skip to main content
article

Bilateral teleoperation: An historical survey

Published: 01 December 2006 Publication History

Abstract

This survey addresses the subject of bilateral teleoperation, a research stream with more than 50 years of history and one that continues to be a fertile ground for theoretical exploration and many applications. We focus on the control theoretic approaches that have been developed to address inherent control problems such as delays and information loss. Exposure to several concurrent applications is provided, and possible future trends are outlined.

References

[1]
Anderson, R. J., & Spong, M. W. (1988). Bilateral control of teleoperators with time delay. In Proceedings of the IEEE conference on decision and control (Vol. 1, pp. 167-173), Austin, TX.
[2]
Anderson, R. J., & Spong, M. W. (1989a). Asymptotic stability for force reflecting teleoperators with time delay. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 1618-1625).
[3]
Bilateral control of teleoperators with time delay. IEEE Transactions on Automatic Control. v34 i5. 494-501.
[4]
Bejczy, A., & Szakaly, Z. (1987). Universal computer control systems (UCCS) for space telerobots. In Proceedings of the IEEE international conference on robotics and automation (Vol. 4, pp. 318-324).
[5]
Bejczy, A. K., & Kim, W. S. (1990). Predictive displays and shared compliance control for time-delayed telemanipulation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 407-412).
[6]
Bejczy, A. K., Kim, W. S., & Venema, S. C. (1990). The phantom robot: Predictive displays for teleoperation with time delay. In Proceedings of the IEEE international conference on robotics and automation (Vol. 1, pp. 546-551).
[7]
Bemporad, A. (1998). Predictive control of teleoperated constrained systems with unbounded communication delays. In Proceedings of the IEEE conference on decision and control (Vol. 2, pp. 2133-2138).
[8]
Benedetti, C., Franchini, M., & Fiorini, P. (2001). Stable tracking in variable time-delay teleoperation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 4, pp. 2252-2257), Maui, HI, USA, October-November 2001.
[9]
Berestesky, P., Chopra, N., & Spong, M. W. (2004). Discrete time passivity in bilateral teleoperation over the internet. In Proceedings of the IEEE international conference on robotics and automation, New Orleans, LA, USA.
[10]
Boukhnifer, M., Ferreira, A., & Fontaine, J.-G. (2004). Scaled teleoperation controller design for micromanipulation over internet. In Proceedings of the IEEE international conference on robotics and automation (Vol. 5, pp. 4577-4583).
[11]
Brady, K., & Tarn, T.-J. (1998). Internet-based remote teleoperation. In Proceedings of the IEEE international conference on robotics and automation (Vol. 1, pp. 65-70).
[12]
Brady, K., & Tarn, T.-J. (2001). Internet-based teleoperation. In Proceedings of the IEEE international conference on robotics and automation (Vol. 1, pp. 644-649).
[13]
Buttolo, P., Braathen, P., & Hannaford, B. (1994). Sliding control of force reflecting teleoperation: Preliminary studies. In PRESENCE (Vol. 3, pp. 158-172).
[14]
Buzan, F. T., & Sheridan, T. B. (1989). A model-based predictive operator aid for telemanipulators with time delay. In Proceedings of the IEEE international conference on systems, man and cybernetics (Vol. 1, pp. 138-143).
[15]
Cho, H. C., Park, J. H., Kim, K., & Park, J.-O. (2001). Sliding-mode-based impedance controller for bilateral teleoperation under varying time-delay. In Proceedings of the IEEE international conference on robotics and automation (Vol. 1, pp. 1025-1030), Seoul, Korea.
[16]
Chopra, N., & Spong, M. W. (2005). Synchronization of networked passive systems with applications to bilateral teleoperation. In Society of instrumentation and control engineering of Japan annual conference, Okayama, Japan, August 8-10.
[17]
Chopra, N., Spong, M. W., Hirche, S., & Buss, M. (2003). Bilateral teleoperation over the internet: The time varying delay problem. In Proceedings of the IEEE American control conference (Vol. 1, pp. 155-160).
[18]
Chopra, N., Spong, M. W., & Lozano, R. (2004). Adaptive coordination control of bilateral teleoperators with time delay. In Proceedings of the IEEE conference on decision and control (pp. 4540-4547).
[19]
Chopra, N., Spong, M. W., Ortega, R., & Barabanov, N. E. (2006). On position tracking in bilateral teleoperation. IEEE Transactions on Robotics, 22(4), 861-866.
[20]
Clement, G., Vertut, J., Fournier, R., Espiau, B., & Andre, G. (1995). An overview of CAT control in nuclear services. In Proceedings of the IEEE international conference on robotics and automation (Vol. 2, pp. 713-718).
[21]
Colgate, J. E. (1991). Power and impedance scaling in bilateral manipulation. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 2292-2297).
[22]
Feedback systems: Input-output properties. Academic Press, New York.
[23]
Diolaiti, N., & Melchiorri, C. (2002). Teleoperation of a mobile robot through haptic feedback. In IEEE international workshop on haptic virtual environments and their applications (pp. 67-72).
[24]
Elhaij, I., Hummert, H., Xi, N., Fung, W. K., & Liu, Y.-H. (2000). Real-time bilateral control of internet-based teleoperation. In Proceedings of the third World congress on intelligent control and automation (Vol. 5, pp. 3761-3766).
[25]
Force reflecting telemanipulators with time-delay: Stability analysis and control design. IEEE Transactions on Robotics and Automation. v14 i4. 635-640.
[26]
Remote manipulation with transmission delay. IEEE Transactions on Human Factors in Electronics. v6. 24-32.
[27]
Ferrell, W. R., & Sheridan, T. B. (1967). Supervisory control of remote manipulation. IEEE Spectrum, 81-88.
[28]
Fong, C., Dotson, R., & Bejczy, A. (1986). Distributed microcomputer control system for advanced teleoperation. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 987-995).
[29]
Funda, J., & Paul, R. P. (1991). A symbolic teleoperator interface for time-delayed underwater robot manipulation. In Ocean technologies and opportunities in the Pacific for the 90s (pp. 1526-1533).
[30]
Constrained Cartesian motion control for teleoperated surgical robots. IEEE Transactions on Robotics and Automation. v12 i3. 453-465.
[31]
Furuta, K., Kosuge, K., Shiote, Y., & Hatano, H. (1987). Master-slave manipulator based on virtual internal model following control concept. In Proceedings of the IEEE international conference on robotics and automation (Vol. 4, pp. 567-572).
[32]
Ganjefar, S., Momeni, H., & Janabi-Sharifi, F. (2002). Teleoperation systems design using augmented wave-variables and Smith predictor method for reducing time-delay effects. In Proceedings of the IEEE international symposium on intelligent control (pp. 333-338). Vancouver, Canada.
[33]
Electronically controlled manipulator. Nucleonics. v12 i11. 46-47.
[34]
Mechanical master-slave manipulator. Nucleonics. v12 i11. 45-46.
[35]
Goldberg, K., Mascha, M., Gentner, S., Rothenberg, N., Sutter, C., & Wiegley, J. (1995). Desktop teleoperation via the world wide web. In Proceedings of the IEEE international conference on robotics and automation (Vol. 1, pp. 654-659).
[36]
A design framework for teleoperators with kinesthetic feedback. IEEE Transactions on Robotics and Automation. v5 i4. 426-434.
[37]
Hannaford, B. (1989b). Stability and performance tradeoffs in bi-lateral telemanipulation. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 1764-1767).
[38]
Hannaford, B., & Fiorini, P. (1988). A detailed model of bi-lateral teleoperation. In Proceedings of the IEEE international conference on systems, man and cybernetics. (Vol. 1, pp. 117-121).
[39]
Hannaford, B., & Kim, W. S. (1989). Force reflection, shared control, and time delay in telemanipulation. In Proceedings of the IEEE international conference on systems, man and cybernetics (Vol. 1, pp. 133-137).
[40]
Hashtrudi-Zaad, K., Mobasser, F., & Salcudean, S. E. (2003). Transparent implementation of bilateral teleoperation controllers under rate mode. In Proceedings of the IEEE American control conference (Vol. 1, pp. 161-167).
[41]
Hashtrudi-Zaad, K., & Salcudean, S. E. (1996). Adaptive transparent impedance reflecting teleoperation. In Proceedings of the IEEE international conference on robotics and automation (Vol. 2, pp. 1369-1374).
[42]
Hirzinger, G. (1987). The space and telerobotic concepts of the DFVLR rotex. In Proceedings of the IEEE international conference on robotics and automation (Vol. 4, pp. 443-449).
[43]
Sensor-based space robotics-rotex and its telerobotic features. IEEE Transactions on Robotics and Automation. v9 i5. 649-663.
[44]
Hirzinger, G., Heindl, J., & Landzettel, K. (1989). Predictive and knowledge-based telerobotic control concepts. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 1768-1777).
[45]
Hong, S.-G., Lee, J.-J., & Kim, S. (1999). Generating artificial force for feedback control of teleoperated mobile robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 1721-1726).
[46]
Hu, Z., Salcudean, S. E., & Loewen, P. D. (1995). Robust controller design for teleoperation systems. In Proceedings of the IEEE international conference on systems, man and cybernetics (Vol. 3, pp. 2127-2132).
[47]
Ground-space bilateral teleoperation of ETS-VII robot arm by direct bilateral coupling under 7-s time delay condition. IEEE Transactions on Robotics and Automation. v20 i3. 499-511.
[48]
Jenkins, L. (1986). Telerobotic work system-space robotics application. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 804-806).
[49]
Kawabata, K., Ishikawa, T., Asama, H., & Endo, I. (1999). Mobile robot teleoperation using local storage. In Proceedings of the 1999 IEEE international conference on control applications (Vol. 2, pp. 1141-1145).
[50]
Kim, W. S. (1990). Experiments with a predictive display and shared compliant control for time-delayed teleoperation. In Proceedings of the annual international conference of the IEEE engineering in medicine and biology society (pp. 1905-1906).
[51]
Kim, W. S. (1990). Shared compliant control: A stability analysis and experiments. In Proceedings of the IEEE international conference on systems, man and cybernetics (pp. 620-623).
[52]
Force-reflection and shared compliant control in operating telemanipulators with time delay. IEEE Transactions on Robotics and Automation. v8 i2. 176-185.
[53]
Kosuge, K., Itoh, T., & Fukuda, T. (1996). Scaled telemanipulation with communication time delay. In Proceedings of the IEEE international conference on robotics and automation (pp. 2019 - 2024).
[54]
Kosuge, K., & Murayama, H. (1997). Bilateral feedback control of telemanipulator via computer network in discrete time domain. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 2219-2224), Albuquerque, NM, USA.
[55]
Kosuge, K., Murayama, H., & Takeo, K. (1996). Bilateral feedback control of telemanipulators via computer network. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 1380-1385).
[56]
Stability and transparency in bilateral teleoperation. IEEE Transactions on Robotics and Automation. v9 i5. 625-637.
[57]
Lee, D., & Li, P. Y. (2001). Passive control of bilateral teleoperated manipulators: Robust control and experiments. In Proceedings of the IEEE American control conference (Vol. 6, pp. 4612-4618).
[58]
Lee, D., & Li, P. Y. (2002a). Passive coordination control of nonlinear bilateral teleoperated manipulators. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 3278-3283).
[59]
Lee, D., & Li, P. Y. (2002b). Passive tool dynamics rendering for nonlinear bilateral teleoperated manipulators. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 3284-3289).
[60]
Lee, D., & Li, P. Y., (2003a). Formation and maneuver control of multiple spacecraft. In Proceedings of the IEEE American control conference (pp. 278-283), Denver, CO.
[61]
Passive bilateral feedforward control of linear dynamically similar teleoperated manipulators. IEEE Transactions on Robotics and Automation. v19 i3. 443-456.
[62]
Toward robust passivity: A passive control implementation structure for mechanical teleoperators. In: Symposium on haptic interfaces for virtual environment and teleoperator systems, pp. 132-139.
[63]
Passive bilateral control and tool dynamics rendering for nonlinear mechanical teleoperators. IEEE Transactions on Robotics. v21 i5. 936-951.
[64]
Bilateral teleoperation of multiple cooperative robots over delayed communication networks: Application. In: Proceedings of IEEE international conference on robotics and automation, pp. 368-373.
[65]
Lee, D., Martinez-Palafox, O., & Spong, M. W. (2006). Passive bilateral teleoperation of a wheeled mobile robot over a delayed communication network. In Proceedings of the IEEE international conference on robotics and automation (pp. 3298-3303), Orlando, FL.
[66]
Bilateral teleoperation of multiple cooperative robots over delayed communication networks: Theory. In: Proceedings of IEEE international conference on robotics and automation, pp. 362-367.
[67]
Lee, D., & Spong, M.W. (2005b). Passive bilateral control of teleoperators under constant time-delay. In Proceedings of the IFAC World congress.
[68]
Lee, D., & Spong, M.W. (2006a). Passive bilateral control of teleoperators under constant time delay. IEEE Transactions on Robotics, 22(2), 269-281.
[69]
Lee, D., & Spong, M. W. (2006b). Passive bilateral teleoperation with constant time-delays. In Proceedings of IEEE international conference on robotics and automation, (pp. 2902-2907), Orlando, FL.
[70]
Adaptive controller of a master-slave system for transparent teleoperation. Journal of Robotic Systems. v15 i8. 465-475.
[71]
Lee, H.-K., Tanie, K., & Chung, M. J. (1999). Design of a robust bilateral controller for teleoperators with modeling uncertainties. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 1860-1865).
[72]
Lee, S., Bekey, G., & Bejczy, A. K. (1985). Computer control of space-borne teleoperators with sensory feedback. In Proceedings of the IEEE international conference on robotics and automation (Vol. 2, pp. 205-214).
[73]
Lee, S., & Jeong, K. (1994). Design of robust time delayed teleoperator control system. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 2, pp. 1413-1420).
[74]
Leung, G. M. H., & Francis, B. A. (1994). Robust nonlinear control of bilateral teleoperators. In Proceedings of the IEEE American control conference (Vol. 2, pp. 2119-2123).
[75]
Bilateral controller for teleoperators with time delay via µ-synthesis. IEEE Transactions on Robotics and Automation. v11 i1. 105-116.
[76]
Li, P. Y. (1998). Passive control of bilateral teleoperated manipulators. In Proceedings of the IEEE American control conference (Vol. 6, pp. 3838-3842).
[77]
Lim, J.-N., Ko, J.-P., & Lee, J.-M. (2003). Internet-based teleoperation of a mobile robot with force-reflection. In Proceedings of the IEEE conference on control applications (Vol. 1, pp. 680-685).
[78]
Lozano, R., Chopra, N., & Spong, M. W. (2002). Passivation of force reflecting bilateral teleoperators with time varying delay. In Mechatronics'02, Entschede, Netherlands.
[79]
Madhani, A. J., Niemeyer, G., & Salisbury Jr. J. K. (1998). The black falcon: A teleoperated surgical instrument for minimally invasive surgery. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 2, pp. 936-944).
[80]
Intelligent interface for remote supervision and control of underwater manipulation. OCEANS. v15. 106-110.
[81]
Makiishi, T., & Noborio, H. (1999). Sensor-based path-planning of multiple mobile robots to overcome large transmission delays in teleoperation. In Proceedings of the IEEE international conference on systems, man and cybernetics (Vol. 4, pp. 656-661).
[82]
Mastellone, S., Lee, D., & Spong, M. W. (2006). Master-slave synchronization with switching communication through passive model-based control design. In Proceeding of American control conference, (pp. 3203-3208), Minneapolis, MN.
[83]
Mirfakhrai, T., & Payandeh, S. (2002). A delay prediction approach for teleoperation over the internet. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 2178-2183).
[84]
Miyazaki, F., Matsubayashi, S., Yoshimi, T., & Arimoto, S. (1986). A new control methodology toward advanced teleoperation of master-slave robot systems. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 997-1002).
[85]
Implementation of a rate mode impedance reflecting teleoperation controller on a haptic simulation system. In: Proceedings of the IEEE international conference on robotics and automation, pp. 1974-1979.
[86]
Mobasser, F., Hashtrudi-Zaad, K., & Salcudean, S. E. (2003). Impedance reflecting rate mode teleoperation. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 3296-3302).
[87]
Munir, S., & Book, W. J. (2001). Internet based teleoperation using wave variables with prediction. In Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics (pp. 43-49), Como, Italy.
[88]
Munir, S., & Book, W. J. (2001b). Wave-based teleoperation with prediction. In Proceedings of the IEEE American control conference (Vol. 6, pp. 4605-4611).
[89]
Niculescu, S.-I., Abdallah, C. T., & Hokayem, P. F. (2003). Effects of channel dynamics on the stability of teleoperation. In IFAC Workshop on Time-Delay Systems INRIA, Rocquencourt, France.
[90]
Bilateral teleoperation with communication delays. International Journal of Robust and Nonlinear Control. v13 i9. 873-883.
[91]
Stable adaptive teleoperation. IEEE Journal of Oceanic Engineering. v16 i1. 152-162.
[92]
Niemeyer, G., & Slotine, J.-J. E. (1991b). Transient shaping in force-reflecting teleoperation. In International conference on advanced robotics (Vol. 1, pp. 261-266).
[93]
Niemeyer, G., & Slotine, J.-J. E. (1997a). Designing force reflecting teleoperators with large time delays to appear as virtual tools. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 2212-2218), Albuquerque, NM, USA.
[94]
Niemeyer, G., & Slotine, J.-J. E. (1997b). Using wave variables for system analysis and robot control. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 1619-1625), Albuquerque, NM, USA.
[95]
Niemeyer, G., & Slotine, J.-J. E. (1998). Towards force-reflecting teleoperation over the internet. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 1909-1915).
[96]
Web-interfaced, force-reflecting teleoperation systems. IEEE Transactions on Industrial Electronics. v48 i6. 1257-1265.
[97]
Force-reflecting teleoperation over the internet: The JBIT project. Proceedings of the IEEE. v91 i3. 449-462.
[98]
Sliding-mode controller for bilateral teleoperation with varying time delay. In: Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics, pp. 311-316.
[99]
Park, J. H., & Cho, H. C. (2000). Sliding mode control of bilateral teleoperation systems with force-reflection on the internet. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 2, pp. 1187-1192).
[100]
Supervisory teleoperation control using computer graphics. In: Proceedings of the IEEE international conference on robotics and automation, pp. 493-498.
[101]
Paul, R., Lindsay, T., & Sayers, C. (1992). Time delay insensitive teleoperation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 247-254).
[102]
Raju, G. J., Verghese, G. C., & Sheridan, T. B. (1989). Design issues in 2-port network models of bilateral remote manipulation. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 1316-1321).
[103]
Haptic interfaces for the remote control of mobile robots. Control Engineering Practice. v10 i11. 1309-1313.
[104]
Remote control in telerobotic surgery. IEEE Transactions on Systems, Man and Cybernetics. v26 i4. 438-444.
[105]
A novel adaptive bilateral control scheme using similar closed-loop dynamic characteristics of master/slave manipulators. Journal of Robotic Systems. v18 i9. 533-543.
[106]
Ryu, J.-H., Kwon, D.-S., & Hannaford, B. (2002). Stable teleoperation with time domain passivity control. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 3260-3265).
[107]
Stable teleoperation with time-domain passivity control. IEEE Transactions on Robotics and Automation. v20 i2. 365-373.
[108]
Bilateral matched impedance teleoperation with application to excavator control. IEEE Control Systems Magazine. v19 i6. 29-37.
[109]
Salcudean, S. E., Hashtrudi-Zaad, K., Tafazoli, S., DiMaio, S. P., & Reboulet, C. (1998). Bilateral matched impedance teleoperation with application to excavator control. In Proceedings of the IEEE international conference on robotics and automation (Vol. 1, pp. 133-139).
[110]
Sano, A., Fujimoto, H., & Tanaka, M. (1998). Gain-scheduled compensation for time delay of bilateral teleoperation systems. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 1916-1923).
[111]
Language-aided robotic teleoperation system (larts) for advanced teleoperation. IEEE Journal of Robotics and Automation. v3 i5. 476-481.
[112]
Schilling, K. J., & Roth, H. (1999). Control interfaces for teleoperated mobile robots. In Proceedings of the IEEE international conference on emerging technologies and factory automation (Vol. 2, pp. 1399-1403).
[113]
Secchi, C., Stramigioli, S., & Fantuzzi, C. (2003). Dealing with unreliabilities in digital passive geometric telemanipulation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 2823-2828).
[114]
Secchi, C., Stramigioli, S., & Fantuzzi, C. (2003). Digital passive geometric telemanipulation. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 3290-3295).
[115]
Sheng, J., & Spong, M. W. (2004). Model predictive control for bilateral teleoperation systems with time delays. In Canadian conference on electrical and computer engineering (Vol. 4, pp. 1877-1880).
[116]
Telerobotics. Automatica. v25 i4. 487-507.
[117]
Space teleoperation through time delay: Review and prognosis. IEEE Transactions on Robotics and Automation. v9 i5. 592-606.
[118]
Remote manipulative control with transmission delay. IEEE Transactions on Human Factors in Electronics. v4. 25-29.
[119]
Shi, M., Tao, G., Liu, H., & Hunter Downs, J. (1999). Adaptive control of teleoperation systems. In Proceedings of the IEEE conference on decision and control (Vol. 1, pp. 791-796).
[120]
Scaled teleoperation system for nano-scale interaction and manipulation. Advanced Robotics. v17. 275-291.
[121]
Teleoperated touch feedback from the surfaces at the nanoscale: Modeling and experiments. IEEE/ASME Transactions on Mechatronics. v8. 287-298.
[122]
Skaar, S. B., & Ruoff, C. F. (Eds.) (1994). Teleoperation and robotics in space. Progress in astronautics and aeronautics (Vol. 161). American Institute of Aeronautics and Astronautics.
[123]
Robot modeling and control. Wiley, New York.
[124]
Telerobotics: Display, control, and communication problems. IEEE Journal of Robotics and Automation. v3 i1. 67-75.
[125]
Stramigioli, S., Secchi, C., van der Schaft, A., & Fantuzzi, C. (2002). A novel theory for sample data system passivity. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1936-1941), Lausanne, Switzerland.
[126]
Geometric scattering in robotic telemanipulation. IEEE Transactions on Robotics and Automation. v18 i4. 588-596.
[127]
Strassberg, Y., Goldenberg, A. A., & Mills, J. K. (1992). A new control scheme for bilateral teleoperating systems: Lyapunov stability analysis. In Proceedings of the IEEE international conference on robotics and automation (Vol. 1, pp. 837-842).
[128]
Strassberg, Y., Goldenberg, A. A., & Mills, J. K. (1992). A new control scheme for bilateral teleoperating systems: Performance evaluation and comparison. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 2, pp. 886-872).
[129]
Taoutaou, D., Niculescu, S.-I., & Gu, K. (2003). Robust stability of teleoperation schemes subject to constant and time-varying communication delays. In Proceedings of the IEEE conference on decision and control (Vol. 6, pp. 5579-5584).
[130]
A telerobotic assistant for laparoscopic surgery. IEEE Engineering in Medicine and Biology Magazine. v14 i3. 279-288.
[131]
Terminus controlled deep ocean manipulator. OCEANS. v5. 301-304.
[132]
Wang, W., & Yuan, K. (2004). Teleoperated manipulator for leak detection of sealed radioactive sources. In Proceedings of the IEEE international conference on robotics and automation (Vol. 2, pp. 1682-1687).
[133]
State space models of remote manipulation tasks. IEEE Transactions on Automatic Control. v14 i6. 617-623.
[134]
Xi, N., & Tarn, T.-J. (1999). Action synchronization and control of internet based telerobotic systems. In Proceedings of the IEEE international conference on robotics and automation (Vol. 1, pp. 219-224).
[135]
Stability analysis of non-time referenced internet-based telerobotic systems. Journal of Robotics and Autonomous Systems. v32 i2-3. 173-178.
[136]
Teleoperation controller design using h∞-optimization with application to motion-scaling. IEEE Transactions on Control Systems Technology. v4 i3. 244-258.
[137]
Ye, X., Meng, M. Q.-H., Liu, P. X., & Li, G. (2002). Statistical analysis and prediction of round trip delay for internet-based teleoperation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 2999-3004).
[138]
Supervisory control system for the Jason rov. IEEE Journal of Oceanic Engineering. v11 i3. 392-400.
[139]
Yoerger, D., & Slotine, J.-J. E. (1987). Supervisory control architecture for underwater teleoperation. In Proceedings of the IEEE international conference on robotics and automation (Vol. 4, pp. 2068-2073).
[140]
Yokokohji, Y., Imaida, T., & Yoshikawa, T. (1999). Bilateral teleoperation under time-varying communication delay. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 1854-1859).
[141]
Yokokohji, Y., Imaida, T., & Yoshikawa, T. (2000). Bilateral control with energy balance monitoring under time-varying communication delay. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 2684-2689), San Francisco, CA, USA.
[142]
Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment. IEEE Transactions on Robotics and Automation. v10 i5. 605-620.
[143]
Model-based space robot teleoperation of ETS-VII manipulator. IEEE Transactions on Robotics and Automation. v20 i3. 602-612.
[144]
Zhu, M., & Salcudean, S. E. (1995). Achieving transparency for teleoperator systems under position and rate control. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 2, pp. 7-12).
[145]
Zhu, W.-H., & Salcudean, S. E. (1999). Teleoperation with adaptive motion/force control. In Proceedings of the IEEE international conference on robotics and automation (Vol. 1, pp. 231-237).
[146]
Zhu, W.-H., Salcudean, S. E., & Zhu, M. (1999). Experiments with transparent teleoperation under position and rate control. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 1870-1875).

Cited By

View all
  1. Bilateral teleoperation: An historical survey

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Automatica (Journal of IFAC)
    Automatica (Journal of IFAC)  Volume 42, Issue 12
    December, 2006
    202 pages

    Publisher

    Pergamon Press, Inc.

    United States

    Publication History

    Published: 01 December 2006

    Author Tags

    1. Passivity
    2. Passivity-based control
    3. Robot control
    4. Robotic manipulators
    5. Scattering theory
    6. Teleoperation
    7. Telerobotics

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 01 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media