Carbamoyl phosphate synthase II

Last updated
Carbamoyl-phosphate synthetase (glutamine-hydrolysing)
Identifiers
EC no. 6.3.5.5
CAS no. 37233-48-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins
carbamoyl-phosphate synthetase 1, aspartate transcarbamylase, and dihydroorotase
Identifiers
SymbolCAD
NCBI gene 790
HGNC 1424
OMIM 114010
RefSeq NM_004341
UniProt P27708
Other data
Locus Chr. 2 p21
Search for
Structures Swiss-model
Domains InterPro

Carbamoyl phosphate synthetase (glutamine-hydrolysing) (EC 6.3.5.5) is an enzyme that catalyzes the reactions that produce carbamoyl phosphate in the cytosol (as opposed to type I, which functions in the mitochondria). Its systemic name is hydrogen-carbonate:L-glutamine amido-ligase (ADP-forming, carbamate-phosphorylating). [1] [2] [3] [4] [5] [6] [7] [8]

Contents

In pyrimidine biosynthesis, it serves as the rate-limiting enzyme and catalyzes the following reaction:

2 ATP + L-glutamine + HCO3 + H2O 2 ADP + phosphate + L-glutamate + carbamoyl phosphate (overall reaction)
(1a) L-glutamine + H2O L-glutamate + NH3
(1b) 2 ATP + HCO3 + NH3 2 ADP + phosphate + carbamoyl phosphate

It is activated by ATP and PRPP [9] and it is inhibited by UTP (Uridine triphosphate) [10] Neither CPSI nor CPSII require biotin as a coenzyme, as seen with most carboxylation reactions.

It is one of the four functional enzymatic domains coded by the CAD gene. [11] It is classified under EC 6.3.5.5.

See also

Related Research Articles

<span class="mw-page-title-main">Nucleotide</span> Biological molecules constituting nucleic acids

Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver.

<span class="mw-page-title-main">Carbamoyl phosphate</span> Chemical compound

Carbamoyl phosphate is an anion of biochemical significance. In land-dwelling animals, it is an intermediary metabolite in nitrogen disposal through the urea cycle and the synthesis of pyrimidines. Its enzymatic counterpart, carbamoyl phosphate synthetase I, interacts with a class of molecules called sirtuins, NAD dependent protein deacetylases, and ATP to form carbamoyl phosphate. CP then enters the urea cycle in which it reacts with ornithine to form citrulline.

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">Glutamine synthetase</span> Class of enzymes

Glutamine synthetase (GS) is an enzyme that plays an essential role in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine:

Carbamoyl phosphate synthetase I is a ligase enzyme located in the mitochondria involved in the production of urea. Carbamoyl phosphate synthetase I transfers an ammonia molecule to a molecule of bicarbonate that has been phosphorylated by a molecule of ATP. The resulting carbamate is then phosphorylated with another molecule of ATP. The resulting molecule of carbamoyl phosphate leaves the enzyme.

Pyrimidine biosynthesis occurs both in the body and through organic synthesis.

<span class="mw-page-title-main">CAD protein</span> Protein-coding gene in the species Homo sapiens

CAD protein is a trifunctional multi-domain enzyme involved in the first three steps of pyrimidine biosynthesis. De-novo synthesis starts with cytosolic carbamoylphosphate synthetase II which uses glutamine, carbon dioxide and ATP. This enzyme is inhibited by uridine triphosphate.

<span class="mw-page-title-main">CTP synthetase</span> Enzyme

CTP synthase is an enzyme involved in pyrimidine biosynthesis that interconverts UTP and CTP.

<span class="mw-page-title-main">Carbamoyl phosphate synthetase</span> Class of enzymes

Carbamoyl phosphate synthetase catalyzes the ATP-dependent synthesis of carbamoyl phosphate from glutamine or ammonia and bicarbonate. This enzyme catalyzes the reaction of ATP and bicarbonate to produce carboxy phosphate and ADP. Carboxy phosphate reacts with ammonia to give carbamic acid. In turn, carbamic acid reacts with a second ATP to give carbamoyl phosphate plus ADP.

Purine metabolism refers to the metabolic pathways to synthesize and break down purines that are present in many organisms.

<span class="mw-page-title-main">GMP synthase</span>

Guanosine monophosphate synthetase, also known as GMPS is an enzyme that converts xanthosine monophosphate to guanosine monophosphate.

<span class="mw-page-title-main">Amidophosphoribosyltransferase</span> Mammalian protein found in Homo sapiens

Amidophosphoribosyltransferase (ATase), also known as glutamine phosphoribosylpyrophosphate amidotransferase (GPAT), is an enzyme responsible for catalyzing the conversion of 5-phosphoribosyl-1-pyrophosphate (PRPP) into 5-phosphoribosyl-1-amine (PRA), using the amine group from a glutamine side-chain. This is the committing step in de novo purine synthesis. In humans it is encoded by the PPAT gene. ATase is a member of the purine/pyrimidine phosphoribosyltransferase family.

In enzymology, a 5-(carboxyamino)imidazole ribonucleotide synthase (EC 6.3.4.18) is an enzyme that catalyzes the chemical reaction

In enzymology, a glutaminyl-tRNA synthase (glutamine-hydrolysing) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoribosylamine—glycine ligase</span>

Phosphoribosylamine—glycine ligase, also known as glycinamide ribonucleotide synthetase (GARS), (EC 6.3.4.13) is an enzyme that catalyzes the chemical reaction

In enzymology, a carbamate kinase (EC 2.7.2.2) is an enzyme that catalyzes the chemical reaction

Mary Ellen Jones was an American biochemist. She was notable for discovery of carbamoyl phosphate, a chemical substance that is key to the biosynthesis of arginine and urea, and for the biosynthesis of pyrimidine nucleotides. Jones became the first woman to hold a chair at the University of North Carolina at Chapel Hill, and the first woman to become a department chair at the medical school. She was a member of the National Academy of Sciences. She was also president of the Association of Medical School Departments of Biochemistry, president of the American Society for Biochemistry and Molecular Biology, and president of the American Association of University Professors. The New York Times called her a "crucial researcher on DNA" and said that her studies laid the foundation for basic cancer research. She died of cancer on August 23, 1996.

<span class="mw-page-title-main">Asparagine synthase (glutamine-hydrolysing)</span>

Asparagine synthase (glutamine-hydrolysing) (EC 6.3.5.4, asparagine synthetase (glutamine-hydrolysing), glutamine-dependent asparagine synthetase, asparagine synthetase B, AS, AS-B) is an enzyme with systematic name L-aspartate:L-glutamine amido-ligase (AMP-forming). This enzyme catalyses the following chemical reaction

Cobyrinate a,c-diamide synthase (EC ), cobyrinic acid a,c-diamide synthetase, CbiA (gene)) is an enzyme which catalyses the chemical reaction

Carbamoyl phosphate synthetase III is one of the three isoforms of the carbamoyl phosphate synthetase, an enzyme that catalyzes the active production of carbamoyl phosphate in many organisms.

References

  1. Anderson PM, Meister A (December 1965). "Evidence for an activated form of carbon dioxide in the reaction catalyzed by Escherichia coli carbamyl phosphate synthetase". Biochemistry. 4 (12): 2803–9. doi:10.1021/bi00888a034. PMID   5326356.
  2. Kalman SM, Duffield PH, Brzozowski T (April 1966). "Purification and properties of a bacterial carbamyl phosphate synthetase". The Journal of Biological Chemistry. 241 (8): 1871–7. doi: 10.1016/S0021-9258(18)96716-5 . PMID   5329589.
  3. Yip MC, Knox WE (May 1970). "Glutamine-dependent carbamyl phosphate synthetase. Properties and distribution in normal and neoplastic rat tissues". The Journal of Biological Chemistry. 245 (9): 2199–204. doi: 10.1016/S0021-9258(18)63139-4 . PMID   5442268.
  4. Stapleton MA, Javid-Majd F, Harmon MF, Hanks BA, Grahmann JL, Mullins LS, Raushel FM (November 1996). "Role of conserved residues within the carboxy phosphate domain of carbamoyl phosphate synthetase". Biochemistry. 35 (45): 14352–61. doi:10.1021/bi961183y. PMID   8916922.
  5. Holden HM, Thoden JB, Raushel FM (December 1998). "Carbamoyl phosphate synthetase: a tunnel runs through it". Current Opinion in Structural Biology. 8 (6): 679–85. doi:10.1016/s0959-440x(98)80086-9. PMID   9914247.
  6. Raushel FM, Thoden JB, Reinhart GD, Holden HM (October 1998). "Carbamoyl phosphate synthetase: a crooked path from substrates to products". Current Opinion in Chemical Biology. 2 (5): 624–32. doi:10.1016/s1367-5931(98)80094-x. PMID   9818189.
  7. Raushel FM, Thoden JB, Holden HM (June 1999). "The amidotransferase family of enzymes: molecular machines for the production and delivery of ammonia". Biochemistry. 38 (25): 7891–9. doi:10.1021/bi990871p. PMID   10387030.
  8. Thoden JB, Huang X, Raushel FM, Holden HM (October 2002). "Carbamoyl-phosphate synthetase. Creation of an escape route for ammonia". The Journal of Biological Chemistry. 277 (42): 39722–7. doi: 10.1074/jbc.M206915200 . PMID   12130656.
  9. Inkling. "Unsupported Browser". Inkling. Retrieved 25 April 2018.
  10. Engelking LR. Pyrimidine biosynthesis. Textbook of Veterinary Physiological Chemistry. 2015;:83–7. https://doi.org/10.1016/B978-0-12-391909-0.50014-1 Retrieved 1 April 2023
  11. Moreno-Morcillo M, Grande-García A, Ruiz-Ramos A, del Caño-Ochoa F, Boskovic J, Ramón-Maiques S (2017). "Structural Insight into the Core of CAD, the Multifunctional Protein Leading De Novo Pyrimidine Biosynthesis". Structure. 25 (6): 912–923. doi: 10.1016/j.str.2017.04.012 . PMID   28591622.