). "Phylogenomics and multigene phylogenies decipher two new cryptic marine algae from California, Gelidium gabrielsonii and G. kathyanniae (Gelidiales, Rhodophyta)". Journal of Phycology. 55 (1): 160–172. Bibcode:2019JPcgy..55..160B. doi: 10.1111/jpy.12802 . PMID   30341779.
  125. Ho CL, Lee WK, Lim EL (March 2018). "Unraveling the nuclear and chloroplast genomes of an agar producing red macroalga, Gracilaria changii (Rhodophyta, Gracilariales)". Genomics. 110 (2): 124–133. doi: 10.1016/j.ygeno.2017.09.003 . PMID   28890206.
  126. Campbell, Matthew A.; Presting, Gernot; Bennett, Matthew S.; Sherwood, Alison R. (2014-02-21). "Highly conserved organellar genomes in the Gracilariales as inferred using new data from the Hawaiian invasive alga Gracilaria salicornia (Rhodophyta". Phycologia. 53 (2): 109–116. Bibcode:2014Phyco..53..109C. doi:10.2216/13-222.1. S2CID   85867132.
  127. Hagopian JC, Reis M, Kitajima JP, Bhattacharya D, de Oliveira MC (October 2004). "Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of rhodoplasts and their relationship to other plastids". Journal of Molecular Evolution. 59 (4): 464–77. Bibcode:2004JMolE..59..464H. CiteSeerX   10.1.1.614.9150 . doi:10.1007/s00239-004-2638-3. PMID   15638458. S2CID   19135480.
  128. DePriest MS, Bhattacharya D, López-Bautista JM (2013-07-19). "The plastid genome of the red macroalga Grateloupia taiwanensis (Halymeniaceae)". PLOS ONE. 8 (7): e68246. Bibcode:2013PLoSO...868246D. doi: 10.1371/journal.pone.0068246 . PMC   3716797 . PMID   23894297.
  129. 1 2 3 Cho CH, Choi JW, Lam DW, Kim KM, Yoon HS (2018-05-08). "Plastid genome analysis of three Nemaliophycidae red algal species suggests environmental adaptation for iron limited habitats". PLOS ONE. 13 (5): e0196995. Bibcode:2018PLoSO..1396995C. doi: 10.1371/journal.pone.0196995 . PMC   5940233 . PMID   29738547.
  130. Reith M, Munholland J (April 1993). "A High-Resolution Gene Map of the Chloroplast Genome of the Red Alga Porphyra purpurea". The Plant Cell. 5 (4): 465–475. doi:10.1105/tpc.5.4.465. PMC   160285 . PMID   12271072.
  131. Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, Lohr M, Goodson HV, et al. (August 2017). "Porphyra umbilicalis (Bangiophyceae, Rhodophyta)". Proceedings of the National Academy of Sciences of the United States of America. 114 (31): E6361–E6370. doi: 10.1073/pnas.1703088114 . PMC   5547612 . PMID   28716924.
  132. Tajima N, Sato S, Maruyama F, Kurokawa K, Ohta H, Tabata S, Sekine K, Moriyama T, Sato N (May 2014). "Analysis of the complete plastid genome of the unicellular red alga Porphyridium purpureum". Journal of Plant Research. 127 (3): 389–97. Bibcode:2014JPlR..127..389T. doi:10.1007/s10265-014-0627-1. PMID   24595640. S2CID   1420996.
  133. 1 2 3 Hughey JR, Gabrielson PW, Rohmer L, Tortolani J, Silva M, Miller KA, Young JD, Martell C, Ruediger E (June 2014). "Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes". Scientific Reports. 4 (1): 5113. Bibcode:2014NatSR...4E5113H. doi:10.1038/srep05113. PMC   4044621 . PMID   24894641.
  134. 1 2 Wang L, Mao Y, Kong F, Li G, Ma F, Zhang B, Sun P, Bi G, Zhang F, Xue H, Cao M (2013-05-29). "Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis". PLOS ONE. 8 (5): e65902. Bibcode:2013PLoSO...865902W. doi: 10.1371/journal.pone.0065902 . PMC   3667073 . PMID   23734264.
  135. Salomaki ED, Nickles KR, Lane CE (April 2015). "The ghost plastid of Choreocolax polysiphoniae". Journal of Phycology. 51 (2): 217–21. Bibcode:2015JPcgy..51..217S. doi:10.1111/jpy.12283. PMID   26986516. S2CID   30670447.
  136. Löffelhardt W, Bohnert HJ, Bryant DA (1997). "The complete sequence of the Cyanophora paradoxa cyanelle genome (Glaucocystophyceae)". Plant Systematics and Evolution. Vol. 11. Springer Vienna. pp. 149–162. doi:10.1007/978-3-7091-6542-3_8. ISBN   9783211830352.
  137. 1 2 3 4 Kim JI, Moore CE, Archibald JM, Bhattacharya D, Yi G, Yoon HS, Shin W (July 2017). "Evolutionary Dynamics of Cryptophyte Plastid Genomes". Genome Biology and Evolution. 9 (7): 1859–1872. doi:10.1093/gbe/evx123. PMC   5534331 . PMID   28854597.
  138. Donaher N, Tanifuji G, Onodera NT, Malfatti SA, Chain PS, Hara Y, Archibald JM (November 2009). "The complete plastid genome sequence of the secondarily nonphotosynthetic alga Cryptomonas paramecium: reduction, compaction, and accelerated evolutionary rate". Genome Biology and Evolution. 1: 439–48. doi:10.1093/gbe/evp047. PMC   2839278 . PMID   20333213.
  139. Sánchez Puerta MV, Bachvaroff TR, Delwiche CF (2005-01-01). "The complete plastid genome sequence of the haptophyte Emiliania huxleyi: a comparison to other plastid genomes". DNA Research. 12 (2): 151–6. doi: 10.1093/dnares/12.2.151 . PMID   16303746.
  140. Douglas SE, Penny SL (February 1999). "The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae". Journal of Molecular Evolution. 48 (2): 236–44. Bibcode:1999JMolE..48..236D. doi:10.1007/PL00006462. PMID   9929392. S2CID   2005223.
  141. Cattolico RA, Jacobs MA, Zhou Y, Chang J, Duplessis M, Lybrand T, McKay J, Ong HC, Sims E, Rocap G (May 2008). "Chloroplast genome sequencing analysis of Heterosigma akashiwo CCMP452 (West Atlantic) and NIES293 (West Pacific) strains". BMC Genomics. 9 (1): 211. doi: 10.1186/1471-2164-9-211 . PMC   2410131 . PMID   18462506.
  142. Kowallik KV, Stoebe B, Schaffran I, Kroth-Pancic P, Freier U (December 1995). "The chloroplast genome of a chlorophylla+c-containing alga,Odontella sinensis". Plant Molecular Biology Reporter. 13 (4): 336–342. doi:10.1007/BF02669188. ISSN   0735-9640. S2CID   1515475.
  143. 1 2 Oudot-Le Secq MP, Grimwood J, Shapiro H, Armbrust EV, Bowler C, Green BR (April 2007). "Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage". Molecular Genetics and Genomics. 277 (4): 427–39. doi:10.1007/s00438-006-0199-4. PMID   17252281. S2CID   23192934.
  144. Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (August 2007). "Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny". Molecular Biology and Evolution. 24 (8): 1832–42. doi: 10.1093/molbev/msm101 . PMID   17522086.
  145. Kim JI, Yoon HS, Yi G, Kim HS, Yih W, Shin W (2015-06-05). Przyborski JM (ed.). "The Plastid Genome of the Cryptomonad Teleaulax amphioxeia". PLOS ONE. 10 (6): e0129284. Bibcode:2015PLoSO..1029284K. doi: 10.1371/journal.pone.0129284 . PMC   4457928 . PMID   26047475.
  146. Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (January 2007). "The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts". Molecular Biology and Evolution. 24 (1): 54–62. doi: 10.1093/molbev/msl129 . PMID   16990439.
  147. 1 2 3 Suzuki S, Hirakawa Y, Kofuji R, Sugita M, Ishida KI (July 2016). "Plastid genome sequences of Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia reveal remarkable structural conservation among chlorarachniophyte species". Journal of Plant Research. 129 (4): 581–590. Bibcode:2016JPlR..129..581S. doi:10.1007/s10265-016-0804-5. PMID   26920842. S2CID   3463713.
  148. Tanifuji G, Onodera NT, Brown MW, Curtis BA, Roger AJ, Ka-Shu Wong G, Melkonian M, Archibald JM (May 2014). "Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae". BMC Genomics. 15 (1): 374. doi: 10.1186/1471-2164-15-374 . PMC   4035089 . PMID   24885563.
  149. Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A, Stutz E (July 1993). "Complete sequence of Euglena gracilis chloroplast DNA". Nucleic Acids Research. 21 (15): 3537–44. doi:10.1093/nar/21.15.3537. PMC   331456 . PMID   8346031.
  150. Cai X, Fuller AL, McDougald LR, Zhu G (December 2003). "Apicoplast genome of the coccidian Eimeria tenella". Gene. 321: 39–46. doi:10.1016/j.gene.2003.08.008. PMID   14636990.
  151. 1 2 Suzuki S, Shirato S, Hirakawa Y, Ishida KI (2015). "Nucleomorph Genome Sequences of Two Chlorarachniophytes, Amorphochlora amoebiformis and Lotharella vacuolata". Genome Biology and Evolution. 7 (6): 1533–1545. doi: 10.1093/gbe/evv096 . PMC   4494063 . PMID   26002880.
  152. Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (June 2006). "Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus". Proceedings of the National Academy of Sciences of the United States of America. 103 (25): 9566–71. Bibcode:2006PNAS..103.9566G. doi: 10.1073/pnas.0600707103 . PMC   1480447 . PMID   16760254.
  153. Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, et al. (December 2012). "Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs" (PDF). Nature. 492 (7427): 59–65. Bibcode:2012Natur.492...59C. doi: 10.1038/nature11681 . PMID   23201678.
  154. Moore CE, Curtis B, Mills T, Tanifuji G, Archibald JM (2012). "Nucleomorph genome sequence of the cryptophyte alga Chroomonas mesostigmatica CCMP1168 reveals lineage-specific gene loss and genome complexity". Genome Biology and Evolution. 4 (11): 1162–75. doi:10.1093/gbe/evs090. PMC   3514955 . PMID   23042551.
  155. Tanifuji G, Onodera NT, Wheeler TJ, Dlutek M, Donaher N, Archibald JM (2011). "Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set". Genome Biology and Evolution. 3: 44–54. doi:10.1093/gbe/evq082. PMC   3017389 . PMID   21147880.
  156. Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith T, Maier UG (April 2001). "The highly reduced genome of an enslaved algal nucleus". Nature. 410 (6832): 1091–6. Bibcode:2001Natur.410.1091D. doi: 10.1038/35074092 . PMID   11323671.
  157. Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (December 2007). "Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function". Proceedings of the National Academy of Sciences of the United States of America. 104 (50): 19908–13. Bibcode:2007PNAS..10419908L. doi: 10.1073/pnas.0707419104 . PMC   2148396 . PMID   18077423.
  158. Tanifuji G, Onodera NT, Brown MW, Curtis BA, Roger AJ, Ka-Shu Wong G, Melkonian M, Archibald JM (May 2014). "Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae". BMC Genomics. 15 (1): 374. doi: 10.1186/1471-2164-15-374 . PMC   4035089 . PMID   24885563.
  159. Nowack EC, Melkonian M, Glöckner G (March 2008). "Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes". Current Biology. 18 (6): 410–8. Bibcode:2008CBio...18..410N. doi: 10.1016/j.cub.2008.02.051 . PMID   18356055.
  1. Dennis, R. D. (January 1976). "Insect morphogenetic hormones and developmental mechanisms in the nematode, Nematospiroides dubius". Comparative Biochemistry and Physiology. A, Comparative Physiology. 53 (1): 53–56. doi:10.1016/s0300-9629(76)80009-6. ISSN   0300-9629. PMID   184.