发明内容
本发明的目的是针对现有技术的缺陷,提供一种心电信号中RonT类型心搏的检测方法和装置,基于RR间期,两个QRS之间的波的显著性以及T波朝向等多指标动态阈值方法,提高了检测的准确率。
为实现上述目的,在第一方面,本发明提供了一种心电信号中RonT类型心搏的检测方法,包括:
接收待检测的心电监测数据,对所述心电监测数据进行QRS信号检测处理,确定所述心电监测数据中各QRS波群信号的位置信息;所述QRS波群信号的位置信息包括每个QRS波的起始位置和终止位置的信息、R波的位置信息、T波的朝向和位置信息;
对所述心电监测数据进行滤波处理,以去除心电信号的基线漂移和干扰,输出滤波后的心电监测数据;
对所述滤波后的心电监测数据采用8阶滑动平均进行数据平滑处理,得到待检测样本数据;
根据所述QRS波群信号的位置信息,从所述待检测样本数据中识别相邻两个QRS波之间的间距大于0.2×RR间期长度平均值且小于0.6×RR间期长度平均值的心搏信号片段;所述RR间期长度平均值为所述相邻两个QRS波中第一个QRS波之前的预设数量个RR间期长度的平均值;所述心搏信号片段包括具有所述相邻两个QRS波的第一心搏信号和第二心搏信号;
如果所述心搏信号片段中相邻两个QRS波之间显著性最大的波的朝向与所述相邻两个QRS波中第一个QRS波之前的预设数量个心搏信号中的T波朝向都一致,且所述相邻两个QRS波之间显著性最大的波的宽度小于第一预设时长,则确定所述第二心搏信号被检出为RonT类型心搏。
优选的,在所述确定所述第二心搏信号被检出为RonT类型心搏之前,所述方法还包括:
确定所述待检测样本数据是否具有心搏类型的标注信息。
进一步优选的,当所述待检测样本数据具有心搏类型的标注信息时,所述确定所述第二心搏信号被检出为RonT类型心搏具体为:
当所述心搏信号片段中所述第一心搏信号为V类型心搏且所述第二心搏信号为N类型心搏时,确定所述第二心搏信号为被检出为RonT类型心搏。
进一步优选的,所述对所述心电监测数据进行滤波处理具体包括:
采用4阶0.5Hz高通滤波器对所述心电监测数据进行滤波处理。
进一步优选的,其特征在于,
所述V类型心搏为心室早搏类型心搏;
所述N类型心搏为正常心拍类型心搏。
优选的,所述预设数量为8。
本发明实施例提供的心电信号中RonT类型心搏的检测方法,基于RR间期,两个QRS之间的波的显著性以及T波朝向等多指标动态阈值方法,提高了检测的准确率。
第二方面,本发明实施例提供了一种设备,该设备包括存储器和处理器,存储器用于存储程序,处理器用于执行第一方面及第一方面的各实现方式中的方法。
第三方面,本发明实施例提供了一种包含指令的计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行第一方面及第一方面的各实现方式中的方法。
第四方面,本发明实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现第一方面及第一方面的各实现方式中的方法。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
本发明实施例提供的心电信号中RonT类型心搏的检测方法,可以用于对心电监测信号中RonT类型心搏自动分析和异常检出。图1为本发明实施例提供的检测方法流程图,下面结合图1所述,对本发明实施例提供的心电信号中RonT类型心搏的检测方法进行说明。
在本例中,其实施方法步骤如图1所示:
步骤110,接收待检测的心电监测数据,对心电监测数据进行QRS信号检测处理,确定心电监测数据中各QRS波群信号的位置信息;
具体的,QRS波群信号的位置信息包括每个QRS波的起始位置和终止位置的信息、R波的位置信息、T波的朝向和位置信息。通过对心电监测数据进行QRS信号检测处理,可以提取到上述位置信息。具体执行方法可以采用申请人在先申请的专利201711203259.6《基于人工智能自学习的心电图自动分析方法和装置》中步骤120及步骤120之前的方法获得。在《基于人工智能自学习的心电图自动分析方法和装置》的步骤120之前先进行了滤波处理,在本例中采用在对心电监测数据进行QRS信号检测处理之后再进行滤波处理的方式。当然也可以在心电监测数据进行QRS信号检测处理之前进行滤波处理,这都不影响本发明的实现。
步骤120,对心电监测数据进行滤波处理,以去除心电信号的基线漂移和干扰,输出滤波后的心电监测数据;
具体的,可以先通过4阶0.5Hz高通滤波器去除心电信号的基线漂移,然后再通过30Hz低通滤波器去除心电信号频率之外的高频干扰,输出用于后续处理的滤波后的心电监测数据。
步骤130,对滤波后的心电监测数据采用8阶滑动平均进行数据平滑处理,得到待检测样本数据;
具体的,滑动平均方法是对每个心搏数据不断通过滑动地取相邻几组数据做算数平均。
针对本方法所采用的8阶滑动平均,通过心电监测数据的每个R点位置信息计算得到RR间期序列,图3所示,在时序上分别为RR_1,RR_2,RR_3,……,RR_n,其中n为心搏的个数。
基于图3所得RR间期序列如下所示:
假设当前心搏序号为i,则8阶滑动平均输出的数据为RR_i-7至RR_i八个数值的平均值。当i小于8时,8阶滑动平均的输出值为RR_1至RR_i这i个数值的平均值。
滑动平均法的最主要特点在于简捷性。它算法很简便,计算量较小,尤其可采用递推形式来计算,能够快速且便于实时处理非平稳数据。
步骤140,根据QRS波群信号的位置信息,从待检测样本数据中识别相邻两个QRS波之间的间距大于0.2×RR间期长度平均值且小于0.6×RR间期长度平均值的心搏信号片段;
具体的,心搏信号片段包括具有相邻两个QRS波的第一心搏信号和第二心搏信号。
RR间期是心电图上QRS波群中R波和R波之间的距离。通常情况下RR间期的正常距离是0.6-1.0秒。对应的心室率是60到100次每分。RR间期过小说明出现了心动过速,而过大则说明出现了心动过缓。
RR间期长度平均值为相邻两个QRS波中第一个QRS波之前的预设数量个RR间期长度的平均值;在本例中预设数量优选为8。平均RR间期取最近的8个RR间期的平均值,以保证心搏信号的个体的差异性不会影响检测。在这里,心搏信号片段的识别是针对相邻两个QRS波之间的间距在0.2×RR间期长度平均值至0.6×RR间期长度平均值,是根据经验值确定的。
步骤150,如果心搏信号片段中相邻两个QRS波之间显著性最大的波的朝向与相邻两个QRS波中第一个QRS波之前的预设数量个心搏信号中的T波朝向都一致,且相邻两个QRS波之间显著性最大的波的宽度小于第一预设时长,则确定第二心搏信号被检出为RonT类型心搏。
具体的,第一预设时长的可选范围是0.05s至0.2s,在本发明具体实施中,我们采用0.16s作为第一预设时长执行本发明的方法。
正常情况下,T波方向在心电图上表现出与QRS波群主波R波方向一致:主波R波向上,T波就向上,当主波R波向下时,T波跟着向下。
在考虑心电信号非正常的情况下,R波的朝向可能为正向,但是T波的朝向在心电信号序列中可能一会儿正向一会儿负向,本发明的检测方法需要根据实际情况进行准确计算,因此必须判断第二心搏信号最近的一个区间内,即第一心搏信号的T波朝向。但为了避免心搏信号的个体的差异性导致在判断T波朝向的时候引起的错误,因此可以优选的选取一段时间内进行T波朝向的判断,选取心搏信号片段之前预设数量个心搏信号内大部分T波朝向为该心搏的T波朝向,以提高检测的准确率。在本例中预设数量优选为8。
显著性最大的波,通过图2所示方式确定。
图2中序号为6的波峰在此区间内为最高的峰,因此它的显著性的值为6处的幅值减去d处的幅值。8处的峰值要小于6处的峰值,因此需要找到6和8中间的最低的谷,即为f,因此8处的峰的显著性的值为8处的幅值减去f处的幅值;7处的峰值比8处的峰值低,因此需要在7和8中间的位置找最低的谷,即为g,因此7处的峰的显著性的值为7处的幅值减去g处的幅值。
以图2为例的情况就是判断序号为6的波的朝向与心搏信号片段之前8个心搏信号中的T波朝向都一致,且序号为6的波的宽度小于0.16s,则确定心搏信号片段中第二心搏信号被检出为RonT类型心搏。波的宽度为心电信号经过希尔伯特(hilbert)变换后的包络信号的半高宽。
如果上述任一条件不满足则第二心搏信号不是RonT类型心搏。
识别RonT类型心搏的目的在于可以在室扑室颤发生以前进行预警,及时采取措施,提高病人的生存率。
本方法在不同的实际应用中,接收到的待检测的心电监测数据的状况并不是都相同的,有些待检测的心电监测数据已经有QRS心搏类型分类的标注,有些没有。上述过程就是针对没有心搏分类的处理方法,在没有分类的情况下RonT检测的阳性率相对于有分类的情况会稍低,敏感率相对于有分类的情况稍高。而有心搏分类标注的些待检测的心电监测数据,我们可以采用如下更进一步的判定方法,检出能力的表现会更好。
具体的,可以在确定第二心搏信号被检出为RonT类型心搏之前,先确定待检测样本数据是否具有心搏类型的标注信息,已确定待检测的心电监测数据是否具有心搏分类标注。
这个判定步骤可以在步骤130之后,也可以在步骤140之后,或者还可以在判定了心搏信号片段中相邻两个QRS波之间显著性最大的波的朝向与相邻两个QRS波中第一个QRS波之前的预设数量个心搏信号中的T波朝向都一致,且相邻两个QRS波之间显著性最大的波的宽度小于0.16s之后再进行。
对于具有心搏类型的标注信息的待检测样本,在进行RonT类型心搏检测的时候,除了上述步骤过程中的判定标准,还要同时考虑第一心搏信号和第二心搏信号满足如下条件,即心搏信号片段中第一心搏信号为V类型心搏且第二心搏信号为N类型心搏,才确定第二心搏信号为被检出为RonT类型心搏。
本发明实施例提供的心电信号中RonT类型心搏的检测方法,基于RR间期,两个QRS之间的波的显著性以及T波朝向等多指标动态阈值方法,提高了检测的准确率。
图4为本发明实施例提供的一种设备结构示意图,该设备包括:处理器和存储器。存储器可通过总线与处理器连接。存储器可以是非易失存储器,例如硬盘驱动器和闪存,存储器中存储有软件程序和设备驱动程序。软件程序能够执行本发明实施例提供的上述方法的各种功能;设备驱动程序可以是网络和接口驱动程序。处理器用于执行软件程序,该软件程序被执行时,能够实现本发明实施例提供的方法。
需要说明的是,本发明实施例还提供了一种计算机可读存储介质。该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时,能够实现本发明实施例提供的方法。
本发明实施例还提供了一种包含指令的计算机程序产品。当该计算机程序产品在计算机上运行时,使得处理器执行上述方法。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。