TWI743503B - Optoelectronic device and method for manufacturing the same - Google Patents

Optoelectronic device and method for manufacturing the same Download PDF

Info

Publication number
TWI743503B
TWI743503B TW108122617A TW108122617A TWI743503B TW I743503 B TWI743503 B TW I743503B TW 108122617 A TW108122617 A TW 108122617A TW 108122617 A TW108122617 A TW 108122617A TW I743503 B TWI743503 B TW I743503B
Authority
TW
Taiwan
Prior art keywords
electrode
element unit
optoelectronic
optoelectronic element
photoelectric element
Prior art date
Application number
TW108122617A
Other languages
Chinese (zh)
Other versions
TW201937754A (en
Inventor
陳昭興
王佳琨
沈建賦
柯竣騰
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW108122617A priority Critical patent/TWI743503B/en
Publication of TW201937754A publication Critical patent/TW201937754A/en
Application granted granted Critical
Publication of TWI743503B publication Critical patent/TWI743503B/en

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)
  • Led Device Packages (AREA)

Abstract

An optoelectronic device including a substrate having a first side and a second opposite to the first side and an outer boundary, a light emitting unit formed on the first side, a first electrode electrically connected to the light emitting unit, a second electrode electrically connected to the light emitting unit and a heat transfer member formed between the first electrode and the second electrode and not electrically connected to the light emitting unit.

Description

光電元件及其製造方法Photoelectric element and its manufacturing method

本發明係關於一種光電元件,尤其是關於一種具有散熱墊的光電元件。 The present invention relates to a photoelectric element, in particular to a photoelectric element with a heat dissipation pad.

發光二極體(light-emitting diode,LED)的發光原理是利用電子在n型半導體與p型半導體間移動的能量差,以光的形式將能量釋放,這樣的發光原理係有別於白熾燈發熱的發光原理,因此發光二極體被稱為冷光源。此外,發光二極體具有高耐久性、壽命長、輕巧、耗電量低等優點,因此現今的照明市場對於發光二極體寄予厚望,將其視為新一代的照明工具,已逐漸取代傳統光源,並且應用於各種領域,如交通號誌、背光模組、路燈照明、醫療設備等。 The light-emitting principle of light-emitting diode (LED) is to use the energy difference between electrons moving between n-type semiconductor and p-type semiconductor to release energy in the form of light. This light-emitting principle is different from that of incandescent lamps. The light-emitting principle of heating, so the light-emitting diode is called a cold light source. In addition, light-emitting diodes have the advantages of high durability, long life, light weight, and low power consumption. Therefore, the current lighting market has high expectations for light-emitting diodes and regards them as a new generation of lighting tools, which have gradually replaced the traditional Light source, and used in various fields, such as traffic signs, backlight modules, street lighting, medical equipment, etc.

第1圖係習知之發光元件結構示意圖,如第1圖所示,習知之發光元件100,包含有一透明基板10、一位於透明基板10上之半導體疊層12,以及至少一電極14位於上述半導體疊層12上,其中上述之半導體疊層12由上而下至少包含一第一導電型半導體層120、一活性層122,以及一第二導電型半導體層124。 Figure 1 is a schematic diagram of the structure of a conventional light emitting device. As shown in Figure 1, the conventional light emitting device 100 includes a transparent substrate 10, a semiconductor stack 12 on the transparent substrate 10, and at least one electrode 14 on the semiconductor On the stack 12, the above-mentioned semiconductor stack 12 includes at least a first conductivity type semiconductor layer 120, an active layer 122, and a second conductivity type semiconductor layer 124 from top to bottom.

此外,上述之發光元件100更可以進一步地與其他元件組合連接以形成一發光裝置(light-emitting apparatus)。第2圖為習知之發光裝置結構示意 圖,如第2圖所示,一發光裝置200包含一具有至少一電路202之次載體(sub-mount)20;至少一焊料(solder)22位於上述次載體20上,藉由此焊料22將上述發光元件100黏結固定於次載體20上並使發光元件100之基板10與次載體20上之電路202形成電連接;以及,一電性連接結構24,以電性連接發光元件100之電極14與次載體20上之電路202;其中,上述之次載體20可以是導線架(lead frame)或大尺寸鑲嵌基底(mounting substrate),以方便發光裝置200之電路規劃並提高其散熱效果。 In addition, the above-mentioned light-emitting element 100 can be further combined with other elements to form a light-emitting apparatus. Figure 2 is a schematic diagram of the structure of the conventional light-emitting device As shown in FIG. 2, a light-emitting device 200 includes a sub-mount 20 with at least one circuit 202; at least one solder (solder) 22 is located on the sub-carrier 20, by which the solder 22 will The above-mentioned light-emitting element 100 is bonded and fixed on the sub-carrier 20 to electrically connect the substrate 10 of the light-emitting element 100 and the circuit 202 on the sub-carrier 20; and, an electrical connection structure 24 to electrically connect the electrode 14 of the light-emitting element 100 And the circuit 202 on the secondary carrier 20; wherein, the above-mentioned secondary carrier 20 can be a lead frame or a large-size mounting substrate to facilitate circuit planning of the light-emitting device 200 and improve its heat dissipation effect.

一種光電元件,包含:一基板,具有一第一側及一第二側相對第一側,及一第一外邊界;一發光二極體單元形成在第一側;一第一電極電性連接發光二極體單元;一第二電極電性連接發光二極體單元;以及一散熱墊形成在第一電極與第二電極之間,並與發光二極體單元電性隔絶。 A photoelectric element, comprising: a substrate having a first side and a second side opposite to the first side, and a first outer boundary; a light emitting diode unit formed on the first side; and a first electrode electrically connected A light emitting diode unit; a second electrode electrically connected to the light emitting diode unit; and a heat dissipation pad is formed between the first electrode and the second electrode and is electrically isolated from the light emitting diode unit.

100、200、300、300’、400、500:發光元件 100, 200, 300, 300’, 400, 500: light-emitting element

10:透明基板 10: Transparent substrate

12:半導體疊層 12: Semiconductor stack

14、E1、E2:電極 14.E1, E2: Electrode

30:基板 30: substrate

U:光電元件單元 U: Photoelectric element unit

U1:第一接觸光電元件單元 U1: The first contact photoelectric element unit

U2:第二接觸光電元件單元 U2: The second contact photoelectric element unit

321:第一半導體層 321: first semiconductor layer

322:活性層 322: active layer

323:第二半導體層 323: second semiconductor layer

S:溝渠 S: Ditch

361:第一絕緣層 361: first insulating layer

362:導電配線結構 362: Conductive wiring structure

363:第二絕緣層 363: second insulating layer

341:第一電極 341: first electrode

342:第二電極 342: second electrode

381:第三電極 381: third electrode

382:第四電極 382: fourth electrode

383:第一散熱墊 383: The first thermal pad

P:載板或電路元件 P: carrier board or circuit component

40:第五電極 40: Fifth electrode

42:第六電極 42: sixth electrode

44:支撐元件 44: support element

46:光學層 46: Optical layer

461:開口 461: open

48:第二散熱墊 48: The second thermal pad

482:第二散熱墊第一部分 482: The first part of the second thermal pad

481:第二散熱墊第二部分 481: The second part of the second thermal pad

600:發光模組 600: light-emitting module

501:下載體 501: download body

502:載體 502: carrier

503:上載體 503: Carrier

504、506、508、510:透鏡 504, 506, 508, 510: lens

512、514:電源供應終端 512, 514: power supply terminal

515:通孔 515: Through hole

519:反射層 519: reflective layer

521:膠材 521: Glue

540:外殼 540: Shell

700:光源產生裝置 700: light source generating device

800:燈泡 800: light bulb

921:外殼 921: shell

922:透鏡 922: lens

924:照明模組 924: lighting module

925:支架 925: Bracket

926:散熱器 926: radiator

927:串接部 927: Series Connection

928:電串接器 928: Electric Serial Connector

第1圖為一結構圖,顯示一習知光電元件側視結構圖;第2圖為一示意圖,顯示一習知發光裝置結構示意圖;第3A圖為一結構圖,顯示依據本發明一實施例的光電元件單元上視結構圖;第3B-3C圖為一結構圖,顯示依據本發明一實施例的光電元件單元側視結構圖; 第4A-4E圖為一結構圖,顯示依據本發明另一些實施例的光電元件單元上視結構圖;第5A圖為一結構圖,顯示依據本發明另一實施例的光電元件單元上視結構圖;第5B圖為一結構圖,顯示依據本發明一實施例的光電元件單元側視結構圖;第5C-5D圖為一結構圖,顯示依據本發明一實施例的光電元件單元上視結構圖;第5E-5F圖為一結構圖,顯示依據本發明一實施例的光電元件單元側視結構圖;第6A圖為一結構圖,顯示依據本發明一實施例的光電元件單元上視結構圖;第6B圖為一結構圖,顯示依據本發明一實施例的光電元件單元側視結構圖;第6C圖為一結構圖,顯示依據本發明一實施例的光電元件單元上視結構圖;第6D圖為一結構圖,顯示依據本發明一實施例的光電元件單元側視結構圖;第6E圖為一結構圖,顯示依據本發明一實施例的光電元件單元上視結構圖;第6F圖為一結構圖,顯示依據本發明一實施例的光電元件單元側視結構圖; 第7A-7D圖為一結構圖,顯示依據本發明另一實施例的光電元件單元上視結構圖;第8A-8C圖係繪示出一發光模組示意圖;第9A-9B圖係繪示出一光源產生裝置示意圖;及第10圖係繪示一燈泡示意圖。 Figure 1 is a structural diagram showing a side view structural diagram of a conventional optoelectronic device; Figure 2 is a schematic diagram showing a structural diagram of a conventional light-emitting device; Figure 3A is a structural diagram showing an embodiment according to the present invention Figure 3B-3C is a structural diagram showing a side view of the optoelectronic element unit according to an embodiment of the present invention; Figures 4A-4E are a structural diagram showing a top view structure of a photoelectric element unit according to other embodiments of the present invention; Figure 5A is a structural diagram showing a top view structure of a photoelectric element unit according to another embodiment of the present invention Figures; Figure 5B is a structural diagram showing a side view of a photoelectric element unit according to an embodiment of the present invention; Figures 5C-5D are a structural diagram showing a top view of a photoelectric element unit according to an embodiment of the present invention Figures 5E-5F are a structural diagram showing a side view of the optoelectronic element unit according to an embodiment of the present invention; Figure 6A is a structural diagram showing a top view of the optoelectronic element unit according to an embodiment of the present invention Figures 6B is a structural diagram showing a side view of a photoelectric element unit according to an embodiment of the present invention; Figure 6C is a structural diagram showing a top view of a photoelectric element unit according to an embodiment of the present invention; Figure 6D is a structural diagram showing a side view structural diagram of a photoelectric element unit according to an embodiment of the present invention; Figure 6E is a structural diagram showing a top structural view of a photoelectric element unit according to an embodiment of the present invention; 6F The figure is a structural diagram showing a side view structural diagram of a photoelectric element unit according to an embodiment of the present invention; Figures 7A-7D are a structural diagram showing a top view structural diagram of a photoelectric element unit according to another embodiment of the present invention; Figures 8A-8C are schematic diagrams of a light-emitting module; Figures 9A-9B are drawings A schematic diagram of a light source generating device is shown; and Fig. 10 is a schematic diagram of a light bulb.

本發明揭示一種發光元件及其製造方法,為了使本發明之敘述更加詳盡與完備,請參照下列描述並配合第3A圖至第10圖之圖示。 The present invention discloses a light-emitting element and its manufacturing method. In order to make the description of the present invention more detailed and complete, please refer to the following description in conjunction with the illustrations in FIGS. 3A to 10.

第3A圖與第3B圖所示為本發明第一實施例之光電元件300的側視圖與上視圖。光電元件300具有一個基板30。基板30並不限定為單一材料,亦可以是由複數不同材料組合而成的複合式基板。例如:基板30可以包含兩個相互接合的第一基板與第二基板(圖未示)。 3A and 3B show a side view and a top view of the optoelectronic device 300 according to the first embodiment of the present invention. The photoelectric element 300 has a substrate 30. The substrate 30 is not limited to a single material, and may be a composite substrate formed by combining a plurality of different materials. For example, the substrate 30 may include two first substrates and second substrates (not shown) that are joined to each other.

接著,在基板30上形成複數個延伸排列的陣列式光電元件單元U、一個第一接觸光電元件單元U1及一個第二接觸光電元件單元U2。陣列式光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2的製作方式,例如下面所述:首先,以傳統的磊晶成長製程,在一基板30上形成一磊晶疊層,包含第一半導體層321,一活性層322,以及一第二半導體層323。 Next, a plurality of extended array photoelectric element units U, a first contact photoelectric element unit U1, and a second contact photoelectric element unit U2 are formed on the substrate 30. The manufacturing method of the array type optoelectronic element unit U, the first contact optoelectronic element unit U1, and the second contact optoelectronic element unit U2 is as follows: First, an epitaxial crystal is formed on a substrate 30 by a conventional epitaxial growth process The stack includes a first semiconductor layer 321, an active layer 322, and a second semiconductor layer 323.

接著,如第3B圖所示,以黃光微影製程技術選擇性移除部分磊晶疊層以在成長基板上形成分開排列的多個光電元件單元U、一個第一接觸光電元件單元U1及一個第二接觸光電元件單元U2並形成至少一個溝渠S。在一實施例 中,此溝渠S可以包含以黃光微影製程技術蝕刻使每一個光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2之第一半導體層321具有一暴露區域,以做為後續導電配線結構的形成平台。 Then, as shown in Figure 3B, a part of the epitaxial stack is selectively removed by the yellow photolithography process technology to form a plurality of separately arranged optoelectronic element units U, a first contact optoelectronic element unit U1, and a first Two contacts the photoelectric element unit U2 and forms at least one trench S. In an embodiment Wherein, the trench S may include etching with yellow light lithography process technology so that the first semiconductor layer 321 of each photoelectric element unit U, the first contact photoelectric element unit U1, and the second contact photoelectric element unit U2 has an exposed area for use as The formation platform of the subsequent conductive wiring structure.

在另一實施例中,為了增加元件整體的出光效率,也可以透過轉移磊晶疊層或基板接合的技術,將光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2的磊晶疊層設置於基板30之上。光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2的磊晶疊層可以以加熱或加壓的方式與基板30直接接合,或是透過透明黏著層(圖未示)將光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2的磊晶疊層與基板30黏著接合。其中,透明黏著層可以是一有機高分子透明膠材,例如聚醯亞胺(polyimide)、苯并環丁烷(benzocyclobutane,BCB)、過氟環丁烷(prefluorocyclobutane,PFCB)、環氧類樹脂(Epoxy)、壓克力類樹脂(Acrylic Resin)、聚脂類樹脂(PET)、聚碳酸酯類樹脂(PC)等材料或其組合;或一透明導電氧化金屬層,例如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO2)、氧化鋅(ZnO)、氧化錫氟(FTO)、銻錫氧化物(ATO)、鎘錫氧化物(CTO)、氧化鋅鋁(AZO)、氧化鋅鎵(GZO)等材料或其組合;或一無機絕緣層,例如氧化鋁(Al2O3)、氮化矽(SiNx)、氧化矽(SiO2)、氮化鋁(AlN)、二氧化鈦(TiO2)、五氧化二鉭(Tantalum Pentoxide,Ta2O5)等材料或其組合。在一實施例中,上述基板30可具有一波長轉換材料。 In another embodiment, in order to increase the overall light extraction efficiency of the device, the photoelectric device unit U, the first contact photoelectric device unit U1, and the second contact photoelectric device unit U2 can also be combined through the technology of transferring epitaxial stacking or substrate bonding. The epitaxial stack is disposed on the substrate 30. The epitaxial stack of the optoelectronic element unit U, the first contact optoelectronic element unit U1, and the second contact optoelectronic element unit U2 can be directly bonded to the substrate 30 by heating or pressing, or through a transparent adhesive layer (not shown) The epitaxial stack of the photoelectric element unit U, the first contact photoelectric element unit U1 and the second contact photoelectric element unit U2 are adhesively bonded to the substrate 30. Among them, the transparent adhesive layer can be an organic polymer transparent adhesive material, such as polyimide (polyimide), benzocyclobutane (benzocyclobutane, BCB), perfluorocyclobutane (prefluorocyclobutane, PFCB), epoxy resin (Epoxy), acrylic resin (Acrylic Resin), polyester resin (PET), polycarbonate resin (PC) and other materials or combinations thereof; or a transparent conductive metal oxide layer, such as indium tin oxide (ITO ), indium oxide (InO), tin oxide (SnO2), zinc oxide (ZnO), tin fluorine oxide (FTO), antimony tin oxide (ATO), cadmium tin oxide (CTO), zinc aluminum oxide (AZO), Zinc gallium oxide (GZO) and other materials or combinations thereof; or an inorganic insulating layer, such as aluminum oxide (Al2O3), silicon nitride (SiNx), silicon oxide (SiO2), aluminum nitride (AlN), titanium dioxide (TiO2), Tantalum Pentoxide (Ta2O5) and other materials or combinations thereof. In one embodiment, the above-mentioned substrate 30 may have a wavelength conversion material.

實際上,將光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2的磊晶疊層設置於基板30上的方法不限於此,於本技術領域中具有通常知識的人應可以理解。此外,在一實施例中,根據基板30轉移次數 的不同,可以形成第二半導體層323與基板30相鄰,第一半導體層321在第二半導體層323上,中間夾有活性層322的結構。 In fact, the method of arranging the epitaxial stack of the optoelectronic element unit U, the first contact optoelectronic element unit U1, and the second contact optoelectronic element unit U2 on the substrate 30 is not limited to this. Those with ordinary knowledge in the art It should be understandable. In addition, in one embodiment, according to the number of transfers of the substrate 30 The second semiconductor layer 323 is adjacent to the substrate 30, and the first semiconductor layer 321 is on the second semiconductor layer 323 with the active layer 322 sandwiched therebetween.

接著,在第一接觸光電元件單元U1及第二接觸光電元件單元U2的磊晶疊層的部分表面及相鄰光電元件單元U的磊晶疊層間以化學氣相沉積方式(CVD)、物理氣相沉積方式(PVD)、濺鍍(sputtering)等技術沉積形成第一絕緣層361,作為磊晶疊層的保護與相鄰光電元件單元U間的電性絕緣。之後,以蒸鍍或濺鍍的方式在兩個相鄰的光電元件單元U的第一半導體層321表面上與第二半導體層323表面上分別形成複數個彼此完全分離的導電配線結構362。這些彼此完全分離的複數導電配線結構362,一端以單一方向分布的方式配置在第一半導體層321上,並透過第一半導體層321使導電配線結構362彼此電性連結。這些在空間上彼此分離的導電配線結構362繼續延伸至另一個相鄰的光電元件單元U的第二半導體層323上,另一端與光電元件單元U的第二半導體層323電性相連,使兩個相鄰的光電元件單元U形成電性串聯。 Then, a chemical vapor deposition method (CVD) and physical gas were used between the epitaxial stack of the first contact photoelectric element unit U1 and the second contact photoelectric element unit U2 and the epitaxial stack of the adjacent photoelectric element unit U. Phase deposition (PVD), sputtering (sputtering) and other techniques are deposited to form the first insulating layer 361, which serves as the protection of the epitaxial stack and electrically insulates the adjacent photovoltaic element units U. After that, a plurality of conductive wiring structures 362 completely separated from each other are respectively formed on the surface of the first semiconductor layer 321 and the surface of the second semiconductor layer 323 of the two adjacent optoelectronic element units U by evaporation or sputtering. The plurality of conductive wiring structures 362 that are completely separated from each other are arranged on the first semiconductor layer 321 in a single direction at one end, and electrically connect the conductive wiring structures 362 to each other through the first semiconductor layer 321. These spatially separated conductive wiring structures 362 continue to extend to the second semiconductor layer 323 of another adjacent optoelectronic element unit U, and the other end is electrically connected to the second semiconductor layer 323 of the optoelectronic element unit U, so that the two Two adjacent photoelectric element units U are electrically connected in series.

將相鄰的光電元件單元U進行電性連結的方法不限於此,於本技術領域中具有通常知識的人應可以理解,透過將導電配線結構兩端分別配置於不同光電元件單元的相同或不同導電極性的半導體層上,可以使光電元件單元間形成並聯或串聯的電性連結結構。 The method of electrically connecting adjacent optoelectronic element units U is not limited to this. Those with ordinary knowledge in the art should understand that by arranging both ends of the conductive wiring structure in different optoelectronic element units, the same or different On the semiconductor layer of conductive polarity, a parallel or series electrical connection structure can be formed between optoelectronic element units.

自第3A-3B圖觀之,光電元件300在電路設計上為一串串聯陣列排列。於光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2之第一半導體層321上形成第一電極341,並在第二半導體層323上形成第二電極342。其中,形成第一電極341及第二電極342的製程,可以與導電配線結構362於同一形成製程中進行,也可以由多次製程所完成。而形成第一電極341及第二 電極342的材質,可以分別與形成導電配線結構362的材質相同或不同。在一實施例中,第二電極342可為一多層結構,及/或包含一金屬反射層(圖未示),且反射率大於80%。在一實施例中,導電配線結構362可為一金屬反射層,且反射率大於80%。 As seen from Figs. 3A-3B, the optoelectronic element 300 is arranged in a series-series array in terms of circuit design. A first electrode 341 is formed on the first semiconductor layer 321 of the photoelectric element unit U, the first contact photoelectric element unit U1, and the second contact photoelectric element unit U2, and a second electrode 342 is formed on the second semiconductor layer 323. Wherein, the process of forming the first electrode 341 and the second electrode 342 may be performed in the same forming process as the conductive wiring structure 362, or may be completed by multiple processes. To form the first electrode 341 and the second The material of the electrode 342 may be the same as or different from the material forming the conductive wiring structure 362, respectively. In one embodiment, the second electrode 342 may have a multi-layer structure and/or include a metal reflective layer (not shown) with a reflectivity greater than 80%. In an embodiment, the conductive wiring structure 362 may be a metal reflective layer, and the reflectivity is greater than 80%.

之後,如第3B圖所示,可形成一第二絕緣層363於上述複數導電配線結構362、部分第一絕緣層361、及部分磊晶疊層側壁之上。在一實施例中,上述第一絕緣層361、第二絕緣層363可為一透明絕緣層。且上述第一絕緣層361、第二絕緣層363的材質可以是氧化物、氮化物、或聚合物(polymer),氧化物可包含氧化鋁(Al2O3)、氧化矽(SiO2)、二氧化鈦(TiO2)、五氧化二鉭(Tantalum Pentoxide,Ta2O5)或氧化鋁(AlOx);氮化物可包含氮化鋁(AlN)、氮化矽(SiNx);聚合物可包含聚醯亞胺(polyimide)或苯并環丁烷(benzoeyclobutane,BCB)等材料或為上述之複合組合。在一實施例中,第二絕緣層363可為一布拉格反射鏡(Distributed Bragg Reflector)結構。在一實施例中,第二絕緣層363之厚度大於第一絕緣層361之厚度。 After that, as shown in FIG. 3B, a second insulating layer 363 can be formed on the plurality of conductive wiring structures 362, part of the first insulating layer 361, and part of the sidewall of the epitaxial stack. In an embodiment, the first insulating layer 361 and the second insulating layer 363 may be a transparent insulating layer. Moreover, the material of the first insulating layer 361 and the second insulating layer 363 may be oxide, nitride, or polymer, and the oxide may include aluminum oxide (Al2O3), silicon oxide (SiO2), or titanium dioxide (TiO2). , Tantalum Pentoxide (Ta2O5) or Aluminum Oxide (AlOx); Nitride can include Aluminum Nitride (AlN), Silicon Nitride (SiNx); Polymer can include Polyimide or Benzo Cyclobutane (benzoeyclobutane, BCB) and other materials may be a composite combination of the above. In an embodiment, the second insulating layer 363 may be a Bragg reflector (Distributed Bragg Reflector) structure. In one embodiment, the thickness of the second insulating layer 363 is greater than the thickness of the first insulating layer 361.

最後,形成一第三電極381於上述第一電極341之上,一第四電極382於上述第二電極342之上;及至少一第一散熱墊383於光電元件單元U的第二半導體層323之上,其中上述第一散熱墊383藉由第二絕緣層363與光電元件單元U的第二半導體層323電性絕緣。在一實施例中,第一散熱墊383於垂直基板30表面上的投影,不形成於第一絕緣層361之上。在一實施例中,第一散熱墊383形成於一平坦表面之上。如第3A圖所示,在一實施例中,光電元件300中的每一個光電元件單元U的第二半導體層323都具一第一散熱墊383,且此第一散熱墊383藉由第二絕緣層363與光電元件單元U的第二半導體層323電性絕緣。 Finally, a third electrode 381 is formed on the first electrode 341, a fourth electrode 382 is on the second electrode 342; and at least one first heat dissipation pad 383 is formed on the second semiconductor layer 323 of the optoelectronic element unit U Above, the first heat dissipation pad 383 is electrically insulated from the second semiconductor layer 323 of the photoelectric element unit U by the second insulating layer 363. In one embodiment, the projection of the first heat dissipation pad 383 on the surface of the vertical substrate 30 is not formed on the first insulating layer 361. In one embodiment, the first heat dissipation pad 383 is formed on a flat surface. As shown in FIG. 3A, in one embodiment, the second semiconductor layer 323 of each optoelectronic device unit U in the optoelectronic device 300 has a first heat dissipation pad 383, and the first heat dissipation pad 383 is formed by the second The insulating layer 363 is electrically insulated from the second semiconductor layer 323 of the optoelectronic element unit U.

在一實施例中,上述第三電極381、第四電極382及第一散熱墊383可於同一製程中一起形成或於不同製程中分開形成。在一實施例中,上述第三電極381、第四電極382及第一散熱墊383可具有相同之疊層結構。為了達到一定的導電度,第一電極341、第二電極342、導電配線結構362、第三電極381、第四電極382及第一散熱墊383之材料可以是金屬,例如金(Au)、銀(Ag)、銅(Cu)、鉻(Cr)、鋁(Al)、鉑(Pt)、鎳(Ni)、鈦(Ti)、錫(Sn)等,或其合金或其疊層組合。 In one embodiment, the third electrode 381, the fourth electrode 382, and the first heat dissipation pad 383 may be formed together in the same manufacturing process or separately formed in different manufacturing processes. In an embodiment, the third electrode 381, the fourth electrode 382, and the first heat dissipation pad 383 may have the same laminated structure. In order to achieve a certain degree of conductivity, the materials of the first electrode 341, the second electrode 342, the conductive wiring structure 362, the third electrode 381, the fourth electrode 382, and the first heat dissipation pad 383 may be metal, such as gold (Au), silver (Ag), copper (Cu), chromium (Cr), aluminum (Al), platinum (Pt), nickel (Ni), titanium (Ti), tin (Sn), etc., or alloys or laminate combinations thereof.

在一實施例中,第二半導體層323具有一上表面及一第一表面積,且第一散熱墊383具有一第二表面積,且此第二面積與第一面積之比值介於80~100%。在一實施例中,任意兩個第一散熱墊383之邊界可具有一最短距離D,及/或D大於100μm。 In one embodiment, the second semiconductor layer 323 has an upper surface and a first surface area, and the first heat dissipation pad 383 has a second surface area, and the ratio of the second area to the first area is 80-100% . In one embodiment, the boundary between any two first heat dissipation pads 383 may have a shortest distance D, and/or D is greater than 100 μm .

在一實施例中,如第3C圖所示,可提供一載板或一電路元件P,藉由打線或焊錫等方式於載板或電路元件P上形成一第一載板電極E1、及一第二載板電極E2。此第一載板電極E1、及第二載板電極E2可與光電元件300之第三電極381及第四電極382,形成一覆晶式結構。 In one embodiment, as shown in FIG. 3C, a carrier board or a circuit component P can be provided, and a first carrier electrode E1 and a circuit component P are formed on the carrier board or the circuit component P by wire bonding or soldering. The second carrier electrode E2. The first carrier electrode E1 and the second carrier electrode E2 can form a flip-chip structure with the third electrode 381 and the fourth electrode 382 of the optoelectronic device 300.

在一實施例中,此第一載板電極E1、可與光電元件300之第三電極381及一第一散熱墊383電性連接,以及第二載板電極E2、可與第四電極382及另一第一散熱墊383電性連接,形成一覆晶式結構。在此實施例中,此上述第一散熱墊383因為與與第一載板電極E1及第二載板電極E2形成電性連結而可以幫助散熱。在此實施例中,因為串聯陣列排列的光電元件300中之每個光電元件單元U在作動時會具有一電壓差,藉由第一散熱墊383與光電元件單元U的電性絕緣可以避免作動時上述電壓差造成各別光電元件單元U間的擊穿或漏電。此外,第一散熱墊383於垂直基板30表面上的投影不形成於第一絕緣層361之上也可避 免製程上因為溝渠S之高低差而造成的斷線,或避免因為第一絕緣層361絕緣不完全造成之漏電或短路。 In one embodiment, the first carrier electrode E1 can be electrically connected to the third electrode 381 of the optoelectronic device 300 and a first heat dissipation pad 383, and the second carrier electrode E2 can be connected to the fourth electrode 382 and The other first heat dissipation pad 383 is electrically connected to form a flip-chip structure. In this embodiment, the first heat dissipating pad 383 is electrically connected to the first carrier electrode E1 and the second carrier electrode E2 to help dissipate heat. In this embodiment, because each photoelectric element unit U in the photoelectric element 300 arranged in the series array has a voltage difference when it is actuated, the electrical insulation between the first heat dissipation pad 383 and the photoelectric element unit U can prevent the actuation At this time, the above-mentioned voltage difference causes breakdown or leakage between the respective photoelectric element units U. In addition, the projection of the first heat dissipation pad 383 on the surface of the vertical substrate 30 is not formed on the first insulating layer 361, which can also be avoided. Avoid disconnection caused by the height difference of the trench S in the manufacturing process, or avoid leakage or short circuit caused by the incomplete insulation of the first insulating layer 361.

第4A-4E圖為一結構圖,顯示依據本發明另一些實施例的光電元件單元上視結構圖。第4A圖至第4E係顯示本發明第一實施例之光電元件之可能變化例,其製作方法、使用材料及標號等與上述第一實施例相同,在此不再贅述。 Figures 4A-4E are structural diagrams showing top structural diagrams of optoelectronic element units according to other embodiments of the present invention. Figures 4A to 4E show possible variations of the optoelectronic element of the first embodiment of the present invention. The manufacturing method, materials used, and reference numerals are the same as those of the above-mentioned first embodiment, and will not be repeated here.

如第4A圖所示,各個光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2係呈一直線排列。在此實施例中,在各個光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2之第一電極341或第二電極342可具有一延伸電極3421,以增加各個光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2之電流散布,於本技術領域中具有通常知識的人應可以理解,此延伸電極的形狀可依產品的設計需要而調整,而不侷限於目前圖示之形狀。此外,形成於光電元件單元U之第一散熱墊383也會因應此延伸電極的形狀而作調整,使之不直接接觸上述導電配線結構362、第一電極341或第二電極342,且與之電性絕緣。 As shown in FIG. 4A, each photoelectric element unit U, the first contact photoelectric element unit U1, and the second contact photoelectric element unit U2 are arranged in a straight line. In this embodiment, the first electrode 341 or the second electrode 342 of each photoelectric element unit U, the first contact photoelectric element unit U1, and the second contact photoelectric element unit U2 may have an extended electrode 3421 to increase each photoelectric element The current distribution of the unit U, the first contact photoelectric element unit U1, and the second contact photoelectric element unit U2 should be understood by those with ordinary knowledge in the art. The shape of the extension electrode can be adjusted according to the design requirements of the product. It is not limited to the shape of the current illustration. In addition, the first heat dissipating pad 383 formed on the photoelectric element unit U will also be adjusted according to the shape of the extended electrode so that it does not directly contact the conductive wiring structure 362, the first electrode 341, or the second electrode 342. Electrical insulation.

第4B圖係顯示本發明另一可能變化例,在此實施例中,各個光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2之間不似前述實施例呈直線排列,而係呈一環形連接,其中第一接觸光電元件單元U1之至少一側壁與第二接觸光電元件單元U2之側壁相連接。此外,形成於光電元件單元U之第一散熱墊383也會因應此延伸電極的形狀而作調整,使之不直接接觸上述導電配線結構362、第一電極341或第二電極342,且與之電性絕緣。 Figure 4B shows another possible variation of the present invention. In this embodiment, the photoelectric element units U, the first contact photoelectric element unit U1, and the second contact photoelectric element unit U2 are not arranged in a straight line like the previous embodiment. , And are connected in a ring shape, wherein at least one side wall of the first contact optoelectronic element unit U1 is connected to the side wall of the second contact optoelectronic element unit U2. In addition, the first heat dissipating pad 383 formed on the optoelectronic element unit U will also be adjusted according to the shape of the extended electrode so that it does not directly contact the conductive wiring structure 362, the first electrode 341, or the second electrode 342. Electrical insulation.

第4C圖係顯示本發明另一可能變化例,在此實施例中,各個光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2可為一環形 連接。除第一接觸光電元件單元U1外,各個光電元件單元U及第二接觸光電元件單元U2之第一電極341之寬度較導電配線結構362細並進一步往各單元內部延伸,以增加電流散布。此外,形成於光電元件單元U之第一散熱墊383也會因應此導電配線結構362、第一電極341或第二電極342的形狀而作調整,使之不直接接觸上述導電配線結構362、第一電極341或第二電極342,且與之電性絕緣。 Figure 4C shows another possible variation of the present invention. In this embodiment, each photoelectric element unit U, the first contact photoelectric element unit U1, and the second contact photoelectric element unit U2 may be in a ring shape. connect. Except for the first contact photoelectric element unit U1, the width of the first electrode 341 of each photoelectric element unit U and the second contact photoelectric element unit U2 is thinner than the conductive wiring structure 362 and further extends into each unit to increase current distribution. In addition, the first heat dissipating pad 383 formed on the photoelectric element unit U will also be adjusted according to the shape of the conductive wiring structure 362, the first electrode 341 or the second electrode 342 so that it does not directly contact the conductive wiring structure 362, the first electrode 342. One electrode 341 or second electrode 342 is electrically insulated from it.

第4D圖係顯示本發明另一可能變化例。在此實施例中,各個光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2可為一環形連接,且各個光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2之形狀可依設計需要變化,而非完全相同。在此實施例中,包含三個形狀不同之光電元件單元U,於本技術領域中具有通常知識的人應可以理解,光電元件單元U之數量、形狀、大小或排列方式可以配合產品需要之驅動電壓數而調整設計。此外,形成於光電元件單元U之第一散熱墊383也會因應此導電配線結構362、第一電極341或第二電極342的形狀而作調整,使之不直接接觸上述導電配線結構362、第一電極341或第二電極342,且與之電性絕緣。 Figure 4D shows another possible variation of the present invention. In this embodiment, each photoelectric element unit U, the first contact photoelectric element unit U1, and the second contact photoelectric element unit U2 may be connected in a ring shape, and each photoelectric element unit U, the first contact photoelectric element unit U1, and the second contact photoelectric element unit U1 are connected in a ring shape. The shape of the contact photoelectric element unit U2 can be changed according to design requirements, but not exactly the same. In this embodiment, there are three optoelectronic element units U with different shapes. Those with ordinary knowledge in the art should understand that the number, shape, size or arrangement of the optoelectronic element units U can be driven by the product. Adjust the design based on the number of voltages. In addition, the first heat dissipating pad 383 formed on the photoelectric element unit U will also be adjusted according to the shape of the conductive wiring structure 362, the first electrode 341 or the second electrode 342 so that it does not directly contact the conductive wiring structure 362, the first electrode 342. One electrode 341 or second electrode 342 is electrically insulated from it.

第4E圖係顯示本發明另一可能變化例,在此實施例中,各個光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2可為一W形連接,即相鄰兩行之光電元件單元U之連接方向相異,且形成一具有四行四列的矩陣排列。於本技術領域中具有通常知識的人應可以理解,光電元件單元U之數量、或排列方式可以配合產品需要之驅動電壓數而調整設計。在本實施例中,藉由上述螺旋形排列,第一接觸光電元件單元U1及第二接觸光電元件單元U2可形成在同一列上,因為第一接觸光電元件單元U1及第二接觸光電元件單元U2的位置需配合後續與外部電路之連接,因此在另一實施例中,也可藉由調整光電元件單元U之排列方式,使第一接觸光電元件單元U1及第二接觸光電元件單元U2位於矩陣的對角線兩端。此外,形成於光電元件單元U之第一散熱墊383也會 因應此導電配線結構362、第一電極341或第二電極342的形狀而作調整,使之不直接接觸上述導電配線結構362、第一電極341或第二電極342,且與之電性絕緣。 Figure 4E shows another possible variation of the present invention. In this embodiment, each photoelectric element unit U, the first contact photoelectric element unit U1, and the second contact photoelectric element unit U2 can be connected in a W shape, that is, adjacent The connecting directions of the optoelectronic element units U of the two rows are different, and form a matrix arrangement with four rows and four columns. Those with ordinary knowledge in the technical field should understand that the number or arrangement of the photoelectric element units U can be adjusted according to the number of driving voltages required by the product. In this embodiment, by the above-mentioned spiral arrangement, the first contact photoelectric element unit U1 and the second contact photoelectric element unit U2 can be formed in the same row, because the first contact photoelectric element unit U1 and the second contact photoelectric element unit U1 The position of U2 needs to match the subsequent connection with the external circuit. Therefore, in another embodiment, the arrangement of the optoelectronic element units U can also be adjusted so that the first contact optoelectronic element unit U1 and the second contact optoelectronic element unit U2 are located at The diagonal ends of the matrix. In addition, the first heat dissipation pad 383 formed on the optoelectronic element unit U will also The shape of the conductive wiring structure 362, the first electrode 341, or the second electrode 342 is adjusted so that it does not directly contact the conductive wiring structure 362, the first electrode 341 or the second electrode 342, and is electrically insulated from the conductive wiring structure 362, the first electrode 341 or the second electrode 342.

第5A圖至第5E係顯示本發明第二實施例之光電元件製造流程之側視圖與上視圖。光電元件300’乃為上述第一實施例的改變例。其中第5A-5B圖乃接續上述第3A-3B圖之後製作,其製作方法、使用材料及標號等與上述第一實施例相同,在此不再贅述。在此實施例的上視圖中,為了明顯顯示出與上述第一實施例之差異,乃省略繪製部份元件,以保持圖面的簡潔,於本技術領域中具有通常知識的人應可以對照前述實施例而充分理解本實施例之說明。 Figures 5A to 5E are side views and top views showing the optoelectronic device manufacturing process of the second embodiment of the present invention. The photoelectric element 300' is a modified example of the above-mentioned first embodiment. Figures 5A-5B are made after continuation of the above-mentioned figures 3A-3B, and the manufacturing method, materials and labels are the same as those of the above-mentioned first embodiment, and will not be repeated here. In the top view of this embodiment, in order to clearly show the difference from the above-mentioned first embodiment, some elements are omitted to keep the drawing concise. People with ordinary knowledge in this technical field should be able to compare the foregoing Examples and fully understand the description of this embodiment.

如第5A-5B圖所示,可形成一支撐元件44於基板30之上並包覆基板30之側壁。在一實施例中,此支撐元件44可為透明,材料可為矽膠樹脂、環氧樹脂或其他材料。在一實施例中,更可形成一導光元件(圖未示)於上述支撐元件44之上,在一實施例中,此導光元件之材料可為玻璃。 As shown in FIGS. 5A-5B, a supporting element 44 can be formed on the substrate 30 and cover the sidewall of the substrate 30. In one embodiment, the supporting element 44 can be transparent, and the material can be silicone resin, epoxy resin, or other materials. In one embodiment, a light guide element (not shown) can be formed on the support element 44. In one embodiment, the material of the light guide element can be glass.

接著,可形成一光學層46於上述光學元件的第二絕緣層363之上且包覆各個光電元件單元U、第一接觸光電元件單元U1及第二接觸光電元件單元U2。光學層46之材料可包含一基質及高反射率物質之混合物,其中基質可為矽膠樹脂、環氧樹脂或其他材料,高反射率物質可為TiO2。 Then, an optical layer 46 can be formed on the second insulating layer 363 of the above-mentioned optical element and cover each photoelectric element unit U, the first contact photoelectric element unit U1 and the second contact photoelectric element unit U2. The material of the optical layer 46 may include a mixture of a matrix and a high-reflectivity substance, wherein the matrix may be silicone resin, epoxy resin or other materials, and the high-reflectivity substance may be TiO2.

接著,如第5C圖所示,於光學層46上形成複數個開口461,此複數個開口乃相對應於第一接觸光電元件單元U1及第二接觸光電元件單元U2之第三電極381及第四電極382之位置,並裸露出部分的第三電極381及第四電極382。在一實施例中,上述開口461也對應於各個光電元件單元U之第一散熱墊383之位置,並裸露出部分的第一散熱墊383。 Next, as shown in FIG. 5C, a plurality of openings 461 are formed on the optical layer 46, and the plurality of openings correspond to the third electrode 381 and the third electrode 381 of the first contact photoelectric element unit U1 and the second contact photoelectric element unit U2. The position of the four electrodes 382, and part of the third electrode 381 and the fourth electrode 382 are exposed. In one embodiment, the opening 461 also corresponds to the position of the first heat dissipation pad 383 of each photoelectric element unit U, and exposes a portion of the first heat dissipation pad 383.

接著,如第5D-5E圖所示,形成一第五電極40及一第六電極42分別與第三電極381及第四電極382電性連接。在一實施例中,上述第五電極40及一第六電極42也可選擇性地分別與至少一第一散熱墊383電性連接,以幫助後續 散熱。在一實施例中,第五電極40或第六電極42包含一金屬反射層。在一實施例中,光學層46介於第三電極381與第五電極40之間以及第四電極382與第六電極42之間。在一實施例中,光學層46之外邊界大於基板30之外邊界。 Next, as shown in FIGS. 5D-5E, a fifth electrode 40 and a sixth electrode 42 are formed to be electrically connected to the third electrode 381 and the fourth electrode 382, respectively. In one embodiment, the fifth electrode 40 and a sixth electrode 42 can also be selectively electrically connected to at least one first heat dissipation pad 383, respectively, to help follow-up Heat dissipation. In one embodiment, the fifth electrode 40 or the sixth electrode 42 includes a metal reflective layer. In an embodiment, the optical layer 46 is interposed between the third electrode 381 and the fifth electrode 40 and between the fourth electrode 382 and the sixth electrode 42. In one embodiment, the outer boundary of the optical layer 46 is larger than the outer boundary of the substrate 30.

最後,如第5F圖所示,可提供一載板或一電路元件P,藉由打線或焊錫等方式於載板或電路元件P上形成一第一載板電極E1、及一第二載板電極E2。此第一載板電極E1、及第二載板電極E2可與光電元件300’之第五電極40及第六電極42,形成一覆晶式結構。在一實施例中,上述第五電極40及一第六電極42超出基板30之外邊界。在一實施例中,第五電極40及第六電極42於垂直基板30表面的投影面積大於基板30面積。在此實施例中,藉由加大第五電極40及第六電極42的面積,可以使得後續與載板或電路元件P的連結更為方便,而可減少對位的困擾。 Finally, as shown in Figure 5F, a carrier board or a circuit component P can be provided, and a first carrier electrode E1 and a second carrier board are formed on the carrier board or circuit component P by wire bonding or soldering. Electrode E2. The first carrier electrode E1 and the second carrier electrode E2 can form a flip-chip structure with the fifth electrode 40 and the sixth electrode 42 of the photoelectric element 300'. In one embodiment, the above-mentioned fifth electrode 40 and a sixth electrode 42 extend beyond the outer boundary of the substrate 30. In one embodiment, the projection area of the fifth electrode 40 and the sixth electrode 42 on the surface of the vertical substrate 30 is larger than the area of the substrate 30. In this embodiment, by enlarging the area of the fifth electrode 40 and the sixth electrode 42, the subsequent connection with the carrier board or the circuit element P can be more convenient, and the alignment trouble can be reduced.

第6A圖至第6F係顯示本發明第三實施例之光電元件製造流程之側視圖與上視圖。光電元件400乃為上述第二實施例的改變例。其中第6A-6B圖乃接續上述第5A-5B圖之後製作,其製作方法、使用材料及標號等與上述第一實施例相同,在此不再贅述。在此實施例的上視圖中,為了明顯顯示出與上述實施例之差異,乃省略繪製部份元件,以保持圖面的簡潔,於本技術領域中具有通常知識的人應可以對照前述實施例而充分理解本實施例之說明。 FIGS. 6A to 6F are side views and top views showing the manufacturing process of the optoelectronic device according to the third embodiment of the present invention. The photoelectric element 400 is a modified example of the second embodiment described above. Figures 6A-6B are made after continuation of Figures 5A-5B above, and the manufacturing method, materials, and labels are the same as those in the first embodiment, and will not be repeated here. In the top view of this embodiment, in order to clearly show the difference from the above-mentioned embodiment, some elements are omitted to keep the drawing concise. Those with ordinary knowledge in this technical field should be able to compare the above-mentioned embodiment. And fully understand the description of this embodiment.

如第6A-6B圖所示,本實施例包含一支撐元件44形成於上述光電元件之基板30上,並包覆基板30之側壁。接著,形成一第二散熱墊48於上述光電元件及支撐元件44之上。在一實施例中,此第二散熱墊48可與第一散熱墊383在同一製程中同時形成或於不同製程中分開形成。在一實施例中,此第二散熱墊48可與第一散熱墊383具有相同之材料。在一實施例中,此第二散熱墊48之材料可為具有導熱係數>50W/mk之材料或絕緣材料,例如金屬或類碳鑽(diamond-like carbon)等。 As shown in FIGS. 6A-6B, this embodiment includes a supporting element 44 formed on the substrate 30 of the above-mentioned optoelectronic element and covering the sidewall of the substrate 30. Then, a second heat dissipating pad 48 is formed on the photoelectric element and the supporting element 44 mentioned above. In one embodiment, the second heat dissipation pad 48 and the first heat dissipation pad 383 may be formed simultaneously in the same process or separately formed in different processes. In an embodiment, the second heat dissipation pad 48 and the first heat dissipation pad 383 may have the same material. In one embodiment, the material of the second heat dissipation pad 48 may be a material with a thermal conductivity of >50 W/mk or an insulating material, such as metal or diamond-like carbon.

在本實施例中,此第二散熱墊48包含兩個第一部分482形成於支撐元件44之上及一第二部分481形成於上述光電元件之上且於此第二部分482之兩端連接上述兩第一部分481,而形成一一啞鈴形。在一實施例中,上述第一部份482具有一寬度大於此第二部份481之一寬度。 In this embodiment, the second heat dissipating pad 48 includes two first parts 482 formed on the supporting element 44 and a second part 481 formed on the photoelectric element and connected to the two ends of the second part 482. The two first parts 481 form a dumbbell shape. In one embodiment, the first part 482 has a width greater than a width of the second part 481.

在一實施例中,此第二散熱墊48形成於兩個光電元件單元U之間,且不直接接觸上述第一散熱墊383,亦不與第一散熱墊383電性相連。在一實施例中,此第二散熱墊48形成於兩個光電元件單元U之間的第二絕緣層363之上。 In one embodiment, the second heat dissipation pad 48 is formed between the two optoelectronic element units U, and does not directly contact the first heat dissipation pad 383, nor is it electrically connected to the first heat dissipation pad 383. In one embodiment, the second heat dissipation pad 48 is formed on the second insulating layer 363 between the two optoelectronic element units U.

接著,如第6C-6D圖所示,可形成一光學層46於上述光學元件的第二絕緣層363之上且包覆各個光電元件單元U、第一接觸光電元件單元U1、第二接觸光電元件單元U2及上述第二散熱墊48。光學層46之材料可包含一基質及高反射率物質之混合物,其中基質可為矽膠樹脂、環氧樹脂或其他材料,高反射率物質可為TiO2。 Then, as shown in Figs. 6C-6D, an optical layer 46 can be formed on the second insulating layer 363 of the above-mentioned optical element and cover each photoelectric element unit U, the first contact photoelectric element unit U1, and the second contact photoelectric element unit U1. The element unit U2 and the second heat dissipation pad 48 described above. The material of the optical layer 46 may include a mixture of a matrix and a high-reflectivity substance, wherein the matrix may be silicone resin, epoxy resin or other materials, and the high-reflectivity substance may be TiO2.

接著,於光學層46上形成複數個開口461,此複數個開口乃相對應於第一接觸光電元件單元U1及第二接觸光電元件單元U2之第三電極381及第四電極382之位置,並裸露出部分的第三電極381及第四電極382。在一實施例中,上述開口461也對應於各個光電元件單元U之第一散熱墊383之位置,並裸露出部分的第一散熱墊383。 Next, a plurality of openings 461 are formed on the optical layer 46, and the plurality of openings correspond to the positions of the third electrode 381 and the fourth electrode 382 of the first contact photoelectric element unit U1 and the second contact photoelectric element unit U2, and The third electrode 381 and the fourth electrode 382 are exposed. In one embodiment, the opening 461 also corresponds to the position of the first heat dissipation pad 383 of each photoelectric element unit U, and exposes a portion of the first heat dissipation pad 383.

接著,如第6E-6F圖所示,形成一第五電極40及一第六電極42分別與第三電極381及第四電極382電性連接。在一實施例中,上述第五電極40及一第六電極42也可選擇性地分別與至少一第一散熱墊383及第二散熱墊48連接,以幫助後續散熱,而完成本實施例之光電元件400之製作。在一實施例中,第五電極40或第六電極42包含一金屬反射層。在一實施例中,光學層46介於第 三電極381與第五電極40之間以及第四電極382與第六電極42之間。在一實施例中,光學層46之外邊界大於基板30之外邊界。 Next, as shown in FIGS. 6E-6F, a fifth electrode 40 and a sixth electrode 42 are formed to be electrically connected to the third electrode 381 and the fourth electrode 382, respectively. In an embodiment, the fifth electrode 40 and a sixth electrode 42 can also be selectively connected to at least one first heat dissipation pad 383 and second heat dissipation pad 48 respectively to help subsequent heat dissipation, thereby completing the present embodiment Fabrication of photoelectric element 400. In one embodiment, the fifth electrode 40 or the sixth electrode 42 includes a metal reflective layer. In one embodiment, the optical layer 46 is interposed between the Between the third electrode 381 and the fifth electrode 40 and between the fourth electrode 382 and the sixth electrode 42. In one embodiment, the outer boundary of the optical layer 46 is larger than the outer boundary of the substrate 30.

在一實施例中,可提供一載板或一電路元件(圖未示),藉由打線或焊錫等方式於載板或電路元件上形成一第一載板電極(圖未示)、及一第二載板電極(圖未示)。此第一載板電極、及第二載板電極可與光電元件400之第五電極40及第六電極42,形成一覆晶式結構。在一實施例中,上述第五電極40及一第六電極42超出基板30之外邊界。在一實施例中,第五電極40及第六電極42於垂直基板30表面的投影面積大於基板30面積。在此實施例中,藉由加大第五電極40及第六電極42的面積,可以使得後續與載板或電路元件的連結更為方便,而可減少對位的困擾。 In one embodiment, a carrier board or a circuit component (not shown) may be provided, and a first carrier electrode (not shown) and a The second carrier electrode (not shown). The first carrier electrode and the second carrier electrode can form a flip-chip structure with the fifth electrode 40 and the sixth electrode 42 of the optoelectronic device 400. In one embodiment, the above-mentioned fifth electrode 40 and a sixth electrode 42 extend beyond the outer boundary of the substrate 30. In one embodiment, the projection area of the fifth electrode 40 and the sixth electrode 42 on the surface of the vertical substrate 30 is larger than the area of the substrate 30. In this embodiment, by enlarging the area of the fifth electrode 40 and the sixth electrode 42, the subsequent connection with the carrier board or the circuit element can be more convenient, and the alignment trouble can be reduced.

第7A圖至第7D係顯示本發明第四實施例之光電元件的製造流程圖。如第7A圖所示,本實施例係包含一基板(圖未示)。基板並不限定為單一材料,亦可以是由複數不同材料組合而成的複合式基板。例如:基板可以包含兩個相互接合的第一基板與第二基板(圖未示)。 Figs. 7A to 7D show a manufacturing flow chart of the optoelectronic device according to the fourth embodiment of the present invention. As shown in FIG. 7A, this embodiment includes a substrate (not shown). The substrate is not limited to a single material, and may also be a composite substrate composed of a plurality of different materials. For example, the substrate may include two first substrate and second substrate (not shown) that are joined to each other.

接著,在基板以傳統的磊晶成長製程,形成一磊晶疊層,包含第一半導體層321,一活性層(圖未示),以及一第二半導體層323。之後,形成一溝渠S以裸露出部分第一半導體層321,並形成一第一絕緣層361於上述溝渠之側壁以與活性層,及第二半導體層323電性隔絕。在一實施例中,可形成一金屬層於此溝渠S中以形成一第一延伸電極(圖未示)。接著,形成一第一電極341於上述第一延伸電極之上及一第二電極342於第二半導體層323之上。在一實施例中,第一電極341或第二電極342可為一多層結構,及/或包含一金屬反射層(圖未示),且反射率大於80%。 Then, a conventional epitaxial growth process is used on the substrate to form an epitaxial stack, which includes a first semiconductor layer 321, an active layer (not shown), and a second semiconductor layer 323. Then, a trench S is formed to expose part of the first semiconductor layer 321, and a first insulating layer 361 is formed on the sidewall of the trench to electrically isolate the active layer and the second semiconductor layer 323. In one embodiment, a metal layer may be formed in the trench S to form a first extension electrode (not shown). Then, a first electrode 341 is formed on the first extension electrode and a second electrode 342 is formed on the second semiconductor layer 323. In one embodiment, the first electrode 341 or the second electrode 342 may be a multilayer structure and/or include a metal reflective layer (not shown), and the reflectivity is greater than 80%.

接著,如第7B圖所示,可形成一支撐元件44於基板之上並包覆基板之側壁。在一實施例中,此支撐元件44可為透明,材料可為矽膠樹脂、環氧 樹脂或其他材料。在一實施例中,更可形成一導光元件(圖未示)於上述支撐元件44之上,在一實施例中,此導光元件之材料可為玻璃。接著,形成一第二散熱墊48於上述光電元件及支撐元件44之上。在一實施例中,此第二散熱墊48之材料可為具有導熱係數>50W/mk之材料,例如金屬;第二散熱墊48之材料也可為一絕緣材料例如類碳鑽(diamond-like carbon)、鑽石(diamond)等。 Then, as shown in FIG. 7B, a supporting element 44 can be formed on the substrate and cover the sidewall of the substrate. In one embodiment, the supporting element 44 can be transparent, and the material can be silicone resin, epoxy Resin or other materials. In one embodiment, a light guide element (not shown) can be formed on the support element 44. In one embodiment, the material of the light guide element can be glass. Then, a second heat dissipating pad 48 is formed on the photoelectric element and the supporting element 44 mentioned above. In one embodiment, the material of the second heat dissipation pad 48 may be a material with a thermal conductivity of >50W/mk, such as metal; the material of the second heat dissipation pad 48 may also be an insulating material such as diamond-like carbon), diamond, etc.

在本實施例中,此第二散熱墊48包含兩個第一部分482形成於支撐元件44之上及一第二部分481形成於上述光電元件之上且於此第二部分482之兩端連接上述兩第一部分481,而形成一啞鈴形。在一實施例中,上述第一部份482具有一寬度大於此第二部份481之一寬度。 In this embodiment, the second heat dissipating pad 48 includes two first parts 482 formed on the supporting element 44 and a second part 481 formed on the photoelectric element and connected to the two ends of the second part 482. The two first parts 481 form a dumbbell shape. In one embodiment, the first part 482 has a width greater than a width of the second part 481.

在一實施例中,此第二散熱墊48形成於第一電極341及第二電極342之間,且不直接接觸上述第一電極341或第二電極342,亦不與上述第一電極341或第二電極342電性相連。 In one embodiment, the second heat dissipation pad 48 is formed between the first electrode 341 and the second electrode 342, and does not directly contact the first electrode 341 or the second electrode 342, nor does it contact the first electrode 341 or the second electrode 342 directly. The second electrode 342 is electrically connected.

接著,可形成一光學層46於上述光學元件之上且覆蓋上述第二散熱墊48、第一電極341及第二電極342。光學層46之材料可包含一基質及高反射率物質之混合物,其中基質可為矽膠樹脂、環氧樹脂或其他材料,高反射率物質可為TiO2。 Then, an optical layer 46 can be formed on the optical element and cover the second heat dissipation pad 48, the first electrode 341, and the second electrode 342. The material of the optical layer 46 may include a mixture of a matrix and a high-reflectivity substance, wherein the matrix may be silicone resin, epoxy resin or other materials, and the high-reflectivity substance may be TiO2.

接著,於光學層46上形成複數個開口461,此複數個開口乃相對應於第一電極341及第二電極342之位置,並裸露出部分的第一電極341及第二電極342。 Next, a plurality of openings 461 are formed on the optical layer 46, and the plurality of openings correspond to the positions of the first electrode 341 and the second electrode 342, and expose part of the first electrode 341 and the second electrode 342.

接著,如第7D圖所示,形成一第五電極40及一第六電極42分別與第一電極341及第二電極342電性連接,以完成本實施例光電元件500之製作。在一實施例中,上述第五電極40及一第六電極42也可選擇性的與第二散熱墊48連接,以幫助後續散熱。在一實施例中,第五電極40或第六電極42包含一金屬反 射層。在一實施例中,光學層46介於第一電極341與第五電極40之間以及第二電極342與第六電極42之間。在一實施例中,光學層46之外邊界大於基板之外邊界。 Next, as shown in FIG. 7D, a fifth electrode 40 and a sixth electrode 42 are formed to be electrically connected to the first electrode 341 and the second electrode 342, respectively, to complete the fabrication of the optoelectronic device 500 of this embodiment. In an embodiment, the above-mentioned fifth electrode 40 and a sixth electrode 42 can also be selectively connected to the second heat dissipation pad 48 to help subsequent heat dissipation. In one embodiment, the fifth electrode 40 or the sixth electrode 42 includes a metal Shooting layer. In an embodiment, the optical layer 46 is interposed between the first electrode 341 and the fifth electrode 40 and between the second electrode 342 and the sixth electrode 42. In one embodiment, the outer boundary of the optical layer 46 is larger than the outer boundary of the substrate.

在一實施例中,可提供一載板或一電路元件(圖未示),藉由打線或焊錫等方式於載板或電路元件上形成一第一載板電極(圖未示)、及一第二載板電極(圖未示)。此第一載板電極、及第二載板電極可與光電元件500之第五電極40及第六電極42,形成一覆晶式結構。在一實施例中,上述第五電極40及一第六電極42超出基板之外邊界。在一實施例中,第五電極40及第六電極42於垂直基板表面的投影面積大於基板面積。在此實施例中,藉由加大第五電極40及第六電極42的面積,可以使得後續與載板或電路元件的連結更為方便,而可減少對位的困擾。 In one embodiment, a carrier board or a circuit component (not shown) may be provided, and a first carrier electrode (not shown) and a The second carrier electrode (not shown). The first carrier electrode and the second carrier electrode can form a flip-chip structure with the fifth electrode 40 and the sixth electrode 42 of the optoelectronic device 500. In one embodiment, the above-mentioned fifth electrode 40 and a sixth electrode 42 extend beyond the outer boundary of the substrate. In one embodiment, the projection area of the fifth electrode 40 and the sixth electrode 42 perpendicular to the surface of the substrate is larger than the area of the substrate. In this embodiment, by enlarging the area of the fifth electrode 40 and the sixth electrode 42, the subsequent connection with the carrier board or the circuit element can be more convenient, and the alignment trouble can be reduced.

第8A圖至第8C圖係繪示出一發光模組示意圖,第8A圖係顯示一發光模組外部透視圖,一發光模組600可包含一載體502,一光電元件(未顯示),複數個透鏡504、506、508及510,及兩電源供應終端512及514。此發光模組500可連接於之後描述之發光單元540。 8A to 8C are schematic diagrams showing a light-emitting module, and FIG. 8A is an external perspective view of a light-emitting module. A light-emitting module 600 may include a carrier 502, a photoelectric element (not shown), and a plurality of There are two lenses 504, 506, 508 and 510, and two power supply terminals 512 and 514. The light-emitting module 500 can be connected to the light-emitting unit 540 described later.

第8B-8C圖係顯示一發光模組600之剖面圖,其中第8C圖係第8B圖之E區的放大圖。載體502可包含一上載體503及下載體501,其中下載體501之一表面可與上載體503接觸。透鏡504及508形成在上載體503之上。上載體503可形成至少一通孔515,而依本發明實施例形成之光電元件300或其他實施例之光電元件(圖未示)可形成在上述通孔515中並與下載體501接觸,且被膠材521包圍。膠材521之上具有一透鏡508,其中膠材521之材料可為矽膠樹脂、環氧樹脂或其他材料。在一實施例中,通孔515之兩側壁之上可形成一反射層519以增加出光效率;下載體501之下表面可形成一金屬層517以增進散熱效率。 Figures 8B-8C show a cross-sectional view of a light-emitting module 600, wherein Figure 8C is an enlarged view of area E in Figure 8B. The carrier 502 may include an upper carrier 503 and a download body 501, wherein a surface of the download body 501 can be in contact with the upper carrier 503. The lenses 504 and 508 are formed on the upper carrier 503. The upper carrier 503 can form at least one through hole 515, and the photoelectric element 300 formed according to the embodiment of the present invention or other photoelectric elements (not shown) can be formed in the through hole 515 and contact the download body 501, and be Surrounded by glue 521. There is a lens 508 on the glue material 521, wherein the material of the glue material 521 can be silicone resin, epoxy resin or other materials. In one embodiment, a reflective layer 519 can be formed on the two sidewalls of the through hole 515 to increase the light extraction efficiency; a metal layer 517 can be formed on the lower surface of the download body 501 to improve the heat dissipation efficiency.

第9A-9B圖係繪示出一光源產生裝置示意圖700,一光源產生裝置700可包含一發光模組600、一發光單元540、一電源供應系統(未顯示)以供應發 光模組600一電流、以及一控制元件(未顯示),用以控制電源供應系統(未顯示)。光源產生裝置700可以是一照明裝置,例如路燈、車燈或室內照明光源,也可以是交通號誌或一平面顯示器中背光模組的一背光光源。 Figures 9A-9B illustrate a schematic diagram 700 of a light source generating device. A light source generating device 700 may include a light emitting module 600, a light emitting unit 540, and a power supply system (not shown) to supply the light source. The optical module 600 has a current and a control element (not shown) for controlling the power supply system (not shown). The light source generating device 700 may be a lighting device, such as a street lamp, a car lamp, or an indoor lighting source, or a traffic sign or a backlight source of a backlight module in a flat-panel display.

第10圖係繪示一燈泡示意圖。燈泡800包括一個外殼921,一透鏡922,一照明模組924,一支架925,一散熱器926,一串接部927及一電串接器928。其中照明模組924係包括一載體923,並在載體923上包含至少一個上述實施例中的光電元件300或其他實施例之光電元件(圖未示)。 Figure 10 shows a schematic diagram of a light bulb. The bulb 800 includes a housing 921, a lens 922, an illumination module 924, a bracket 925, a heat sink 926, a serial connection portion 927 and an electrical serial connector 928. The lighting module 924 includes a carrier 923, and at least one photoelectric element 300 in the above-mentioned embodiment or photoelectric element of other embodiments (not shown) is contained on the carrier 923.

具體而言,基板30係為一成長及/或承載基礎。候選材料可包含導電基板或不導電基板、透光基板或不透光基板。其中導電基板材料其一可為鍺(Ge)、砷化鎵(GaAs)、銦化磷(InP)、碳化矽(SiC)、矽(Si)、鋁酸鋰(LiAlO2)、氧化鋅(ZnO)、氮化鎵(GaN)、氮化鋁(AlN)、金屬。透光基板材料其一可為藍寶石(Sapphire)、鋁酸鋰(LiAlO2)、氧化鋅(ZnO)、氮化鎵(GaN)、玻璃、鑽石、CVD鑽石、與類鑽碳(Diamond-Like Carbon;DLC)、尖晶石(spinel,MgAl2O4)、氧化鋁(Al2O3)、氧化矽(SiOX)及鎵酸鋰(LiGaO2)。 Specifically, the substrate 30 is a growth and/or bearing foundation. Candidate materials may include conductive substrates or non-conductive substrates, light-transmitting substrates or non-light-transmitting substrates. One of the conductive substrate materials can be germanium (Ge), gallium arsenide (GaAs), indium phosphorus (InP), silicon carbide (SiC), silicon (Si), lithium aluminate (LiAlO2), zinc oxide (ZnO) , Gallium nitride (GaN), aluminum nitride (AlN), metal. One of the transparent substrate materials can be sapphire (Sapphire), lithium aluminate (LiAlO2), zinc oxide (ZnO), gallium nitride (GaN), glass, diamond, CVD diamond, and diamond-like carbon (Diamond-Like Carbon; DLC), spinel (spinel, MgAl2O4), alumina (Al2O3), silicon oxide (SiOX) and lithium gallate (LiGaO2).

磊晶疊層(圖未示),包含第一半導體層321,一活性層322,以及一第二半導體層323。第一半導體層321及第二半導體層323例如為包覆層(cladding layer)或限制層(confinement layer),單層或多層結構。上述第一半導體層331與第二半導體層323係電性、極性或摻雜物相異,其電性選擇可以為p型、n型、及i型中至少任意二者之組合,可分別提供電子、電洞,使電子、電洞於活性層322中結合以發光。第一半導體層321、活性層322,以及第二半導體層323之材料可包含Ⅲ-V族半導體材料,例如AlxInyGa(1-x-y)N或AlxInyGa(1-x-y)P,其中0≦x,y≦1;(x+y)≦1。依據活性層322之材料,磊晶疊 層可發出波長介於610nm及650nm之間的紅光,波長介於530nm及570nm之間的綠光,波長介於450nm及490nm之間的藍光,或是波長小於400nm之紫外光。 The epitaxial stack (not shown) includes a first semiconductor layer 321, an active layer 322, and a second semiconductor layer 323. The first semiconductor layer 321 and the second semiconductor layer 323 are, for example, a cladding layer or a confinement layer, a single layer or a multilayer structure. The above-mentioned first semiconductor layer 331 and the second semiconductor layer 323 are different in electrical properties, polarity or dopants, and their electrical properties can be a combination of at least any two of p-type, n-type, and i-type, which can be provided separately Electrons and holes combine in the active layer 322 to emit light. The materials of the first semiconductor layer 321, the active layer 322, and the second semiconductor layer 323 may include III-V semiconductor materials, such as AlxInyGa(1-xy)N or AlxInyGa(1-xy)P, where 0≦x,y ≦1; (x+y)≦1. According to the material of the active layer 322, the epitaxial stack The layer can emit red light with wavelengths between 610nm and 650nm, green light with wavelengths between 530nm and 570nm, blue light with wavelengths between 450nm and 490nm, or ultraviolet light with wavelengths less than 400nm.

在本發明的另一實施例中,光電元件300、300’、400、500可為一磊晶原件或一發光二極體,其發光頻譜可以藉由改變半導體單層或多層之物理或化學要素進行調整。此單層或多層之半導體材料可選自鋁(Al)、鎵(Ga)、銦(In)、磷(P)、氮(N)、鋅(Zn)以及氧(O)所構成群組。活性層322之結構係如:單異質結構(single heterostructure;SH)、雙異質結構(double heterostructure;DH)、雙側雙異質結構(double-side double heterostructure;DDH)、或多層量子井(multi-quantum well;MQW)結構。再者,調整活性層322量子井之對數亦可以改變發光波長。 In another embodiment of the present invention, the optoelectronic device 300, 300', 400, 500 may be an epitaxial element or a light emitting diode, and its light emission spectrum can be changed by changing the physical or chemical elements of the semiconductor single layer or multilayer Make adjustments. The single-layer or multi-layer semiconductor material can be selected from the group consisting of aluminum (Al), gallium (Ga), indium (In), phosphorus (P), nitrogen (N), zinc (Zn), and oxygen (O). The structure of the active layer 322 is such as: single heterostructure (SH), double heterostructure (DH), double-side double heterostructure (DDH), or multi-layer quantum well (multi- quantum well; MQW) structure. Furthermore, adjusting the logarithm of the quantum well of the active layer 322 can also change the emission wavelength.

於本發明之一實施例中,第一半導體層321與基板30間尚可選擇性地包含一緩衝層(buffer layer,未顯示)。此緩衝層係介於二種材料系統之間,使基板30之材料系統”過渡”至第一半導體層321之材料系統。對發光二極體之結構而言,一方面,緩衝層係用以降低二種材料間晶格不匹配之材料層。另一方面,緩衝層亦可以是用以結合二種材料或二個分離結構之單層、多層或結構,其可選用之材料係如:有機材料、無機材料、金屬、及半導體等;其可選用之結構係如:反射層、導熱層、導電層、歐姆接觸(ohmic contact)層、抗形變層、應力釋放(stress release)層、應力調整(stress adjustment)層、接合(bonding)層、波長轉換層、及機械固定構造等。在一實施例中,此緩衝層之材料可選自氮化鋁或氮化鎵,且此緩衝層可由濺鍍或原子層沉積(Atomic Layer Deposition,ALD)之方式形成。 In an embodiment of the present invention, a buffer layer (not shown) may optionally be included between the first semiconductor layer 321 and the substrate 30. The buffer layer is between the two material systems, so that the material system of the substrate 30 "transitions" to the material system of the first semiconductor layer 321. For the structure of the light-emitting diode, on the one hand, the buffer layer is a material layer used to reduce the lattice mismatch between the two materials. On the other hand, the buffer layer can also be a single layer, multi-layer or structure used to combine two materials or two separate structures. The materials that can be used include organic materials, inorganic materials, metals, and semiconductors; The selected structure is such as: reflective layer, thermal conductive layer, conductive layer, ohmic contact layer, anti-deformation layer, stress release layer, stress adjustment layer, bonding layer, wavelength Conversion layer, and mechanical fixing structure, etc. In one embodiment, the material of the buffer layer can be selected from aluminum nitride or gallium nitride, and the buffer layer can be formed by sputtering or atomic layer deposition (ALD).

第二半導體層323上更可選擇性地形成一接觸層(未顯示)。接觸層係設置於第二半導體層323遠離活性層322之一側。具體而言,接觸層可以為光學層、電學層、或其二者之組合。光學層係可以改變來自於或進入活性層的電 磁輻射或光線。在此所稱之「改變」係指改變電磁輻射或光之至少一種光學特性,前述特性係包含但不限於頻率、波長、強度、通量、效率、色溫、演色性(rendering index)、光場(light field)、及可視角(angle of view)。電學層係可以使得接觸層之任一組相對側間之電壓、電阻、電流、電容中至少其一之數值、密度、分布發生變化或有發生變化之趨勢。接觸層之構成材料係包含氧化物、導電氧化物、透明氧化物、具有50%或以上穿透率之氧化物、金屬、相對透光金屬、具有50%或以上穿透率之金屬、有機質、無機質、螢光物、磷光物、陶瓷、半導體、摻雜之半導體、及無摻雜之半導體中至少其一。於某些應用中,接觸層之材料係為氧化銦錫、氧化鎘錫、氧化銻錫、氧化銦鋅、氧化鋅鋁、與氧化鋅錫中至少其一。若為相對透光金屬,其厚度較佳地約為0.005μm~0.6μm。 A contact layer (not shown) can be formed more selectively on the second semiconductor layer 323. The contact layer is disposed on a side of the second semiconductor layer 323 away from the active layer 322. Specifically, the contact layer may be an optical layer, an electrical layer, or a combination of the two. The optical layer system can change the electricity coming from or entering the active layer. Magnetic radiation or light. "Change" as used herein refers to changing at least one optical characteristic of electromagnetic radiation or light. The aforementioned characteristics include, but are not limited to, frequency, wavelength, intensity, flux, efficiency, color temperature, rendering index, and light field. (light field), and angle of view. The electrical layer system can make the value, density, and distribution of at least one of the voltage, resistance, current, and capacitance between any set of opposite sides of the contact layer change or have a tendency to change. The constituent materials of the contact layer include oxides, conductive oxides, transparent oxides, oxides with a transmittance of 50% or more, metals, relatively light-transmitting metals, metals with a transmittance of 50% or more, organic substances, At least one of inorganic substances, phosphors, phosphors, ceramics, semiconductors, doped semiconductors, and undoped semiconductors. In some applications, the material of the contact layer is at least one of indium tin oxide, cadmium tin oxide, antimony tin oxide, indium zinc oxide, zinc aluminum oxide, and zinc tin oxide. If it is a relatively light-transmitting metal, its thickness is preferably about 0.005 μm to 0.6 μm.

以上各圖式與說明雖僅分別對應特定實施例,然而,各個實施例中所說明或揭露之元件、實施方式、設計準則、及技術原理除在彼此顯相衝突、矛盾、或難以共同實施之外,吾人當可依其所需任意參照、交換、搭配、協調、或合併。雖然本發明已說明如上,然其並非用以限制本發明之範圍、實施順序、或使用之材料與製程方法。對於本發明所作之各種修飾與變更,皆不脫本發明之精神與範圍。 Although the above drawings and descriptions only correspond to specific embodiments respectively, however, the elements, implementations, design criteria, and technical principles described or disclosed in the various embodiments are in conflict with each other, contradictory, or difficult to implement together. In addition, we should be free to refer to, exchange, match, coordinate, or merge as needed. Although the present invention has been described above, it is not intended to limit the scope of the present invention, the order of implementation, or the materials and manufacturing methods used. Various modifications and changes made to the present invention do not depart from the spirit and scope of the present invention.

321‧‧‧第一半導體層 321‧‧‧First semiconductor layer

323‧‧‧第二半導體層 323‧‧‧Second semiconductor layer

S‧‧‧溝渠 S‧‧‧ditch

361‧‧‧第一絕緣層 361‧‧‧First insulation layer

44‧‧‧支撐元件 44‧‧‧Supporting element

482‧‧‧第二散熱墊第一部分 482‧‧‧The first part of the second cooling pad

481‧‧‧第二散熱墊第二部分 481‧‧‧Second part of second cooling pad

Claims (10)

一種光電元件,包含:複數個光電元件單元包含一第一光電元件單元,一第二光電元件單元,以及複數個第三光電元件單元,其中該第一光電元件單元,該第二光電元件單元,與該複數個第三光電元件單元各別包含一第一半導體層,一第二半導體層,以及一活性層形成在該第一半導體層與該第二半導體層之間;複數個第二電極分別形成在該第一光電元件單元,該第二光電元件單元及該複數個第三光電元件單元之上,並分別電性連接該第一光電元件單元,該第二光電元件單元及該複數個第三光電元件單元;複數個散熱墊分別形成在該複數個第三光電元件單元之上,並與該複數個第三光電元件單元的每一個電性絕緣;以及複數個導電配線結構電性連接該第一光電元件單元、該第二光電元件單元與該複數個第三光電元件單元,其中於該光電元件之一上視圖中,該複數個散熱墊不與該複數個導電配線結構重疊,於該光電元件之一剖視圖中,該複數個散熱墊與形成在該複數個第三光電元件單元之上的該複數個第二電極重疊,但不與該複數個導電配線結構重疊。 A photoelectric element comprising: a plurality of photoelectric element units including a first photoelectric element unit, a second photoelectric element unit, and a plurality of third photoelectric element units, wherein the first photoelectric element unit and the second photoelectric element unit, Each of the plurality of third optoelectronic element units includes a first semiconductor layer, a second semiconductor layer, and an active layer formed between the first semiconductor layer and the second semiconductor layer; a plurality of second electrodes are respectively Formed on the first optoelectronic element unit, the second optoelectronic element unit, and the plurality of third optoelectronic element units, and are electrically connected to the first optoelectronic element unit, the second optoelectronic element unit, and the plurality of third optoelectronic element units, respectively Three optoelectronic element units; a plurality of heat dissipation pads are respectively formed on the plurality of third optoelectronic element units, and are electrically insulated from each of the plurality of third optoelectronic element units; and a plurality of conductive wiring structures are electrically connected to the The first optoelectronic element unit, the second optoelectronic element unit, and the plurality of third optoelectronic element units, wherein in a top view of the optoelectronic element, the plurality of heat dissipation pads do not overlap with the plurality of conductive wiring structures, and the In a cross-sectional view of the optoelectronic element, the plurality of heat dissipation pads overlap with the plurality of second electrodes formed on the plurality of third optoelectronic element units, but do not overlap with the plurality of conductive wiring structures. 如申請專利範圍第1項所述的光電元件,更包含複數個第一電極分別形成在該第一光電元件單元,該第二光電元件單元及該複數個第三光電元件單元之上,並分別電性連接該第一光電元件單元,該第二光電元件單元及該複數個第三光電元件單元。 As described in the first item of the scope of patent application, the optoelectronic element further includes a plurality of first electrodes formed on the first optoelectronic element unit, the second optoelectronic element unit, and the plurality of third optoelectronic element units, respectively. The first photoelectric element unit, the second photoelectric element unit and the plurality of third photoelectric element units are electrically connected. 如申請專利範圍第1項或第2項所述的光電元件,更包含一第二絕緣層位於各該複數個散熱墊與各該複數個第三光電元件單元之各該第二半導體層之間。 The optoelectronic element described in item 1 or item 2 of the scope of the patent application further includes a second insulating layer located between each of the plurality of heat dissipation pads and each of the second semiconductor layers of each of the plurality of third optoelectronic element units . 如申請專利範圍第1項所述的光電元件,其中該複數個散熱墊包含金(Au)、銀(Ag)、銅(Cu)、鉻(Cr)、鋁(Al)、鉑(Pt)、鎳(Ni)、鈦(Ti)、錫(Sn),或其合金。 As described in the first item of the patent application, the plurality of heat dissipation pads include gold (Au), silver (Ag), copper (Cu), chromium (Cr), aluminum (Al), platinum (Pt), Nickel (Ni), titanium (Ti), tin (Sn), or alloys thereof. 如申請專利範圍第1項所述的光電元件,其中該第二半導體層具有一第一表面積,各該複數個散熱墊形成於各該複數個第三光電元件單元之該第二半導體層之上且各具有一第二表面積,且其中該第二表面積與該第一表面積之比值介於80~100%。 The optoelectronic device according to claim 1, wherein the second semiconductor layer has a first surface area, and each of the plurality of heat dissipation pads is formed on the second semiconductor layer of each of the plurality of third optoelectronic device units Each has a second surface area, and the ratio of the second surface area to the first surface area is 80-100%. 如申請專利範圍第1項所述的光電元件,更包含一第三電極形成在該第一光電元件單元之上,並電性連接該第一光電元件單元;以及一第四電極形成在該第二光電元件單元之該第二電極上,並電性連接該第二光電元件單元,其中該第三電極,該第四電極及該複數個散熱墊具有相同之疊層結構。 As described in the first item of the patent application, the photoelectric element further includes a third electrode formed on the first photoelectric element unit and electrically connected to the first photoelectric element unit; and a fourth electrode is formed on the first photoelectric element unit. The second electrode of the two photoelectric element units is electrically connected to the second photoelectric element unit, wherein the third electrode, the fourth electrode and the plurality of heat dissipation pads have the same laminated structure. 如申請專利範圍第1項所述的光電元件,更包含一第一絕緣層及一第二絕緣層位於該複數個導電配線結構之一的相對側,其中該第二絕緣層包含一厚度大於該第一絕緣層之一厚度。 As described in the first item of the patent application, the photoelectric element further includes a first insulating layer and a second insulating layer located on opposite sides of one of the plurality of conductive wiring structures, wherein the second insulating layer includes a thickness greater than the One thickness of the first insulating layer. 如申請專利範圍第1或6項所述的光電元件,更包含一基板,其中該第一光電元件單元、該第二光電元件單元、該複數個第三光電元件單元位於該基板的一第一側;以及一支撐元件包含一透明材料,形成於該基板之一第二側並包覆該基板之一側壁。 The optoelectronic element described in item 1 or 6 of the scope of patent application further includes a substrate, wherein the first optoelectronic element unit, the second optoelectronic element unit, and the plurality of third optoelectronic element units are located on a first side of the substrate. Side; and a supporting element includes a transparent material, formed on a second side of the substrate and covering a side wall of the substrate. 如申請專利範圍第8項所述的光電元件,更包含一第五電極及一第六電極分別電性連接該第三電極及該第四電極,其中於該光電元件之一俯視圖下,該第五電極及該第六電極於垂直該基板之一表面的投影面積大於該基板之該表面的面積。 As described in item 8 of the scope of patent application, the optoelectronic element further includes a fifth electrode and a sixth electrode electrically connected to the third electrode and the fourth electrode, respectively. In a top view of the optoelectronic element, the first electrode The projection area of the five electrodes and the sixth electrode on a surface perpendicular to the substrate is larger than the area of the surface of the substrate. 如申請專利範圍第8項所述的光電元件,更包含一光學層包含TiO2包覆該第一光電元件單元,該第二光電元件單元及該複數個第三光電元件單 元,其中於該光電元件之一俯視下,該光學層具有一第二外邊界,且該光學層之該第二外邊界的一周長大於該基板之一外邊界的一周長。 As described in item 8 of the scope of patent application, the optoelectronic element further includes an optical layer including TiO 2 covering the first optoelectronic element unit, the second optoelectronic element unit, and the plurality of third optoelectronic element units, wherein the optical layer includes TiO 2 In a plan view of one of the elements, the optical layer has a second outer boundary, and the perimeter of the second outer boundary of the optical layer is greater than the perimeter of an outer boundary of the substrate.
TW108122617A 2014-05-19 2014-05-19 Optoelectronic device and method for manufacturing the same TWI743503B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108122617A TWI743503B (en) 2014-05-19 2014-05-19 Optoelectronic device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108122617A TWI743503B (en) 2014-05-19 2014-05-19 Optoelectronic device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201937754A TW201937754A (en) 2019-09-16
TWI743503B true TWI743503B (en) 2021-10-21

Family

ID=68618610

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108122617A TWI743503B (en) 2014-05-19 2014-05-19 Optoelectronic device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI743503B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081469A (en) * 2003-07-16 2009-04-16 Panasonic Corp Semiconductor light emitting apparatus and module mounted with the same
JP2011134829A (en) * 2009-12-24 2011-07-07 Nichia Corp Light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081469A (en) * 2003-07-16 2009-04-16 Panasonic Corp Semiconductor light emitting apparatus and module mounted with the same
JP2011134829A (en) * 2009-12-24 2011-07-07 Nichia Corp Light emitting device

Also Published As

Publication number Publication date
TW201937754A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
TWI614920B (en) Optoelectronic device and method for manufacturing the same
TWI625868B (en) Optoelectronic device and method for manufacturing the same
JP6529223B2 (en) Photoelectric parts
CN111599832B (en) Photoelectric element and manufacturing method thereof
TWI743503B (en) Optoelectronic device and method for manufacturing the same
TWI787987B (en) Optoelectronic device
KR102052040B1 (en) Optoelectronic device and method for manufacturing the same
KR102198133B1 (en) Optoelectronic device
TWI667812B (en) Optoelectronic device and method for manufacturing the same
TWI638468B (en) Optoelectronic device and method for manufacturing the same
TWI662720B (en) Optoelectronic device and method for manufacturing the same
TWI758603B (en) Optoelectronic device and method for manufacturing the same
TWI790911B (en) Optoelectronic device
TWI790912B (en) Optoelectronic device
TWI842276B (en) Optoelectronic device
CN112510131B (en) Optoelectronic component and method for producing the same
TWI622191B (en) Light-emitting diode device
TWI647869B (en) Light-emitting diode device
TW202431665A (en) Optoelectronic device