Paulinella

Last updated

Paulinella
Paulinella chromatophora.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Phylum: Cercozoa
Class: Imbricatea
Order: Euglyphida
Family: Paulinellidae
Genus: Paulinella
Lauterborn [1] [2]
Type species
Paulinella chromatophora
Lauterborn 1895 [1]
Species
Synonyms

Calycomonas [6]

Paulinella is a genus of at least eleven [15] [1] [6] [3] species including both freshwater and marine amoeboids. [16] Like many members of euglyphids it is covered by rows of siliceous scales, and use filose pseudopods to crawl over the substrate of the benthic zone. [17]

Its most famous members are the three photosynthetic species P. chromatophora, P. micropora and P. longichromatophora, the first two being freshwater forms and the third a marine form, [18] which have recently (in evolutionary terms) taken on a cyanobacterium as an endosymbiont. [19] [20] As a result they are no longer able to perform phagocytosis like their non-photosynthetic relatives. [21] P. chromatophora was discovered in sediments of the river Rhine on Christmas Eve 1894 by German biologist Robert Lauterborn, who named it Paulinella after his stepmother Pauline. [22] [23] The event to permanent endosymbiosis probably occurred with a cyanobiont. [24] The resulting organelle is a photosynthetic plastid that is often referred to as a 'cyanelle' or chromatophore, and it represents the only known primary endosymbiosis event of photosynthetic cyanobacteria (other than the origin of chloroplast), [18] [16] although primary endosymbiosis with a non-photosynthetic cyanobacterial symbiont have occurred in the diatom family Rhopalodiaceae and the algae Braarudosphaera bigelowii . [25] The endosymbiotic event happened about 90–140 million years ago when an α-cyanobacterium (rather than a β-cyanobacterium which the plastids in Archaeplastida originates from), [26] who diverged about 500 million years ago from the ancestors of its sister clade that consist of the living members of the cyanobacteria genera Prochlorococcus and Synechococcus , [27] [28] [5] [16] was permanently established within the amoeba. [5] [29] It is estimated the last common ancestor of extant photosynthetic species lived about 60 million years ago. [30]

This is striking because the chloroplasts of all other known photosynthetic eukaryotes derive ultimately from a single cyanobacterium endosymbiont, which was taken in about 1.6 billion years ago by an ancestral archaeplastidan (and subsequently adopted into other eukaryote groups through secondary endosymbiosis events, and later tertiary and quaternary endosymbiosis, etc). The only exception is the ciliate Pseudoblepharisma tenue , which in addition to a photosynthetic symbiont that is a captured green algae, also has a photosynthetic prokaryote as a symbiont; a purple bacterium with a reduced genome, instead of a cyanobacterium. [31]

The chromatophore genome has gone through a reduction, and is now just one third the size of the genome of its closest free living relatives, but still 10-fold larger than most plastid genomes. Some of the genes have been lost, others have migrated to the amoeba's nucleus through endosymbiotic gene transfer. [32] It is estimated that 0.3-0.8% of Paulinellas genes were derived from its endosymbiont, in addition to a small amount of genes from other organisms. [33] Other genes have degenerated due to Muller's ratchet – accumulations of harmful mutations due to genetic isolation, and have probably been replaced with genes from other microbes through horizontal gene transfer. [34] [35] Some of the genes the nucleus received from the chromatophore were multiplied many times over through a "copy-paste" mechanism called retrotransposition, enabling them to function more efficiently and making them more tolerant against toxic compounds associated with photosynthesis. This changed the metabolism of the amoeba so much that it could no longer feed on microbes like its ancestors, and it became completely dependent on its endosymbiont, which in turn has lost so many genes it can no longer survive outside its host cell. [36] [37]

Paulinella show both a very slow growth rate and sensitivity to light, divide every 6–7 days, and prefer low light conditions, probably as a protection against oxidative stress and other light related stress as it doesn't have the same degree of photoprotection mechanisms found in organisms with a photosynthetic apparatus of Archaeplastid origin, which has a much longer evolutionary history. [38] [39]

The nuclear genes of P. chromatophora (those regions not affected by endosymbiotic gene transfer) are most closely related to the heterotrophic P. ovalis. [40] P. ovalis is a marine heterotrophic species of Paulinella that has been shown to eat cyanobacteria and bacteria. [41] P. ovalis also have at least two cyanobacterial-like genes, which were probably integrated into their genome through horizontal gene transfer from its cyanobacterial prey. Similar genes could have made the photosynthetic species pre-equipped to accept the chromatophore. [42] The presence of extant heterotrophic lineages makes Paulinella a valuable model for unravelling early stages of primary endosymbiosis event and studying the post symbiotic genome evolution of both the plastid and the host. [43]

Related Research Articles

<span class="mw-page-title-main">Chloroplast</span> Plant organelle that conducts photosynthesis

A chloroplast is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. Chloroplasts have a high concentration of chlorophyll pigments which capture the energy from sunlight and convert it to chemical energy and release oxygen. The chemical energy created is then used to make sugar and other organic molecules from carbon dioxide in a process called the Calvin cycle. Chloroplasts carry out a number of other functions, including fatty acid synthesis, amino acid synthesis, and the immune response in plants. The number of chloroplasts per cell varies from one, in some unicellular algae, up to 100 in plants like Arabidopsis and wheat.

<span class="mw-page-title-main">Endosymbiont</span> Organism that lives within the body or cells of another organism

An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualistic relationship. Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes, single-cell algae inside reef-building corals, and bacterial endosymbionts that provide essential nutrients to insects.

<span class="mw-page-title-main">Symbiogenesis</span> Evolutionary theory holding that eukaryotic organelles evolved through symbiosis with prokaryotes

Symbiogenesis is the leading evolutionary theory of the origin of eukaryotic cells from prokaryotic organisms. The theory holds that mitochondria, plastids such as chloroplasts, and possibly other organelles of eukaryotic cells are descended from formerly free-living prokaryotes taken one inside the other in endosymbiosis. Mitochondria appear to be phylogenetically related to Rickettsiales bacteria, while chloroplasts are thought to be related to cyanobacteria.

<span class="mw-page-title-main">Plastid</span> Plant cell organelles that perform photosynthesis and store starch

A plastid is a membrane-bound organelle found in the cells of plants, algae, and some other eukaryotic organisms. Plastids are considered to be intracellular endosymbiotic cyanobacteria.

<span class="mw-page-title-main">Excavata</span> Supergroup of unicellular organisms belonging to the domain Eukaryota

Excavata is an extensive and diverse but paraphyletic group of unicellular Eukaryota. The group was first suggested by Simpson and Patterson in 1999 and the name latinized and assigned a rank by Thomas Cavalier-Smith in 2002. It contains a variety of free-living and symbiotic protists, and includes some important parasites of humans such as Giardia and Trichomonas. Excavates were formerly considered to be included in the now obsolete Protista kingdom. They were distinguished from other lineages based on electron-microscopic information about how the cells are arranged. They are considered to be a basal flagellate lineage.

<span class="mw-page-title-main">Glaucophyte</span> Division of algae

The glaucophytes, also known as glaucocystophytes or glaucocystids, are a small group of unicellular algae found in freshwater and moist terrestrial environments, less common today than they were during the Proterozoic. The stated number of species in the group varies from about 14 to 26. Together with the red algae (Rhodophyta) and the green algae plus land plants, they form the Archaeplastida.

<span class="mw-page-title-main">Chromista</span> Eukaryotic biological kingdom

Chromista is a proposed but polyphyletic biological kingdom, refined from the Chromalveolata, consisting of single-celled and multicellular eukaryotic species that share similar features in their photosynthetic organelles (plastids). It includes all eukaryotes whose plastids contain chlorophyll c and are surrounded by four membranes. If the ancestor already possessed chloroplasts derived by endosymbiosis from red algae, all non-photosynthetic Chromista have secondarily lost the ability to photosynthesise. Its members might have arisen independently as separate evolutionary groups from the last eukaryotic common ancestor.

<span class="mw-page-title-main">Nucleomorph</span>

Nucleomorphs are small, vestigial eukaryotic nuclei found between the inner and outer pairs of membranes in certain plastids. They are thought to be vestiges of primitive red and green algal nuclei that were engulfed by a larger eukaryote. Because the nucleomorph lies between two sets of membranes, nucleomorphs support the endosymbiotic theory and are evidence that the plastids containing them are complex plastids. Having two sets of membranes indicate that the plastid, a prokaryote, was engulfed by a eukaryote, an alga, which was then engulfed by another eukaryote, the host cell, making the plastid an example of secondary endosymbiosis.

In biology, Archezoa is a term that has been introduced by several authors to refer to a group of organisms. Authors include Josef Anton Maximilian Perty, Ernst Haeckel and in the 20th century by Thomas Cavalier-Smith in his classification system. Each author used the name to refer to different arrays of organisms. This reuse by later authors of the same taxon name for different groups of organisms is widely criticized in taxonomy because the inclusion of the name in a sentence does not make sense unless the particular usage is specified. Nonetheless, all uses of 'Archezoa' are now obsolete.

<span class="mw-page-title-main">Archaeplastida</span> Clade of eukaryotes containing land plants and some algae

The Archaeplastida are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes. It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans. The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by phagocytosis of a cyanobacterium. All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae. Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.

An apicoplast is a derived non-photosynthetic plastid found in most Apicomplexa, including Toxoplasma gondii, and Plasmodium falciparum and other Plasmodium spp., but not in others such as Cryptosporidium. It originated from algae through secondary endosymbiosis; there is debate as to whether this was a green or red alga. The apicoplast is surrounded by four membranes within the outermost part of the endomembrane system. The apicoplast hosts important metabolic pathways like fatty acid synthesis, isoprenoid precursor synthesis and parts of the heme biosynthetic pathway.

<i>Guillardia</i> Genus of single-celled organisms

Guillardia is a genus of marine biflagellate cryptomonad algae with a plastid obtained through secondary endosymbiosis of a red alga.

<span class="mw-page-title-main">Chloroplast DNA</span> DNA located in cellular organelles called chloroplasts

Chloroplast DNA (cpDNA), also known as plastid DNA (ptDNA) is the DNA located in chloroplasts, which are photosynthetic organelles located within the cells of some eukaryotic organisms. Chloroplasts, like other types of plastid, contain a genome separate from that in the cell nucleus. The existence of chloroplast DNA was identified biochemically in 1959, and confirmed by electron microscopy in 1962. The discoveries that the chloroplast contains ribosomes and performs protein synthesis revealed that the chloroplast is genetically semi-autonomous. The first complete chloroplast genome sequences were published in 1986, Nicotiana tabacum (tobacco) by Sugiura and colleagues and Marchantia polymorpha (liverwort) by Ozeki et al. Since then, tens of thousands of chloroplast genomes from various species have been sequenced.

<span class="mw-page-title-main">Cyanidiophyceae</span> Class of algae

Cyanidiophyceae is a class of unicellular red algae within subdivision Cyanidiophytina, and contain a single plastid, one to three mitochondria, a nucleus, a vacuole, and floridean starch. Pyrenoids are absent. Most are extremophiles inhabiting acid hot springs. They originated in extreme environments with high temperatures and low pH, which allowed them to occupy ecological niches without any competition. While still found in extreme environments, they have also adapted to live along streams, in fissures in rock walls and in soil, but usually prefer relatively high temperatures. They have never been found in basic freshwater or seawater habitats. The main photosynthetic pigment is C-phycocyanin. Reproduction is asexual by binary fission or formation of endospores. The group, consisting of a single order (Cyanidiales), split off from the other red algae more than a billion years ago. Three families, four genera, and nine species are known, but the total number of species is probably higher. They are primarily photoautotrophic, but heterotrophic and mixotrophic growth also occurs. After the first massive gene loss in the common ancestor of all red algae, where ca. 25% of the genes were lost, a second gene loss occurred in the ancestor of Cyanidiophyceae, where additional 18% of the genes were lost. Since then, some gene gains and minor gene losses have taken place independently in the Cyanidiaceae and Galdieriaceae, leading to genetic diversification between the two groups, with Galdieriaceae occupying more diverse and varied niches in extreme environments than Cyanidiaceae.

<span class="mw-page-title-main">Picozoa</span> Phylum of marine unicellular heterotrophic eukaryotes

Picozoa, Picobiliphyta, Picobiliphytes, or Biliphytes are protists of a phylum of marine unicellular heterotrophic eukaryotes with a size of less than about 3 micrometers. They were formerly treated as eukaryotic algae and the smallest member of photosynthetic picoplankton before it was discovered they do not perform photosynthesis. The first species identified therein is Picomonas judraskeda. They probably belong in the Archaeplastida as sister of the Rhodophyta.

<i>Mesodinium rubrum</i> Species of single-celled organism

Mesodinium rubrum is a species of ciliates. It constitutes a plankton community and is found throughout the year, most abundantly in spring and fall, in coastal areas. Although discovered in 1908, its scientific importance came into light in the late 1960s when it attracted scientists by the recurrent red colouration it caused by forming massive blooms, that cause red tides in the oceans.

<span class="mw-page-title-main">Floridean starch</span> Type of storage glucan

Floridean starch is a type of a storage glucan found in glaucophytes and in red algae, in which it is usually the primary sink for fixed carbon from photosynthesis. It is found in grains or granules in the cell's cytoplasm and is composed of an α-linked glucose polymer with a degree of branching intermediate between amylopectin and glycogen, though more similar to the former. The polymers that make up floridean starch are sometimes referred to as "semi-amylopectin".

<i>Gloeomargarita lithophora</i> Species of bacterium

Gloeomargarita lithophora, a cyanobacterium, is the proposed closest present day relative of all chloroplasts. The ancient relative of Gloeomargarita's was engulfed by a eukaryotic host in a singule endosymbiotic event around 1900-1400 million years ago. The origin of plastids by endosymbiosis signifies the beginning of photosynthesis in eukaryotes, and as such their evolutionary relationship to Gloeomargarita lithophora, as the sister group, is of high importance to the evolutionary history of endosymbiotic organelles and photosynthesis.

A plastid is a membrane-bound organelle found in plants, algae and other eukaryotic organisms that contribute to the production of pigment molecules. Most plastids are photosynthetic, thus leading to color production and energy storage or production. There are many types of plastids in plants alone, but all plastids can be separated based on the number of times they have undergone endosymbiotic events. Currently there are three types of plastids; primary, secondary and tertiary. Endosymbiosis is reputed to have led to the evolution of eukaryotic organisms today, although the timeline is highly debated.

<span class="mw-page-title-main">Photoautotroph</span> Organisms that use light and inorganic carbon to produce organic materials

Photoautotrophs are organisms that can utilize light energy from sunlight and elements from inorganic compounds to produce organic materials needed to sustain their own metabolism. Such biological activities are known as photosynthesis, and examples of such organisms include plants, algae and cyanobacteria.

References

  1. 1 2 3 4 Lauterborn, R. (1895). "Protozoenstudien. II. Paulinella chromatophora nov. gen. nov. spec., ein beschalter Rhizopode des Süßwassers mit blaugrünen chromatophorenartigen Einschlüssen". Zeitschrift für Wissenschaftliche Zoologie. 59: 537–544.
  2. M.D. Guiry in Guiry, M.D. & Guiry, G.M. 2013. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 4 March 2013.
  3. 1 2 3 4 5 6 7 Nicholls, Kenneth H. (November 2009). "Six new marine species of the genus Paulinella (Rhizopoda: Filosea, or Rhizaria: Cercozoa)" . Journal of the Marine Biological Association of the United Kingdom. 89 (7): 1415–1425. Bibcode:2009JMBUK..89.1415N. doi:10.1017/S0025315409000514. S2CID   86359271 . Retrieved 18 August 2022.
  4. 1 2 3 4 5 6 7 8 "Paulinella". Integrated Taxonomic Information System . Retrieved 28 January 2008.
  5. 1 2 3 Marin, B; Nowack, EC; Glöckner, G; Melkonian, M (5 June 2007). "The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like gamma-proteobacterium". BMC Evolutionary Biology. 7 (1): 85. Bibcode:2007BMCEE...7...85M. doi: 10.1186/1471-2148-7-85 . PMC   1904183 . PMID   17550603.
  6. 1 2 3 Lohmann, H. (1908). "Untersuchungen zur Feststellung des vollständigen Gehaltes des Meeres an Plankton". Komm. Z. Wissensch. Untersuch. D. Deutschen Meere in Kiel und D. Biologischen Anstalt Auf Helgoland. Wissensch. Meeresuntersuch., N.F., Abt. Kiel, Bd. 10: 131–137.
  7. Vørs, Naja (1 September 1992). "Heterotrophic Amoebae, Flagellates and Heliozoa from the Tvärminne Area, Gulf of Finland, in 1988–1990" . Ophelia. 36 (1): 1–109. doi:10.1080/00785326.1992.10429930. ISSN   0078-5326 . Retrieved 19 August 2022.
  8. Hannah, Fiona; Rogerson, Andrew; Anderson, O. Roger (January 1996). "A Description of Paulinella indentata N. Sp. (Filosea: Euglyphina) from Subtidal Coastal Benthic Sediments" . The Journal of Eukaryotic Microbiology. 43 (1): 1–4. doi:10.1111/j.1550-7408.1996.tb02464.x. ISSN   1066-5234. S2CID   84358420.
  9. Vørs, Naja (May 1993). "Marine Heterotrophic Amoebae, Flagellates and Heliozoa From Belize (Central America) and Tenerife (Canary Islands), With Descriptions of New Species, Luffisphaera Bulbochaete N. Sp., L. Longihastis N. Sp., L. Turriformis N. Sp. and Paulinella Intermedia N. Sp" . The Journal of Eukaryotic Microbiology. 40 (3): 272–287. doi:10.1111/j.1550-7408.1993.tb04917.x. ISSN   1066-5234. S2CID   221852241 . Retrieved 19 August 2022.
  10. Kim, Sunju; Park, Myung Gil (1 February 2016). "Paulinella longichromatophora sp. nov., a New Marine Photosynthetic Testate Amoeba Containing a Chromatophore". Protist. 167 (1): 1–12. doi:10.1016/j.protis.2015.11.003. ISSN   1434-4610. PMID   26709891 . Retrieved 19 August 2022.
  11. 1 2 "Paulinella". NCBI taxonomy. Bethesda, MD: National Center for Biotechnology Information. Retrieved 4 January 2019. Lineage(full) cellular organisms; Eukaryota; Rhizaria; Cercozoa; Imbricatea; Silicofilosea; Euglyphida; Paulinellidae
  12. Lhee, Duckhyun; Yang, Eun Chan; Kim, Jong Im; Nakayama, Takuro; Zuccarello, Giuseppe; Andersen, Robert A.; Yoon, Hwan Su (April 2017). "Diversity of the Photosynthetic Paulinella Species, with the Description of Paulinella micropora sp. nov. and the Chromatophore Genome Sequence for strain KR01". Protist. 168 (2): 155–170. doi:10.1016/j.protis.2017.01.003. ISSN   1618-0941. PMID   28262587.
  13. Wulff, A. (1919). "Ueber das Kleinplankton der Barentssee". Wissenschaftliche Meeresunterschungen. Neue Folge Abteilung Helgoland. 13: 95–125.
  14. Johnson, Paul W.; Hargraves, Paul E.; Sieburth, JOHN McN. (November 1988). "Ultrastructure and Ecology of Calycomonas ovalis Wulff, 1919, (Chrysophyceae) and Its Redescription as a Testate Rhizopod, Paulinella ovalis N. Comb. (Filosea: Euglyphina) 1". The Journal of Protozoology. 35 (4): 618–626. doi:10.1111/j.1550-7408.1988.tb04160.x.
  15. "Species Search :: AlgaeBase". algaebase.org. Retrieved 19 August 2022.
  16. 1 2 3 Gabr, Arwa; Grossman, Arthur R.; Bhattacharya, Debashish (5 May 2020). Palenik, B. (ed.). "Paulinella, a model for understanding plastid primary endosymbiosis". Journal of Phycology. 56 (4). Wiley: 837–843. Bibcode:2020JPcgy..56..837G. doi:10.1111/jpy.13003. ISSN   0022-3646. PMC   7734844 . PMID   32289879.
  17. Nakayama, Takuro; Archibald, John M. (2012). "Evolving a photosynthetic organelle". BMC Biology. 10: 35. doi: 10.1186/1741-7007-10-35 . PMC   3337241 . PMID   22531210.
  18. 1 2 Lhee, Duckhyun; Ha, Ji-San; Kim, Sunju; Park, Myung Gil; Bhattacharya, Debashish; Yoon, Hwan Su (22 February 2019). "Evolutionary dynamics of the chromatophore genome in three photosynthetic Paulinella species". Scientific Reports. 9 (1). Nature: 2560. Bibcode:2019NatSR...9.2560L. doi:10.1038/s41598-019-38621-8. PMC   6384880 . PMID   30796245.
  19. Laura Wegener Parfrey; Erika Barbero; Elyse Lasser; Micah Dunthorn; Debashish Bhattacharya; David J Patterson; Laura A Katz (December 2006). "Evaluating support for the current classification of eukaryotic diversity". PLOS Genetics . 2 (12): e220. doi: 10.1371/JOURNAL.PGEN.0020220 . ISSN   1553-7390. PMC   1713255 . PMID   17194223. Wikidata   Q21090155.
  20. McCutcheon, John P. (6 October 2021). "The Genomics and Cell Biology of Host-Beneficial Intracellular Infections". Annual Review of Cell and Developmental Biology. 37 (1): 115–142. doi: 10.1146/annurev-cellbio-120219-024122 . ISSN   1081-0706. PMID   34242059. S2CID   235786110.
  21. Gagat, Przemysław; Mackiewicz, Paweł (January 2017). "Cymbomonas tetramitiformis - a peculiar prasinophyte with a taste for bacteria sheds light on plastid evolution". Symbiosis. 71 (1): 1–7. Bibcode:2017Symbi..71....1G. doi:10.1007/s13199-016-0464-1. PMC   5167767 . PMID   28066124 . Retrieved 18 August 2022.
  22. Archibald, John M. (2017). "Evolution: Protein Import in a Nascent Photosynthetic Organelle". Current Biology. 27 (18): R1004–R1006. Bibcode:2017CBio...27R1004A. doi: 10.1016/j.cub.2017.08.013 . PMID   28950079. S2CID   21228029.
  23. Archibald, John (2014). One Plus One Equals One: Symbiosis and the evolution of complex life. OUP Oxford. ISBN   978-0-19-163628-8.
  24. Vries, Jan de; Gould, Sven B. (15 January 2018). "The monoplastidic bottleneck in algae and plant evolution" (PDF). Journal of Cell Science. 131 (2): jcs203414. doi: 10.1242/jcs.203414 . ISSN   0021-9533. PMID   28893840.
  25. Nakayama, Takuro; Inagaki, Yuji (12 October 2017). "Genomic divergence within non-photosynthetic cyanobacterial endosymbionts in rhopalodiacean diatoms". Scientific Reports. 7 (1). Nature: 13075. Bibcode:2017NatSR...713075N. doi:10.1038/s41598-017-13578-8. ISSN   2045-2322. PMC   5638926 . PMID   29026213.
  26. Nowack, Eva C. M.; Price, Dana C.; Bhattacharya, Debashish; Singer, Anna; Melkonian, Michael; Grossman, Arthur R. (2016). "Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora". Proceedings of the National Academy of Sciences. 113 (43): 12214–12219. Bibcode:2016PNAS..11312214N. doi: 10.1073/pnas.1608016113 . PMC   5087059 . PMID   27791007.
  27. Sánchez-Baracaldo, Patricia; Raven, John A.; Pisani, Davide; Knoll, Andrew H. (12 September 2017). "Early photosynthetic eukaryotes inhabited low-salinity habitats". Proceedings of the National Academy of Sciences. 114 (37): E7737–E7745. Bibcode:2017PNAS..114E7737S. doi: 10.1073/pnas.1620089114 . ISSN   0027-8424. PMC   5603991 . PMID   28808007.
  28. Luis Delaye; Cecilio Valadez-Cano; Bernardo Pérez-Zamorano (15 March 2016). "How Really Ancient Is Paulinella Chromatophora?". PLOS Currents . 8. doi: 10.1371/CURRENTS.TOL.E68A099364BB1A1E129A17B4E06B0C6B . ISSN   2157-3999. PMC   4866557 . PMID   28515968. Wikidata   Q36374426.
  29. Lewis, Louise A. (12 September 2017). "Hold the salt: Freshwater origin of primary plastids". Proceedings of the National Academy of Sciences. 114 (37): 9759–9760. Bibcode:2017PNAS..114.9759L. doi: 10.1073/pnas.1712956114 . ISSN   0027-8424. PMC   5604047 . PMID   28860199.
  30. Bhattacharya, Debashish; Etten, Julia Van; Benites, L. Felipe; Stephens, Timothy G. (2023). "Endosymbiotic ratchet accelerates divergence after organelle origin: The Paulinella model for plastid evolution". BioEssays. 45 (1): 2200165. doi: 10.1002/bies.202200165 . ISSN   0265-9247. PMID   36328783.
  31. Muñoz-Gómez, Sergio A.; Kreutz, Martin; Hess, Sebastian (11 June 2021). "A microbial eukaryote with a unique combination of purple bacteria and green algae as endosymbionts". Science Advances. 7 (24): eabg4102. Bibcode:2021SciA....7.4102M. doi:10.1126/sciadv.abg4102. ISSN   2375-2548. PMC   8195481 . PMID   34117067.
  32. Zhang, Ru; Nowack, Eva C. M.; Price, Dana C.; Bhattacharya, Debashish; Grossman, Arthur R. (1 April 2017). "Impact of light intensity and quality on chromatophore and nuclear gene expression in Paulinella chromatophora, an amoeba with nascent photosynthetic organelles". The Plant Journal: For Cell and Molecular Biology. 90 (2): 221–234. doi: 10.1111/tpj.13488 . PMID   28182317. S2CID   39165272.
  33. Nowack, E. C.; Vogel, H.; Groth, M.; Grossman, A. R.; Melkonian, M.; Glöckner, G. (2011). "Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora". Molecular Biology and Evolution. 28 (1): 407–422. doi: 10.1093/molbev/msq209 . PMID   20702568.
  34. Nowack, Eva C. M.; Price, Dana C.; Bhattacharya, Debashish; Singer, Anna; Melkonian, Michael; Grossman, Arthur R. (25 October 2016). "Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora". Proceedings of the National Academy of Sciences. 113 (43): 12214–12219. Bibcode:2016PNAS..11312214N. doi: 10.1073/pnas.1608016113 . PMC   5087059 . PMID   27791007.
  35. Callier, Viviane (8 June 2022). "Mitochondria and the origin of eukaryotes". Knowable Magazine. doi: 10.1146/knowable-060822-2 . S2CID   249526889 . Retrieved 18 August 2022.
  36. "Microbe study sheds light on a critical step in the evolution of life on Earth". June 2022.
  37. "Uncovering An Evolutionary Process That Enabled Diversity of Plant Life on Earth". Archived from the original on 15 September 2022. Retrieved 15 September 2022.
  38. Gabr, Arwa; Zournas, Apostolos; Stephens, Timothy G.; Dismukes, G. Charles; Bhattacharya, Debashish (2022). "Evidence for a robust photosystem II in the photosynthetic amoeba Paulinella" . New Phytologist. 234 (3): 934–945. doi:10.1111/nph.18052. PMID   35211975. S2CID   247106539.
  39. Macorano, Luis; Nowack, Eva C.M. (2021). "Paulinella chromatophora". Current Biology. 31 (17): R1024–R1026. Bibcode:2021CBio...31R1024M. doi:10.1016/j.cub.2021.07.028. PMID   34520707.
  40. Patrick J. Keeling (2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–1493. doi: 10.3732/ajb.91.10.1481 . PMID   21652304.
  41. Johnson, Paul W.; Hargraves, Paul E.; Sieburth, JOHN McN. (November 1988). "Ultrastructure and Ecology of Calycomonas ovalis Wulff, 1919, (Chrysophyceae) and Its Redescription as a Testate Rhizopod, Paulinella ovalis N. Comb. (Filosea: Euglyphina) 1". The Journal of Protozoology. 35 (4): 618–626. doi:10.1111/j.1550-7408.1988.tb04160.x. ISSN   0022-3921.
  42. Smith, David (1 January 2013). "Steal My Sunshine". The Scientist Magazine®. Retrieved 18 August 2022.
  43. Gabr, Arwa; Grossman, Arthur R.; Bhattacharya, Debashish (August 2020). Palenik, B. (ed.). "Paulinella, a model for understanding plastid primary endosymbiosis". Journal of Phycology. 56 (4): 837–843. Bibcode:2020JPcgy..56..837G. doi:10.1111/jpy.13003. ISSN   0022-3646. PMC   7734844 . PMID   32289879.