skip to main content
research-article

Caring About the Human Operator: Haptic Shared Control for Enhanced User Comfort in Robotic Telemanipulation

Published: 01 January 2020 Publication History

Abstract

Haptic shared control enables a human operator and an autonomous controller to share the control of a robotic system using haptic active constraints. It has been used in robotic teleoperation for different purposes, such as navigating along paths minimizing the torques requested to the manipulator or avoiding possibly dangerous areas of the workspace. However, few works have focused on using these ideas to account for the user's comfort. In this article, we present an innovative haptic-enabled shared control approach aimed at minimizing the user's workload during a teleoperated manipulation task. Using an inverse kinematic model of the human arm and the rapid upper limb assessment (RULA) metric, the proposed approach estimates the current user's comfort online. From this measure and an a priori knowledge of the task, we then generate dynamic active constraints guiding the users towards a successful completion of the task, along directions that improve their posture and increase their comfort. Studies with human subjects show the effectiveness of the proposed approach, yielding a 30% perceived reduction of the workload with respect to using standard guided human-in-the-loop teleoperation.

References

[1]
D. J. Bruemmer, D. A. Few, R. L. Boring, J. L. Marble, M. C. Walton, and C. W. Nielsen, “Shared understanding for collaborative control,” IEEE Trans. Syst., Man, Cybern., A, Syst. Humans, vol. 35, no. 4, pp. 494–504, Jul. 2005.
[2]
B. Khademian and K. Hashtrudi-Zaad, “Dual-user teleoperation systems: New multilateral shared control architecture and kinesthetic performance measures,” IEEE/ASME Trans. Mechatronics, vol. 17, no. 5, pp. 895–906, Oct. 2012.
[3]
D. Gopinath, S. Jain, and B. D. Argall, “Human-in-the-loop optimization of shared autonomy in assistive robotics,” IEEE Robot. Autom. Lett., vol. 2, no. 1, pp. 247–254, Jan. 2017.
[4]
M. Selvaggio, F. Abi-Farraj, C. Pacchierotti, P. R. Giordano, and B. Siciliano, “Haptic-based shared-control methods for a dual-arm system,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 4249–4256, Oct. 2018.
[5]
V. Duchaine and C. M. Gosselin, “General model of human-robot cooperation using a novel velocity based variable impedance control,” in Proc. IEEE World Haptics, 2007, pp. 446–451.
[6]
H. Arai, T. Takubo, Y. Hayashibara, and K. Tanie, “Human-robot cooperative manipulation using a virtual nonholonomic constraint,” in Proc. IEEE Intl. Conf. Robot. Autom., 2000, pp. 4063–4069.
[7]
R. Rahal, F. Abi-Farraj, P. Giordano, and C. Pacchierotti, “Haptic shared-control methods for robotic cutting under nonholonomic constraints,” pp. 8151–8157, 2019.
[8]
C. Pacchierotti, et al., “Steering and control of miniaturized untethered soft magnetic grippers with haptic assistance,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 1, pp. 290–306, Jan. 2018.
[9]
C. Passenberg, A. Glaser, and A. Peer, “Exploring the design space of haptic assistants: The assistance policy module,” IEEE Trans. Haptics, vol. 6, no. 4, pp. 440–452, Oct.–Dec. 2013.
[10]
D. A. Abbink, M. Mulder, and E. R. Boer, “Haptic shared control: smoothly shifting control authority?” Cognition, Technol. Work, vol. 14, no. 1, pp. 19–28, 2012.
[11]
M. Hong and J. W. Rozenblit, “A haptic guidance system for computer-assisted surgical training using virtual fixtures,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2016, pp. 002 230–002 235.
[12]
A. M. Ghalamzan, F. Abi-Farraj, P. Robuffo Giordano, and R. Stolkin, “Human-in-the-loop optimisation: mixed initiative grasping for optimally facilitating post-grasp manipulative actions,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017, pp. 3386–3393.
[13]
M. Mulder, D. A. Abbink, and E. R. Boer, “Sharing control with haptics: Seamless driver support from manual to automatic control,” Human Factors, vol. 54, no. 5, pp. 786–798, 2012.
[14]
C. Passenberg, R. Groten, A. Peer, and M. Buss, “Towards real-time haptic assistance adaptation optimizing task performance and human effort,” in Proc. IEEE World Haptics Conf., 2011, pp. 155–160.
[15]
S. A. Bowyer, B. L. Davies, and F. Rodriguez y Baena, “Active constraints/virtual fixtures: A survey,” IEEE Trans. Robot., vol. 30, no. 1, pp. 138–157, Feb. 2014.
[16]
M. Abayazid, C. Pacchierotti, P. Moreira, R. Alterovitz, D. Prattichizzo, and S. Misra, “Experimental evaluation of co-manipulated ultrasound-guided flexible needle steering,” Int. J. Med. Robot. Comput. Assisted Surgery, vol. 12, no. 2, pp. 219–230, 2016.
[17]
J. Bimbo, C. Pacchierotti, M. Aggravi, N. Tsagarakis, and D. Prattichizzo, “Teleoperation in cluttered environments using wearable haptic feedback,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017, pp. 3401–3408.
[18]
L. Meli, C. Pacchierotti, and D. Prattichizzo, “Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation,” Int. J. Med. Robot. Comput. Assisted Surgery, vol. 13, pp. 1809–1809, 2017.
[19]
C. Pacchierotti, Cutaneous Haptic Feedback in Robotic Teleoperation. Berlin, Germany: Springer, 2015.
[20]
F. Chinello, C. Pacchierotti, J. Bimbo, N. G. Tsagarakis, and D. Prattichizzo, “Design and evaluation of a wearable skin stretch device for haptic guidance,” IEEE Robot. Autom. Lett., vol. 3, no. 1, pp. 524–531, Jan. 2018.
[21]
Y. Li, V. Patoglu, and M. K. O'Malley, “Negative efficacy of fixed gain error reducing shared control for training in virtual environments,” ACM Trans. Appl. Perception, vol. 6, no. 1, pp. 3:1–3:21, 2009.
[22]
L. Marchal-Crespo, M. Bannwart, R. Riener, and H. Vallery, “The effect of haptic guidance on learning a hybrid rhythmic-discrete motor task,” IEEE Trans. Haptics, vol. 8, no. 2, pp. 222–234, Apr.–Jun. 2015.
[23]
B. Busch, G. Maeda, Y. Mollard, M. Demangeat, and M. Lopes, “Postural optimization for an ergonomic human-robot interaction,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017, pp. 2778–2785.
[24]
A. G. Marin, M. S. Shourijeh, P. E. Galibarov, M. Damsgaard, L. Fritzsch, and F. Stulp, “Optimizing contextual ergonomics models in human-robot interaction,” in Proc. IEEE/RSJ Int. Conf. Intel. Robots Syst., 2018, pp. 1–9.
[25]
L. Chen, L. F. Figueredo, and M. R. Dogar, “Planning for muscular and peripersonal-space comfort during human-robot forceful collaboration,” in Proc. IEEE Int. Conf. Humanoid Robots, 2018, pp. 1–8.
[26]
L. Peternel, W. Kim, J. Babi, and A. Ajoudani, “Towards ergonomic control of human-robot co-manipulation and handover,” in Proc. IEEE-RAS Int. Conf. Humanoid Robot., 2017, pp. 55–60.
[27]
L. McAtamney and E. N. Corlett, “Rula: A survey method for the investigation of work-related upper limb disorders,” Appl. Ergonom., vol. 24, no. 2, pp. 91–99, 1993.
[28]
F. Chaumette and S. Hutchinson, “Visual servo control, Part I: Basic approaches,” IEEE Robot. Autom. Mag., vol. 13, no. 4, pp. 82–90, Dec. 2006.
[29]
M. Shimizu, W.-K. Yoon, and K. Kitagaki, “A practical redundancy resolution for 7 DoF redundant manipulators with joint limits,” in Proc. IEEE Int. Conf. Robot. Autom., 2007, pp. 4510–4516.
[30]
H. Seraji, “Configuration control of redundant manipulators: Theory and implementation,” IEEE Trans. Robot. Autom., vol. 5, no. 4, pp. 472–490, Aug. 1989.
[31]
M. Kang, H. Shin, D. Kim, and S.-E. Yoon, “Torm: Collision-free trajectory optimization of redundant manipulator given an end-effector path,” 2019, arXiv:1909.12517.
[32]
F. Abi-Farraj, C. Pacchierotti, O. Arenz, G. Neumann, and P. R. Giordano, “A haptic shared-control architecture for guided multi-target robotic grasping,” IEEE Trans. Haptics, to be published.
[33]
C. Pacchierotti, D. Prattichizzo, and K. J. Kuchenbecker, “Displaying sensed tactile cues with a fingertip haptic device,” IEEE Trans. Haptics, vol. 8, no. 4, pp. 384–396, Oct.–Dec. 2015.
[34]
S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load index): Results of empirical and theoretical research,” in Advances in psychology. Amsterdam, The Netherlands: Elsevier, 1988, vol. 52, pp. 139–183.
[35]
C. Pacchierotti, S. Sinclair, M. Solazzi, A. Frisoli, V. Hayward, and D. Prattichizzo, “Wearable haptic systems for the fingertip and the hand: Taxonomy, review, and perspectives,” IEEE Trans. Haptics, vol. 10, no. 4, pp. 580–600, Oct–Dec. 2017.
[36]
D. Michel, A. Qammaz, and A. A. Argyros, “Markerless 3d human pose estimation and tracking based on rgbd cameras: an experimental evaluation,” in Proc. Int. Conf. Pervasive Technologies Related Assistive Environ., 2017, pp. 115–122.
[37]
E. Biryukova, A. Roby-Brami, A. Frolov, and M. Mokhtari, “Kinematics of human arm reconstructed from spatial tracking system recordings,” J. Biomechanics, vol. 33, no. 8, pp. 985–995, 2000.

Cited By

View all

Index Terms

  1. Caring About the Human Operator: Haptic Shared Control for Enhanced User Comfort in Robotic Telemanipulation
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image IEEE Transactions on Haptics
            IEEE Transactions on Haptics  Volume 13, Issue 1
            Jan.-March 2020
            255 pages

            Publisher

            IEEE Computer Society Press

            Washington, DC, United States

            Publication History

            Published: 01 January 2020

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 05 Jan 2025

            Other Metrics

            Citations

            Cited By

            View all

            View Options

            View options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media