4-bit computing

Last updated

4-bit computing is the use of computer architectures in which integers and other data units are 4 bits wide. 4-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers or data buses of that size. A group of four bits is also called a nibble and has 24 = 16 possible values, with a range of 0 to 15.

Contents

4-bit processors were widely used in electronic calculators and other roles where decimal math was used, like electronic cash registers, microwave oven timers, and so forth. This is because a 4-bit value holds a single binary coded decimal (BCD) digit, making it a natural size for directly processing decimal values. As a 4-bit value is generally too small to hold a memory address for real-world programs or data, the address bus of these systems was generally larger. For instance, the canonical 4-bit microprocessor, the Intel 4004, had a 12-bit address format.

4-bit designs were used only for a short period when integrated circuits were still expensive, and were found primarily in cost-sensitive roles. While 4-bit computing is mostly obsolete, 4-bit values are still used in the same decimal-centric roles they were developed for, and modern implementations are generally much wider and process multiple 4-bit values in parallel. An example of such a system is the HP Saturn design of the 1980s. By the 1990s, most such uses had been replaced by general purpose binary designs.

History

20-pin PSOP - NEC D63GS: a 4-bit microcontroller for infrared remote control transmission Alps remote control BHR970001B - NEC D63GS-7525.jpg
20-pin PSOP – NEC D63GS: a 4-bit microcontroller for infrared remote control transmission
16-pin DIP - Intel C4004 Intel C4004 greytraces CPU.jpg
16-pin DIP – Intel C4004
Olympia CD700 Desktop Calculator using the National Semiconductor MAPS MM570X bit-serial 4-bit microcontroller Olympia CD700 Desktop Calculator. 1971.Microprogrammable Arithmetic Processor System Devices (MAPS).jpg
Olympia CD700 Desktop Calculator using the National Semiconductor MAPS MM570X bit-serial 4-bit microcontroller
Infrared remote control PCB - an infrared remote control transmitter controlled by a NEC D63GS 4-bit microcontroller Alps remote control BHR970001B-7517.jpg
Infrared remote control PCB – an infrared remote control transmitter controlled by a NEC D63GS 4-bit microcontroller

A 4-bit processor may seem limited, but it is a good match for calculators, where each decimal digit fits into four bits. [1]

Some of the first microprocessors had a 4-bit word length and were developed around 1970. The first commercial microprocessor was the binary-coded decimal (BCD-based) Intel 4004, [2] [3] developed for calculator applications in 1971; it had a 4-bit word length, but had 8-bit instructions and 12-bit addresses. It was succeeded by the Intel 4040, which added interrupt support and a variety of other new features.

The first commercial single-chip computer was the 4-bit Texas Instruments TMS 1000 (1974). [1] It contained a 4-bit CPU with a Harvard architecture and 8-bit-wide instructions, an on-chip instruction ROM, and an on-chip data RAM with 4-bit words. [4]

The Rockwell PPS-4 was another early 4-bit processor, introduced in 1972, which had a long lifetime in handheld games and similar roles. It was steadily improved and by 1975 been combined with several support chips to make a one-chip computer. [5]

The 4-bit processors were programmed in assembly language or Forth, e.g. "MARC4 Family of 4 bit Forth CPU" [6] (which is now discontinued) because of the extreme size constraint on programs and because common programming languages (for microcontrollers, 8-bit and larger), such as the C programming language, do not support 4-bit data types (C, and C++, and more languages require that the size of the char data type be at least 8 bits, [7] and that all data types other than bitfields have a size that is a multiple of the character size [8] [9] [10] ).

The 1970s saw the emergence of 4-bit software applications for mass markets like pocket calculators. During the 1980s, 4-bit microprocessors were used in handheld electronic games to keep costs low.

In the 1970s and 1980s, a number of research and commercial computers used bit slicing, in which the CPU's arithmetic logic unit (ALU) was built from multiple 4-bit-wide sections, each section including a chip such as an Am2901 or 74181.

The Zilog Z80, although it is an 8-bit microprocessor, has a 4-bit ALU. [11] [12]

Although the Data General Nova is a series of 16-bit minicomputers, the original Nova and the Nova 1200 internally processed numbers 4 bits at a time with a 4-bit ALU, [13] sometimes called "nybble-serial". [14]

The HP Saturn processors, used in many Hewlett-Packard calculators between 1984 and 2003 (including the HP 48 series of scientific calculators) are "4-bit" (or hybrid 64-/4-bit) machines; as the Intel 4004 did, they string multiple 4-bit words together, e.g. to form a 20-bit memory address, and most of the registers are 64 bits wide, storing 16 4-bit digits. [15] [16] [17]

In addition, some early calculators  such as the 1967 Casio AL-1000, the 1972 Sinclair Executive, and the aforementioned 1984 HP Saturn   had 4-bit datapaths that accessed their registers 4 bits (one BCD digit) at a time. [18]

Uses

National Semiconductor COP410L, a low-end 4-bit microcontroller. 512 bytes of ROM in upper left corner, 128 bits of RAM in upper right corner. Click to zoom. National Semiconductor COP410L NGS top metal.jpg
National Semiconductor COP410L, a low-end 4-bit microcontroller. 512 bytes of ROM in upper left corner, 128 bits of RAM in upper right corner. Click to zoom.

One bicycle computer specifies that it uses a "4 bit, 1-chip microcomputer". [19] Other typical uses include coffee makers, infrared remote controls, [20] and security alarms. [21]

The processor in Barbie typewriters that can encrypt is a 4-bit microcontroller. [22]

Several manufacturers used 4-bit microcontrollers in their early electronic games: [23]

Western Digital used a 4-bit microcontroller as the basis for their WD2412 time-of-day clock. [25]

The Grundy Newbrain computer uses a 4-bit microcontroller to manage its keyboard, tape I/O, and its built-in 16 character VF alphanumeric display. [26]

Details

With 4 bits, it is possible to create 16 different values. All single-digit hexadecimal numbers can be written with four bits.

Binary-coded decimal is a digital encoding method for numbers using decimal notation, with each decimal digit represented by four bits.

List of 4-bit processors

National Semiconductor MM5700CA/D bit-serial 4-bit microcontroller National Semiconductor MM5700CA D Microprocessor.jpg
National Semiconductor MM5700CA/D bit-serial 4-bit microcontroller

See also

Related Research Articles

<span class="mw-page-title-main">Microprocessor</span> Computer processor contained on an integrated-circuit chip

A microprocessor is a computer processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. The microprocessor contains the arithmetic, logic, and control circuitry required to perform the functions of a computer's central processing unit (CPU). The IC is capable of interpreting and executing program instructions and performing arithmetic operations. The microprocessor is a multipurpose, clock-driven, register-based, digital integrated circuit that accepts binary data as input, processes it according to instructions stored in its memory, and provides results as output. Microprocessors contain both combinational logic and sequential digital logic, and operate on numbers and symbols represented in the binary number system.

<span class="mw-page-title-main">Microcontroller</span> Small computer on a single integrated circuit

A microcontroller or microcontroller unit (MCU) is a small computer on a single integrated circuit. A microcontroller contains one or more CPUs along with memory and programmable input/output peripherals. Program memory in the form of NOR flash, OTP ROM, or ferroelectric RAM is also often included on the chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general-purpose applications consisting of various discrete chips.

<span class="mw-page-title-main">Zilog Z80</span> 8-bit microprocessor

The Zilog Z80 is an 8-bit microprocessor designed by Zilog that played an important role in the evolution of early computing. Launched in 1976 and software-compatible with the Intel 8080, it offered a compelling alternative due to its better integration and increased performance. As well as the 8080's seven registers and flags register, the Z80 had an alternate register set that duplicated them, two 16-bit index registers and additional instructions including bit manipulation and block copy/search.

<span class="mw-page-title-main">Zilog</span> American manufacturer of microprocessors

Zilog, Inc. is an American manufacturer of microprocessors, microcontrollers, and application-specific embedded system-on-chip (SoC) products.

<span class="mw-page-title-main">Intel 8008</span> 8-bit microprocessor

The Intel 8008 is an early 8-bit microprocessor capable of addressing 16 KB of memory, introduced in April 1972. The 8008 architecture was designed by Computer Terminal Corporation (CTC) and was implemented and manufactured by Intel. While the 8008 was originally designed for use in CTC's Datapoint 2200 programmable terminal, an agreement between CTC and Intel permitted Intel to market the chip to other customers after Seiko expressed an interest in using it for a calculator.

<span class="mw-page-title-main">Intel 4004</span> 4-bit microprocessor

The Intel 4004 is a 4-bit central processing unit (CPU) released by Intel Corporation in 1971. Sold for US$60, it was the first commercially produced microprocessor, and the first in a long line of Intel CPUs.

Atmel Corporation was a creator and manufacturer of semiconductors before being subsumed by Microchip Technology in 2016. Atmel was founded in 1984. The company focused on embedded systems built around microcontrollers. Its products included microcontrollers radio-frequency (RF) devices including Wi-Fi, EEPROM, and flash memory devices, symmetric and asymmetric security chips, touch sensors and controllers, and application-specific products. Atmel supplies its devices as standard products, application-specific integrated circuits (ASICs), or application-specific standard product (ASSPs) depending on the requirements of its customers.

<span class="mw-page-title-main">Federico Faggin</span> Physicist, engineer, inventor and entrepreneur

Federico Faggin is an Italian-American physicist, engineer, inventor and entrepreneur. He is best known for designing the first commercial microprocessor, the Intel 4004. He led the 4004 (MCS-4) project and the design group during the first five years of Intel's microprocessor effort. Faggin also created, while working at Fairchild Semiconductor in 1968, the self-aligned MOS (metal–oxide–semiconductor) silicon-gate technology (SGT), which made possible MOS semiconductor memory chips, CCD image sensors, and the microprocessor. After the 4004, he led development of the Intel 8008 and 8080, using his SGT methodology for random logic chip design, which was essential to the creation of early Intel microprocessors. He was co-founder and CEO of Zilog, the first company solely dedicated to microprocessors, and led the development of the Zilog Z80 and Z8 processors. He was later the co-founder and CEO of Cygnet Technologies, and then Synaptics.

<span class="mw-page-title-main">Masatoshi Shima</span> Japanese electronics engineer

Masatoshi Shima is a Japanese electronics engineer. He was one of the architects of the world's first microprocessor, the Intel 4004. In 1968, Shima worked for Busicom in Japan, and did the logic design for a specialized CPU to be translated into three-chip custom chips. In 1969, he worked with Intel's Ted Hoff and Stanley Mazor to reduce the three-chip Busicom proposal into a one-chip architecture. In 1970, that architecture was transformed into a silicon chip, the Intel 4004, by Federico Faggin, with Shima's assistance in logic design.

<span class="mw-page-title-main">V850</span> 32-bit RISC CPU architecture

V850 is a 32-bit RISC CPU architecture produced by Renesas Electronics for embedded microcontrollers. It was designed by NEC as a replacement for their earlier NEC V60 family, and was introduced shortly before NEC sold their designs to Renesas in the early 1990s. It has continued to be developed by Renesas as of 2018.

Bit slicing is a technique for constructing a processor from modules of processors of smaller bit width, for the purpose of increasing the word length; in theory to make an arbitrary n-bit central processing unit (CPU). Each of these component modules processes one bit field or "slice" of an operand. The grouped processing components would then have the capability to process the chosen full word-length of a given software design.

<span class="mw-page-title-main">History of general-purpose CPUs</span>

The history of general-purpose CPUs is a continuation of the earlier history of computing hardware.

In computer architecture, 12-bit integers, memory addresses, or other data units are those that are 12 bits wide. Also, 12-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size.

Consumer IR, consumer infrared, or CIR is a class of devices employing the infrared portion of the electromagnetic spectrum for wireless communications. CIR ports are commonly found in consumer electronics devices such as television remote controls, PDAs, laptops, computers, and video game controllers.

<span class="mw-page-title-main">PMOS logic</span> Family of digital circuits

PMOS or pMOS logic is a family of digital circuits based on p-channel, enhancement mode metal–oxide–semiconductor field-effect transistors (MOSFETs). In the late 1960s and early 1970s, PMOS logic was the dominant semiconductor technology for large-scale integrated circuits before being superseded by NMOS and CMOS devices.

In computer architecture, 16-bit integers, memory addresses, or other data units are those that are 16 bits wide. Also, 16-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size. 16-bit microcomputers are microcomputers that use 16-bit microprocessors.

The NEC μCOM series is a series of microprocessors and microcontrollers manufactured by NEC in the 1970s and 1980s. The initial entries in the series were custom-designed 4 and 16-bit designs, but later models in the series were mostly based on the Intel 8080 and Zilog Z80 8-bit designs, and later, the Intel 8086 16-bit design. Most of the line was replaced in 1984 by the NEC V20, an Intel 8088 clone.

<span class="mw-page-title-main">COP400</span> 4-bit microcontroller family

The COP400 or COP II is a 4-bit microcontroller family introduced in 1977 by National Semiconductor as a follow-on product to their original PMOS COP microcontroller. COP400 family members are complete microcomputers containing internal timing, logic, ROM, RAM, and I/O necessary to implement dedicated controllers. Some COP400 devices were second-sourced by Western Digital as the WD4200 family. In the Soviet Union several COP400 microcontrollers were manufactured as the 1820 series.

References

  1. 1 2 Ken Shirriff. "Reverse engineering RAM storage in early Texas Instruments calculator chips".
  2. Mack, Pamela E. (2005-11-30). "The Microcomputer Revolution" . Retrieved 2009-12-23.
  3. "History in the Computing Curriculum" (PDF). Archived from the original (PDF) on 2011-07-19. Retrieved 2017-06-22.
  4. TMS 1000 Series Data Manual (PDF). Texas Instruments. December 1976. Retrieved 2013-07-20.
  5. "Rockwell PPS-4".
  6. "Forth Chips". www.ultratechnology.com.
  7. ISO/IEC 9899:1999 specification. p. 20, § 5.2.4.2.1. Retrieved 2023-07-24.
  8. ISO/IEC 9899:1999 specification. p. 37, § 6.2.6.1 (4). Retrieved 2023-07-24.
  9. Cline, Marshall. "C++ FAQ: the rules about bytes, chars, and characters".
  10. "4-bit integer". cplusplus.com. Retrieved 2014-11-21.
  11. Shima, Masatoshi; Faggin, Federico; Ungermann, Ralph; Slater, Michael (2007-04-27). "Zilog Oral History Panel on the Founding of the Company and the Development of the Z80 Microprocessor" (PDF).
  12. Shirriff, Ken. "The Z-80 has a 4-bit ALU".
  13. Hendrie, Gardner (2002-11-22). "Oral History of Edson (Ed) D. de Castro" (PDF) (Interview). p. 44.
  14. "Nova 1200"
  15. "The Saturn Processor" . Retrieved 2015-12-23.
  16. "Guide to the Saturn Processor" . Retrieved 2014-01-14.
  17. "Introduction to Saturn Assembly Language" . Retrieved 2014-01-14.
  18. "Desk Electronic Calculators: Casio AL-1000"
  19. "Cateye Commuter Manual" (PDF). Retrieved 2014-02-11.
  20. 1 2 "μPD67, 67A, 68, 68A, 69 4-bit single-chip microcontroller for infrared remote control transmission" (PDF). documentation.renesas.com. Archived from the original (PDF) on 2016-01-06.
  21. Haskell, Richard. "Introduction to Digital Logic and Microprocessors (Lecture 12.2)". Archived from the original on 2014-02-22. Retrieved 2014-02-11.
  22. Paul Reuvers and Marc Simons. Crypto Museum. "Barbie Typewriter", 2015
  23. "National Semiconductor COP400". Sean Riddle. Retrieved 2021-12-24.
  24. Woerner, Joerg. "Texas Instruments My Little Computer". Datamath Calculator Museum. Retrieved 2024-06-19.
  25. "1983 Components Catalog" (PDF). Western Digital. p. 621. Retrieved 2021-12-24.
  26. "COP420 4-Bit Processor - Newbrain" . Retrieved 2021-12-30.
  27. "MARC4 4-bit Microcontrollers – Programmer's Guide" (PDF). Atmel. Archived from the original (PDF) on 2014-12-15. Retrieved 2014-01-14.
  28. "MARC4 4-Bit Architecture". Atmel. Archived from the original on 2009-05-31.
  29. "Product End-of-Life (EOL) Notification" (PDF). Atmel. 2014-03-07. Archived from the original (PDF) on 2016-08-07.
  30. "μPD6P9 4-bit single-chip microcontroller for infrared remote control transmission" (PDF). documentation.renesas.com. Archived from the original (PDF) on 2016-03-27.
  31. "μPD17240, 17241, 17242, 17243, 17244, 17245, 17246 4-bit single-chip microcontrollers for small general-purpose infrared remote control transmitters" (PDF). documentation.renesas.com. Archived from the original (PDF) on 2016-03-27.
  32. "Microcontrollers for Remote Controllers" (PDF). documentation.renesas.com. Archived from the original (PDF) on 2013-12-19.
  33. "Mask ROM/ROMless Products 4/8bit Remote Control". Archived from the original on 2008-10-28.
  34. Cravotta, Robert. "Embedded Processing Directory".
  35. "EM6580". Archived from the original on 2013-12-19. Retrieved 2013-05-12.
  36. "EM6580".
  37. "EM6682".
  38. Culver, John (2014-09-27). "National Semiconductor: The COP before the COPS". www.cpushack.com. Retrieved 2020-05-28.
  39. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Sharp Microcomputers Data Book (PDF). September 1990. Retrieved 2018-01-05.