WO2019219036A1 - 一种基于第三方业务的医疗云平台数据共享系统及方法 - Google Patents

一种基于第三方业务的医疗云平台数据共享系统及方法 Download PDF

Info

Publication number
WO2019219036A1
WO2019219036A1 PCT/CN2019/087110 CN2019087110W WO2019219036A1 WO 2019219036 A1 WO2019219036 A1 WO 2019219036A1 CN 2019087110 W CN2019087110 W CN 2019087110W WO 2019219036 A1 WO2019219036 A1 WO 2019219036A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
service
instruction
module
real
Prior art date
Application number
PCT/CN2019/087110
Other languages
English (en)
French (fr)
Inventor
陈韵岱
黄晓波
韩宝石
隆云
周玉杰
翟茜
杨士伟
单俊葆
高海青
吕卫华
孙剑
张锦景
Original Assignee
上海术木医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海术木医疗科技有限公司 filed Critical 上海术木医疗科技有限公司
Priority to US17/052,582 priority Critical patent/US11769586B2/en
Publication of WO2019219036A1 publication Critical patent/WO2019219036A1/zh
Priority to US18/450,352 priority patent/US20230395253A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/018Certifying business or products
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • G06F21/6245Protecting personal data, e.g. for financial or medical purposes
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H15/00ICT specially adapted for medical reports, e.g. generation or transmission thereof
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/20ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/40ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management of medical equipment or devices, e.g. scheduling maintenance or upgrades
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H80/00ICT specially adapted for facilitating communication between medical practitioners or patients, e.g. for collaborative diagnosis, therapy or health monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]

Definitions

  • the present application relates to the field of medical cloud platforms, and in particular, to a medical cloud platform data sharing system and method based on third party services.
  • Vital signs monitoring equipment including bedside multi-parameter monitor, respiratory function monitor, intracranial pressure monitor, fetal heart monitor is the hospital intensive care unit (ICU), as well as cardiology, respiratory, neurosurgery, The main equipment of the ICU in emergency department, obstetrics and gynaecology, etc., is used to monitor the vital signs of patients in real time, which plays an important role in saving the lives of patients.
  • the US ICU monitors and services millions of patients each year. China is the country with the largest number of ICUs in the world. There are millions of types of vital signs monitoring equipment in the national hospitals, and they are growing rapidly.
  • the Clinical Information System (CIS) of the intensive care unit has been able to reduce the labor intensity of the ICU, but it does not solve the problem of data analysis and data management of users' vital signs, and requires users to have expensive hospital information.
  • HIS Hospital Information System
  • the data of the multi-parameter monitoring equipment of the lower hospital bed is generally sent to the higher-level hospital remotely, helping the lower-level hospital to analyze and diagnose the vital signs data and guide the clinical medical work.
  • ICU patient data in lower-level hospitals are concentrated in the upper-level hospitals, it will bring unbearable pressure to the higher-level hospitals, and it is difficult to achieve scale.
  • the global vital sign monitoring device already has a variety of data communication interfaces, but each manufacturer has its own communication protocol and data format, which are not compatible with each other.
  • Some existing technologies can solve the problem of data receiving services of other manufacturers' devices.
  • the problem of different data formats of different manufacturers is not solved, and multiple processing softwares need to be set up, and the data storage format is matched, and the efficiency is obviously low.
  • the information module and the communication module are connected to the vital sign data source module, and the communication module is connected to the Internet to send the data to the cloud computing module and the cloud database.
  • the technology is in each device and the cloud platform of each manufacturer. Between the two, the intermediate processing link has been added, not only the complexity and cost of each device have increased significantly, but also the reliability has decreased.
  • the present application aims to provide a medical cloud platform data sharing system and method based on third-party services, which are used to solve the problem of analyzing and processing the massive vital signs data of the user, and solve the labor intensity and work pressure of the medical staff. Problems, improve medical quality and work efficiency.
  • a medical cloud platform data sharing system based on a third party service including: a terminal device and a cloud platform;
  • the cloud platform includes: a cloud platform data communication subsystem, a cloud platform data support subsystem, and a cloud platform third party service subsystem;
  • the cloud platform data communication subsystem is configured to perform data communication with the cloud platform third party service subsystem and the terminal device;
  • the cloud platform data support subsystem is configured to apply a deep learning framework for distributed parallel computing, and process and store data received by the cloud platform in real time;
  • the third-party service subsystem of the cloud platform provides a third-party service according to the service request instruction of the terminal device, and is also used for performing auxiliary analysis and auditing on the abnormal data processed by the cloud platform data support subsystem;
  • the terminal device includes: a service terminal device and a vital sign monitoring device, configured to send data to the cloud platform according to a target address, and accept a third-party service service.
  • the utility model has the beneficial effects that the third-party business service solves the difficulty in analyzing and storing the massive vital signs data of many hospitals, and solves the problem of lack of data analysis report, reduces the labor intensity of the medical staff, and improves the medical quality and Work efficiency
  • the data includes: a service instruction, vital sign data;
  • the cloud platform data communication subsystem comprises: a data communication module and a data preprocessing module;
  • the data communication module is configured to receive data of a plurality of terminal devices in real time, and perform data interaction with the user; send the service instructions in the data to the third-party service subsystem of the cloud platform, and transmit vital sign data to Data preprocessing module;
  • the data pre-processing module is configured to bind the vital sign monitoring device ID code and the patient information to generate a service serial number, and simultaneously parse, classify, and normalize the vital sign data, retain the original alarm event flag of the device, and stream the service.
  • the number and the pre-processed vital signs data are uniformly encapsulated and stored in the vital signs database;
  • the third-party service subsystem of the cloud platform includes a third-party service service module and a third-party service terminal; the third-party service service module is configured to receive service instructions to provide third-party service services for users; and third-party service terminals are used for cloud platform vital signs. Data-assisted analysis review;
  • the cloud platform data support subsystem comprises: a message bus module, a data storage module, and a real-time analysis processing module;
  • the message bus module is configured to connect and control data transmission between each subsystem and each module in the cloud platform;
  • the data storage module includes a vital sign database, a file database, a business information database, and a cache database for storing and invoking data;
  • the real-time analysis processing module is configured to read data in the vital sign database in real time for analysis and processing, generate a data analysis report and send it to the service terminal device for browsing and reading, and simultaneously deposit it into the file database.
  • the beneficial effects of using the above further solution are: standardizing preprocessing of the vital sign data format, solving the problem that the external device data format is not uniform, reducing the complexity of data processing, and improving the working efficiency of the cloud platform;
  • the user information, clinical information, and data information are linked by the service serial number, and the device ID is bidirectionally mapped and converted, thereby solving the problem of identifying different patients of the same device (the same bed), and establishing a reliable and efficient internal data query and data interaction. Relationship with external logic to meet internal data query and interaction with external data.
  • the real-time analysis processing module adopts an online real-time data analysis and processing method and a deep learning framework based on the Spark engine to perform real-time analysis and screening processing on vital sign data;
  • the deep learning framework of Spark distributed parallel computing reads the vital sign data in the vital sign database in real time.
  • the Spark engine creates multiple tasks in parallel, and triggers Spark Streaming to press the data.
  • the type is divided into RDD data sets, and the central model of the corresponding type is controlled to perform calculation processing on the type data; when the central model calculation processing finds abnormal data exceeding the set reference, analyzing abnormal data features, calculating duration, and marking abnormalities Data attribute, the real-time analysis processing module sends an abnormal event warning to the user according to the service serial number, and generates a real-time data analysis report, which is sent to the service terminal device for browsing and reading, and stored in the file database;
  • the real-time analysis processing module integrates the vital sign data of each user through the real-time analysis and screening process, generates a dynamic data analysis report, sends it to the service terminal device for browsing and reading, and stores the file in a file database;
  • the real-time analysis processing module uses the analysis and processing of the vital sign data, and performs training optimization on each type of central model in real time to obtain a new central model of the type data.
  • the beneficial effects of adopting the above further solution are: supporting the cloud platform to provide users with massive vital signs data service through the distributed, high-throughput and self-learning advantages of the Spark engine-based deep learning framework, and third-party real-time auxiliary analysis
  • the audit further guarantees the quality of cloud platform data services and has wide applicability.
  • the central model is learned and optimized in real time, which improves the accuracy of the central model and improves the processing efficiency of massive vital signs data.
  • the abnormal data is screened and the user is alerted, which improves the accuracy of the abnormal event warning and effectively reduces the equipment false alarm event frequently occurring during the monitoring process.
  • the third-party service terminal is connected to the cloud platform, and is used for performing real-time auxiliary analysis and audit on the real-time analysis and processing of the vital sign data, and the real-time analysis and processing module updates the data in the vital sign database according to the auxiliary analysis result, and is used to generate data.
  • the service instruction is composed of an instruction name and a parameter, and includes: a real-time data service instruction, a data retrieval instruction, a user customization item setting instruction, a consultation initiation instruction, a device remote operation instruction, a medical collaboration information release instruction, Medical clerical service instructions, data analysis report management instructions, data analysis and statistical instructions, patient status assessment instructions, medical tool library query instructions;
  • the beneficial effects of using the above further solution are: presetting the various complicated business operations and processes of the user into service instructions consisting of instruction names and parameters, and setting the service instruction parsing and authentication process, and the user can quickly use the terminal device. And securely issue instructions to the cloud platform to obtain third-party business service support.
  • the third-party service service module includes a real-time data service sub-module; the real-time data service sub-module receives and parses the real-time data service command, and the valid state of the vital sign monitoring device ID code carried by the authentication command is sent to the data communication module. Sending a response message carrying the license information, controlling the data communication module to receive the vital sign data, and transmitting the data to the data preprocessing module for preprocessing, generating the patient service serial number, uniformly encapsulating the preprocessed data, and storing the data in the vital sign database.
  • the real-time analysis processing module is provided for real-time analysis and processing, and a data analysis report is generated and sent to the service terminal device for browsing and reading.
  • the above-mentioned further solution has the beneficial effects of: authenticating the valid state of the vital sign monitoring device ID code carried by the real-time data service instruction, controlling the illegal access, ensuring the safe and reliable operation of the cloud platform, and solving the user
  • authenticating the valid state of the vital sign monitoring device ID code carried by the real-time data service instruction controlling the illegal access, ensuring the safe and reliable operation of the cloud platform, and solving the user
  • the difficulty in analyzing and analyzing massive vital signs data, as well as the lack of data analysis reports, have improved the quality of medical care and work efficiency.
  • the third-party service service module includes a data collection sub-module; the data collection sub-module receives the data retrieval instruction and parses the user information and the legal status of the user authority carried by the authentication instruction, and sends the data to the service terminal device.
  • the response message with the license information according to the patient information carried and the type of the retrieved data, map the patient service serial number, perform data retrieval and retrieval, and provide the retrieved data to the service terminal device for browsing, real-time live broadcast, and historical playback;
  • the record of the data retrieval operation is stored in a service information database; the data types include: real-time data and historical data.
  • the beneficial effects of using the above further solution are: providing users with convenient data retrieval tools, enabling users to quickly obtain accurate and complete data information, grasping patient's condition changes, evaluating medical effects, formulating medical decision-making programs, and improving medical quality and work efficiency. At the same time, the record of the data retrieval operation is saved, and the data security of the cloud platform and the user is guaranteed.
  • the third-party service service module includes a medical document management sub-module, and the medical document management sub-module receives and parses the medical document service instruction, and the user information and the legal authority status of the user authorization are sent to the service terminal device.
  • the medical document type information includes: long-term medical orders, temporary medical orders, nursing forms, and electronic medical records.
  • the beneficial effects of adopting the above further solution are: providing the user with convenient electronic tools for medical documents, converting the cumbersome handwritten copying or keyboard input of various medical instruments into the handwriting, voice and pinyin input of the terminal device, and reducing the complicated operation of the medical staff. To improve the efficiency of medical services; at the same time, to keep records of management operations, to ensure the reliability, safety and traceability of medical documents.
  • the third-party service service module includes a user-defined item setting sub-module, and the user-defined item setting sub-module receives the user-defined item setting instruction and parses the user information and the legal status of the user authority carried by the authentication instruction.
  • the user customization items include: vital sign data abnormal threshold, system and business rule configuration, message notification mode and scope, third party service item selection, and user operation interface setting.
  • the beneficial effects of adopting the above further solution are: providing the user with a convenient tool for setting the customization item, allowing the user to personalize the abnormal threshold according to the condition, and configuring the system and business rules, the manner and scope of the message notification, and the third party service.
  • the project selection and user operation interface are set to improve the user's work efficiency, and at the same time save the record of the setting operation to ensure the security of the cloud platform and the user system.
  • the third-party service service module includes a device remote operation service sub-module; the device remote operation sub-module receives the device remote operation instruction and performs parsing, and authenticates the legal status of the user information and the user authority carried by the instruction, and The service terminal device sends a response message carrying the license information, and maps the single or multiple vital sign monitoring device IDs according to the single or multiple patient information carried by the command, and retrieves and connects the device that meets the command parameters, and the service terminal device performs Control measurement, status query, configuration modification, and device maintenance operation.
  • the obtained operation result is stored in the corresponding database according to the data type, and the remote operation record of the device is stored in the service information data.
  • the beneficial effects of adopting the above further solution are: providing the user with a convenient tool for remote operation of the device, supporting the user service terminal device to remotely control the vital sign monitoring device, changing/adjusting the working mode of the device, meeting the needs of the user, and preserving the remote operation of the device. Records to ensure the security of cloud platforms and user systems.
  • the third-party service service module includes a consultation service sub-module; the consultation service sub-module receives the consultation initiation instruction and performs parsing, the user information carried by the authentication instruction, and the legal status of the user authority, and sends the information to the service terminal device.
  • the response message of the license information, and according to the patient information and the consultation information carried by the instruction, the notification of the initiation terminal device consultation is sent to the consultation party through the cloud platform, the data link between the initiator and the consultation party is established, and the service serial number is mapped according to the patient information.
  • the consultation data file data is stored in the file database, and the record of the consultation operation is stored in the business information database; the patient data includes: vital sign data, clinical information, data analysis Report documents, picture image files, medical documents.
  • the beneficial effects of using the above further solution are: providing convenient consultation tools for small and medium-sized hospitals, establishing medical data and medical resources sharing with large hospitals on the cloud platform, realizing high-risk and difficult case data sharing consultation, guiding the clinical of small and medium-sized hospitals Medical treatment has improved the medical level of small and medium-sized hospitals and the utilization rate of social medical resources.
  • the third-party service service module includes a medical collaboration information release sub-module; the medical collaboration information release sub-module receives the medical collaboration information release instruction and parses the user information and the legal status of the user authority carried by the authentication instruction, and The service terminal device sends a response message carrying the license information, and simultaneously issues the collaboration information to the medical collaboration team terminal device through the cloud platform according to the patient information and the medical collaboration team information carried in the instruction, and prompts the sound and light, the vibration, the graphic and the text.
  • the record of the medical collaboration information publishing operation is stored in the business information database.
  • the beneficial effects of using the above further solution are: supporting users to establish a multidisciplinary medical collaboration mechanism, and extending the multidisciplinary medical collaboration mechanism beyond the user, quickly and effectively concentrating the user's medical resources, and providing services for emergency and high-risk patients. Improve medical quality and work efficiency.
  • a method for data sharing of a medical cloud platform based on a third-party service which includes the following steps:
  • the terminal device sends data to the cloud platform according to the target address through identity verification
  • the data communication module receives data of the plurality of terminal devices in real time, the data includes: a service instruction and vital sign data; and the service instruction is sent to the third-party service service module, and the vital sign data is transmitted to the data pre-processing module;
  • the third-party service service module receives the foregoing service instruction, and provides a third-party service service for the user according to the parameter carried by the service instruction;
  • the data preprocessing module binds the vital sign monitoring device ID code and the patient information to generate a service serial number based on the system coding table rule;
  • the patient service serial number and the preprocessed data are uniformly encapsulated and stored in the vital sign database;
  • the real-time analysis processing module reads the vital sign data in real time for analysis and processing, and generates a data analysis report.
  • the beneficial effects of the above method are: through the third-party business service, the difficulty in analyzing and interpreting and storing the massive vital signs data of the user is solved, and the problem of lack of data analysis report is solved, and the medical quality and work efficiency are improved;
  • Standardized preprocessing of the vital sign data format solves the problem that the external device data format is not uniform, reduces the difficulty of data processing, and improves the working efficiency of the cloud platform;
  • the user information, clinical information, and data information are linked by the service serial number, and the device ID is bidirectionally mapped and converted, thereby solving the problem of addressing and identifying the data query and data interaction of the cloud platform, and identifying different patients of the same device (the same bed).
  • the internal and external logical relationships of reliable and efficient data query and data interaction are established to meet the requirements of internal data query and interaction with external data.
  • the third party business service includes a real time data service:
  • the service terminal device inputs the patient information, the vital sign monitoring device ID code, and sends a real-time data service instruction to the cloud platform;
  • the data communication module sends the received instruction to the real-time data service sub-module
  • the real-time data service sub-module receives the instruction and parses, authenticates the vital sign of the vital sign monitoring device ID carried by the command, sends a response message carrying the license information to the data communication module, allows the receiving vital sign data, and transmits the data to the data pre- Processing module
  • the data preprocessing module preprocesses the vital sign data, generates a service serial number, and uniformly encapsulates the preprocessed vital sign data, and stores the data in the vital sign database;
  • the real-time analysis processing module applies the online real-time data analysis processing method and the deep learning framework based on the Spark engine to read the vital sign data in the vital sign database in real time;
  • the Spark engine creates multiple tasks in parallel, triggers the Spark stream to divide the data into RDD data sets by type, and controls the central model of the corresponding type to calculate and process the type data;
  • the central model finds abnormal data exceeding a set reference, analyzes abnormal data features, calculates duration, and marks abnormal data attributes;
  • the real-time analysis processing module generates a real-time data analysis report according to the abnormal data, issues an abnormal event warning to the user, and sends the analysis report to the service terminal device, and deposits the file into the file database;
  • the real-time analysis processing module integrates the whole life vital sign data of each user subjected to the analysis screening process, generates a dynamic data analysis report, sends the data to the service terminal device, and stores the data in the file database;
  • the third-party service terminal performs real-time auxiliary analysis and audit on the analyzed vital sign data, and the real-time analysis and processing module updates the data in the vital sign database according to the auxiliary analysis result, and is used to generate a data analysis report.
  • the above-mentioned further solution has the beneficial effects of: authenticating the valid state of the vital sign monitoring device ID code carried by the real-time data service instruction, controlling the illegal access, ensuring the safe and reliable operation of the cloud platform, and simultaneously solving the problem. Users' difficulties in analyzing and analyzing massive vital signs data, as well as the lack of data analysis reports, third-party auxiliary analysis and auditing further ensure the quality of cloud platform data services, improve medical quality and work efficiency, and reduce the labor intensity and work pressure of medical staff.
  • the Spark engine-based deep learning framework has the advantages of distributed, high-throughput and self-learning, and supports the cloud platform to provide users with massive vital signs data services.
  • the third-party auxiliary analysis and audit provides guarantee for data service quality. Wide applicability; real-time learning and optimization of the central model, improve the accuracy of the central model, and, in turn, improve the processing efficiency of massive vital signs data.
  • the third-party service service further includes a data retrieval service:
  • the service terminal device inputs the patient information, retrieves the data type information, and sends a data retrieval service instruction to the cloud platform;
  • the data communication module sends the received instruction to the data acquisition service sub-module
  • the data retrieval service sub-module receives the instruction and parses the user information, the legal status of the user authority carried by the instruction, and sends a response message carrying the license information to the user service terminal device;
  • the data retrieval service sub-module retrieves the mapped service serial number according to the patient information carried by the instruction
  • the data retrieval service sub-module retrieves and retrieves data conforming to the instruction parameters according to the service serial number
  • the data retrieval service sub-module provides the retrieved data to the user service terminal device for browsing, real-time live broadcast, and historical playback.
  • the data retrieval service sub-module stores the records of the data retrieval service operations in the business information database.
  • the beneficial effects of using the above further solution are: providing users with convenient data retrieval tools, enabling users to quickly obtain accurate and complete data information, grasping patient's condition changes, evaluating medical effects, formulating medical decision-making programs, and improving medical quality and work. Efficiency, while keeping records of data retrieval operations, ensuring data security for cloud platforms and users.
  • the third party business service further includes a medical document management service:
  • the service terminal device inputs patient information, medical document type information, and issues a medical document service instruction to the cloud platform;
  • the data communication module sends the received instruction to the medical document management sub-module
  • the medical document management sub-module receives the instruction and parses, authenticates the user information carried by the instruction, the legal status of the user authority, and sends a response message carrying the license information to the user service terminal device;
  • the medical document management sub-module retrieves the service serial number mapped by the patient information according to the patient information carried by the instruction;
  • the medical document management sub-module searches for the medical document file that meets the instruction parameters according to the business serial number and the medical document type information;
  • the service terminal device creates, edits, queries, and maintains the selected medical document file by handwriting, voice, and pinyin input, and stores the processed medical document file in the file database;
  • the medical document management sub-module creates a medical document conforming to the instruction parameter according to the patient information, and saves the processed medical document file and the patient information into the file database;
  • the medical document management sub-module stores the records of the medical document management operations in the business information database.
  • the beneficial effects of adopting the above further solution are: providing users with convenient electronic tools for medical documents, and converting the handwritten copying or keyboard input of the medical documents such as long-term medical advice, temporary medical advice, nursing forms, electronic medical records, etc. into terminal device handwriting, Voice and pinyin input reduce the complexity of medical staff operations, improve the efficiency of medical services, and keep records of management operations, ensuring the reliability, safety and traceability of medical documents.
  • the third-party business service further includes a user-defined item setting service:
  • the service terminal device selects a user customization item, inputs the setting content, and issues a user customization item setting instruction to the cloud platform;
  • the data communication module sends the received instruction to the user customization item setting submodule
  • the user customization item setting submodule accepts the instruction and parses the user information and the legal status of the user authority carried by the authentication instruction, and sends a response message carrying the license information to the user service terminal device;
  • the user service terminal device edits, updates, and stores the setting operation, and the cloud platform performs the updated setting
  • the user customization item setting sub-module stores the record of the setting operation in the business information database.
  • the beneficial effect of adopting the above further solution is that the user is provided with a convenient tool for setting the customization item, and the user can flexibly set according to the work requirement and work habit, including personalizing the abnormal data threshold according to the patient's condition, and saving the setting operation. Records to ensure the security of cloud platforms and user systems.
  • the third-party service service further includes a device remote operation service:
  • the service terminal device inputs single or multiple patient information, remote operation type information, and sends a device remote operation instruction to the cloud platform;
  • the data communication module sends the received instruction to the remote operation submodule of the device
  • the device remote operation submodule receives the instruction and parses the user information and the legal status of the user authority carried by the authentication command, and sends a response message carrying the license information to the user service terminal device;
  • the device remote operation sub-module searches for the device that meets the instruction parameter according to the single or multiple vital sign monitoring device IDs mapped by the patient information, and establishes a connection;
  • the service terminal device performs control measurement, status query, configuration modification, and equipment maintenance operation on the connected vital sign monitoring device;
  • the service terminal device completes the connection and operation, and the device remote operation sub-module stores the acquired operation result into the corresponding database according to the data type; and stores the record of the remote operation of the device into the service information database.
  • the beneficial effects of adopting the above further solution are: providing the user with a convenient tool for remote operation of the device, allowing the user to remotely control the vital sign monitoring device through the service terminal device, adjusting/changing the working mode of the device, meeting the application requirements of the user, and improving work efficiency, At the same time, the record of the remote operation of the device is saved to ensure the security of the cloud platform and the user system.
  • FIG. 1 is a block diagram of a medical cloud platform data sharing system based on a third party service according to an embodiment of the present application
  • FIG. 2 is a flowchart of a method for sharing data of a medical cloud platform based on a third-party service according to an embodiment of the present application
  • 3 is a deep learning framework based on Spark distributed parallel computing in the embodiment of the present application.
  • FIG. 4 is a flowchart of third party auxiliary analysis and audit in the embodiment of the present application
  • FIG. 5 is a flowchart of generating a dynamic data analysis report according to an embodiment of the present application.
  • FIG. 6 is a flowchart of a real-time data service in an embodiment of the present application.
  • FIG. 7 is a flowchart of a data retrieval service in an embodiment of the present application.
  • FIG. 8 is a flowchart of a medical document management service in an embodiment of the present application.
  • FIG. 9 is a flowchart of a remote operation service of a device in an embodiment of the present application.
  • FIG. 10 is a flowchart of a consultation service in an embodiment of the present application.
  • FIG. 11 is a flowchart of a medical collaboration information publishing service according to an embodiment of the present application.
  • a specific embodiment of the present application discloses a medical cloud platform data sharing system based on a third-party service, as shown in FIG. 1 , including: a terminal device and a cloud platform;
  • the cloud platform includes: a cloud platform data communication subsystem, a cloud platform data support subsystem, and a cloud platform third party service subsystem;
  • the cloud platform data communication subsystem is used for data communication with the third-party service subsystem and the terminal device of the cloud platform;
  • the cloud platform data support subsystem is used to apply a deep learning framework for distributed parallel computing, and processes and stores data received by the cloud platform in real time;
  • the third-party service subsystem of the cloud platform provides a third-party service according to the service request instruction of the terminal device, and is also used for performing auxiliary analysis and auditing on the abnormal data processed by the cloud platform data support subsystem;
  • the terminal device includes: a service terminal device and a vital sign monitoring device; and is configured to send data to the cloud platform according to the target address, and accept the third-party service service.
  • the cloud platform data communication subsystem comprises: a data communication module and a data preprocessing module; the data communication module is configured to connect various end terminal devices, receive data of a plurality of terminal devices in real time, and perform data interaction;
  • the data preprocessing module is configured to bind the vital sign monitoring device ID code and the patient information to generate a service serial number, and simultaneously parse, classify, and normalize the vital sign data, retain the original alarm event flag of the device, and save the service serial number and
  • the preprocessed data is uniformly encapsulated and stored in the vital sign database;
  • the third-party service subsystem of the cloud platform includes: a third-party service service module and a third-party service terminal; a third-party service service module is used to receive service instructions to provide third-party service services for users; and third-party service terminals are used for data assistance of the cloud platform. Analytical processing.
  • the cloud platform data support subsystem includes: a message bus module, a data storage module, and a real-time analysis processing module;
  • the message bus module is used for connecting and controlling the transmission of data and instructions between each subsystem and each module;
  • the data storage module includes a vital sign database, a file database, a business information database, and a cache database for data storage and invocation;
  • the real-time analysis processing module is configured to read data in the vital sign database in real time for analysis and processing, and generate a data analysis report.
  • the cloud platform is connected to the vital sign monitoring device (exemplarily, the vital sign monitoring terminal device may be a multi-parameter monitoring device, a respiratory function monitoring device, an intracranial pressure monitoring device, a fetal heart monitoring device), a service terminal device, and a third party.
  • the service terminal performs data interaction; the service terminal device sends a real-time data service instruction to the cloud platform according to the target address, and the third-party service service module parses the instruction, and the vital sign monitoring device ID code valid state carried by the authentication command is sent to the data communication module.
  • the response message carrying the license information is allowed to receive the vital sign data, the data communication module establishes the connection receiving data according to the type of the communication protocol, and transmits the data to the data preprocessing module; the data preprocessing module encodes the vital sign monitoring terminal device ID with the patient
  • the information binding generates the service serial number, and at the same time, the vital sign data is parsed, classified, and the data format is standardized.
  • the original alarm event flag of the device is retained, and the service serial number and the preprocessed data are uniformly encapsulated and stored in the vital sign database.
  • the time analysis processing module reads the data in the vital sign database and the original alarm event data of the device in real time, analyzes and calculates the abnormal vital sign data exceeding the set reference, generates a data analysis report, and sends the data analysis report to the user terminal device, and the user can read Browse and download prints as a clinical basis.
  • the cloud platform performs data interaction with the third-party service terminal through business process control and data scheduling, and the third-party service terminal performs auxiliary analysis and audit on the data analyzed and processed by the analysis, and the real-time analysis processing module searches the vital sign database according to the auxiliary analysis and the audit result.
  • the patient data is updated to generate a data analysis report; the user can issue a service instruction to the cloud platform to obtain various third-party business service support.
  • the cloud platform can connect various different terminal devices through the network, analyze massive vital sign data in real time, screen abnormal data, generate data analysis reports, and effectively reduce equipment frequently in the process of vital sign monitoring. False alarm incidents improve medical quality and work efficiency, reduce the labor intensity of medical staff, and provide third-party auxiliary analysis and audit, which provides guarantee for the quality of data analysis on the cloud platform.
  • user terminal equipment can issue instructions to the cloud platform to obtain various kinds of Third-party business service support with broad applicability.
  • the service terminal device and the third-party service terminal connected by the cloud platform include: at least one of a computer device, an interactive touch screen device, a handheld mobile device, and a multimedia device; and the cloud platform can also be connected to a hospital information management system (HIS).
  • HIS hospital information management system
  • CIS Intensive Care Clinical Information System
  • API Application Programming Interface
  • the data communication module is embedded with a communication protocol for connecting various terminal devices and external systems, receiving uploaded data in real time, and transmitting the service instructions to the third-party service service module, and transmitting vital sign data to Data preprocessing module;
  • the data preprocessing module includes a system coding table, preprocesses each user data obtained, and generates a patient service serial number, and the service serial number and the preprocessed data are uniformly encapsulated, stored in the vital sign database, and the real-time analysis processing module is real-time. Read the data in the vital sign database for analysis and screening processing; specifically:
  • the patient business serial number and the preprocessed vital sign data are uniformly encapsulated and stored in the vital sign database.
  • the data communication module supports multiple communication protocols, illustratively, including: TCP/IP Protocol, instant messaging protocol, HL7 protocol, DICOM protocol, multimedia communication protocol, device manufacturer communication protocol, automatic identification of user identity and terminal device ID coding, establishment of network connection, reception of data.
  • the data preprocessing module controls the binding of the vital sign monitoring terminal device ID code and the patient information based on the system coding table rule, and generates a service serial number (the service serial number code includes a time stamp, patient information, user information, device information, and a quantity counter).
  • the vital signs data are parsed, classified, and the data format is standardized.
  • the patient service serial number and the preprocessed data are uniformly encapsulated and provided to the cloud platform system for storage, reading, calling, and analysis and calculation.
  • the cloud platform data communication subsystem supports multiple communication protocols and data format standardization processing, and the service serial number and the vital sign monitoring device ID maintain bidirectional mapping conversion, as the address identification of data query and data interaction, thereby
  • the cloud platform system establishes a flexible and efficient data communication interface, as well as patient and data identification, to meet the vitality monitoring equipment of different manufacturers, the access and data interaction requirements of external systems, and expand the service surface and service content.
  • the message bus module of the embodiment adopts a message queue communication protocol, which includes a message service and a message queue interface, and is used for connecting and controlling the service message notification and service data transmission between each subsystem and each module of the cloud platform system; the message queue passes the service solution.
  • Coupling, message broadcasting, and peak-to-peak flow control support a large number of messages in the real-time transmission system of the bus, and reliable delivery of message transmission, which improves the operating efficiency of the cloud platform system.
  • the vital sign database uses a structured data service system for storing vital sign data that has been parsed, classified, and standardized in data format, supports high-concurrency real-time queries, and provides mass storage and real-time query capabilities; among them, vital sign data is divided into waveforms. Class data and numeric class data.
  • the file database uses an object storage service system for storing various types of files generated by the business system, and uploads the data files in an object (object), including patient information files, clinical information files, vital sign data report files, medical documents.
  • object including patient information files, clinical information files, vital sign data report files, medical documents.
  • Unstructured data files such as files, multimedia video files, and medical tool files.
  • the business information database adopts a relational model to organize data database, which is used for the cloud platform to store structured business data, and to control the business logic relationship data query and storage between modules, and has the advantages of maintaining data consistency.
  • the cache database uses a non-relational database to control data exchange and state retention between modules, and is used to cache database query results, reduce database access times, and improve the response speed of the cloud platform.
  • the data storage module of the embodiment integrates the advantages of various types of databases and data storage service systems, and solves the problem that the cloud platform supports large-scale data collection, diverse data structures, and multiple data types, and supports the cloud platform at a high level. Run in a concurrent environment.
  • the real-time analysis processing module is configured to process vital sign data in real time.
  • this embodiment uses the deep learning framework of Spark distributed parallel computing to read the vital sign data and the original device included in the vital sign database in real time.
  • Alarm data according to the set micro-batch processing interval, the Spark engine creates multiple tasks in parallel, triggers the Spark stream to divide the data into RDD data sets by type, and controls the central model of the corresponding type to calculate and process the type data;
  • the central model calculation process finds abnormal data exceeding the set reference, analyzes the abnormal data feature, calculates the duration, and marks the abnormal data attribute;
  • the real-time analysis processing module generates a real-time data analysis report of the abnormal data, and issues an abnormal event warning to the user;
  • the real-time analysis processing module integrates and outputs the vital sign data of each user through the analysis and screening process to generate a dynamic data analysis report;
  • the real-time analysis processing module stores the real-time data analysis report and the dynamic data analysis report in a file database
  • the real-time analysis processing module uses the quantitative and qualitative vital sign data that has been analyzed and processed in the vital sign database to perform learning training optimization for each type of central model in real time, and obtain a new central model of the type data;
  • the third-party service terminal performs real-time auxiliary analysis and audit on the processed vital sign data, and the real-time analysis processing module updates the data in the vital sign database according to the auxiliary analysis result, and is used to generate a data analysis report.
  • the real-time analysis processing module adopts a deep learning framework based on distributed parallel computing, and can be one of the general Spark, Storm, Flink, and Samza frameworks.
  • the deep learning framework based on distributed parallel computing has the advantages of real-time streaming data calculation, high throughput and self-learning, which greatly improves the real-time processing speed of massive vital signs data, and effectively reduces the false alarm events frequently occurring during the monitoring of vital signs. , reducing the labor intensity and work pressure of medical staff.
  • the central model is divided into two categories, one is to analyze the shape, rhythm and rate of waveform data, and the other is to analyze the numerical data amplitude.
  • the central model includes second-order difference calculation tools and logic analysis tools. Real-time calculation and analysis of the shape, rhythm, rate, and value of vital sign data, classification and labeling of waveforms, statistical summation of logarithmic values, and screening of abnormal data beyond the benchmark.
  • the method also includes using the qualitative and qualitative vital sign data in the vital sign database to perform learning training optimization for each type of central model in real time, and obtain a new central model of the type data.
  • the vital sign data analyzed and processed in this embodiment includes electrocardiogram, respiration, non-invasive blood pressure, invasive blood pressure, blood oxygen saturation, body temperature, pulse rate, intracranial pressure, end-tidal carbon dioxide, and fetal heart rate.
  • waveform-like vital signs data include: total heart rate, ECG interval, QRS time limit, ST segment morphology, QT interval, total respiratory time, respiratory wave interval, pulse volume peak-to-valley, intracranial pressure peak Valley value, end-tidal carbon dioxide partial pressure peak-to-peak value, end-tidal carbon dioxide partial pressure wave interval; numerical vital sign data include: systolic and diastolic blood pressure, pulse rate, blood oxygen saturation in non-invasive/invasive blood pressure Degree, body temperature, fetal heart rate; heart rate, heart index, total peripheral resistance value of non-invasive cardiac output; airway pressure value, airway flow value, airway volume value of respiratory mechanics.
  • abnormal data features include: tachycardia, bradycardia, flutter, frequent premature beats, cardiac arrest, RonT, QT interval prolongation, ST segment elevation/depression, apnea, hypopnea, respiration Fast, blood oxygen saturation increase/decrease, systolic blood pressure and diastolic blood pressure increase/decrease, mean arterial pressure increase/decrease, pulse volume wave peak increase/decrease, intracranial pressure wave peak increase/decrease, exhalation At the end of the carbon dioxide partial pressure wave peak increase / decrease, fetal heart rate increased / decreased, non-invasive cardiac output decreased, respiratory mechanics increased / decreased.
  • the central model calculates and analyzes the abnormal data that exceeds the set reference, analyzes the abnormal data characteristics, calculates the abnormal event duration, and marks the abnormal data attribute.
  • the real-time analysis processing module generates the real-time data analysis report and stores the abnormal data.
  • the device sends an abnormal event warning to the user according to the device ID mapped by the patient service serial number, and sends the real-time data analysis report to the user.
  • the above-mentioned setting standard uses the internationally-used vital sign data diagnostic standard as a benchmark for analysis calculation.
  • the dynamic data analysis report content generated by the real-time analysis processing module of the embodiment dynamic electrocardiogram data, dynamic blood pressure data, respiratory data, blood oxygen saturation data, invasive blood pressure data, intracranial pressure data, end-tidal carbon dioxide Partial pressure data, body temperature data, fetal heart rate data, non-invasive cardiac output data, comprehensive analysis and calculation of respiratory mechanics data, waveform classification markers, waveform graphs, and their trend graphs, histograms, scatter plots, variability analysis plots ;
  • the generated real-time data analysis report includes: abnormal ECG data, abnormal blood pressure data, abnormal respiratory data, abnormal blood oxygen saturation data, abnormal intracranial pressure data, abnormal end-tidal carbon dioxide partial pressure data, abnormal body temperature data, abnormalities Fetal heart rate data, abnormal non-invasive cardiac output data, real-time analytical calculations of abnormal respiratory mechanics data, waveform classification markers, abnormal waveform patterns, and trend graphs.
  • the cloud platform stores the above data analysis report into the file database, and the user can issue a data retrieval instruction to the cloud platform, perform a search query, statistical analysis, and review and summarize.
  • the user sends a service instruction to the cloud platform on the basis of obtaining the corresponding authority, and the third party business service module receives the service instruction.
  • the service instructions are parsed and authenticated, and the third-party service service is provided to the user according to the parameters carried by the service instruction.
  • the service instruction consists of the instruction name and parameters, specifically: real-time data service instruction, data retrieval instruction, abnormal data event query instruction, data analysis report management instruction, medical document service instruction, data analysis statistical instruction, user customization item. Set instructions, consultation initiation instructions, patient status assessment instructions, device remote operation instructions, medical collaboration information release instructions, medical tool library query instructions.
  • the service instruction parameter is composed of user information, user authority, and instruction content, and the user sends a service instruction to the cloud platform through the terminal device, and the data communication module sends the received service instruction to the third-party service service module for analysis and authentication.
  • the third-party business service module provides third-party business services to the user according to the service instruction parameters.
  • the third-party service service module includes: a real-time data service sub-module, a data retrieval sub-module, a medical document management sub-module, a user customization item setting sub-module, a consultation service sub-module, a device remote operation sub-module, and a medical collaboration information release.
  • the user's various types of complex business processes and content are automatically decomposed and integrated through the modularization and integration, and the user is automatically implemented on the cloud platform, and the user obtains stable and efficient multiple third-party service services, thereby reducing the labor intensity and work pressure of the medical staff. .
  • the real-time data service sub-module receives the real-time data service instruction and parses the active state of the vital sign monitoring device ID code carried by the authentication command, and controls the data communication module to receive the vital sign data and transmits the data to the data pre-processing.
  • the module performs pre-processing, generates the service serial number, and encapsulates the data with the pre-processed data, and stores it in the vital sign database.
  • the real-time analysis and processing module reads the data in the vital sign database in real time, generates a data analysis report, and sends it to the service terminal.
  • the device browses and reads.
  • the data retrieval sub-module receives the data retrieval instruction and parses the user information, the user status of the user authority, and the response message carrying the license information to the service terminal device.
  • the patient information and the data type carried in the instruction the patient service serial number is mapped, the data retrieval is performed, and the retrieved data is provided to the service terminal device for browsing, real-time live broadcast, and historical playback; the record of the data retrieval operation is stored.
  • the retrieved data types include: vital signs real-time/history data, data analysis report files, picture image files, multimedia video files, medical document files.
  • the medical document management sub-module receives the medical document service instruction and parses the user information and the legal status of the user authority carried by the authentication instruction, and sends a response message carrying the permission information to the service terminal device, and is carried according to the instruction.
  • Patient information and medical document type information mapping the patient business serial number, retrieving the medical documents that meet the instruction parameters, and providing the service terminal equipment, and the service terminal equipment creates, edits, queries, maintains, and stores the management operations by handwriting, voice, and pinyin.
  • the record of the management operation is stored in a business information database;
  • the medical document type information includes: a long-term medical order, a temporary medical order, a nursing form, and an electronic medical record.
  • the device remotely operates the service submodule
  • the cloud platform receives the device remote operation instruction and parses the user information and the legal status of the user authority carried by the authentication instruction, and sends a response message carrying the license information to the service terminal device, and simultaneously Mapping single or multiple vital sign monitoring device IDs according to the single or multiple patient information carried by the command, retrieving and connecting devices that meet the command parameters, and the service terminal device performs control measurement, status query, configuration modification, device maintenance operation, and acquired
  • the operation result is stored in the corresponding database according to the data type, and the record of the remote operation of the device is stored in the service information database.
  • the consultation service sub-module, the cloud platform receives the consultation initiation instruction and parses, authenticates the user information carried by the instruction, and the legal status of the user authority, and sends a response message carrying the permission information to the service terminal device, and carries according to the instruction.
  • Patient information, consultation information, notification to the consultation party to initiate terminal device consultation establish a data link between the initiator and the consultation party, map the service serial number according to the patient information, share patient data, conduct multimedia video and data consultation, and consult
  • the data file data is stored in the file database, and the records of the consultation operation are stored in the business information database.
  • the patient data includes: vital sign data, clinical information, data analysis report files, picture image files, medical document files.
  • the medical collaboration information issuance sub-module receives the medical collaboration information release instruction and parses, authenticates the user information carried by the instruction, the legal status of the user authority, and sends a response message carrying the license information to the service terminal device,
  • the collaboration information is released to the medical collaboration team terminal device through the cloud platform, and the sound and light, the vibration, the graphic and the text are prompted, and the record of the medical collaboration information release operation is stored in the service.
  • Information database is used to the medical collaboration information release instruction and parses, authenticates the user information carried by the instruction, the legal status of the user authority, and sends a response message carrying the license information to the service terminal device.
  • the user can personalize the abnormal threshold according to the patient's condition, as well as system and business rule configuration, message notification mode and scope, third-party service item selection, and user.
  • the operation interface is set to improve user work efficiency, and at the same time save records of setting operations to ensure the security of the cloud platform and the user system.
  • the cloud platform medical tool library service sub-module provides users with medical tool support services
  • the medical tool library includes ICU common drug management sub-libraries (including pharmacology, Dose, incompatibility, expiration date, warehousing time), clinical medical tool sub-library (including clinical drug dictionary, clinical diagnosis and treatment manual, nursing manual, scientific literature), ICU equipment management sub-library (including equipment and consumable management files, defibrillator Quick operation manual, ventilator quick operation manual, vital signs monitoring equipment quick operation manual), the service terminal equipment can send medical tool library query instructions to the cloud platform, and quickly query the medical tool library in real time online.
  • ICU common drug management sub-libraries including pharmacology, Dose, incompatibility, expiration date, warehousing time
  • clinical medical tool sub-library including clinical drug dictionary, clinical diagnosis and treatment manual, nursing manual, scientific literature
  • ICU equipment management sub-library including equipment and consumable management files, defibrillator Quick operation manual, ventilator quick operation manual, vital signs monitoring equipment quick operation
  • the medical tool library service sub-module, the cloud platform receives the medical tool library query instruction and parses, authenticates the user information carried by the instruction, the legal status of the user authority, and sends a response message carrying the license information to the service terminal device, According to the type of the query data carried by the instruction, the related information in the medical tool library is retrieved and provided to the service terminal device for browsing and reading, and the record of the medical tool library query operation is stored in the business information database.
  • FIG. 2 Another embodiment of the present application discloses a medical cloud platform data sharing method based on a third-party service, as shown in FIG. 2, including the following steps:
  • Step S201 The terminal device sends data to the cloud platform according to the target address by using identity verification.
  • Step S202 the data communication module receives the data of the plurality of terminal devices in real time, and sends the service instructions to the third-party service service module, and the vital sign data is transmitted to the data pre-processing module;
  • Step S203 the data preprocessing module binds the vital sign monitoring device ID code and the patient information to generate a service serial number based on the system coding table rule;
  • Step S204 parsing, classifying, and normalizing the data of each user vitality data obtained, and retaining the original alarm event flag of the device;
  • Step S205 the patient service serial number and the preprocessed data are uniformly encapsulated and stored in the vital sign database;
  • Step S206 the real-time analysis processing module reads the vital sign data in real time for analysis processing, and generates a data analysis report.
  • Step S207 The third-party service service module receives the service instruction, and provides a third-party service service for the user according to the parameter carried by the service instruction;
  • the method satisfies the massive vital sign data by real-time analysis and satisfies the user's needs; by supporting various communication protocols, standardizing the data format, solving the external device and system access, and the data format is not uniform
  • the problem is to reduce the difficulty of efficient processing in the data set; the business serial number and device ID mapping meet the requirements of internal data query and external data interaction, and solve the problem of identifying different patients of the same device (same bed);
  • the three-party business service migrates the complicated and heavy business work of the user to the cloud platform for automatic processing, reduces the labor intensity of the medical staff, and improves the medical quality and work efficiency.
  • the method further includes the following steps:
  • Step S401 The third-party service terminal is connected to the cloud platform, and the cloud platform transmits the processed vital sign data to the third-party service terminal for auxiliary analysis and audit through the business process control and data scheduling;
  • Step S402 The third-party service terminal reviews the data tag identifier, the abnormal data attribute and the flag, the calculation and the statistical data, the graphic, and the waveform;
  • Step S403 the third-party service terminal sends the auxiliary analysis and audit result back to the cloud platform;
  • Step S404 the real-time analysis processing module updates the patient data in the vital sign database according to the auxiliary analysis audit result, and generates a data analysis report.
  • the third-party auxiliary analysis processing process not only improves the accuracy and fault tolerance of the real-time processing and analysis of the cloud platform data, but also serves as a sample parameter for the cloud platform training machine learning, further improving the accuracy of the central model and improving the working efficiency of massive data processing.
  • the method further includes the following steps:
  • the deep learning framework of Spark distributed parallel computing reads the vital sign data in the vital sign data and the original alarm event data of the device included;
  • the Spark engine creates multiple tasks in parallel, triggers the Spark stream to divide the data into RDD data sets by type, and controls the central model of the corresponding type to analyze and screen the type data.
  • the central model includes second-order differential calculation tools and/or logic analysis tools to calculate and analyze the shape, rhythm, rate and value of vital sign data in real time, classify and mark the waveforms, statistically summarize the logarithmic values, and screen abnormal data beyond the benchmark. ;
  • the central model calculation analysis finds abnormal data beyond the set reference, analyzes the abnormal data characteristics, calculates the abnormal event duration, marks the abnormal data attributes, generates a real-time data analysis report, and stores it in the file database.
  • the method integrates and outputs vitality data of the entire process after the analysis and screening process, generates a dynamic data analysis report, and stores the data in a file database.
  • the method also includes using the quantitatively defined vital sign data in the vital sign database to train and optimize each type of central model in real time, and obtain a new central model of the type data. .
  • the waveform-like vital signs data processed by the method include: total heart rate, ECG interval, QRS time limit, ST segment morphology, QT interval, total respiratory time, respiratory wave interval, pulse volume peak-to-valley, intracranial Pressure peaks and valleys, end-tidal carbon dioxide partial pressure peaks and valleys, end-tidal carbon dioxide partial pressure wave interval; numerical vital signs data include: systolic and diastolic blood pressure, pulse rate, blood in non-invasive/invasive blood pressure Oxygen saturation, body temperature, fetal heart rate; heart rate, heart index, total peripheral resistance value of non-invasive cardiac output; airway pressure value, airway flow value, airway volume value of respiratory mechanics.
  • the abnormal data characteristics analyzed by the method include: tachycardia, bradycardia, fluttering, frequent premature beats, cardiac arrest, RonT, QT interval prolongation, ST segment elevation/depression, apnea, hypopnea, Excessive breathing, increase/decrease in blood oxygen saturation, increase/decrease in systolic and diastolic blood pressure, increase/decrease in mean arterial pressure, increase/decrease in peak pulse volume, and increase/decrease in intracranial pressure wave At the end of expiration, the peak value of carbon dioxide partial pressure wave rises/falls, the fetal heart rate increases/decreases, the non-invasive cardiac output decreases, and the respiratory mechanics value increases/decreases.
  • Dynamic data analysis report generated by the method: dynamic ECG data, dynamic blood pressure data, respiratory data, blood oxygen saturation data, invasive blood pressure data, intracranial pressure data, end-tidal carbon dioxide partial pressure data, body temperature Data, non-invasive cardiac output data, comprehensive analysis and calculation of respiratory mechanics data, waveform classification markers, waveform graphs, and their trend graphs, histograms, scatter plots, variability analysis plots;
  • the real-time data analysis report generated by the method includes: abnormal ECG data, abnormal blood pressure data, abnormal respiratory data, abnormal blood oxygen saturation data, abnormal intracranial pressure data, abnormal end-tidal carbon dioxide partial pressure data, abnormal body temperature data Abnormal fetal heart rate data, abnormal non-invasive cardiac output data, real-time analytical calculation of abnormal respiratory mechanics data, waveform classification markers, abnormal waveform patterns, and trend graphs.
  • the cloud platform stores the above data analysis report into the file database, and the user can issue a data retrieval instruction to the cloud platform, perform a search query, statistical analysis, and review and summarize.
  • Step S501 the cloud platform integrates and outputs the vital sign data of each user through the analysis screening process through the real-time analysis processing module, and deposits the data into the vital sign database;
  • Step S502 the cloud platform transmits the processed vital sign data to the third-party service terminal for auxiliary analysis and audit through the business process control and data scheduling;
  • Step S503 the cloud platform updates the data in the vital sign data according to the auxiliary analysis result
  • Step S504 the cloud platform reads the data value corresponding to the vital sign database according to the content of the report template, and generates a dynamic data analysis report;
  • Step S505 the cloud platform provides the dynamic data analysis report to the user service terminal device for browsing and printing according to the patient service serial number.
  • the service terminal device inputs a service instruction parameter, logs in to the cloud platform to send a service instruction, obtains a response from the cloud platform, and provides a third-party service service.
  • Third-party business services include: real-time data services, data retrieval services, medical document management services, consultation services, patient status assessment services, device remote operation services, medical collaboration information publishing services, user customization settings services, data analysis report management Service, medical tool library management services.
  • the user is provided with real-time data service, as shown in FIG. 6, including the following steps:
  • Step S601 the service terminal device sends a real-time data service instruction to the cloud platform
  • Step S602 the cloud platform receives the real-time data service command and parses the valid state of the vital sign monitoring device ID code carried by the authentication command;
  • Step S603 the instruction control data communication module receives the vital sign data, and transmits the data to the data preprocessing module for preprocessing, generates a service serial number, and uniformly encapsulates the preprocessed data, and stores the data into the vital sign database;
  • Step S604 the real-time analysis processing module reads the data in the vital sign database for analysis and processing, and generates a data analysis report;
  • step S605 the cloud platform sends the data analysis report to the service terminal device for browsing and printing according to the patient service serial number.
  • Step S701 The service terminal device sends a data acquisition instruction to the cloud platform.
  • Step S702 the cloud platform receives the data retrieval instruction for parsing, the user information carried by the authentication instruction, and the legal status of the user authority, and sends a response message carrying the license information to the service terminal device;
  • Step S703 the cloud platform maps the patient service serial number according to the patient information and the retrieved data type carried in the instruction, and performs data retrieval and retrieval;
  • Step S704 the cloud platform provides the retrieved data to the service terminal device for browsing, real-time live broadcast, and historical playback;
  • Step S705 the cloud platform stores the record of the data retrieval operation into the service information database; the retrieved data type includes: real-time vital/history data, a data analysis report file, a picture image file, a multimedia video file, and a medical document file.
  • Step S801 the service terminal device sends a medical document service instruction to the cloud platform
  • Step S802 the cloud platform receives the medical document service instruction and parses the user information and the legal status of the user authority carried by the authentication instruction, and sends a response message carrying the license information to the service terminal device;
  • Step S803 the cloud platform maps the patient service serial number according to the patient information and the medical document type information carried by the instruction, and searches for the medical document that meets the instruction parameter, and provides the medical document to the service terminal device;
  • Step S804 the service terminal device performs management operations of creating, editing, querying, maintaining, and storing by handwriting, voice, and pinyin;
  • Step S805 the cloud platform stores the record of the management operation in the business information database;
  • the medical document type information includes: a long-term medical order, a temporary medical order, a nursing form, and an electronic medical record.
  • providing a device remote operation service includes the following steps:
  • Step S901 the service terminal device sends a device remote operation instruction to the cloud platform.
  • Step S902 The cloud platform receives the remote operation instruction of the device and parses the user information and the legal status of the user authority carried by the authentication command, and sends a response message carrying the license information to the service terminal device.
  • Step S903 the cloud platform maps the single or multiple vital sign monitoring device IDs according to the single or multiple patient information carried by the command, and retrieves and connects the devices that meet the command parameters;
  • Step S904 the service terminal device performs control measurement, status query, configuration modification, and device maintenance operation, and the obtained operation result is stored in the corresponding database according to the data type;
  • step S905 the cloud platform stores the record of the remote operation of the device in the service information database.
  • a data sharing consultation service is provided between the user and the user, as shown in FIG. 10, including the following steps:
  • Step S1001 The service terminal device sends a consultation initiation instruction to the cloud platform.
  • Step S1002 The cloud platform receives the diagnosis initiation instruction and parses the user information and the legal status of the user authority carried by the authentication instruction, and sends a response message carrying the license information to the service terminal device.
  • Step S1003 The cloud platform sends a notification of initiating terminal device consultation to the consultation party according to the patient information and the consultation party information carried in the instruction, and establishes a data link between the initiator and the consultation party;
  • Step S1004 The cloud platform searches for the patient data according to the patient information mapping service serial number, and provides the data sharing to both parties;
  • step S1005 the initiator and the consultation party perform multimedia video and data consultation
  • step S1006 the data of the consultation data file is stored in the file database, and the record of the consultation operation is stored in the business information database; the data includes: vital sign data, clinical information, data analysis report file data, picture image file data, medical document file data.
  • a medical collaboration information publishing service in order to support a user to quickly concentrate medical resources for emergency and high-risk patients, includes the following steps:
  • Step S1101 The service terminal device sends a medical collaboration information release instruction to the cloud platform.
  • Step S1102 The cloud platform receives the instruction and parses the user information and the legal status of the user authority carried by the authentication command, and sends a response message carrying the license information to the service terminal device.
  • Step S1103 The cloud platform issues the collaboration information to the medical collaboration team terminal device according to the patient information and the medical collaboration team information carried in the instruction, and gives sound, light, vibration, and graphic prompts;
  • step S1104 the cloud platform stores the record of the medical collaboration information publishing operation in the business information database.
  • the user can customize the abnormal threshold according to the patient's condition through the cloud platform customization item setting sub-module, as well as the system and business rule configuration, message notification mode and scope, and third-party service item selection.
  • the user operation interface is set to improve the user's work efficiency, and at the same time save the record of the setting operation to ensure the security of the cloud platform and the user system.
  • the cloud platform medical tool library service sub-module provides users with medical knowledge base services
  • the medical tool library includes ICU common drug management sub-libraries (including pharmacology, Dose, incompatibility, expiration date, warehousing time), clinical medical tool sub-library (including clinical drug dictionary, clinical diagnosis and treatment manual, nursing manual, scientific literature), ICU equipment management sub-library (including equipment and consumable management files, defibrillator
  • ICU common drug management sub-libraries including pharmacology, Dose, incompatibility, expiration date, warehousing time
  • clinical medical tool sub-library including clinical drug dictionary, clinical diagnosis and treatment manual, nursing manual, scientific literature
  • ICU equipment management sub-library including equipment and consumable management files, defibrillator
  • the service terminal device can issue service instructions to the cloud platform, and quickly query and use the above medical tool library in real time online.
  • the cloud platform service object and attribute management, and the role of the service object role relationship management determine the nature, level and role of the user in the business operation, establish close relationship between the small and medium-sized hospitals and large hospitals, in the cloud platform To achieve medical data and medical resources sharing, as well as high-risk difficult case consultation, distance learning rounds, improve the medical level of small and medium-sized hospitals.
  • the cloud platform data analysis report management service the user can quickly and conveniently retrieve the usage data analysis report through the terminal device, and use the clinical medical basis to evaluate the medical effect.
  • the cloud platform provides users with a universal medical statistical tool, which can analyze and count various business data, and provide the results to the user terminal equipment for browsing and reading.
  • the user is provided with a universal critical illness evaluation system model, which automatically collects vital signs data and related indicators of the patient in the database, evaluates and predicts the patient's disease state and development trend, supports the user's daily work digitization, and reduces the user. Work stress and improve medical quality.
  • the medical cloud platform data sharing system and method based on the third-party service described in the present application can be deployed and implemented on a public cloud or a private cloud, and can be implemented by using a cloud server, a database, and an application service system.
  • the computer readable storage medium is a magnetic disk, an optical disk, a read-only storage memory, or a random storage memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Signal Processing (AREA)
  • Finance (AREA)
  • Economics (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Computer Hardware Design (AREA)
  • Accounting & Taxation (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Software Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Bioethics (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)

Abstract

本申请涉及一种基于第三方业务的医疗云平台数据共享系统及方法,属于医疗云平台领域,包括:终端设备、云平台;云平台接收终端设备发送的海量生命体征数据,应用分布式并行计算的深度学习框架分析处理海量生命体征数据,筛查异常数据,并向用户发出异常事件预警,提示医护人员快速干预;终端设备可以向云平台发出指令,包括用户自定义项设置指令,实时数据服务指令,数据调取指令,医疗文书服务指令,会诊服务指令,医疗协作信息发布指令,数据分析统计指令,患者状态评估指令,数据分析报告管理指令,医疗工具库查询指令,获得各种第三方业务服务支持;本申请提高了用户的医疗质量和工作效率,降低了医护人员劳动强度和工作压力。

Description

一种基于第三方业务的医疗云平台数据共享系统及方法 技术领域
本申请涉及医疗云平台领域,尤其涉及一种基于第三方业务的医疗云平台数据共享系统及方法。
背景技术
生命体征监护设备包括床边多参数监护仪、呼吸功能监测仪、颅内压监测仪、胎心监护仪是医院重症监护病房(Intensive care unit,ICU),以及心内科、呼吸科、神经外科、急诊科、妇产科等专科ICU的主要设备,用于实时监测患者的生命体征数据,对挽救患者的生命具有重要的作用。美国ICU每年监护服务数百万患者,中国是全球ICU数量最多的国家,全国医院中现有数百万台各种类型的生命体征监护设备,并在快速增长之中。
全球生命体征监护设备存在的问题是,每台设备每天产生数百MB的数据,但是没有长时间数据存储能力,设备误报警率极高,不能生成电子化数据分析报告,需要医院ICU医护人员人工实时分析甄别数据,手工转抄相关信息数据,全球范围的医院ICU医护人员长期处于高负荷状态,疲惫不堪。另外,中小型医院长期缺少ICU医护人员,无力应对复杂繁重的生命体征数据处理工作,直接影响到医疗质量。近年来出现的重症监护病房临床信息系统(Clinical Information System,CIS),能够减轻ICU部分劳动强度,但是它没有解决用户生命体征数据分析和数据管理的难题,同时需要用户具有价格不菲的医院信息管理系统(Hospital Information System,HIS)的支持,现有技术中一般将下级医院床边多参数监护设备数据远程发送到上级医院,帮助下级医院分析诊断生命体征数据,指导临床医疗工作。但是,当大量的下级医院ICU患者数据全部集中到上级医院处理,将会给上级医院带来难以承受的巨大压力,很难实现规模化。
全球的生命体征监护设备已经具有多种数据通讯接口,但是每个厂商都有自己的通讯协议和数据格式,互相不兼容。有的现有技术中可以解决其他厂家设备数据接收服务问题,但是,没有解决各厂家不同的数据格式问题,需要设立多个处理软件,以及匹配数据存储格式,效率明显低下。同时还有许多厂家通讯协议不支持输入患者信息,该技术无法保证识别同一台设备(同一床位)不同患者的问题,在医院中,同一台设备往往要服务许多患者。还有的现有技术,在生命体征数据源模块配接了信息处理模块和通讯模块,通讯模块与Internet相连将数据发送给云计算模块和云端数据库,该技术在各厂家每台设备与云平台之间,增加了中间处理环节,不仅每台设备所带来的复杂程度和成本明显上升,同时可靠性下降。
发明内容
鉴于上述分析,本申请旨在提供一种基于第三方业务的医疗云平台数据共享系统及方法,用以解决用户海量生命体征数据的分析处理的问题,以及解决医护人员繁重的劳动强度和工作压力问题,提高医疗质量和工作效率。
本申请的目的主要是通过以下技术方案实现的:
一方面,提供了一种基于第三方业务的医疗云平台数据共享系统,包括:终端设备、云平台;
所述云平台包括:云平台数据通信子系统、云平台数据支持子系统、云平台第三方业务子系统;
所述云平台数据通信子系统用于与所述云平台第三方业务子系统与终端设备之间的数据通信;
所述云平台数据支持子系统用于应用分布式并行计算的深度学习框架,实时对云平台接收到的数据进行处理并存储;
所述云平台第三方业务子系统根据所述终端设备的服务请求指令提供第三方业务,还用于对云平台数据支持子系统处理得到的异常数据进行辅助分析审核;
所述终端设备包括:服务终端设备、生命体征监护设备,用于按照目标地址向所述云平台发送数据,接受第三方业务服务。
本申请有益效果是:通过第三方业务服务,解决了众多医院的海量生命体征数据分析解读和存储的困难,同时解决了缺少数据分析报告的问题,降低了医护人员劳动强度,提高了医疗质量和工作效率;
进一步,所述数据包括:服务指令,生命体征数据;
所述云平台数据通信子系统包括:数据通信模块、数据预处理模块;
所述数据通信模块用于实时接收多个终端设备的数据,及和用户之间的数据交互;将所述数据中服务指令发送给所述云平台第三方业务子系统,将生命体征数据传输给数据预处理模块;
所述数据预处理模块用于将生命体征监护设备ID编码和患者信息绑定生成业务流水号,同时对生命体征数据进行解析、分类、数据格式标准化处理,保留设备原始报警事件标志,将业务流水号和经过预处理的生命体征数据统一封装,存入生命体征数据库;
所述云平台第三方业务子系统包括第三方业务服务模块、第三方业务终端;第三方业务服务模块用于接收服务指令,为用户提供第三方业务服务;第三方业务终端用于云平台生命体征数据辅助分析审核;
所述云平台数据支持子系统包括:消息总线模块、数据存储模块、实时分析处理模块;
所述消息总线模块用于连接控制所述云平台中各子系统、各模块之间的数据传输;
所述数据存储模块包括生命体征数据库、文件数据库、业务信息数据库、缓存数据库,用于数据的存储、调用;
所述实时分析处理模块用于实时读取生命体征数据库中的数据进行分析处理,生成数据分析报告并发送给服务终端设备浏览阅读,同时存入文件数据库。
采用上述进一步方案的有益效果是:通过生命体征数据格式标准化预处理,解决了外部设备数据格式不统一的问题,降低了数据处理的复杂度,提高所述云平台工作效率;
通过业务流水号关联用户信息、临床信息、数据信息,并与设备ID双向映射转换,解决了识别同一台设备(同一病床)不同患者的问题,同时建立了可靠高效的数据查询、数据交互的内部和外部逻辑关系,满足系统内部数据查询,以及与外部数据交互的需求。
进一步,所述实时分析处理模块采用在线实时数据分析处理方式及基于Spark引擎的深度学习框架对生命体征数据进行实时分析筛查处理;
Spark分布式并行计算的深度学习框架实时读取所述生命体征数据库中的生命体征数据,按照设置的微批处理间隔时间,Spark引擎并行创建多个任务,触发Spark流(Spark Streaming)将数据按类型切分为RDD数据集合,同时控制相应类型的中央模型对该类型数据进行计算处理;所述中央模型计算处理发现超出设定基准的异常数据时,分析异常数据特征,计算持续时间,标记异常数据属性,所述实时分析处理模块根据业务流水号向用户发出异常事件预警,并生成实时数据分析报告,发送给服务终端设备浏览阅读,并存入文件数据库;
所述实时分析处理模块将经过实时分析筛查处理的每一用户全程的生命体征数据进行整合,生成动态数据分析报告,发送给服务终端设备浏览阅读,并存入文件数据库;
所述实时分析处理模块使用分析筛查处理后的生命体征数据,实时对每类中央模型进行训练优化,得到该类型数据新的中央模型。
采用上述进一步方案的有益效果是:通过基于Spark引擎的深度学习框架具有的分布式、高吞吐量、自学习的优势,支持所述云平台为用户提供海量生命体征数据服务,第三方实时辅助分析审核进一步保障了云平台数据服务质量,具有广泛的适用性。
通过生命体征数据库定量定性的数据实时对中央模型进行学习优化,提高了中央模型的精度,进而提高了海量生命体征数据的处理效率。
通过对生命体征数据及包含的设备原始报警事件数据实时分析计算,筛查异常数据,向用户发出预警,提高了异常事件预警的准确性,有效减少监护过程中频发的设备误报警事件。
进一步,所述第三方业务终端连接云平台,用于对经过实时分析处理的生命体征 数据进行实时辅助分析审核,实时分析处理模块根据辅助分析结果对生命体征数据库中数据进行更新,并用于生成数据分析报告;进一步,所述服务指令由指令名和参数组成,其包括:实时数据服务指令、数据调取指令、用户自定义项设置指令、会诊发起指令、设备远程操作指令、医疗协作信息发布指令、医疗文书服务指令、数据分析报告管理指令、数据分析统计指令、患者状态评估指令、医疗工具库查询指令;
采用上述进一步方案的有益效果是:将用户各种复杂的业务操作及过程预设为由指令名和参数组成的服务指令,以及设定的所述服务指令解析和认证流程,用户通过终端设备可以快捷、安全地向所述云平台发出指令,获得第三方业务服务支持。
进一步,所述第三方业务服务模块包括实时数据服务子模块;所述实时数据服务子模块接收实时数据服务指令并进行解析,认证指令携带的生命体征监护设备ID编码的有效状态,向数据通信模块发送携带有许可信息的回应消息,控制数据通信模块接收生命体征数据,并传输给数据预处理模块进行预处理,生成患者业务流水号,与经过预处理的数据统一封装,存入生命体征数据库,提供给实时分析处理模块进行实时分析处理,生成数据分析报告,并发送给服务终端设备浏览阅读。
采用上述进一步方案的有益效果是:通过对所述实时数据服务指令携带的生命体征监护设备ID编码的有效状态进行认证,控制了非法接入,保障所述云平台的安全可靠运行,解决了用户对海量生命体征数据分析解读的困难,以及缺少数据分析报告的问题,提高了用户医疗质量和工作效率。
进一步,所述第三方业务服务模块包括数据调取子模块;所述数据调取子模块接收数据调取指令并进行解析,认证指令携带的用户信息、用户权限合法状态,向服务终端设备发送携带有许可信息的回应消息,根据指令携带的患者信息和调取数据类型,映射患者业务流水号,进行数据检索调取,将调取的数据提供给服务终端设备浏览阅读、实时直播、历史回放;所述数据调取操作的记录存入业务信息数据库;所述数据类型包括:实时数据、历史数据。
采用上述进一步方案的有益效果是:为用户提供了便捷的数据调取工具,支持用户快速获取准确完整的数据信息,掌握患者病情变化,评估医疗效果,制定医疗决策方案,提高医疗质量和工作效率,同时保存数据调取操作的记录,保障所述云平台和用户的数据安全。
进一步,所述第三方业务服务模块包括医疗文书管理子模块,所述医疗文书管理子模块接收医疗文书服务指令并进行解析,认证指令携带的用户信息、用户权限合法状态,向服务终端设备发送携带有许可信息的回应消息,根据指令携带的患者信息和医疗文书类型信息,映射患者业务流水号,检索符合指令参数的医疗文书,提供给服务终端设备,所述服务终端设备可以通过手写、语音、拼音进行创建、编辑、查询、维护、存储的管理操作,所述管理操作的记录存入业务信息数据库;所述医疗文书类型信息包括:长期医嘱、临时医嘱、护理表单、电子病历。
采用上述进一步方案的有益效果是:为用户提供便捷的医疗文书电子化工具,将用户各种医疗文书繁琐的手写转抄或键盘录入转变为终端设备手写、语音、拼音输入,降低医护人员操作复杂度,提高医疗服务效率;同时保存管理操作的记录,保障了医疗文书的可靠、安全和可追溯。
进一步,所述第三方业务服务模块包括用户自定义项设置子模块,所述用户自定义项设置子模块接收用户自定义项设置指令并进行解析,认证指令携带的用户信息、用户权限合法状态,向服务终端设备发送携带有许可信息的回应消息,允许用户对用户自定义项进行编辑、更新、存储,云平台执行更新后的设置,所述用户自定义设置操作的记录存入业务信息数据库;所述用户自定义项包括:生命体征数据异常阈值、系统与业务规则配置、消息通知方式和范围、第三方服务项目选择、用户操作界面设置。
采用上述进一步方案的有益效果是:为用户提供了自定义项设置的便捷工具,支持用户根据病情对异常阈值进行个性化设置,以及对系统与业务规则配置、消息通知方式和范围、第三方服务项目选择、用户操作界面进行设置,提高用户工作效率,同时保存设置操作的记录,保障所述云平台和用户系统的安全。
进一步,所述第三方业务服务模块包括设备远程操作服务子模块;所述设备远程操作子模块接收设备远程操作指令并进行解析,认证所述指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息,同时根据指令携带的单个或多个患者信息,映射单个或多个生命体征监护设备ID,检索并连接符合指令参数的设备,所述服务终端设备进行控制测量、状态查询、配置修改、设备维护操作,所获取的操作结果按照数据类型存入对应的数据库,所述设备远程操作的记录存入业务信息数据。
采用上述进一步方案的有益效果是:为用户提供了设备远程操作的便捷工具,支持用户服务终端设备远程控制生命体征监护设备,改变/调整设备工作模式,满足用户的需求,同时保存设备远程操作的记录,保障云平台和用户系统的安全。
进一步,所述第三方业务服务模块包括会诊服务子模块;所述会诊服务子模块接收会诊发起指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息,同时根据指令携带的患者信息、会诊方信息,通过云平台向会诊方发出启动终端设备会诊通知,建立发起方和会诊方之间数据链路,根据患者信息映射业务流水号,共享患者数据,进行多媒体视频会诊和数据信息交互,会诊资料文件数据存入文件数据库,所述会诊操作的记录存入业务信息数据库;所述患者数据包括:生命体征数据、临床信息、数据分析报告文件、图片影像文件、医疗文书文件。
采用上述进一步方案的有益效果是:为中小型医院提供了便捷的会诊工具,在云平台之上与大型医院建立了医疗数据和医疗资源共享,实现高危疑难病例数据共享会 诊,指导中小型医院临床医疗,提高了中小型医院的医疗水平和社会医疗资源利用率。
进一步,所述第三方业务服务模块包括医疗协作信息发布子模块;所述医疗协作信息发布子模块接收医疗协作信息发布指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息,同时根据指令携带的患者信息、医疗协作团队信息,通过云平台向医疗协作团队终端设备发布协作信息,并以声光、震动、图文进行提示,所述医疗协作信息发布操作的记录存入所述业务信息数据库。
采用上述进一步方案的有益效果是:支持用户建立多学科医疗协作机制,并可以将多学科医疗协作机制扩展到用户之外,快速有效地集中用户的医疗资源,为急诊和高危疑难患者提供服务,提高了医疗质量和工作效率。
另一方面,还提供了一种基于第三方业务的医疗云平台数据共享方法,包括以下步骤:
终端设备通过身份验证,按照目标地址向云平台发送数据;
数据通信模块实时接收多个终端设备的数据,所述数据包括:服务指令和生命体征数据;将服务指令发送给第三方业务服务模块,将生命体征数据传输给数据预处理模块;
第三方业务服务模块接收上述服务指令,根据服务指令携带的参数,为用户提供第三方业务服务;
数据预处理模块基于系统编码表规则,将生命体征监护设备ID编码和患者信息绑定生成业务流水号;
对获取的每一用户生命体征数据进行解析、分类,以及数据格式标准化处理,保留设备原始报警事件标志;
将患者业务流水号和经过预处理的数据统一封装,存入所述生命体征数据库;
实时分析处理模块实时读取所述生命体征数据进行分析处理,生成数据分析报告。
采用上述方法的有益效果是:通过第三方业务服务,解决了用户海量生命体征数据分析解读和存储的困难,同时解决了缺少数据分析报告的问题,提高了医疗质量和工作效率;
通过生命体征数据格式标准化预处理,解决了外部设备数据格式不统一的问题,降低了数据处理的难度,提高所述云平台工作效率;
通过业务流水号关联用户信息、临床信息、数据信息,并与设备ID双向映射转换,解决了云平台数据查询、数据交互的寻址识别问题,以及识别同一台设备(同一病床)不同患者的问题,同时建立了可靠高效的数据查询、数据交互的内部和外部逻辑关系,满足系统内部数据查询,以及与外部数据交互的需求。
进一步,所述第三方业务服务包括实时数据服务:
服务终端设备输入患者信息、生命体征监护设备ID编码,向云平台发出实时数 据服务指令;
数据通信模块将接收到的指令发送给实时数据服务子模块;
实时数据服务子模块接受指令并进行解析,认证所述指令携带的生命体征监护设备ID编码有效状态,向数据通信模块发送携带有许可信息的回应消息,允许接收生命体征数据,并传输给数据预处理模块;
数据预处理模块对生命体征数据进行预处理,生成业务流水号,并和经过预处理的生命体征数据统一封装,存入所述生命体征数据库;
实时分析处理模块应用在线实时数据分析处理方式及基于Spark引擎的深度学习框架实时读取生命体征数据库中生命体征数据;
按照设置的微批处理间隔时间,Spark引擎并行创建多个任务,触发Spark流将数据按类型切分为RDD数据集合,同时控制相应类型的中央模型对该类型数据进行计算处理;
所述中央模型发现超出设定基准的异常数据,分析异常数据特征,计算持续时间,标记异常数据属性;
所述实时分析处理模块根据异常数据生成实时数据分析报告,向用户发出异常事件预警,并将分析报告发送给服务终端设备,并存入文件数据库;
所述实时分析处理模块将经过分析筛查处理的每一用户全程生命体征数据进行整合,生成动态数据分析报告,发送给服务终端设备,并存入文件数据库;
第三方服务终端对经过分析处理的生命体征数据进行实时辅助分析审核,实时分析处理模块根据辅助分析结果对生命体征数据库中数据进行更新,并用于生成数据分析报告。
采用上述进一步方案的有益效果是:通过对所述实时数据服务指令携带的生命体征监护设备ID编码的有效状态进行认证,控制了非法接入,保障所述云平台的安全可靠运行,同时解决了用户对海量生命体征数据分析解读的困难,以及缺少数据分析报告的问题,第三方辅助分析审核进一步保障了云平台数据服务质量,提高了医疗质量和工作效率,降低医护人员劳动强度和工作压力。
通过基于Spark引擎的深度学习框架具有的分布式、高吞吐量、自学习的优势,支持所述云平台为用户提供海量生命体征数据服务,第三方辅助分析审核为数据服务质量提供了保障,具有广泛的适用性;实时对中央模型进行学习训练优化,提高了中央模型精度,进而,提高了海量生命体征数据的处理效率。
进一步,所述第三方业务服务还包括数据调取服务:
服务终端设备输入患者信息、调取数据类型信息,向云平台发出数据调取服务指令;
数据通信模块将接收到的指令发送给数据调取服务子模块;
数据调取服务子模块接受指令并进行解析,认证所述指令携带的用户信息、用户 权限的合法状态,并向用户服务终端设备发送携带有许可信息的回应消息;
数据调取服务子模块根据指令携带的患者信息,检索映射的业务流水号;
数据调取服务子模块根据业务流水号,检索调取符合指令参数的数据;
数据调取服务子模块将调取的数据提供给用户服务终端设备进行浏览阅读、实时直播、历史回放。
数据调取服务子模块将数据调取服务操作的记录存入业务信息数据库。
采用上述进一步方案的有益效果是:为用户提供了便捷的数据调取工具,支持用户快速获取准确完整的数据信息,掌握患者病情变化,评估医疗效果,制定医疗决策方案,提高了医疗质量和工作效率,同时保存数据调取操作的记录,保障云平台和用户的数据安全。
进一步,所述第三方业务服务还包括医疗文书管理服务:
服务终端设备输入患者信息、医疗文书类型信息,向云平台发出医疗文书服务指令;
数据通信模块将接收到的指令发送给医疗文书管理子模块;
医疗文书管理子模块接受指令并进行解析,认证所述指令携带的用户信息、用户权限的合法状态,并向用户服务终端设备发送携带有许可信息的回应消息;
医疗文书管理子模块根据指令携带的患者信息,检索患者信息映射的业务流水号;
当检索到业务流水号时,医疗文书管理子模块根据业务流水号和医疗文书类型信息,检索符合所述指令参数的医疗文书文件;
服务终端设备通过手写、语音、拼音输入对选定的医疗文书文件进行创建、编辑、查询、维护,并将经过处理的医疗文书文件存入文件数据库;
当业务流水号检索结果为空时,医疗文书管理子模块根据患者信息创建符合指令参数的医疗文书进行编辑,并将经过处理的医疗文书文件和患者信息存入文件数据库;
所述医疗文书管理子模块将医疗文书管理操作的记录存入业务信息数据库。
采用上述进一步方案的有益效果是:为用户提供便捷的医疗文书电子化工具,将用户长期医嘱、临时医嘱、护理表单、电子病历等医疗文书繁琐的手写转抄或键盘录入转变为终端设备手写、语音、拼音输入,降低医护人员操作复杂度,提高医疗服务效率,同时保存管理操作的记录,保障了医疗文书的可靠、安全和可追溯。
进一步,所述第三方业务服务还包括用户自定义项设置服务:
服务终端设备选择用户自定义项,输入设置内容,向云平台发出用户自定义项设置指令;
数据通信模块将接收到的指令发送给用户自定义项设置子模块;
用户自定义项设置子模块接受指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向用户服务终端设备发送携带有许可信息的回应消息;
用户服务终端设备对自定义项进行编辑、更新、存储设置操作,云平台执行更 新后的设置;
所述用户自定义项设置子模块将设置操作的记录存入业务信息数据库。
采用上述进一步方案的有益效果是:为用户提供了自定义项设置的便捷工具,用户可以根据工作需求和工作习惯进行灵活设置,包括根据患者病情对异常数据阈值进行个性化设置,同时保存设置操作的记录,保障云平台和用户系统的安全。
进一步,所述第三方业务服务还包括设备远程操作服务:
服务终端设备输入单个或多个患者信息、远程操作类型信息,向所述云平台发出设备远程操作指令;
数据通信模块将接收到的指令发送给设备远程操作子模块;
设备远程操作子模块接受指令并进行解析,认证指令所携带的用户信息、用户权限的合法状态,并向用户服务终端设备发送携带有许可信息的回应消息;
设备远程操作子模块根据患者信息映射的单个或多个生命体征监测设备ID,检索符合指令参数的设备,建立连接;
服务终端设备对连接的生命体征监测设备进行控制测量、状态查询、配置修改、设备维护操作;
服务终端设备完成连接和操作,设备远程操作子模块将所获取的操作结果按照数据类型存入对应的数据库;并将设备远程操作的记录存入业务信息数据库。
采用上述进一步方案的有益效果是:为用户提供了设备远程操作的便捷工具,支持用户通过服务终端设备远程控制生命体征监护设备,调整/改变设备工作模式,满足用户的应用需求,提高工作效率,同时保存设备远程操作的记录,保障所述云平台和用户系统的安全。
本申请中,上述各技术方案之间还可以相互组合,以实现更多的优选组合方案。本申请的其他特征和优点将在随后的说明书中阐述,并且,部分优点可从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过说明书、权利要求书以及附图中所特别指出的内容中来实现和获得。
附图说明
附图仅用于示出具体实施例的目的,而并不认为是对本申请的限制,在整个附图中,相同的参考符号表示相同的部件。
图1为本申请实施例中基于第三方业务的医疗云平台数据共享系统框图;
图2为本申请实施例中基于第三方业务的医疗云平台数据共享方法流程图;
图3为本申请实施例中基于Spark分布式并行计算的深度学习框架;
图4为本申请实施例中第三方辅助分析审核流程图
图5为本申请实施例中动态数据分析报告生成流程图;
图6为本申请实施例中实时数据服务流程图;
图7为本申请实施例中数据调取服务流程图;
图8为本申请实施例中医疗文书管理服务流程图;
图9为本申请实施例中设备远程操作服务流程图;
图10为本申请实施例中会诊服务流程图;
图11为本申请实施例中医疗协作信息发布服务流程图。
具体实施方式
下面结合附图来具体描述本申请的优选实施例,其中,附图构成本申请一部分,并与本申请的实施例一起用于阐释本申请的原理,并非用于限定本申请的范围。
本申请的一个具体实施例,公开了一种基于第三方业务的医疗云平台数据共享系统,如图1所示,包括:终端设备、云平台;
云平台包括:云平台数据通信子系统、云平台数据支持子系统、云平台第三方业务子系统;
其中,云平台数据通信子系统用于与所述云平台第三方业务子系统与终端设备之间的数据通信;
云平台数据支持子系统用于应用分布式并行计算的深度学习框架,实时对云平台接收到的数据进行处理并存储;
云平台第三方业务子系统根据所述终端设备的服务请求指令提供第三方业务,还用于对云平台数据支持子系统处理得到的异常数据进行辅助分析审核;
终端设备包括:服务终端设备、生命体征监护设备;用于按照目标地址向云平台发送数据,并接受第三方业务服务。
云平台数据通信子系统包括:数据通信模块、数据预处理模块;数据通信模块用于连接各种不同端终端设备,实时接收多个终端设备的数据,以及数据交互;
数据预处理模块用于将生命体征监护设备ID编码和患者信息绑定生成业务流水号,同时对生命体征数据进行解析、分类、数据格式标准化处理,保留设备原始报警事件标志,将业务流水号和经过预处理的数据统一封装,存入生命体征数据库;
云平台第三方业务子系统包括:第三方业务服务模块、第三方服务终端;第三方业务服务模块用于接收服务指令,为用户提供第三方业务服务;第三方服务终端用于云平台的数据辅助分析处理。
云平台数据支持子系统包括:消息总线模块、数据存储模块、实时分析处理模块;
消息总线模块用于连接控制各子系统、各模块之间的数据和指令的传输;
数据存储模块包括生命体征数据库、文件数据库、业务信息数据库、缓存数据库,用于数据存储和调用;
实时分析处理模块用于实时读取所述生命体征数据库中的数据进行分析处理,生成数据分析报告。
实施时,云平台连接生命体征监护设备(示例性地,生命体征监护终端设备可以为多参数监护设备、呼吸功能监测设备、颅内压监测设备、胎心监测设备)、服务终端设备、第三方服务终端,进行数据交互;服务终端设备按照目标地址向云平台发出实时数据服务指令,第三方业务服务模块对指令进行解析,认证指令携带的生命体征监护设备ID编码有效状态,向数据通信模块发送携带有许可信息的回应消息,允许接收生命体征数据,数据通信模块根据通讯协议种类建立连接接收数据,并传输给数据预处理模块;数据预处理模块将其中的生命体征监护终端设备ID编码与患者信息绑定生成业务流水号,同时对生命体征数据进行解析、分类、数据格式标准化处理,保留设备原始报警事件标志,将业务流水号和经过预处理的数据统一封装,存入生命体征数据库,实时分析处理模块实时读取生命体征数据库中的数据及包含的设备原始报警事件数据,分析计算筛查超出设定基准的异常生命体征数据,生成数据分析报告,发送到用户终端设备,用户可以阅读浏览和下载打印,作为临床医疗依据。云平台通过业务流程控制与数据调度,与第三方服务终端进行数据交互,第三方服务终端对经过分析筛查处理的数据进行辅助分析审核,实时分析处理模块根据辅助分析审核结果对生命体征数据库中的患者数据进行更新,生成数据分析报告;用户可以向云平台发出服务指令,获得各种第三方业务服务支持。
与现有技术相比,该云平台可以通过网络连接用户各种不同的终端设备,实时分析海量生命体征数据,筛查异常数据,生成数据分析报告,有效减少生命体征监护过程中频发的设备误报警事件,提高了医疗质量和工作效率,降低医护人员劳动强度,同时第三方辅助分析审核,为云平台数据分析质量提供了保障;同时,用户终端设备可以向云平台发出指令,获得各种第三方业务服务支持,具有广泛的适用性。
需要说明的是:云平台连接的服务终端设备和第三方服务终端包括:计算机设备、交互式触摸屏设备、手持移动设备、多媒体设备的至少一种;云平台还可以连接医院信息管理系统(HIS)、重症监护临床信息系统(CIS),以及体检机构、健康管理机构、保险机构的平台的应用程序接口(Application Programming Interface,API)。
具体来说,数据通信模块嵌有通讯协议,用于连接各种不同端终端设备和外部系统,实时接收上传的数据,并将其中的服务指令发送给第三方业务服务模块,生命体征数据传递给数据预处理模块;
数据预处理模块包括系统编码表,对获取的每一用户数据进行预处理,并生成患者业务流水号,业务流水号与经过预处理的数据统一封装,存入生命体征数据库,实时分析处理模块实时读取生命体征数据库中的数据,进行分析筛查处理;具体地包括:
基于系统编码表规则将获取的生命体征监护终端设备ID编码和患者信息绑定,生成患者业务流水号;
对接收的生命体征数据进行解析、分类、数据格式标准化处理,保留设备原始报警事件数据标志;
将患者业务流水号和经过预处理的生命体征数据进行统一封装,存入生命体征数据库。
为了解决各厂家设备数据格式和通讯协议互不兼容问题,以及解决同一生命体征监护设备(同一病床)不同患者的识别问题,数据通信模块支持多种通讯协议,示例性地,包括:TCP/IP协议、即时通讯协议、HL7协议、DICOM协议、多媒体通讯协议、设备制造商通讯协议,自动识别用户身份和终端设备ID编码,建立网络连接,接收数据。数据预处理模块基于系统编码表规则控制其中的生命体征监护终端设备ID编码与患者信息绑定,生成业务流水号(业务流水号编码包括时间戳、患者信息、用户信息、设备信息、数量计数器),同时对生命体征数据进行解析、分类、数据格式标准化处理,患者业务流水号与经过的预处理的数据统一封装,提供给云平台系统存储、读取、调用、分析计算。
需要说明的是,云平台数据通讯子系统支持多种通讯协议,以及数据格式标准化处理,业务流水号与生命体征监护设备ID保持双向映射转换,作为数据查询、数据交互的寻址识别,从而为云平台系统建立了灵活高效的数据通讯接口,以及患者和数据标识,满足用户各种不同厂家的生命体征监护设备、外部系统的接入和数据交互需求,扩大了业务服务面和服务内容。
本实施例消息总线模块采用了消息队列通讯协议,包括消息服务和消息队列接口,用于云平台系统连接控制各子系统、各模块之间的业务消息通知和业务数据传输;消息队列通过业务解耦、消息广播、错峰流控支持总线实时传输系统大量消息,以及消息传输的可靠投递,提高了云平台系统运行效率。
生命体征数据库采用结构化数据服务系统,用于存储经过解析、分类、数据格式标准化处理的生命体征数据,支持高并发的实时查询,提供海量存储和实时查询能力;其中,生命体征数据分为波形类数据和数值类数据。
文件数据库采用对象存储服务系统,用于存储业务系统生成的各类文件,将数据文件以对象(object)的形式上传存储空间,包括患者信息文件、临床信息文件、生命体征数据报告文件、医疗文书文件、多媒体视频文件、医学工具书文件等非结构化数据文件。
业务信息数据库采用了关系模型组织数据的数据库,用于云平台存储结构化业务数据,以及控制各模块之间的业务逻辑关系数据查询和存储,具有保持数据一致性的优点。
缓存数据库采用了非关系型数据库,用于控制各模块之间的数据交换和状态保持,同时用于缓存数据库查询结果,减少数据库访问次数,提高云平台的响应速度。
需要说明的是,本实施例数据存储模块整合了各类数据库、数据存储服务系统的优势,解决了云平台对大规模数据集合、多样数据结构、多重数据种类管理的问题,支持云平台在高并发环境下的运行。
实时分析处理模块用于实时处理生命体征数据,如图3所示,本实施例采用Spark分布式并行计算的深度学习框架实时读取所述生命体征数据库中的生命体征数据及所包含的设备原始报警数据,按照设置的微批处理间隔时间,Spark引擎并行创建多个任务,触发Spark流将数据按类型切分为RDD数据集合,同时控制相应类型的中央模型对该类型数据进行计算处理;所述中央模型计算处理发现超出设定基准的异常数据时,分析异常数据特征,计算持续时间,标记异常数据属性;
实时分析处理模块将异常数据生成实时数据分析报告,并向用户发出异常事件预警;
实时分析处理模块将经过分析筛查处理的每一用户全程的生命体征数据进行整合并输出,生成动态数据分析报告;
实时分析处理模块将实时数据分析报告、动态数据分析报告存入文件数据库;
实时分析处理模块使用所述生命体征数据库中的已经经过分析筛查处理的定量定性的生命体征数据,实时对每类中央模型进行学习训练优化,得到该类型数据新的中央模型;
在上述步骤中,所述第三方服务终端对经过处理的生命体征数据进行实时辅助分析审核,实时分析处理模块根据辅助分析结果对生命体征数据库中数据进行更新,并用于生成数据分析报告。
需要强调的是,实时分析处理模块采用基于分布式并行计算的深度学习框架,可以是通用的Spark、Storm、Flink、Samza框架的其中一种。基于分布式并行计算的深度学习框架具有流式数据实时计算、高吞吐量、自学习的优势,极大地提高了海量生命体征数据实时处理速度,有效减少生命体征监护过程中频发的误报警事件,降低了医护人员劳动强度和工作压力。
中央模型分为两类,一类对波形类数据的形态、节律、速率进行分析计算,另一类对数值型数据幅值进行分析计算,中央模型内置包括二阶差分计算工具和逻辑分析工具,实时计算分析生命体征数据的形态、节律、速率、数值,对波形进行分类标记、对数值进行统计归纳,筛查超出基准的异常数据。为了提高中央模型分析筛查处理的效率和准确度,该方法还包括使用生命体征数据库中定量定性的生命体征数据,实时对每类中央模型进行学习训练优化,得到该类型数据新的中央模型。
需要说明的是,本实施例分析处理的生命体征数据包括心电、呼吸、无创血压、有创血压、血氧饱和度、体温、脉率、颅内压、呼气末二氧化碳、胎心率的数据;波形类生命体征数据包括:全程总心博、心电波间期、QRS时限、ST段形态、QT间期,全程呼吸总次数、呼吸波间期,脉搏容积波峰谷值,颅内压波峰谷值,呼气末二氧化碳分压波峰谷值、呼气末二氧化碳分压波间期;数值类生命体征数据包括:全程无创/有创血压中的收缩压和舒张压、脉率、血氧饱和度、体温、胎心率;无创心排量的心搏量、心脏指数、总外周阻力值;呼吸力学的气道压力值、气道流量值、气道容积 值。
其中,异常数据特征包括:心动过速、心动过缓、扑动颤动、频发早搏、心脏停博、RonT、QT间期延长、ST段抬高/压低,呼吸暂停、呼吸过缓、呼吸过快,血氧饱和度升高/下降、收缩压和舒张压升高/下降、平均动脉压升高/下降,脉搏容积波峰值升高/下降,颅内压波峰值升高/下降,呼气末二氧化碳分压波峰值升高/下降,胎心率升高/下降,无创心排量下降,呼吸力学值升高/下降。
当中央模型计算分析处理发现超出设定基准的异常数据时,分析异常数据特征,计算异常事件持续时间,标记异常数据属性,同时,实时分析处理模块将异常数据生成实时数据分析报告,并进行存储,根据患者业务流水号映射的设备ID向用户发出异常事件预警,同时将实时数据分析报告发送给用户。需要说明的是:上述设定基准采用了国际通用的生命体征数据诊断标准作为分析计算的基准。
本实施例实时分析处理模块所生成的动态数据分析报告内容:全程的动态心电数据、动态血压数据、呼吸数据、血氧饱和度数据、有创血压数据、颅内压数据、呼气末二氧化碳分压数据、体温数据、胎心率数据、无创心排量数据、呼吸力学数据的综合分析计算、波形分类标记、波形图形,以及它们的趋势图、直方图、散点图、变异性分析图;
所生成的实时数据分析报告内容包括:异常心电数据、异常血压数据、异常呼吸数据、异常血氧饱和度数据、异常颅内压数据、异常呼气末二氧化碳分压数据、异常体温数据、异常胎心率数据、异常无创心排量数据、异常呼吸力学数据的实时分析计算、波形分类标记、异常波形图形,以及趋势图。
云平台将上述数据分析报告存入文件数据库,用户可以向云平台发出数据调取指令,进行检索查询,统计分析,回顾总结。
为了解决用户(包括:医院、医护人员、患者、其他机构等)复杂繁重的生命体征监护工作压力,用户在获取相应权限的基础上,向云平台发送服务指令,第三方业务服务模块对接收到的服务指令进行解析和认证,根据服务指令所携带的参数,为用户提供第三方业务服务。
服务指令由指令名和参数组成,具体来说,包括:实时数据服务指令、数据调取指令、异常数据事件查询指令、数据分析报告管理指令、医疗文书服务指令、数据分析统计指令、用户自定义项设置指令、会诊发起指令、患者状态评估指令、设备远程操作指令、医疗协作信息发布指令、医疗工具库查询指令。需要说明的是,服务指令参数由用户信息、用户权限以及指令内容所组成,用户通过终端设备向云平台发出服务指令,数据通信模块将接收到的服务指令发送给第三方业务服务模块解析认证,第三方业务服务模块按照服务指令参数为用户提供第三方业务服务。其中,第三方业务服务模块包括:实时数据服务子模块、数据调取子模块、医疗文书管理子模块、用户自定义项设置子模块、会诊服务子模块、设备远程操作子模块、医疗协作信息发布子 模块、患者状态评估子模块、数据分析报告管理子模块、数据分析统计子模块、医疗工具库服务子模块。
本实施例将用户多种类、复杂的业务过程和内容通过模块化分解和整合,迁移到云平台上自动实现,用户得到稳定、高效的多种第三方业务服务,降低医护人员劳动强度和工作压力。
示例性地,实时数据服务子模块,云平台接收实时数据服务指令并进行解析,认证指令携带的生命体征监护设备ID编码的有效状态,控制数据通信模块接收生命体征数据,并传输给数据预处理模块进行预处理,生成业务流水号,与经过预处理的数据统一封装,存入生命体征数据库,实时分析处理模块实时读取生命体征数据库中数据进行处理,生成数据分析报告,并发送给服务终端设备浏览阅读。
示例性地,数据调取子模块,云平台接收所述数据调取指令并进行解析,认证所述指令携带的用户信息、用户权限合法状态,向服务终端设备发送携带有许可信息的回应消息,根据指令携带的患者信息和调取数据类型,映射患者业务流水号,进行数据检索调取,将调取的数据提供给服务终端设备浏览阅读、实时直播、历史回放;数据调取操作的记录存入所述业务信息数据库,所述调取数据类型包括:生命体征实时/历史数据、数据分析报告文件、图片影像文件、多媒体视频文件、医疗文书文件。
示例性地,医疗文书管理子模块,云平台接收医疗文书服务指令并进行解析,认证指令携带的用户信息、用户权限合法状态,向服务终端设备发送携带有许可信息的回应消息,根据指令携带的患者信息和医疗文书类型信息,映射患者业务流水号,检索符合指令参数的医疗文书,提供给服务终端设备,服务终端设备通过手写、语音、拼音进行创建、编辑、查询、维护、存储的管理操作,所述管理操作的记录存入业务信息数据库;所述医疗文书类型信息包括:长期医嘱、临时医嘱、护理表单、电子病历。
示例性地,设备远程操作服务子模块,云平台接收设备远程操作指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息,同时根据指令携带的单个或多个患者信息,映射单个或多个生命体征监护设备ID,检索并连接符合指令参数的设备,服务终端设备进行控制测量、状态查询、配置修改、设备维护操作,所获取的操作结果按照数据类型存入对应的数据库,设备远程操作的记录存入所述业务信息数据库。
示例性地,会诊服务子模块,云平台接收会诊发起指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息,同时根据指令携带的患者信息、会诊方信息,向会诊方发出启动终端设备会诊通知,建立发起方和会诊方之间数据链路,根据患者信息映射业务流水号,共享患者数据,进行多媒体视频和数据会诊,会诊资料文件数据存入文件数据库,会诊操作的记录存入业务信息数据库。所述患者数据包括:生命体征数据、临床信息、数据分析 报告文件、图片影像文件、医疗文书文件。
示例性地,医疗协作信息发布子模块,云平台接收医疗协作信息发布指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息,同时根据指令携带的患者信息、医疗协作团队信息,通过云平台向医疗协作团队终端设备发布协作信息,并以声光、震动、图文进行提示,所述医疗协作信息发布操作的记录存入业务信息数据库。
为了满足不同用户的使用习惯,通过自定义项设置子模块,用户可以根据患者病情对异常阈值进行个性化设置,以及对系统与业务规则配置、消息通知方式和范围、第三方服务项目选择、用户操作界面进行设置,提高用户工作效率,同时保存设置操作的记录,保障所述云平台和用户系统的安全。
为了方便用户对常用药物、设备和耗材、医学知识信息进行快速查询使用,通过云平台医疗工具库服务子模块为用户提供医疗工具支持服务,医疗工具库包括ICU常用药物管理子库(包括药理、剂量、配伍禁忌、有效期、入库时间)、临床医学工具子库(包括临床药物词典、临床诊疗手册、护理手册、科学文献)、ICU设备管理子库(包括设备和耗材管理档案、除颤器快速操作手册、呼吸机快速操作手册、生命体征监护设备快速操作手册),服务终端设备可以向云平台发出医疗工具库查询指令,实时在线快速查询使用医疗工具库。
示例性的,医疗工具库服务子模块,云平台接收医疗工具库查询指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息,根据指令携带的查询数据类型,调取医疗工具库中关联信息,提供给服务终端设备浏览阅读,所述医疗工具库查询操作的记录存入业务信息数据库。
本申请的另一个实施例,公开了一种基于第三方业务的医疗云平台数据共享方法,如图2所示,包括以下步骤:
步骤S201,终端设备通过身份验证,按照目标地址向云平台发送数据;
步骤S202,数据通信模块实时接收多个终端设备的数据,将其中的服务指令发送给第三方业务服务模块,生命体征数据传输给数据预处理模块;
步骤S203,数据预处理模块基于系统编码表规则,将生命体征监护设备ID编码和患者信息绑定生成业务流水号;
步骤S204,对获取的每一用户生命体征数据进行解析、分类,以及数据格式标准化处理,保留设备原始报警事件标志;
步骤S205,患者业务流水号和经过预处理的数据统一封装,存入所述生命体征数据库;
步骤S206,实时分析处理模块实时读取所述生命体征数据进行分析处理,生成数据分析报告。
步骤S207,第三方业务服务模块接收服务指令,根据服务指令携带的参数,为 用户提供第三方业务服务;
与现有技术相比:该方法通过实时分析处理海量生命体征数据,满足了用户的需求;通过支持多种通讯协议,数据格式标准化处理,解决了外部设备和系统接入,以及数据格式不统一的问题,降低了数据集中高效处理的难度;业务流水号与设备ID映射,满足系统内部数据查询、外部数据交互的需求,同时解决了识别同一台设备(同一病床)不同患者的问题;通过第三方业务服务,将用户复杂繁重的业务工作迁移到云平台上自动处理,降低医护人员劳动强度,提高了医疗质量和工作效率。
为了进一步提高云平台数据分析服务的质量,具体如图4所示,该方法还包括以下步骤:
步骤S401,第三方服务终端连接云平台,云平台通过业务流程控制与数据调度,将经过处理的生命体征数据传输到第三方服务终端进行辅助分析审核;
步骤S402,第三方服务终端对数据标记标识、异常数据属性和标志、计算和统计数据、图形和波形进行复查;
步骤S403,第三方服务终端将辅助分析审核结果发回云平台;
步骤S404,实时分析处理模块根据辅助分析审核结果对生命体征数据库中的患者数据进行更新,生成数据分析报告。
第三方辅助分析处理流程,不仅提高了云平台数据实时处理分析的准确性和容错性,同时作为云平台训练机器学习的样本参数,进一步提高了中央模型的精度,提高海量数据处理的工作效率。
为了满足海量生命体征数据的实时分析处理和异常数据筛查,如图3所示,该方法还包括以下步骤:
Spark分布式并行计算的深度学习框架读取生命体征数据中的生命体征数据及包含的设备原始报警事件数据;
按照设置的微批处理间隔时间,Spark引擎并行创建多个任务,触发Spark流将数据按类型切分为RDD数据集合,同时控制相应类型的中央模型对该类型数据进行分析筛查处理;
中央模型内置包括二阶差分计算工具和/或逻辑分析工具,实时计算分析生命体征数据的形态、节律、速率、数值,对波形进行分类标记、对数值进行统计总结,筛查超出基准的异常数据;
中央模型计算分析处理发现超出设定基准的异常数据时,分析异常数据特征,计算异常事件持续时间,标记异常数据属性,生成实时数据分析报告,并存入文件数据库。
进一步,该方法将经过分析筛查处理的全程的生命体征数据整合并输出,生成动态数据分析报告,存入文件数据库。
为了提高中央模型分析筛查处理的效率和准确度,该方法还包括使用生命体征数 据库中的已经定量定性的生命体征数据,实时对每类中央模型进行训练优化,得到该类型数据新的中央模型。
该方法处理的波形类生命体征数据包括:全程总心博、心电波间期、QRS时限、ST段形态、QT间期,全程呼吸总次数、呼吸波间期,脉搏容积波峰谷值,颅内压波峰谷值,呼气末二氧化碳分压波峰谷值、呼气末二氧化碳分压波间期;数值类生命体征数据包括:全程无创/有创血压中的收缩压和舒张压、脉率、血氧饱和度、体温、胎心率;无创心排量的心搏量、心脏指数、总外周阻力值;呼吸力学的气道压力值、气道流量值、气道容积值。
该方法分析的异常数据特征包括:心动过速、心动过缓、扑动颤动、频发早搏、心脏停博、RonT、QT间期延长、ST段抬高/压低,呼吸暂停、呼吸过缓、呼吸过快,血氧饱和度升高/下降、收缩压和舒张压升高/下降、平均动脉压升高/下降,脉搏容积波峰值升高/下降,颅内压波峰值升高/下降,呼气末二氧化碳分压波峰值升高/下降,胎心率升高/下降,无创心排量下降,呼吸力学值升高/下降。
该方法所生成的动态数据分析报告内容:全程的动态心电数据、动态血压数据、呼吸数据、血氧饱和度数据、有创血压数据、颅内压数据、呼气末二氧化碳分压数据、体温数据、无创心排量数据、呼吸力学数据的综合分析计算、波形分类标记、波形图形,以及它们的趋势图、直方图、散点图、变异性分析图;
该方法所生成的实时数据分析报告内容包括:异常心电数据、异常血压数据、异常呼吸数据、异常血氧饱和度数据、异常颅内压数据、异常呼气末二氧化碳分压数据、异常体温数据、异常胎心率数据、异常无创心排量数据、异常呼吸力学数据的实时分析计算、波形分类标记、异常波形图形,以及趋势图。
云平台将上述数据分析报告存入文件数据库,用户可以向云平台发出数据调取指令,进行检索查询,统计分析,回顾总结。
为了方便用户评估患者病情变化,总结临床医疗效果,同时便于用户浏览阅读,节省诊疗时间,减轻医护人员的工作负担,当云平台分析处理的常规数据长度大于预设数据时长时,触发进入动态数据分析报告流程;如图5所示,具体包括以下步骤:
步骤S501,云平台通过实时分析处理模块将经过分析筛查处理的每一用户全程的生命体征数据进行整合并输出,存入生命体征数据库;
步骤S502,云平台通过业务流程控制与数据调度,将经过处理的生命体征数据传输到第三方服务终端进行辅助分析审核;
步骤S503,云平台根据辅助分析结果对生命体征数据中的数据进行更新;
步骤S504,云平台根据报告模板内容读取生命体征数据库对应的数据数值,生成动态数据分析报告;
步骤S505,云平台根据患者业务流水号,将动态数据分析报告提供给用户服务终端设备浏览阅读、打印。
进一步,服务终端设备输入服务指令参数,登录云平台发送服务指令,获得云平台响应,提供第三方业务服务。第三方业务服务包括:实时数据服务、数据调取服务、医疗文书管理服务、会诊服务、患者状态评估服务、设备远程操作服务、医疗协作信息发布服务、用户自定义项设置服务、数据分析报告管理服务、医疗工具库管理服务。
示例性地,为了解决用户生命体征数据分析解读的困难问题,为用户提供实时数据服务,如图6所示,包括以下步骤:
步骤S601,服务终端设备向云平台发出实时数据服务指令;
步骤S602,云平台接收实时数据服务指令并进行解析,认证指令携带的生命体征监护设备ID编码的有效状态;
步骤S603,所述指令控制数据通信讯模块接收生命体征数据,并传输给数据预处理模块进行预处理,生成业务流水号,与经过预处理的数据统一封装,存入生命体征数据库;
步骤S604,实时分析处理模块读取生命体征数据库中数据进行分析处理,生成数据分析报告;
步骤S605,云平台根据患者业务流水号,将数据分析报告发送给服务终端设备浏览阅读、打印。
示例性的,为了方便用户随时获取阅读实时数据、历史数据,提供数据调取服务,如图7所示,包括以下步骤:
步骤S701,服务终端设备向云平台发出数据调取指令;
步骤S702,云平台接收数据调取指令进行解析,认证指令携带的用户信息、用户权限合法状态,向服务终端设备发送携带有许可信息的回应消息;
步骤S703,云平台根据指令携带的患者信息和调取数据类型,映射患者业务流水号,进行数据检索调取;
步骤S704,云平台将调取的数据提供给服务终端设备浏览阅读、实时直播、历史回放;
步骤S705,云平台将数据调取操作的记录存入业务信息数据库;所述调取数据类型包括:生命体征实时/历史数据、数据分析报告文件、图片影像文件、多媒体视频文件、医疗文书文件。
示例性地,为了支持用户医疗文书电子化,降低医护人员劳动强度和工作压力,提供医疗文书管理服务,如图8所示,包括以下步骤:
步骤S801,服务终端设备向云平台发出医疗文书服务指令;
步骤S802,云平台接收医疗文书服务指令并进行解析,认证指令携带的用户信息、用户权限合法状态,向服务终端设备发送携带有许可信息的回应消息;
步骤S803,云平台根据指令携带的患者信息和医疗文书类型信息,映射患者业务流水号,检索符合指令参数的医疗文书,提供给服务终端设备;
步骤S804,所述服务终端设备通过手写、语音、拼音进行创建、编辑、查询、维护、存储的管理操作;
步骤S805,云平台将管理操作的记录存入业务信息数据库;所述医疗文书类型信息包括:长期医嘱、临时医嘱、护理表单、电子病历。
示例性地,为了支持用户的多种应用场景,提供设备远程操作服务,如图9所示,包括以下步骤:
步骤S901,服务终端设备向云平台发出设备远程操作指令;
步骤S902,云平台接收设备远程操作指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息;
步骤S903,云平台根据指令携带的单个或多个患者信息,映射单个或多个生命体征监护设备ID,检索并连接符合指令参数的设备;
步骤S904,服务终端设备进行控制测量、状态查询、配置修改、设备维护操作,所获取的操作结果按照数据类型存入对应的数据库;
步骤S905,云平台将设备远程操作的记录存入业务信息数据库。
示例性地,为了充分利用优质医疗资源,提高医疗服务质量,为用户和用户之间提供了数据共享会诊服务,如图10所示,包括以下步骤:
步骤S1001,服务终端设备向云平台发出会诊发起指令;
步骤S1002,云平台接收会诊发起指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息;
步骤S1003,云平台根据指令携带的患者信息、会诊方信息,向会诊方发出启动终端设备会诊通知,建立发起方和会诊方之间数据链路;
步骤S1004,云平台根据患者信息映射业务流水号检索患者数据,提供给双方数据共享;
步骤S1005,发起方和会诊方进行多媒体视频和数据会诊;
步骤S1006,会诊资料文件数据存入文件数据库,会诊操作的记录存入业务信息数据库;所述数据包括:生命体征数据、临床信息、数据分析报告文件数据、图片影像文件数据、医疗文书文件数据。
示例性地,为了支持用户快速集中医疗资源为急诊和高危疑难患者服务,提供医疗协作信息发布服务,如图11所示,包括以下步骤:
步骤S1101,服务终端设备向云平台发出医疗协作信息发布指令;
步骤S1102,云平台接收所述指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息;
步骤S1103,云平台根据指令携带的患者信息、医疗协作团队信息,向医疗协作团队终端设备发布协作信息,并给予声光、震动、图文提示;
步骤S1104,云平台将医疗协作信息发布操作的记录存入业务信息数据库。
为了满足不同用户的使用习惯,用户通过云平台自定义项设置子模块,可以根据患者病情对异常阈值进行个性化设置,以及对系统与业务规则配置、消息通知方式和范围、第三方服务项目选择、用户操作界面进行设置,提高用户工作效率,同时保存设置操作的记录,保障所述云平台和用户系统的安全。
为了方便用户对常用药物、设备和耗材、医学知识信息进行快速查询使用,通过云平台医疗工具库服务子模块为用户提供医学知识库服务,医疗工具库包括ICU常用药物管理子库(包括药理、剂量、配伍禁忌、有效期、入库时间)、临床医学工具子库(包括临床药物词典、临床诊疗手册、护理手册、科学文献)、ICU设备管理子库(包括设备和耗材管理档案、除颤器快速操作手册、呼吸机快速操作手册、生命体征监护设备快速操作手册),服务终端设备可以向云平台发出服务指令,实时在线快速查询使用上述医疗工具库。
通过云平台服务对象和属性管理,以及服务对象角色关系管理的功能,确定用户在业务运行中的性质和级别、角色,为中小型医院和大型医院建立密切的上下级关联关系,在云平台之上实现医疗数据和医疗资源共享,以及高危疑难病例会诊、远程教学查房,提高中小型医院的医疗水平。通过云平台数据分析报告管理服务,用户通过终端设备可以快捷方便的检索使用数据分析报告,作为临床医疗依据,评估医疗效果。云平台通过数据分析统计服务,为用户提供了通用的医学统计工具,可以对各类业务数据进行分析统计,将结果提供给用户终端设备浏览阅读。通过云平台患者状态评估服务,为用户提供通用的危重病情评价系统模型,自动在数据库中采集患者的生命体征数据和相关指标,评估预测患者疾病状态和发展趋势,支持用户日常工作数字化,降低用户工作压力,提高医疗质量。
需要说明的是,本申请所述基于第三方业务的医疗云平台数据共享系统及方法可以在公有云或私有云上部署实施和运行,可以采用云端的服务器、数据库、应用服务系统来实现。
上述方法实施例和系统实施例基于相同或相似的原理,其相似之处可相互借鉴,且能达到相同的效果。
本领域技术人员可以理解,实现上述实施例方法的全部或部分流程,可以通过计算机程序指令相关的硬件来完成,所述的程序可存储于计算机可读存储介质中。其中,所述计算机可读存储介质为磁盘、光盘、只读存储记忆体或随机存储记忆体等。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (19)

  1. 一种基于第三方业务的医疗云平台数据共享系统,其特征在于,包括:终端设备、云平台;
    所述云平台包括:云平台数据通信子系统、云平台数据支持子系统、云平台第三方业务子系统;
    所述云平台数据通信子系统用于所述云平台第三方业务子系统与终端设备之间的数据通信;
    所述云平台数据支持子系统用于应用分布式并行计算的深度学习框架,实时对云平台接收到的数据进行处理并存储;
    所述云平台第三方业务子系统根据所述终端设备的服务请求指令提供第三方业务,还用于对云平台数据支持子系统处理得到的异常数据进行辅助分析审核;
    所述终端设备包括:服务终端设备、生命体征监护设备,用于按照目标地址向所述云平台发送数据,接受第三方业务服务。
  2. 根据权利要求1所述的系统,其特征在于,
    所述数据包括:服务指令,生命体征数据;
    所述云平台数据通信子系统包括:数据通信模块、数据预处理模块;
    所述数据通信模块用于实时接收多个终端设备的数据,及和用户之间的数据交互;将所述数据中服务指令发送给所述云平台第三方业务子系统,将生命体征数据传输给数据预处理模块;
    所述数据预处理模块用于将生命体征监护设备ID编码和患者信息绑定生成业务流水号,同时对生命体征数据进行解析、分类、数据格式标准化处理,保留设备原始报警事件标志,将业务流水号和经过预处理的生命体征数据统一封装,存入生命体征数据库;
    所述云平台第三方业务子系统包括第三方业务服务模块、第三方业务终端;第三方业务服务模块用于接收服务指令,为用户提供第三方业务服务;第三方业务终端用于云平台生命体征数据辅助分析审核;
    所述云平台数据支持子系统包括:消息总线模块、数据存储模块、实时分析处理模块;
    所述消息总线模块用于连接控制所述云平台中各子系统、各模块之间的数据传输;
    所述数据存储模块包括生命体征数据库、文件数据库、业务信息数据库、缓存数据库,用于数据的存储、调用;
    所述实时分析处理模块用于实时读取生命体征数据库中的数据进行分析处理,生成数据分析报告并发送给服务终端设备浏览阅读,同时存入文件数据库。
  3. 根据权利要求2所述的系统,其特征在于,所述实时分析处理模块采用在线 实时数据分析处理方式及基于Spark引擎的深度学习框架对生命体征数据进行实时分析筛查处理:
    Spark分布式并行计算的深度学习框架实时读取生命体征数据库中的生命体征数据,按照设置的微批处理间隔时间,Spark引擎并行创建多个任务,触发Spark流将数据按类型切分为RDD数据集合,同时控制相应类型的中央模型对该类型数据进行计算处理;所述中央模型计算处理发现超出设定基准的异常数据时,分析异常数据特征,计算持续时间,标记异常数据属性;
    所述实时分析处理模块将异常数据生成实时数据分析报告,向用户发出异常事件预警;
    所述实时分析处理模块将经过分析筛查处理的每一用户全程生命体征数据进行整合,生成动态数据分析报告;
    所述实时分析处理模块使用分析筛查处理后的生命体征数据,实时对每类中央模型进行训练优化,得到该类型数据新的中央模型。
  4. 根据权利要求1-3之一所述的系统,其特征在于,所述第三方业务终端连接云平台,用于对经过实时分析处理的生命体征数据进行实时辅助分析审核,实时分析处理模块根据辅助分析结果对生命体征数据库中数据进行更新,并用于生成数据分析报告。
  5. 根据权利要求1-2或4所述的系统,其特征在于,所述服务指令由指令名和参数组成,其包括:实时数据服务指令、数据调取指令、异常数据事件查询指令、数据分析报告管理指令、医疗文书服务指令、数据分析统计指令、用户自定义项设置指令、会诊发起指令、患者状态评估指令、设备远程操作指令、医疗协作信息发布指令、医疗工具库查询指令。
  6. 根据权利要求1-5之一所述的系统,其特征在于,所述第三方业务服务模块包括实时数据服务子模块;所述实时数据服务子模块接收实时数据服务指令并进行解析,认证指令携带的生命体征监护设备ID编码的有效状态,控制数据通信模块接收生命体征数据,并传输给数据预处理模块进行预处理,生成业务流水号,与经过预处理的数据统一封装,存入生命体征数据库,提供给实时分析处理模块进行实时分析处理,生成数据分析报告,并发送给服务终端设备浏览阅读。
  7. 根据权利要求1-5之一所述的系统,其特征在于,所述第三方业务服务模块包括数据调取子模块;所述数据调取子模块接收数据调取指令并进行解析,认证指令携带的用户信息、用户权限合法状态,向服务终端设备发送携带有许可信息的回应消息,根据指令携带的患者信息和调取数据类型,映射患者业务流水号,进行数据检索调取,将调取的数据提供给服务终端设备浏览阅读、实时直播、历史回放;所述数据调取操作的记录存入业务信息数据库;所述数据类型包括:实时数据、历史数据。
  8. 根据权利要求1-5之一所述的系统,其特征在于,所述第三方业务服务模块 包括医疗文书管理子模块,所述医疗文书管理子模块接收医疗文书服务指令并进行解析,认证指令携带的用户信息、用户权限合法状态,向服务终端设备发送携带有许可信息的回应消息,根据指令携带的患者信息和医疗文书类型信息,映射患者业务流水号,检索选定符合指令参数的医疗文书,服务终端设备通过手写、语音、拼音进行创建、编辑、查询、维护、存储的管理操作,所述管理操作的记录存入业务信息数据库;所述医疗文书类型包括:医嘱、护理表单、电子病历。
  9. 根据权利要求1-5之一所述的系统,其特征在于,所述第三方业务服务模块包括用户自定义项设置子模块,所述用户自定义项设置子模块接收用户自定义项设置指令并进行解析,认证指令携带的用户信息、用户权限合法状态,向服务终端设备发送携带有许可信息的回应消息,允许用户对用户自定义项进行编辑、更新、存储,云平台执行更新后的设置,所述设置操作的记录存入所述业务信息数据库;所述用户自定义项包括:系统与业务规则配置、消息通知方式和范围、第三方服务项目选择、用户操作界面设置。
  10. 根据权利要求1-5之一所述的系统,其特征在于,所述第三方业务服务模块包括设备远程操作服务子模块;所述设备远程操作服务子模块接收设备远程操作指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息,同时根据指令携带的单个或多个患者信息,映射单个或多个生命体征监护设备ID,检索并连接符合指令参数的设备,服务终端设备远程控制调整生命体征监护设备工作模式,所获取的结果按照数据类型存入对应的数据库,所述设备远程操作的记录存入业务信息数据库。
  11. 根据权利要求1-5之一所述的系统,其特征在于,所述第三方业务服务模块包括会诊服务子模块;所述会诊服务子模块接收会诊发起指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息,同时根据指令携带的患者信息、会诊方信息,通过云平台向会诊方发出启动终端设备会诊通知,建立发起方和会诊方之间数据链路,根据患者信息映射业务流水号,共享患者数据,进行多媒体视频和数据会诊,会诊资料文件数据存入文件数据库,会诊操作的记录存入业务信息数据库。
  12. 根据权利要求1-5之一所述的系统,其特征在于,所述第三方业务服务模块包括医疗协作信息发布子模块;所述医疗协作信息发布子模块接收医疗协作信息发布指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息,同时根据指令携带的患者信息、医疗协作团队信息,通过云平台向医疗协作团队终端设备发布协作信息,并以声光、震动、图文进行提示,所述发布操作的记录存入所述业务信息数据库。
  13. 根据权利要求1-5之一所述的系统,其特征在于,所述第三方业务服务模块包括医疗工具库服务子模块;所述医疗工具库服务子模块接收医疗工具库查询指令并 进行解析,认证指令携带的用户信息、用户权限合法状态,向服务终端设备发送携带有许可信息的回应消息,根据指令携带的查询数据类型,调取医疗工具库中关联信息,提供给服务终端设备浏览阅读,所述医疗工具库查询操作的记录存入业务信息数据库;所述医疗工具库包括ICU常用药物管理子库、临床医学工具子库、ICU设备管理子库。
  14. 一种基于第三方业务的医疗云平台数据共享方法,其特征在于,包括以下步骤:
    终端设备通过身份验证,按照目标地址向云平台发送数据;
    数据通信模块实时接收多个终端设备的数据,所述数据包括:服务指令和生命体征数据;将服务指令发送给第三方业务服务模块,将生命体征数据传输给数据预处理模块;
    第三方业务服务模块接收上述服务指令,根据服务指令携带的参数,为用户提供第三方业务服务;
    数据预处理模块基于系统编码表规则,将生命体征监护设备ID编码和患者信息绑定生成业务流水号;
    对获取的每一用户生命体征数据进行解析、分类,以及数据格式标准化处理,保留设备原始报警事件标志;
    将患者业务流水号和经过预处理的数据统一封装,存入生命体征数据库;
    实时分析处理模块实时读取所述生命体征数据,进行分析处理,生成数据分析报告。
  15. 根据权利要求14所述的方法,其特征在于,所述第三方业务服务包括实时数据服务:
    服务终端设备输入患者信息、生命体征监护设备ID编码,向云平台发出实时数据服务指令;
    数据通信模块将接收到的指令发送给实时数据服务子模块;
    实时数据服务子模块接收指令并进行解析,对指令携带的生命体征监护设备ID编码有效状态认证核准,向数据通信模块发送携带有许可信息的回应消息,允许接收生命体征数据,并传输给数据预处理模块;
    数据预处理模块对生命体征数据进行预处理,生成业务流水号,并和经过预处理的生命体征数据统一封装,存入生命体征数据库;
    实时分析处理模块应用在线实时数据分析处理方式及基于Spark引擎的深度学习框架实时读取生命体征数据库中生命体征数据,按照设置的微批处理间隔时间,Spark引擎并行创建多个任务,触发Spark流将数据按类型切分为RDD数据集合,同时控制相应类型的中央模型对该类型数据进行计算处理;
    所述中央模型发现超出设定基准的异常数据,分析异常数据特征,计算异常事件持续时间,标记异常数据属性;
    所述实时分析处理模块根据异常数据生成实时数据分析报告,向用户发出异常事件预警,将分析报告发送给服务终端设备,并存入文件数据库;
    所述实时分析处理模块将经过分析筛查处理的每一用户全程生命体征数据进行整合,生成动态数据分析报告,发送给服务终端设备,并存入文件数据库;
    所述实时分析处理模块使用生命体征数据库中分析筛查处理后的生命体征数据,实时对每类中央模型进行训练优化,得到该类型数据新的中央模型;
    第三方服务终端对经过处理的生命体征数据进行实时辅助分析审核,实时分析处理模块根据辅助分析结果对生命体征数据库中数据进行更新,并用于生成数据分析报告。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第三方业务服务还包括数据调取服务:
    服务终端设备输入患者信息、调取数据类型信息,向云平台发出数据调取服务指令;
    数据通信模块将接收到的指令发送给数据调取服务子模块;
    数据调取服务子模块接收指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息;
    数据调取服务子模块根据指令携带的患者信息,检索映射的业务流水号;
    数据调取服务子模块根据业务流水号,检索调取符合指令参数的数据;
    数据调取服务子模块将调取的数据提供给服务终端设备进行浏览阅读、实时直播、历史回顾;
    数据调取服务子模块将数据调取服务操作的记录存入业务信息数据库。
  17. 根据权利要求14或15所述的方法,其特征在于,所述第三方业务服务还包括医疗文书服务:
    服务终端设备输入患者信息、医疗文书类型信息,向云平台发出医疗文书服务指令;
    数据通信模块将接收到的指令发送给医疗文书管理子模块;
    医疗文书管理子模块接收指令并进行解析,通过认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息;
    医疗文书管理子模块根据指令携带的患者信息,检索映射的业务流水号;
    当检索到业务流水号时,医疗文书管理子模块根据业务流水号和医疗文书类型信息,检索选定符合指令参数的医疗文书文件;服务终端设备通过手写、语音、拼音对选定的医疗文书文件进行创建、编辑、查询、维护,并将经过处理的医疗文书文件存入文件数据库;
    当业务流水号检索结果为空时,医疗文书管理子模块根据患者信息创建符合指令参数的医疗文书进行编辑,并将经过处理的医疗文书文件存入文件数据库;
    医疗文书管理子模块将医疗文书管理操作的记录存入业务信息数据库。
  18. 根据权利要求14或15所述的方法,其特征在于,所述第三方业务服务还包括用户自定义项设置服务:
    服务终端设备选择用户自定义项,输入设置内容,向云平台发出用户自定义项设置指令;
    数据通信模块将接收到的指令发送给用户自定义项设置子模块;
    用户自定义项设置子模块接受指令并进行解析,认证所述指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息;
    服务终端设备对自定义项进行编辑、更新、存储设置操作,云平台执行更新后的设置;
    用户自定义项设置子模块将设置操作的记录存入业务信息数据库。
  19. 根据权利要求14或15所述的方法,其特征在于,所述第三方业务服务还包括设备远程操作服务:
    服务终端设备输入单个或多个患者信息、远程操作类型信息,向云平台发出设备远程操作指令;
    数据通信模块将接收到的指令发送给设备远程操作子模块;
    设备远程操作子模块接收指令并进行解析,认证指令携带的用户信息、用户权限的合法状态,并向服务终端设备发送携带有许可信息的回应消息;
    设备远程操作子模块根据患者信息映射的单个或多个生命体征监测设备ID,检索符合所述指令参数的设备,建立连接;
    服务终端设备对连接的生命体征监测设备进行控制测量、状态查询、配置修改、设备维护操作;
    服务终端设备完成连接和操作,所述设备远程操作子模块将所获取的操作结果按照数据类型存入对应的数据库;
    设备远程操作子模块将设备远程操作的记录存入业务信息数据库。
PCT/CN2019/087110 2018-05-16 2019-05-15 一种基于第三方业务的医疗云平台数据共享系统及方法 WO2019219036A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/052,582 US11769586B2 (en) 2018-05-16 2019-05-15 Medical cloud platform data sharing system and method based on third-party business
US18/450,352 US20230395253A1 (en) 2018-05-16 2023-08-15 Cloud-edge collaborative processing system and method for icu data based on third-party business

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810469182.5 2018-05-16
CN201810469182.5A CN108648786B (zh) 2018-05-16 2018-05-16 一种基于第三方业务的医疗云平台数据共享系统及方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/052,582 A-371-Of-International US11769586B2 (en) 2018-05-16 2019-05-15 Medical cloud platform data sharing system and method based on third-party business
US18/450,352 Continuation-In-Part US20230395253A1 (en) 2018-05-16 2023-08-15 Cloud-edge collaborative processing system and method for icu data based on third-party business

Publications (1)

Publication Number Publication Date
WO2019219036A1 true WO2019219036A1 (zh) 2019-11-21

Family

ID=63756465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087110 WO2019219036A1 (zh) 2018-05-16 2019-05-15 一种基于第三方业务的医疗云平台数据共享系统及方法

Country Status (3)

Country Link
US (1) US11769586B2 (zh)
CN (1) CN108648786B (zh)
WO (1) WO2019219036A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111134658A (zh) * 2020-01-17 2020-05-12 乐普(北京)医疗器械股份有限公司 一种心电信号中RonT类型心搏的检测方法和装置
CN112613024A (zh) * 2021-01-07 2021-04-06 国网上海市电力公司 一种数据交互方法、装置、系统及存储介质
CN113329340A (zh) * 2021-05-29 2021-08-31 中国人民解放军总医院第三医学中心 一种背负舱用生命信息处理装置及伤员后送背负舱
CN116743791A (zh) * 2022-09-30 2023-09-12 腾讯云计算(北京)有限责任公司 一种地铁云平台云边同步方法、装置、设备及存储介质
CN117038050A (zh) * 2023-10-10 2023-11-10 深圳华声医疗技术股份有限公司 生理参数异常处理方法、系统及医疗设备
CN117349322A (zh) * 2023-12-05 2024-01-05 摩尔元数(福建)科技有限公司 基于分析控制图的spc实时分析方法及系统
CN118175150A (zh) * 2024-03-11 2024-06-11 广州思勘测绘技术有限公司 一种历史建筑云数据共享方法及系统

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108648786B (zh) 2018-05-16 2021-01-08 上海术木医疗科技有限公司 一种基于第三方业务的医疗云平台数据共享系统及方法
US12125054B2 (en) 2018-09-25 2024-10-22 Valideck International Corporation System, devices, and methods for acquiring and verifying online information
WO2020124313A1 (zh) * 2018-12-17 2020-06-25 深圳迈瑞生物医疗电子股份有限公司 病人状态监测方法、医疗监护设备和计算机可读存储介质
CN109903839A (zh) * 2019-02-22 2019-06-18 武汉凯德维斯生物技术有限公司 一种基于云平台的医疗影像阅片系统
CN110353641A (zh) * 2019-07-15 2019-10-22 宁波华医健康产业发展有限公司 生命体征监测方法及系统
CN110995774B (zh) * 2019-09-30 2024-01-05 大唐可再生能源试验研究院有限公司 风电场通用scada系统
CN112887355B (zh) * 2019-11-29 2022-09-27 北京百度网讯科技有限公司 异常服务器的业务处理方法及装置
CN111126601A (zh) * 2019-12-24 2020-05-08 上海商汤智能科技有限公司 信息处理方法及装置、电子设备和存储介质
CN111177219A (zh) * 2019-12-25 2020-05-19 哈尔滨工业大学(深圳) 一种数据交换平台及数据交换方法
CN111145856A (zh) * 2019-12-31 2020-05-12 中国人民解放军陆军军医大学第一附属医院 医疗信息远程共享设备
CN111128331B (zh) * 2020-02-18 2022-07-26 上海术木医疗科技有限公司 一种多参数监护设备数据分析报告生成方法及系统
CN111408048B (zh) * 2020-04-02 2023-08-08 河北普尼医疗科技有限公司 一种基于电场治疗监护子设备云组系统及模式
CN111584059B (zh) * 2020-04-21 2024-01-23 武汉联影医疗科技有限公司 系统监测方法、装置和计算机设备
DE102020206726A1 (de) * 2020-05-28 2021-12-02 Siemens Healthcare Gmbh Verfahren zur Verarbeitung eines medizinischen Datensatzes durch eine Edge-Anwendung auf der Basis einer cloudbasierten Anwendung
CN111798973A (zh) * 2020-07-08 2020-10-20 广元量知汇科技有限公司 智慧健康终端管理系统
CN111914288A (zh) * 2020-07-09 2020-11-10 上海红阵信息科技有限公司 基于生物特征的多业务分析处理管理系统
CN111968705A (zh) * 2020-07-23 2020-11-20 北斗生命科学(广州)有限公司 一种基于云架构的基因测序订单处理方法、系统及介质
CN112104724B (zh) * 2020-09-09 2023-11-14 山东浪潮智慧医疗科技有限公司 一种对医院挂号数据进行实时治理和统计的方法
CN112270805B (zh) * 2020-10-22 2022-05-24 新华网股份有限公司 疲劳状态预警系统及疲劳状态信息管理系统
CN112328704B (zh) * 2020-11-03 2024-02-23 成都中科大旗软件股份有限公司 实现多种数据源联合查询的方法、系统、计算机设备和存储介质
CN112245740A (zh) * 2020-11-04 2021-01-22 湖南万脉医疗科技有限公司 一种基于云平台自检的多功能呼吸机
CN112436963A (zh) * 2020-11-12 2021-03-02 中国联合网络通信集团有限公司 一种数据分析方法及装置
CN112540983B (zh) * 2020-11-18 2023-06-09 兰州大方电子有限责任公司 基于疫情防控的中高职一体化数据同控管理应用系统
CN112365964A (zh) * 2020-12-01 2021-02-12 南京青囊医疗科技服务有限公司 一种基于医疗耗材管理平台的数据处理方法、系统及装置
CN112704482B (zh) * 2020-12-17 2023-06-27 北京智康人人科技有限公司 一种心脑检测预警方法、平台及其计算机可读存储介质
CN112883707B (zh) * 2020-12-31 2022-12-20 首都医科大学宣武医院 基于人机对话的急救辅助方法、系统、设备及存储介质
CN112700835B (zh) * 2021-02-25 2024-01-26 四川大学华西医院 医疗护理期电子体温单填写监督管理方法、装置及介质
CN113220756A (zh) * 2021-03-25 2021-08-06 上海东普信息科技有限公司 物流数据实时处理方法、装置、设备及存储介质
CN113065087A (zh) * 2021-04-07 2021-07-02 长沙乐哈信息技术有限公司 一种健康传播管理平台
CN113190760B (zh) * 2021-05-24 2024-05-17 北京天健智慧科技有限公司 区域健康信息平台的数据处理方法
CN113284586B (zh) * 2021-05-24 2024-05-14 康键信息技术(深圳)有限公司 医疗业务处理方法、装置、设备及存储介质
CN113220968B (zh) * 2021-05-26 2023-03-14 西安热工研究院有限公司 基于群集化网络爬虫的电力技术标准自动查新系统及方法
CN114374594A (zh) * 2021-07-06 2022-04-19 交通运输部公路科学研究所 一种基于自适应技术的设备状态监测管理系统
CN113705825A (zh) * 2021-07-16 2021-11-26 杭州医康慧联科技股份有限公司 适用于多方使用的数据模型共享方法
CN113723919B (zh) * 2021-08-26 2024-01-12 东方电气自动控制工程有限公司 一种基于云平台的管理系统
CN113823370A (zh) * 2021-08-30 2021-12-21 山东健康医疗大数据有限公司 一种发热门诊电子病历业务数据的动态监管方法及工具
CN114141342B (zh) * 2021-11-18 2024-09-06 朗森特科技有限公司 一种基于mqtt协议的医疗设备监控管理分析系统
CN114022031A (zh) * 2021-11-23 2022-02-08 中国工商银行股份有限公司 数据处理方法、装置、电子设备、介质和计算机程序产品
CN114171172B (zh) * 2021-12-08 2024-09-06 深圳位置网科技有限公司 一种医疗信息匹配与分发的系统和方法
CN114141390A (zh) * 2021-12-09 2022-03-04 温澜清江(北京)科技有限公司 一种远程icu数据网络系统
CN114613483B (zh) * 2022-04-12 2024-11-08 苏州真趣信息科技有限公司 一种医疗事件触发执行方法和系统
CN114968620A (zh) * 2022-05-06 2022-08-30 浪潮软件科技有限公司 一种基于消息队列的机构数据整合实现方法及装置
CN114979187B (zh) * 2022-05-17 2024-05-17 北京京东拓先科技有限公司 一种数据处理方法及装置
WO2023240012A1 (en) * 2022-06-07 2023-12-14 Bio-Rad Laboratories, Inc. Cloud-based quality control data management
CN115116575A (zh) * 2022-07-01 2022-09-27 上海术木医疗科技有限公司 一种机械通气治疗数据管理方法及系统
CN115482940B (zh) * 2022-09-16 2024-01-23 深圳市拓普智造科技有限公司 一种远程会诊医疗管理云系统以及方法
CN115277265B (zh) * 2022-09-29 2022-12-13 中粮信息科技有限公司 一种网络安全应急处置方法和系统
CN116561242B (zh) * 2023-07-12 2023-09-15 北京图众科技有限公司 一种云标记的空间要素的采集与管理系统
CN116913491B (zh) * 2023-07-20 2024-09-03 苏州市立医院 一种慢性创面修复医联体信息服务平台及控制方法
CN116913497B (zh) * 2023-09-14 2023-12-08 深圳市微能信息科技有限公司 基于大数据的社区慢性病精准管理系统及方法
CN117240614B (zh) * 2023-11-13 2024-01-23 中通服网盈科技有限公司 一种基于互联网的网络信息安全监测预警系统
CN117594221B (zh) * 2024-01-15 2024-04-16 吉林大学第一医院 一种基于数据分析的患者生命体征实时监测系统
CN117725468B (zh) * 2024-02-06 2024-04-26 四川鸿霖科技有限公司 一种智能医用电保障方法及系统
CN118280559A (zh) * 2024-04-12 2024-07-02 北京健康有益科技有限公司 一种应用于心理健康评估的数据处理方法和系统
CN118590321B (zh) * 2024-08-05 2024-10-11 网思科技股份有限公司 云环境下的网络安全动态测试与监控方法、系统和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140123292A1 (en) * 2012-10-30 2014-05-01 Samsung Sds Co., Ltd. Transit control for data
CN105608340A (zh) * 2016-03-16 2016-05-25 意滋尔健康科技(昆山)有限公司 基于云计算数据分析的健康管理系统
CN106997421A (zh) * 2016-01-25 2017-08-01 清华大学 个性化医疗信息采集和健康监测的智能系统和方法
CN107145704A (zh) * 2017-03-27 2017-09-08 西安电子科技大学 一种面向社区的健康医疗监护、评测系统及其方法
CN108648786A (zh) * 2018-05-16 2018-10-12 上海术木医疗科技有限公司 一种基于第三方业务的医疗云平台数据共享系统及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140122988A1 (en) * 2012-10-30 2014-05-01 FHOOSH, Inc. Systems and methods for populating user information on electronic forms
CN106295938A (zh) * 2015-06-08 2017-01-04 宁波网信息技术有限公司 基于云服务的医疗文档的存储和利用系统及其使用方法
CA2932204A1 (en) * 2015-06-25 2016-12-25 Alaya Care Inc. Method for predicting adverse events for home healthcare of remotely monitored patients
CN105160155A (zh) * 2015-08-10 2015-12-16 四川智康科技有限责任公司 一种医学信息网络共享系统
CN105380602B (zh) * 2015-11-13 2018-04-06 汪毅 可穿戴人体跟腱信息采集及监控系统
US20180032691A1 (en) * 2016-07-29 2018-02-01 Nissim Zur Health monitor and a method for monitoring health using an artificial intelligence engine pattern
US20180256111A1 (en) * 2017-03-07 2018-09-13 Primus Llc Apparatus and method to record health care vitals and information on a stand-alone and mobile device.
CN107613008A (zh) * 2017-09-25 2018-01-19 北京春鸿科技有限公司 一种医疗数据的聚合存储方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140123292A1 (en) * 2012-10-30 2014-05-01 Samsung Sds Co., Ltd. Transit control for data
CN106997421A (zh) * 2016-01-25 2017-08-01 清华大学 个性化医疗信息采集和健康监测的智能系统和方法
CN105608340A (zh) * 2016-03-16 2016-05-25 意滋尔健康科技(昆山)有限公司 基于云计算数据分析的健康管理系统
CN107145704A (zh) * 2017-03-27 2017-09-08 西安电子科技大学 一种面向社区的健康医疗监护、评测系统及其方法
CN108648786A (zh) * 2018-05-16 2018-10-12 上海术木医疗科技有限公司 一种基于第三方业务的医疗云平台数据共享系统及方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111134658A (zh) * 2020-01-17 2020-05-12 乐普(北京)医疗器械股份有限公司 一种心电信号中RonT类型心搏的检测方法和装置
CN111134658B (zh) * 2020-01-17 2022-05-17 上海乐普云智科技股份有限公司 一种心电信号中RonT类型心搏的检测方法和装置
CN112613024A (zh) * 2021-01-07 2021-04-06 国网上海市电力公司 一种数据交互方法、装置、系统及存储介质
CN112613024B (zh) * 2021-01-07 2024-05-03 国网上海市电力公司 一种数据交互方法、装置、系统及存储介质
CN113329340A (zh) * 2021-05-29 2021-08-31 中国人民解放军总医院第三医学中心 一种背负舱用生命信息处理装置及伤员后送背负舱
CN116743791A (zh) * 2022-09-30 2023-09-12 腾讯云计算(北京)有限责任公司 一种地铁云平台云边同步方法、装置、设备及存储介质
CN117038050A (zh) * 2023-10-10 2023-11-10 深圳华声医疗技术股份有限公司 生理参数异常处理方法、系统及医疗设备
CN117038050B (zh) * 2023-10-10 2024-01-26 深圳华声医疗技术股份有限公司 生理参数异常处理方法、系统及医疗设备
CN117349322A (zh) * 2023-12-05 2024-01-05 摩尔元数(福建)科技有限公司 基于分析控制图的spc实时分析方法及系统
CN117349322B (zh) * 2023-12-05 2024-03-08 摩尔元数(福建)科技有限公司 基于分析控制图的spc实时分析方法及系统
CN118175150A (zh) * 2024-03-11 2024-06-11 广州思勘测绘技术有限公司 一种历史建筑云数据共享方法及系统

Also Published As

Publication number Publication date
CN108648786A (zh) 2018-10-12
US11769586B2 (en) 2023-09-26
CN108648786B (zh) 2021-01-08
US20210074415A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2019219036A1 (zh) 一种基于第三方业务的医疗云平台数据共享系统及方法
CN108847274B (zh) 一种基于云平台的生命体征数据处理方法及系统
US20230395253A1 (en) Cloud-edge collaborative processing system and method for icu data based on third-party business
US20120072235A1 (en) System and Method for Personal Healthcare Analysis and Distributable Archive
Bird et al. Experiences with a two-level modelling approach to electronic health records
NZ546843A (en) System and process for facilitating the provision of health care
Liang et al. Intelligent and real-time data acquisition for medical monitoring in smart campus
US10379987B1 (en) Intermediate check points and controllable parameters for addressing process deficiencies
Park et al. Modeling a terminology-based electronic nursing record system: an object-oriented approach
CN116130119A (zh) 一种乳腺癌术后康复辅助管理系统
WO2018204521A1 (en) Mobile interoperable personal health information exchange with biometrics data analytics
US20230368906A1 (en) Method and system for generating data analysis report of multi-parameter monitoring device
CN112687383A (zh) 一种医院护理交互系统
CN108538385A (zh) 一种医学检验危急值警报系统
Duplaga Universal electronic health record MUDR
Hu Research on monitoring system of daily statistical indexes through big data
CN116665860A (zh) 一种智慧研究型病房管理与服务平台
EP4068301A1 (en) Health management method, device and system, and data acquisition device
CN115458190A (zh) 一种面向社区的慢性阻塞性肺疾病早期筛查和干预系统
Fazio et al. A hybrid storage service for the management of big e-health data: a tele-rehabilitation case of study
KR20120116629A (ko) 헬스케어 시스템 및 헬스케어 서비스 방법
Percival et al. Enabling the integration of clinical event and physiological data for real-time and retrospective analysis
Zhou et al. New approaches in Philips ECG database management system design
CN112712890A (zh) 一种基于手持终端的医疗护理信息交互系统
US20220254459A1 (en) Data processing method, data processing device, computing device and computer readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.03.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19803391

Country of ref document: EP

Kind code of ref document: A1