Clonally transmissible cancer

Last updated

A transmissible cancer is a cancer cell or cluster of cancer cells that can be transferred between individuals without the involvement of an infectious agent, such as an oncovirus. [1] [2] The evolution of transmissible cancer has occurred naturally in other animal species, but human cancer transmission is rare. [2] This transfer is typically between members of the same species or closely related species. [3]

Contents

General mechanism

Transmissible cancers require a specific combination of related circumstances to occur. These conditions involve both the host species and the tumors being transferred. These typically include low genetic diversity among individuals, an effective physical and environmental transport system, and a high enough dose of infective material. [4] The cancers reproduce faster in larger quantities with different means of reproduction tend to be favored for transmission if host conditions are met. Transmissible cancers follow the general pattern of cancer spread, starting with the growth of primary cancer cells at tumor sites followed by invasion of surrounding tissue and subsequent spread throughout the organism. [5] The main hurdles for surviving cells of a successful spread to a new host are histocompatibility barriers. The cancers have to bypass the self recognition system, survive the difference in nutrients and induce the correct response in the new hosts to begin the cycle anew. [6]

Transmissible cancers behave as true parasites, relying primarily on transport systems like direct contact, environmental transport and vectors, rather than hematogenous and lymphatic carriers to spread between organisms. [4] The amount of shedded cancer cells from initial host has to be high enough to increase survival probability. Direct contact transmissions through sexual or general contact such as in DFTD and CVTD ensures a higher potential for transmission. [4] Population factors also play an important role. A dense population of available and uninfected potential hosts is ideal for the tumors given the complexity and difficulty of the overall process, hence its virulence and potency must be adequately controlled. [3]

Humans

In humans, a significant fraction of Kaposi's sarcoma occurring after transplantation may be due to tumorous outgrowth of donor cells. [7] Although Kaposi's sarcoma is caused by a virus (Kaposi's sarcoma-associated herpesvirus), in these cases, it appears likely that transmission of virus-infected tumor cells—rather than the free virus—caused tumors in the transplant recipients. [2]

In 2007, four people (three women and one man) received different organ transplants (liver, both lungs and kidneys) from a 53-year-old woman who had recently died from intracranial bleeding. Before transplantation, the organ donor was deemed to have no signs of cancer upon medical examination. The organ recipients developed metastatic breast cancer from the organs and three of them died from the cancer between 2009–2017. [8]

In 2014, a case of parasite-to-host cancer transmission occurred in a 41-year-old man in Colombia with a compromised immune system due to HIV. The man's tumor cells were shown to have originated from the dwarf tapeworm, Hymenolepis nana. [9] In the 1990s, an undifferentiated pleomorphic sarcoma was transmitted from a 32-year-old patient to his 53-year-old surgeon when the surgeon injured his hand during an operation. Within five months, a tumor had developed on the hand of the surgeon and was subsequently excised. Histologic examinations of the tumor tissues from the patient and surgeon showed that both were morphologically identical. [10] In 1986, a 19-year-old laboratory worker mistakenly punctured her hand with a needle previously used to extract human colonic cancer cells. No injection of the substance occurred, and the worker suffered a small puncture wound with bleeding. Within 19 days, she had developed a small cancerous nodule on her hand. The tumor was removed soon after, and has since shown no sign of reoccurrence. [11]

Other animals

Contagious cancers are known to occur in dogs, Tasmanian devils, Syrian hamsters, and some marine bivalves including soft-shell clams. These cancers have a relatively stable genome as they are transmitted. [12] Recent studies have tested whether other highly prevalent wildlife cancers, such as urogenital carcinomas in Californian sea lions, could also be contagious but so far there is no evidence for this. [13]

Clonally transmissible cancer, caused by a clone of malignant cells rather than a virus, [14] is an extremely rare disease modality, [15] with few transmissible cancers being known. [1] The evolution of transmissible cancer is unlikely, because the cell clone must be adapted to survive a physical transmission of living cells between hosts, and must be able to survive in the environment of a new host's immune system. [16] Animals that have undergone population bottlenecks may be at greater risks of contracting transmissible cancers due to a lack of overall genetic diversity. Infectious cancers may also evolve to circumvent immune response by means of natural selection in order to spread. [17] Because of their transmission, it was initially thought that these diseases were caused by the transfer of oncoviruses, in the manner of cervical cancer caused by human papillomavirus. [2] However, canine transmissible venereal tumor mutes the expression of the immune response, whereas the Syrian hamster disease spreads due to lack of genetic diversity. [18]

Canine transmissible venereal tumor

Canine transmissible venereal tumor (CTVT) is sexually transmitted cancer which induces cancerous tumors on the genitalia of both male and female dogs, typically during mating. It was first described medically by a veterinary practitioner in London in 1810. [19] It was experimentally transplanted between dogs in 1876 by M. A. Novinsky (1841–1914). A single malignant clone of CTVT cells has colonized dogs worldwide, representing the oldest known malignant cell line in continuous propagation, [20] a fact that was uncovered in 2006. Researchers deduced that the CTVT went through 2 million mutations to reach its actual state, and inferred it started to develop in ancient dog species 11 000 years ago. [19]

Contagious reticulum cell sarcoma

Contagious reticulum cell sarcoma of the Syrian hamster [21] can be transmitted from one Syrian hamster to another through various mechanisms. It has been seen to spread within a laboratory population, presumably through gnawing at tumours and cannibalism. [1] It can also be spread by means of the bite of the mosquito Aedes aegypti . [22]

Devil facial tumour disease

Devil facial tumour disease (DFTD) is a transmissible parasitic cancer in the Tasmanian devil. [23] Since its discovery in 1996, DFTD has spread and infected 4/5 of all Tasmanian devils and threatens them with extinction. DFTD has a near 100% fatality rate, and has killed up to 90% of Tasmanian devil populations living in some reserves. [24] A new DFTD tumor-type cancer was recently uncovered on 5 Tasmanian devils (DFT2), histologically different from DFT1, leading researchers to believe that the Tasmanian devil "is particularly prone to the emergence of transmissible cancers". [19]

Bivalves

Soft-shell clams, Mya arenaria, have been found to be vulnerable to a transmissible neoplasm of the hemolymphatic system — effectively, leukemia. [25] [26] The cells have infected clam beds hundreds of miles from each other, making this clonally transmissible cancer the only one that does not require contact for transmission. [19]

Horizontally transmitted cancers have also been discovered in three other species of marine bivalves: bay mussels (Mytilus trossulus), common cockles (Cerastoderma edule) and golden carpet shell clams (Polititapes aureus). The golden carpet shell clam cancer was found to have been transmitted from another species, the pullet carpet shell (Venerupis corrugata). [27] [28]

See also

Related Research Articles

<span class="mw-page-title-main">Soft-tissue sarcoma</span> Malignant tumor that develops in soft tissue

A soft-tissue sarcoma (STS) is a malignant tumor, a type of cancer, that develops in soft tissue. A soft-tissue sarcoma is often a painless mass that grows slowly over months or years. They may be superficial or deep-seated. Any such unexplained mass must be diagnosed by biopsy. Treatment may include surgery, radiotherapy, chemotherapy, and targeted drug therapy. Bone sarcomas are the other class of sarcomas.

<span class="mw-page-title-main">Sarcoma</span> Cancer originating in connective tissue

A sarcoma is a malignant tumor, a type of cancer that arises from cells of mesenchymal origin. Connective tissue is a broad term that includes bone, cartilage, muscle, fat, vascular, or other structural tissues, and sarcomas can arise in any of these types of tissues. As a result, there are many subtypes of sarcoma, which are classified based on the specific tissue and type of cell from which the tumor originates.

In medicine, public health, and biology, transmission is the passing of a pathogen causing communicable disease from an infected host individual or group to a particular individual or group, regardless of whether the other individual was previously infected. The term strictly refers to the transmission of microorganisms directly from one individual to another by one or more of the following means:

<span class="mw-page-title-main">Kaposi's sarcoma-associated herpesvirus</span> Species of virus

Kaposi's sarcoma-associated herpesvirus (KSHV) is the ninth known human herpesvirus; its formal name according to the International Committee on Taxonomy of Viruses (ICTV) is Human gammaherpesvirus 8, or HHV-8 in short. Like other herpesviruses, its informal names are used interchangeably with its formal ICTV name. This virus causes Kaposi's sarcoma, a cancer commonly occurring in AIDS patients, as well as primary effusion lymphoma, HHV-8-associated multicentric Castleman's disease and KSHV inflammatory cytokine syndrome. It is one of seven currently known human cancer viruses, or oncoviruses. Even after many years since the discovery of KSHV/HHV8, there is no known cure for KSHV associated tumorigenesis.

<span class="mw-page-title-main">Oncovirus</span> Viruses that can cause cancer

An oncovirus or oncogenic virus is a virus that can cause cancer. This term originated from studies of acutely transforming retroviruses in the 1950–60s, when the term oncornaviruses was used to denote their RNA virus origin. With the letters RNA removed, it now refers to any virus with a DNA or RNA genome causing cancer and is synonymous with tumor virus or cancer virus. The vast majority of human and animal viruses do not cause cancer, probably because of longstanding co-evolution between the virus and its host. Oncoviruses have been important not only in epidemiology, but also in investigations of cell cycle control mechanisms such as the retinoblastoma protein.

<span class="mw-page-title-main">Devil facial tumour disease</span> Cancer affecting Tasmanian devils

Devil facial tumour disease (DFTD) is an aggressive non-viral clonally transmissible cancer which affects Tasmanian devils, a marsupial native to the Australian island of Tasmania. The cancer manifests itself as lumps of soft and ulcerating tissue around the mouth, which may invade surrounding organs and metastasise to other parts of the body. Severe genetic abnormalities exist in cancer cells—for example, DFT2 cells are tetraploid, containing twice as much genetic material as normal cells. DFTD is most often spread by bites, when teeth come into contact with cancer cells; less important pathways of transmission are ingesting of infected carcasses and sharing of food. Adult Tasmanian devils who are otherwise the fittest are most susceptible to the disease.

<span class="mw-page-title-main">Canine transmissible venereal tumor</span> Disease in dogs and other canines

A canine transmissible venereal tumor (CTVT), also known as a transmissible venereal tumor (TVT), canine transmissible venereal sarcoma (CTVS), sticker tumor and infectious sarcoma, is a histiocytic tumor of the external genitalia of the dog and other canines, and is transmitted from animal to animal during mating. It is one of only three known transmissible cancers in mammals; the others are devil facial tumor disease, a cancer which occurs in Tasmanian devils, and contagious reticulum cell sarcoma of the Syrian hamster.

<span class="mw-page-title-main">Primary effusion lymphoma</span> Medical condition

Primary effusion lymphoma (PEL) is classified as a diffuse large B cell lymphoma. It is a rare malignancy of plasmablastic cells that occurs in individuals that are infected with the Kaposi's sarcoma-associated herpesvirus. Plasmablasts are immature plasma cells, i.e. lymphocytes of the B-cell type that have differentiated into plasmablasts but because of their malignant nature do not differentiate into mature plasma cells but rather proliferate excessively and thereby cause life-threatening disease. In PEL, the proliferating plasmablastoid cells commonly accumulate within body cavities to produce effusions, primarily in the pleural, pericardial, or peritoneal cavities, without forming a contiguous tumor mass. In rare cases of these cavitary forms of PEL, the effusions develop in joints, the epidural space surrounding the brain and spinal cord, and underneath the capsule which forms around breast implants. Less frequently, individuals present with extracavitary primary effusion lymphomas, i.e., solid tumor masses not accompanied by effusions. The extracavitary tumors may develop in lymph nodes, bone, bone marrow, the gastrointestinal tract, skin, spleen, liver, lungs, central nervous system, testes, paranasal sinuses, muscle, and, rarely, inside the vasculature and sinuses of lymph nodes. As their disease progresses, however, individuals with the classical effusion-form of PEL may develop extracavitary tumors and individuals with extracavitary PEL may develop cavitary effusions.

<span class="mw-page-title-main">Patrick S. Moore</span> American virologist and epidemiologist

Patrick S. Moore is an American virologist and epidemiologist who co-discovered together with his wife, Yuan Chang, two different human viruses causing the AIDS-related cancer Kaposi's sarcoma and the skin cancer Merkel cell carcinoma. Moore and Chang have discovered two of the seven known human viruses causing cancer. The couple met while in medical school together and were married in 1989 while they pursued fellowships at different universities.

<span class="mw-page-title-main">Yuan Chang</span> American virologist and pathologist

Yuan Chang is a Taiwanese-born American virologist and pathologist who co-discovered together with her husband, Patrick S. Moore, the Kaposi's sarcoma-associated herpesvirus (KSHV) and Merkel cell polyomavirus, two of the seven known human oncoviruses.

Rous sarcoma virus (RSV) is a retrovirus and is the first oncovirus to have been described. It causes sarcoma in chickens.

<span class="mw-page-title-main">Francis Peyton Rous</span> American scientist (1879–1970)

Francis Peyton Rous was an American pathologist at the Rockefeller University known for his works in oncoviruses, blood transfusion and physiology of digestion. A medical graduate from the Johns Hopkins University, he was discouraged from becoming a practicing physician due to severe tuberculosis. After three years of working as an instructor of pathology at the University of Michigan, he became dedicated researcher at the Rockefeller Institute for Medical Research for the rest of his career.

mir-181 microRNA precursor

In molecular biology miR-181 microRNA precursor is a small non-coding RNA molecule. MicroRNAs (miRNAs) are transcribed as ~70 nucleotide precursors and subsequently processed by the RNase-III type enzyme Dicer to give a ~22 nucleotide mature product. In this case the mature sequence comes from the 5' arm of the precursor. They target and modulate protein expression by inhibiting translation and / or inducing degradation of target messenger RNAs. This new class of genes has recently been shown to play a central role in malignant transformation. miRNA are downregulated in many tumors and thus appear to function as tumor suppressor genes. The mature products miR-181a, miR-181b, miR-181c or miR-181d are thought to have regulatory roles at posttranscriptional level, through complementarity to target mRNAs. miR-181 has been predicted or experimentally confirmed in a wide number of vertebrate species such as rat, zebrafish, and pufferfish.

Merkel cell polyomavirus was first described in January 2008 in Pittsburgh, Pennsylvania. It was the first example of a human viral pathogen discovered using unbiased metagenomic next-generation sequencing with a technique called digital transcriptome subtraction. MCV is one of seven currently known human oncoviruses. It is suspected to cause the majority of cases of Merkel cell carcinoma, a rare but aggressive form of skin cancer. Approximately 80% of Merkel cell carcinoma (MCC) tumors have been found to be infected with MCV. MCV appears to be a common—if not universal—infection of older children and adults. It is found in respiratory secretions, suggesting that it might be transmitted via a respiratory route. However, it has also been found elsewhere, such as in shedded healthy skin and gastrointestinal tract tissues, thus its precise mode of transmission remains unknown. In addition, recent studies suggest that this virus may latently infect the human sera and peripheral blood mononuclear cells.

<span class="mw-page-title-main">Kaposi's sarcoma</span> Cancer of the skin, integumentary lymph nodes, or other organs

Kaposi's sarcoma (KS) is a type of cancer that can form masses on the skin, in lymph nodes, in the mouth, or in other organs. The skin lesions are usually painless, purple and may be flat or raised. Lesions can occur singly, multiply in a limited area, or may be widespread. Depending on the sub-type of disease and level of immune suppression, KS may worsen either gradually or quickly. Except for Classical KS where there is generally no immune suppression, KS is caused by a combination of immune suppression and infection by Human herpesvirus 8.

<span class="mw-page-title-main">Allorecognition</span>

Allorecognition is the ability of an individual organism to distinguish its own tissues from those of another. It manifests itself in the recognition of antigens expressed on the surface of cells of non-self origin. Allorecognition has been described in nearly all multicellular phyla.

Tumour heterogeneity describes the observation that different tumour cells can show distinct morphological and phenotypic profiles, including cellular morphology, gene expression, metabolism, motility, proliferation, and metastatic potential. This phenomenon occurs both between tumours and within tumours. A minimal level of intra-tumour heterogeneity is a simple consequence of the imperfection of DNA replication: whenever a cell divides, a few mutations are acquired—leading to a diverse population of cancer cells. The heterogeneity of cancer cells introduces significant challenges in designing effective treatment strategies. However, research into understanding and characterizing heterogeneity can allow for a better understanding of the causes and progression of disease. In turn, this has the potential to guide the creation of more refined treatment strategies that incorporate knowledge of heterogeneity to yield higher efficacy.

Elizabeth Murchison is a British-Australian geneticist, Professor of Comparative Oncology and Genetics at the University of Cambridge, UK. The ongoing research of her group focuses on the known existing clonally transmissible cancers arising in mammals. These are cancers that can be passed on between individuals by the transfer of living cancer cells that somehow manage to evade the immune system of their hosts.

Anne-Maree Pearse is an Australian cytogeneticist who is credited with the theory that some cancer cells can be transmissible between individuals. This is known as the allograft theory. Her work has focussed on devil facial tumour disease (DFTD), a contagious cancer that affects Tasmanian devils. For this she has won multiple awards, including the 2012 Prince Hitachi Prize for Comparative Oncology.

Contagious reticulum cell sarcoma is a reticulum-cell sarcoma found in Syrian hamsters that can be transmitted from one hamster to another. It was first described in 1945.

References

  1. 1 2 3 Ostrander EA, Davis BW, Ostrander GK (January 2016). "Transmissible Tumors: Breaking the Cancer Paradigm". Trends in Genetics. 32 (1): 1–15. doi:10.1016/j.tig.2015.10.001. PMC   4698198 . PMID   26686413.
  2. 1 2 3 4 Welsh JS (2011). "Contagious cancer". The Oncologist. 16 (1): 1–4. doi:10.1634/theoncologist.2010-0301. PMC   3228048 . PMID   21212437.
  3. 1 2 Dujon AM, Gatenby RA, Bramwell G, MacDonald N, Dohrmann E, Raven N, et al. (July 2020). "Transmissible Cancers in an Evolutionary Perspective". iScience. 23 (7): 101269. Bibcode:2020iSci...23j1269D. doi:10.1016/j.isci.2020.101269. PMC   7327844 . PMID   32592998.
  4. 1 2 3 Ujvari B, Gatenby RA, Thomas F (2016-04-01). "The evolutionary ecology of transmissible cancers". Infection, Genetics and Evolution. 39: 293–303. Bibcode:2016InfGE..39..293U. doi:10.1016/j.meegid.2016.02.005. ISSN   1567-1348. PMID   26861618.
  5. Nguyen DX, Bos PD, Massagué J (April 2009). "Metastasis: from dissemination to organ-specific colonization". Nature Reviews Cancer. 9 (4): 274–284. doi:10.1038/nrc2622. ISSN   1474-175X. PMID   19308067.
  6. Gatenby RA, Gillies RJ (January 2008). "A microenvironmental model of carcinogenesis". Nature Reviews Cancer. 8 (1): 56–61. doi:10.1038/nrc2255. ISSN   1474-175X. PMID   18059462.
  7. Barozzi P, Luppi M, Facchetti F, Mecucci C, Alù M, Sarid R, et al. (May 2003). "Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors". Nature Medicine. 9 (5): 554–61. doi:10.1038/nm862. PMID   12692543. S2CID   2527251.
  8. Matser YA, Terpstra ML, Nadalin S, Nossent GD, de Boer J, van Bemmel BC, et al. (July 2018). "Transmission of breast cancer by a single multiorgan donor to 4 transplant recipients". American Journal of Transplantation. 18 (7): 1810–1814. doi: 10.1111/ajt.14766 . PMID   29633548.
  9. Muehlenbachs A, Bhatnagar J, Agudelo CA, Hidron A, Eberhard ML, Mathison BA, et al. (November 2015). "Malignant Transformation of Hymenolepis nana in a Human Host". The New England Journal of Medicine. 373 (19): 1845–52. doi: 10.1056/NEJMoa1505892 . PMID   26535513.
  10. Gärtner HV, Seidl C, Luckenbach C, Schumm G, Seifried E, Ritter H, et al. (November 1996). "Genetic analysis of a sarcoma accidentally transplanted from a patient to a surgeon". The New England Journal of Medicine. 335 (20): 1494–6. doi: 10.1056/NEJM199611143352004 . PMID   8890100.
  11. Gugel EA, Sanders ME (December 1986). "Needle-stick transmission of human colonic adenocarcinoma". The New England Journal of Medicine. 315 (23): 1487. doi:10.1056/NEJM198612043152314. PMID   3785302.
  12. Weiss RA, Fassati A, Murgia C (2006). "A sexually transmitted parasitic cancer". Retrovirology . 3 (Supplement 1): S92. doi: 10.1186/1742-4690-3-S1-S92 . PMC   1717007 .
  13. Ní Leathlobhair M, Gulland FM, Murchison EP (2017-06-22). "No evidence for clonal transmission of urogenital carcinoma in California sea lions ( Zalophus californianus)". Wellcome Open Research. 2: 46. doi: 10.12688/wellcomeopenres.11483.1 . PMC   5527528 . PMID   28948233.
  14. Rebbeck CA, Thomas R, Breen M, Leroi AM, Burt A (September 2009). "Origins and evolution of a transmissible cancer". Evolution; International Journal of Organic Evolution. 63 (9): 2340–9. doi: 10.1111/j.1558-5646.2009.00724.x . PMID   19453727.
  15. Strakova A, Murchison EP (February 2015). "The cancer which survived: insights from the genome of an 11000 year-old cancer" (PDF). Current Opinion in Genetics & Development. 30: 49–55. doi:10.1016/j.gde.2015.03.005. PMID   25867244. S2CID   21195930.
  16. Baez-Ortega A, Gori K, Strakova A, Allen JL, Allum KM, Bansse-Issa L, et al. (August 2019). "Somatic evolution and global expansion of an ancient transmissible cancer lineage". Science. 365 (6452): eaau9923. doi:10.1126/science.aau9923. PMC   7116271 . PMID   31371581.
  17. Belov K (February 2011). "The role of the Major Histocompatibility Complex in the spread of contagious cancers". Mammalian Genome. 22 (1–2): 83–90. doi:10.1007/s00335-010-9294-2. PMID   20963591. S2CID   8303843.
  18. Siddle HV, Kreiss A, Eldridge MD, Noonan E, Clarke CJ, Pyecroft S, et al. (October 2007). "Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial". Proceedings of the National Academy of Sciences of the United States of America. 104 (41): 16221–6. doi: 10.1073/pnas.0704580104 . PMC   1999395 . PMID   17911263.
  19. 1 2 3 4 Harrison C (May 2018). "Clonally transmissible cancers in nature". Cancer Therapy Advisor. Retrieved 2019-10-03.
  20. Murgia C, Pritchard JK, Kim SY, Fassati A, Weiss RA (August 2006). "Clonal origin and evolution of a transmissible cancer". Cell. 126 (3): 477–87. doi:10.1016/j.cell.2006.05.051. PMC   2593932 . PMID   16901782.
  21. Copper HL, Mackay CM, Banfield WG (October 1964). "Chromosome studies of a contagious reticulum cell sarcoma of the Syrian hamster". Journal of the National Cancer Institute. 33 (4): 691–706. doi:10.1093/jnci/33.4.691. PMID   14220251.
  22. Banfield WG, Woke PA, Mackay CM, Cooper HL (May 1965). "Mosquito transmission of a reticulum cell sarcoma of hamsters". Science. 148 (3674): 1239–40. Bibcode:1965Sci...148.1239B. doi:10.1126/science.148.3674.1239. PMID   14280009. S2CID   12611674.
  23. Pearse AM, Swift K (February 2006). "Allograft theory: transmission of devil facial-tumour disease". Nature. 439 (7076): 549. Bibcode:2006Natur.439..549P. doi: 10.1038/439549a . PMID   16452970. S2CID   4409863.
  24. Epstein B, Jones M, Hamede R, Hendricks S, McCallum H, Murchison EP, et al. (August 2016). "Rapid evolutionary response to a transmissible cancer in Tasmanian devils". Nature Communications. 7 (1): 12684. Bibcode:2016NatCo...712684E. doi: 10.1038/ncomms12684 . PMC   5013612 . PMID   27575253.
  25. Yong E (2015-04-09). "Selfish shellfish cells cause contagious clam cancer". National Geographic . Archived from the original on 2015-09-05. Retrieved 2015-04-10.
  26. Metzger MJ, Reinisch C, Sherry J, Goff SP (April 2015). "Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams". Cell. 161 (2): 255–63. doi:10.1016/j.cell.2015.02.042. PMC   4393529 . PMID   25860608.
  27. Metzger MJ, Villalba A, Carballal MJ, Iglesias D, Sherry J, Reinisch C, et al. (June 2016). "Widespread transmission of independent cancer lineages within multiple bivalve species". Nature. 534 (7609): 705–9. Bibcode:2016Natur.534..705M. doi:10.1038/nature18599. PMC   4939143 . PMID   27338791.
  28. Frierman EM, Andrews JD (February 1976). "Occurrence of hematopoietic neoplasms in Virginia oysters (Crassostrea virginica)". Journal of the National Cancer Institute. 56 (2): 319–24. doi:10.1093/jnci/56.2.319. PMID   1255763.