skip to main content
research-article

Teleoperation of Humanoid Robots: A Survey

Published: 01 June 2023 Publication History

Abstract

Teleoperation of humanoid robots enables the integration of the cognitive skills and domain expertise of humans with the physical capabilities of humanoid robots. The operational versatility of humanoid robots makes them the ideal platform for a wide range of applications when teleoperating in a remote environment. However, the complexity of humanoid robots imposes challenges for teleoperation, particularly in unstructured dynamic environments with limited communication. Many advancements have been achieved in the last decades in this area, but a comprehensive overview is still missing. This survey article gives an extensive overview of humanoid robot teleoperation, presenting the general architecture of a teleoperation system and analyzing the different components. We also discuss different aspects of the topic, including technological and methodological advances, as well as potential applications.

References

[1]
J. Ramos and S. Kim, “Humanoid dynamic synchronization through whole-body bilateral feedback teleoperation,” IEEE Trans. Robot., vol. 34, no. 4, pp. 953–965, Aug. 2018.
[2]
K. Darvish et al., “Whole-body geometric retargeting for humanoid robots,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2019, pp. 679–686.
[3]
L. Penco, N. Scianca, V. Modugno, L. Lanari, G. Oriolo, and S. Ivaldi, “A multimode teleoperation framework for humanoid loco-manipulation: An application for the iCub robot,” IEEE Robot. Autom. Mag., vol. 26, no. 4, pp. 73–82, Dec. 2019.
[4]
Y. Ishiguro et al., “Bilateral humanoid teleoperation system using whole-body exoskeleton cockpit TABLIS,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 6419–6426, Oct. 2020.
[5]
S. J. Jorgensen et al., “Deploying the NASA valkyrie humanoid for IED response: An initial approach and evaluation summary,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2019, pp. 1–8.
[6]
F. Abi-Farrajl, B. Henze, A. Werner, M. Panzirsch, C. Ott, and M. A. Roa, “Humanoid teleoperation using task-relevant haptic feedback,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 5010–5017.
[7]
D. Kim, B.-J. You, and S.-R. Oh, Whole Body Motion Control Framework for Arbitrarily and Simultaneously Assigned Upper-Body Tasks and Walking Motion. Berlin, Germany: Springer, 2013, pp. 87–98.
[8]
R. Cisneros et al., “Team JANUS humanoid avatar: A cybernetic avatar to embody human telepresence,” in Proc. Toward Robot Avatars: Perspectives ANA Avatar XPRIZE Competition, RSS Workshop, 2022.
[9]
A. D. Dragan, K. C. T. Lee, and S.S. Srinivasa, “Legibility and predictability of robot motion,” in Proc. ACM/IEEE Int. Conf. Hum.-Robot Interaction, 2013, pp. 301–308.
[11]
N. Lii et al., “The robot as an avatar or co-worker? An investigation of the different teleoperation modalities through the KONTUR-2 and METERON SUPVIS Justin space telerobotic missions,” in Proc. Int. Astronaut. Cong., 2018, pp. 1–9.
[12]
E. Ackerman, “Russian humanoid robot to pilot soyuz capsule to ISS this week,” 2019. [Online]. Available: https://spectrum.ieee.org/automaton/robotics/space-robots/russian-humanoid-robot-to-pilot-soyuz-capsule-to-iss-this-week
[13]
A. Goswami and P. Vadakkepat, Humanoid Robotics: A Reference. Berlin, Germany: Springer, 2019.
[14]
T. Sugihara and M. Morisawa, “A survey: Dynamics of humanoid robots,” Adv. Robot., vol. 34, no. 21/22, pp. 1338–1352, 2020.
[15]
K. Yamamoto, T. Kamioka, and T. Sugihara, “Survey on model-based biped motion control for humanoid robots,” Adv. Robot., vol. 34, no. 21/22, pp. 1353–1369, 2020.
[16]
Y. Tazaki and M. Murooka, “A survey of motion planning techniques for humanoid robots,” Adv. Robot., vol. 34, no. 21/22, pp. 1370–1379, 2020.
[17]
P. G. De Barros and R. W. Lindeman, “A Survey of User Interfaces for Robot Teleoperation.,” Worcester, MA, USA: Worcester Polytechnic Institute, 2009.
[18]
P. F. Hokayem and M. W. Spong, “Bilateral teleoperation: An historical survey,” Automatica, vol. 42, no. 12, pp. 2035–2057, 2006.
[19]
M. A. Goodrich and A. C. Schultz, “Human-robot interaction: A survey,” Found. Trends Hum.–Comput. Interact., vol. 1, no. 3, pp. 203–275, 2007.
[20]
M. A. Goodrich, J. W. Crandall, and E. Barakova, “Teleoperation and beyond for assistive humanoid robots,” Rev. Hum. Factors Ergonom., vol. 9, no. 1, pp. 175–226, 2013.
[21]
K. Darvish et al. Workshop on teleoperation of humanoid robots, 2019. [Online]. Available: https://amiiit.github.io/WS_teleoepration_humanoids/
[22]
S. Tachi, Telexistence, 2nd ed. Singapore: World Scientific, 2015.
[23]
T. Ando, T. Watari, and R. Kikuuwe, “Master-slave bipedal walking and semi-automatic standing up of humanoid robots,” in Proc. IEEE/SICE Int. Symp. Syst. Integrat., 2020, pp. 360–365.
[24]
D. Roetenberg, H. Luinge, and P. Slycke, “Xsens MVN: Full 6DOF human motion tracking using miniature inertial sensors,” Xsens Motion Technol. BV, Enschede, The Netherlands, Tech. Rep. 1, 2009.
[25]
O. Glauser et al., “Interactive hand pose estimation using a stretch-sensing soft glove,” ACM Trans. Graph., vol. 38, no. 4, pp. 1–15, 2019.
[26]
J. Wang, C. Lu, and K. Zhang, “Textile-based strain sensor for human motion detection,” Energy Environ. Mater., vol. 3, no. 1, pp. 80–100, 2020.
[27]
J. Ramos and S. Kim, “Dynamic locomotion synchronization of bipedal robot and human operator via bilateral feedback teleoperation,” Sci. Robot., vol. 4, no. 35, 2019, Art. no.
[28]
M. Elobaid et al., “Telexistence and teleoperation for walking humanoid robots,” IntelliSys, vol. 1038, pp. 1106–1121, 2019.
[29]
S. Dafarra et al., “iCub3 avatar system,” 2022, arXiv:2203.06972.
[30]
M. Johnson et al., “Team IHMC's lessons learned from the DARPA robotics challenge: Finding data in the rubble,” J. Field Robot., vol. 34, no. 2, pp. 241–261, 2017.
[31]
J. Chagas Vaz, D. Wallace, and P. Y. Oh, “Humanoid loco-manipulation of pushed carts utilizing virtual reality teleoperation,” in Proc. ASME Int. Mech. Eng. Congr. Expo., 2021, pp. 1–6.
[32]
M. Zucker et al., “A general-purpose system for teleoperation of the DRC-HUBO humanoid robot,” J. Field Robot., vol. 32, no. 3, pp. 336–351, 2015.
[33]
R. Cisneros et al., “Enabling a teleoperated humanoid robot to pass through debris-filled terrain using manipulation,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2016, pp. 401–408.
[34]
M. Schwarz, C. Lenz, A. Rochow, M. Schreiber, and S. Behnke, “NimbRo avatar: Interactive immersive telepresence with force-feedback telemanipulation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 5312–5319.
[35]
O. E. Ramos, N. Mansard, O. Stasse, C. Benazeth, S. Hak, and L. Saab, “Dancing humanoid robots: Systematic use of OSID to compute dynamically consistent movements following a motion capture pattern,” IEEE Robot. Autom. Mag., vol. 22, no. 4, pp. 16–26, Dec. 2015.
[36]
Y. Ishiguro et al., “High speed whole body dynamic motion experiment with real time master-slave humanoid robot system,” in Proc. IEEE Int. Conf. Robot. Autom., 2018, pp. 5835–5841.
[37]
S. Tachi, Y. Inoue, and F. Kato, “TELESAR VI: Telexistence surrogate anthropomorphic robot VI,” Int. J. Humanoid Robot., vol. 17, no. 5, 2020, Art. no.
[38]
K. Hu, C. Ott, and D. Lee, “Online human walking imitation in task and joint space based on quadratic programming,” in Proc. IEEE Int. Conf. Robot. Autom., 2014, pp. 3458–3464.
[39]
A. Brygo et al., “Humanoid robot teleoperation with vibrotactile based balancing feedback,” in Proc. Int. Conf. Hum. Haptic Sens. Touch Enabled Comput. Appl., 2014, pp. 266–275.
[40]
A. D. Fava, K. Bouyarmane, K. Chappellet, E. Ruffaldi, and A. Kheddar, “Multi-contact motion retargeting from human to humanoid robot,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2016, pp. 1081–1086.
[41]
L. Peternel and J. Babič, “Learning of compliant human–robot interaction using full-body haptic interface,” Adv. Robot., vol. 27, pp. 1003–1012, 2013.
[42]
D. Staudenmann et al., “Methodological aspects of SEMG recordings for force estimation—A tutorial and review,” J. Electromyogr. Kinesiol., vol. 20, no. 3, pp. 375–387, 2010.
[43]
R. H. Chowdhury et al., “Surface electromyography signal processing and classification techniques,” Sensors, vol. 13, no. 9, pp. 12431–12466, 2013.
[44]
E. Niedermeyer and F. L. da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Philadelphia, PA, USA: Lippincott Williams & Wilkins, 2005.
[45]
J. Achten and A. E. Jeukendrup, “Heart rate monitoring,” Sports Med., vol. 33, no. 7, pp. 517–538, 2003.
[46]
Y. Sugano and A. Bulling, “Self-calibrating head-mounted eye trackers using egocentric visual saliency,” in Proc. ACM Symp. User Interface Softw. Technol., 2015, pp. 363–372.
[47]
T. Ohhashi, M. Sakaguchi, and T. Tsuda, “Human perspiration measurement,” Physiol. Meas., vol. 19, no. 4, 1998, Art. no.
[48]
Y. G. Ryu, H. C. Roh, S. J. Kim, K. H. An, and M. J. Chung, “Digital image stabilization for humanoid eyes inspired by human VOR system,” in Proc. IEEE Int. Conf. Robot. Biomimetics, 2009, pp. 2301–2306.
[49]
A. Wang, J. Ramos, J. Mayo, W. Ubellacker, J. Cheung, and S. Kim, “The HERMES humanoid system: A platform for full-body teleoperation with balance feedback,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2015, pp. 730–737.
[50]
C. R. Wagner, S. J. Lederman, and R. D. Howe, “Design and performance of a tactile shape display using RC servomotors,” Haptics-e, vol. 3, no. 4, pp. 1–6, 2004.
[51]
S. Tachi, K. Mlnamlzawa, M. Furukawa, and C. L. Fernando, “Haptic media construction and utilization of human-harmonized ‘tangible’ information environment,” in Proc. Int. Conf. Artif. Reality Telexistence, 2013, pp. 145–150.
[52]
S. Nakaoka et al., “Task sequencer integrated into a teleoperation interface for biped humanoid robots,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2015, pp. 895–900.
[53]
S. Feng et al., “Optimization-based full body control for the DARPA robotics challenge,” J. Field Robot., vol. 32, no. 2, pp. 293–312, 2015.
[54]
R. Cisneros-Limon et al., “An inverse dynamics-based multi-contact locomotion control framework without joint torque feedback,” Adv. Robot., vol. 34, no. 21/22, pp. 1398–1419, 2020.
[55]
S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa et al., “The 3D linear inverted pendulum mode: A simple modeling for a biped walking pattern generation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2001, pp. 239–246.
[56]
M. Vukobratović and J. Stepanenko, “On the stability of anthropomorphic systems,” Math. Biosciences, vol. 15, no. 1/2, pp. 1–37, 1972.
[57]
J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step toward humanoid push recovery,” in Proc./ IEEE/RAS Int. Conf. Humanoid Robots, 2006, pp. 200–207.
[58]
T. Takenaka, T. Matsumoto, and T. Yoshiike, “Real time motion generation and control for biped robot-1st report: Walking gait pattern generation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2009, pp. 1084–1091.
[59]
J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional bipedal walking control based on divergent component of motion,” IEEE Trans. Robot., vol. 31, no. 2, pp. 355–368, Apr. 2015.
[60]
G. Singh et al., “Physiologically attentive user interface for robot teleoperation: Real time emotional state estimation and interface modification using physiology, facial expressions and eye movements,” in Proc. Int. Joint Conf. Biomed. Eng. Syst. Technol., 2018, pp. 294–302.
[61]
A. Dragan and S. Srinivasa, “Formalizing assistive teleoperation,” in Proc. Robot. Sci. Syst., 2012, pp. 73–80.
[62]
R. J. Griffin et al., “Footstep planning for autonomous walking over rough terrain,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2019, pp. 9–16.
[63]
J. Garimort, A. Hornung, and M. Bennewitz, “Humanoid navigation with dynamic footstep plans,” in Proc. IEEE Int. Conf. Robot. Autom., 2011, pp. 3982–3987.
[64]
N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida, “Fast humanoid robot collision-free footstep planning using swept volume approximations,” ” IEEE Trans. Robot., vol. 28, no. 2, pp. 427–439, Apr. 2012.
[65]
J. J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Footstep planning among obstacles for biped robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2001, pp. 500–505.
[66]
A. Herdt et al., “Online walking motion generation with automatic footstep placement,” Adv. Robot., vol. 24, no. 5/6, pp. 719–737, 2010.
[67]
R. Deits and R. Tedrake, “Footstep planning on uneven terrain with mixed-integer convex optimization,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2014, pp. 279–286.
[68]
M. Fakoor, A. Kosari, and M. Jafarzadeh, “Revision on fuzzy artificial potential field for humanoid robot path planning in unknown environment,” Int. J. Adv. Mechatronic Syst., vol. 6, no. 4, pp. 174–183, 2015.
[69]
M. V. Liarokapis et al., “Directions, methods and metrics for mapping human to robot motion with functional anthropomorphism: A review,” School of Mechanical Engineering, National Technical University of Athens, Athens, Greece, Tech. Rep, 2013.
[70]
K. Ayusawa and E. Yoshida, “Motion retargeting for humanoid robots based on simultaneous morphing parameter identification and motion optimization,” IEEE Trans. Robot., vol. 33, no. 6, pp. 1343–1357, Dec. 2017.
[71]
K. Otani and K. Bouyarmane, “Adaptive whole-body manipulation in human-to-humanoid multi-contact motion retargeting,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2017, pp. 446–453.
[72]
T. Koolen et al., “Capturability-based analysis and control of legged locomotion, part 1: Theory and application to three simple gait models,” Int. J. Robot. Res., vol. 31, no. 9, pp. 1094–1113, 2012.
[73]
H. Hirukawa et al., “A universal stability criterion of the foot contact of legged robots-adios ZMP,” in Proc. IEEE Int. Conf. Robot. Autom., 2006, pp. 1976–1983.
[74]
C. Ott, M. A. Roa, and G. Hirzinger, “Posture and balance control for biped robots based on contact force optimization,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2011, pp. 26–33.
[75]
S. Mason, L. Righetti, and S. Schaal, “Full dynamics LQR control of a humanoid robot: An experimental study on balancing and squatting,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2014, pp. 374–379.
[76]
S. Kuindersma et al., “Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot,” Auton. Robots, vol. 40, no. 3, pp. 429–455, 2016.
[77]
M. Kelly, “An introduction to trajectory optimization: How to do your own direct collocation,” SIAM Rev., vol. 59, no. 4, pp. 701–928, 2017.
[78]
M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of rigid bodies through contact,” Int. J. Robot. Res., vol. 33, no. 1, pp. 69–81, 2014.
[79]
O. Kanoun, F. Lamiraux, and P. Wieber, “Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task,” IEEE Trans. Robot., vol. 27, no. 4, pp. 785–792, Aug. 2011.
[80]
L. Righetti and S. Schaal, “Quadratic programming for inverse dynamics with optimal distribution of contact forces,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2012, pp. 538–543.
[81]
D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a humanoid robot,” Auton. Robots, vol. 35, no. 2/3, pp. 161–176, 2013.
[82]
T. Koolen et al., “Design of a momentum-based control framework and application to the humanoid robot atlas,” Int. J. Humanoid Robot., vol. 13, 2016, Art. no.
[83]
F. Flacco, A. Paolillo, and A. Kheddar, “Residual-based contacts estimation for humanoid robots,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2016, pp. 409–415.
[84]
J. Hwangbo et al., “Learning agile and dynamic motor skills for legged robots,” Sci. Robot., vol. 4, no. 26, 2019, Art. no.
[85]
F. J. A. Chavez, J. Kangro, S. Traversaro, F. Nori, and D. Pucci, “Contact force and joint torque estimation using skin,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3900–3907, Oct. 2018.
[86]
S. Kajita et al., “Biped walking stabilization based on linear inverted pendulum tracking,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2010, pp. 4489–4496.
[87]
T. Miki et al., “Learning robust perceptive locomotion for quadrupedal robots in the wild,” Sci. Robot., vol. 7, no. 62, 2022, Art. no.
[88]
Xinjilefu and C. G. Atkeson, “State estimation of a walking humanoid robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012, pp. 3693–3699.
[89]
N. Rotella et al., “State estimation for a humanoid robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2014, pp. 952–958.
[90]
M. Bloesch et al., “State estimation for legged robots-consistent fusion of leg kinematics and IMU,” Robotics, vol. 17, pp. 17–24, 2013.
[91]
H. Herr and M. Popovic, “Angular momentum in human walking,” J. Exp. Biol., vol. 211, no. 4, pp. 467–481, 2008.
[92]
V. Zordan, D. Brown, A. Macchietto, and K. Yin, “Control of rotational dynamics for ground and aerial behavior,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 10, pp. 1356–1366, Oct. 2014.
[93]
S. Kuindersma, “Recent progress on atlas, the world's most dynamic humanoid robot,” Robotics Today—A Series of Technical Talks, Jun. 2020. [Online]. Available: https://youtu.be/EGABAx52GKI
[94]
H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning with centroidal dynamics and full kinematics,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2014, pp. 295–302.
[95]
M. Hutter, “Mit robotics seminar: Robots in the wild,” 2022. [Online]. Available: https://youtu.be/24uTRT32Cyw
[96]
Y.-C. Lin et al., “Efficient humanoid contact planning using learned centroidal dynamics prediction,” in Proc. Int. Conf. Robot. Autom., 2019, pp. 5280–5286.
[97]
X. B. Peng et al., “Deepmimic: Example-guided deep reinforcement learning of physics-based character skills,” ACM Trans. Graph., vol. 37, no. 4, pp. 1–14, 2018.
[98]
Z. Xie et al., “Iterative reinforcement learning based design of dynamic locomotion skills for Cassie,” 2019, arXiv:1903.09537.
[99]
S. Choi and J. Kim, “Cross-domain motion transfer via safety-aware shared latent space modeling,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2634–2641, Apr. 2020.
[100]
R. Villegas, J. Yang, D. Ceylan, and H. Lee, “Neural kinematic networks for unsupervised motion retargetting,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 8639–8648.
[101]
A. Dragan and S. Srinivasa, “A policy blending formalism for shared control,” Int. J. Robot. Res., vol. 32, no. 7, pp. 790–805, 2013.
[102]
D. Rakita et al., “Shared control-based bimanual robot manipulation,” Sci. Robot., vol. 4, no. 30, 2019, Art. no.
[103]
R. Rahal, F. Abi-Farraj, P. R. Giordano, and C. Pacchierotti, “Haptic shared-control methods for robotic cutting under nonholonomic constraints,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019, pp. 8151–8157.
[104]
K. T. Ly, M. Poozhiyil, H. Pandya, G. Neumann, and A. Kucukyilmaz, “Intent-aware predictive haptic guidance and its application to shared control teleoperation,” in Proc. IEEE Int. Conf. Robot Hum. Interactive Commun., 2021, pp. 565–572.
[105]
R. Rahal et al., “Caring about the human operator: Haptic shared control for enhanced user comfort in robotic telemanipulation,” IEEE Trans. Haptics, vol. 13, no. 1, pp. 197–203, Jan.–Mar. 2020.
[106]
D. Glas et al., “The network robot system: Enabling social human-robot interaction in public spaces,” J. Hum.-Robot Interact., vol. 1, pp. 5–32, 2013.
[107]
T. W. Fong, C. Thorpe, and C. Baur, “A safeguarded teleoperation controller,” in Proc. IEEE Int. Conf. Adv. Robot., 2001, pp. 1–6.
[108]
A. Brygo, I. Sarakoglou, N. Tsagarakis, and D. G. Caldwell, “Tele-manipulation with a humanoid robot under autonomous joint impedance regulation and vibrotactile balancing feedback,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2014, pp. 862–867.
[109]
A. Peer et al., “Intercontinental multimodal tele-cooperation using a humanoid robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2008, pp. 405–411.
[110]
P. Evrard et al., “Intercontinental, multimodal, wide-range tele-cooperation using a humanoid robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2009, pp. 5635–5640.
[111]
J. Ramos, A. Wang, W. Ubellacker, J. Mayo, and S. Kim, “A balance feedback interface for whole-body teleoperation of a humanoid robot and implementation in the HERMES system,” in Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2015, pp. 844–850.
[112]
A. Q. Keemink, H. van der Kooij, and A. H. Stienen, “Admittance control for physical human–robot interaction,” Int. J. Robot. Res., vol. 37, no. 11, pp. 1421–1444, 2018.
[113]
A. Ajoudani, N. Tsagarakis, and A. Bicchi, “Tele-impedance: Teleoperation with impedance regulation using a body–machine interface,” Int. J. Robot. Res., vol. 31, no. 13, pp. 1642–1656, 2012.
[114]
A. Bemporad, “Predictive control of teleoperated constrained systems with unbounded communication delays,” in Proc. IEEE Conf. Decis. Control, 1998, pp. 2133–2138.
[115]
W. R. Ferrell, “Remote manipulation with transmission delay,” IEEE Trans. Hum. Factors Electron., vol. HFE-6, no. 1, pp. 24–32, Sep. 1965.
[116]
Y.-C. Liu and N. Chopra, “Control of semi-autonomous teleoperation system with time delays,” Automatica, vol. HFE-49, no. 6, pp. 1553–1565, 2013.
[117]
W. R. Ferrell, “Remote manipulation with transmission delay,” IEEE Trans. Hum. Factors Electron., vol. HFE-6, no. 1, pp. 24–32, Sep. 1965.
[118]
R. J. Anderson and M. W. Spong, “Asymptotic stability for force reflecting teleoperators with time delay,” Int. J. Robot. Res., vol. 11, no. 2, pp. 135–149, 1992.
[119]
G. Niemeyer and J.-J. E. Slotine, “Stable adaptive teleoperation,” IEEE J. Ocean. Eng., vol. 16, no. 1, pp. 152–162, Jan. 1991.
[120]
R. Lozano, N. Chopra, and M. W. Spong, “Passivation of force reflecting bilateral teleoperators with time varying delay,” in Proc. Mechatronics Forum Int. Conf., 2002, pp. 1–9.
[121]
K. Kosuge, T. Itoh, and T. Fukuda, “Scaled telemanipulation with communication time delay,” in Proc. IEEE Int. Conf. Robot. Autom., 1996, pp. 2019–2024.
[122]
N. Chopra, M. W. Spong, S. Hirche, and M. Buss, “Bilateral teleoperation over the internet: The time varying delay problem,” in Proc. Amer. Control Conf., 2003, pp. 155–160.
[123]
R. J. Anderson and M. W. Spong, “Bilateral control of teleoperators with time delay,” IEEE Trans. Autom. Control, vol. 34, no. 5, pp. 131–138, May 1989.
[124]
M. Risiglione, J.-P. Sleiman, M. V. Minniti, B. Ç Izmeci, D. Dresscher, and M. Hutter, “Passivity-based control for haptic teleoperation of a legged manipulator in presence of time-delays,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 5276–5281.
[125]
J. Milton et al., “The time-delayed inverted pendulum: Implications for human balance control,” Chaos: Interdiscipl. J. Nonlinear Sci., vol. 19, no. 2, 2009, Art. no.
[126]
A. Steinfeld et al., “Common metrics for human-robot interaction,” in Proc. ACM SIGCHI/SIGART Conf. Hum.-Robot Interact., 2006, pp. 33–40.
[127]
ISO 9241-11:2018(en) Ergonomics of human-system interaction—Part 11: Usability: Definitions and concepts, 2018. Accessed: 2022. [Online]. Available: https://www.iso.org/
[128]
C. Flavián, M. Guinalíu, and R. Gurrea, “The role played by perceived usability, satisfaction and consumer trust on website loyalty,” Inf. Manage., vol. 43, no. 1, pp. 1–14, 2006.
[129]
N. Bevan et al., “New ISO standards for usability, usability reports and usability measures,” in Proc. Int. Conf. Hum.-Comput. Interact., 2016, pp. 268–278.
[130]
J. Brooke et al., “SUS: A quick and dirty usability scale,” Usability Eval. Ind., vol. 189, no. 194, pp. 4–7, 1996.
[131]
G. Adamides et al., “Usability guidelines for the design of robot teleoperation: A taxonomy,” IEEE Trans. Hum.-Mach. Syst., vol. 45, no. 2, pp. 256–262, Apr. 2014.
[132]
M. R. Endsley, “Situation awareness global assessment technique (SAGAT),” in Proc. IEEE Nat. Aerosp. Electron. Conf., 1988, pp. 789–795.
[133]
T. Nguyen, C. P. Lim, N. D. Nguyen, L. Gordon-Brown, and S. Nahavandi, “A review of situation awareness assessment approaches in aviation environments,” IEEE Syst. J., vol. 13, no. 3, pp. 3590–3603, 2019.
[134]
S. Miller, “Workload Measures,” Nat. Adv. Driving Simulator, Coralville, IA, USA, 2001.
[135]
S. G. Hart and L. E. Staveland, “Development of NASA-TLX (task load index): Results of empirical and theoretical research,” Adv. Psychol., vol. 52, pp. 139–183, 1988.
[136]
G. B. Reid and T. E. Nygren, “The subjective workload assessment technique: A scaling procedure for measuring mental workload,” Adv. Psychol., vol. 52, pp. 185–218, 1988.
[137]
P. Bouvier, E. Lavoué, and K. Sehaba, “Defining engagement and characterizing engaged-behaviors in digital gaming,” Simul. Gaming, vol. 45, no. 4/5, pp. 491–507, 2014.
[138]
B. G. Witmer and M. J. Singer, “Measuring presence in virtual environments: A presence questionnaire,” Presence, vol. 7, no. 3, pp. 1–37, 1998.
[139]
J. Lessiter et al., “A cross-media presence questionnaire: The ITC-Sense of presence inventory,” Presence: Teleoperators Virtual Environ., vol. 10, no. 3, pp. 282–297, 2001.
[140]
G. Riva, F. Davide, and W. IJsselsteijn, “7 Measuring Presence: Subjective, behavioral and physiological methods,” in Being There: Concepts, Effects and Measurement of User Presence in Synthetic Environments. Amsterdam, The Netherlands: IOS Press, 2003, pp. 110–118.
[141]
P. Rani and N. Sarkar, “Operator engagement detection and robot behavior adaptation in human-robot interaction,” in Proc. IEEE Int. Conf. Robot. Autom., 2005, pp. 2051–2056.
[142]
A. H. Roscoe, “Assessing pilot workload. why measure heart rate, HRV and respiration?,” Biol. Psychol., vol. 34, no. 2/3, pp. 259–287, 1992.
[143]
J. M. Riley, D. B. Kaber, and J. V. Draper, “Situation awareness and attention allocation measures for quantifying telepresence experiences in teleoperation,” Hum. Factors Ergonom. Manuf. Serv. Ind., vol. 14, no. 1, pp. 51–67, 2004.
[144]
Y. Deng et al., “Influence of dynamic automation function allocations on operator situation awareness and workload in unmanned aerial vehicle control,” in Proc. Int. Conf. Hum. Factors Syst. Interact., 2019, pp. 337–348.
[145]
D. B. Kaber, E. Onal, and M. R. Endsley, “Design of automation for telerobots and the effect on performance, operator situation awareness, and subjective workload,” Hum. Factors Ergonom. Manuf. Serv. Ind., vol. 10, no. 4, pp. 409–430, 2000.
[146]
S. Lu et al., “Workload management in teleoperation of unmanned ground vehicles: Effects of a delay compensation aid on human operators' workload and teleoperation performance,” Int. J. Hum.-Comput. Interact., vol. 35, no. 19, pp. 1820–1830, 2019.
[147]
S. Radmard, A. J. Moon, and E. A. Croft, “Interface design and usability analysis for a robotic telepresence platform,” in Proc. IEEE Int. Symp. Robot Hum. Interactive Commun., 2015, pp. 511–516.
[148]
J. Jankowski and A. Grabowski, “Usability evaluation of VR interface for mobile robot teleoperation,” Int. J. Hum.-Comput. Interact., vol. 31, no. 12, pp. 882–889, 2015.
[149]
P. G. De Barros, R. W. Lindeman, and M. O. Ward, “Enhancing robot teleoperator situation awareness and performance using vibro-tactile and graphical feedback,” in Proc. IEEE Symp. 3D User Interfaces, 2011, pp. 47–54.
[150]
V. Villani, L. Sabattini, G. Riggio, C. Secchi, M. Minelli, and C. Fantuzzi, “A natural infrastructure-less human–robot interaction system,” IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1640–1647, Jul. 2017.
[151]
E. Paulos and J. Canny, “Social tele-embodiment: Understanding presence,” Auton. Robots, vol. 11, no. 1, pp. 87–95, 2001.
[152]
K. Nagatani et al., “Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots,” J. Field Robot., vol. 30, no. 1, pp. 44–63, 2013.
[153]
J. Casper and R. R. Murphy, “Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center,” IEEE Trans. Syst., Man, Cybern., Part B., vol. 33, no. 3, pp. 367–385, Jun. 2003.
[154]
A. Kheddar et al., “Humanoid robots in aircraft manufacturing: The Airbus use cases,” IEEE Robot. Autom. Mag., vol. 26, no. 4, pp. 30–45, Dec. 2019.
[155]
K. Yokoi et al., “A tele-operated humanoid robot drives a backhoe in the open air,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2003, pp. 1117–1122.
[156]
Z. Li, P. Moran, Q. Dong, R. J. Shaw, and K. Hauser, “Development of a tele-nursing mobile manipulator for remote care-giving in quarantine areas,” in Proc. IEEE Int. Conf. Robot. Autom., 2017, pp. 3581–3586.
[157]
A. Flores-Abad et al., “A review of space robotics technologies for on-orbit servicing,” Prog. Aerosp. Sci., vol. 68, pp. 1–26, 2014.
[158]
J.-H. Ryu, J. Artigas, and C. Preusche, “A passive bilateral control scheme for a teleoperator with time-varying communication delay,” Mechatronics, vol. 20, no. 7, pp. 812–823, 2010.
[159]
N. Y. Lii et al., “Toward scalable intuitive telecommand of robots for space deployment with METERON SUPVIS Justin,” in Proc. Bi-annual Eur. Space Agency ASTRA Conf., 2017.
[160]
J. Broekens et al., “Assistive social robots in elderly care: A review,” Gerontechnol., vol. 8, no. 2, pp. 94–103, 2009.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Robotics
IEEE Transactions on Robotics  Volume 39, Issue 3
June 2023
822 pages

Publisher

IEEE Press

Publication History

Published: 01 June 2023

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media