Bedrock-Dependent Effects of Climate Change on Terricolous Lichens Along Elevational Gradients in the Alps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design, Specimen Collection, and Identification
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiens, J.J.; Zelinka, J. How Many Species Will Earth Lose to Climate Change? Glob. Change Biol. 2024, 30, e17125. [Google Scholar] [CrossRef] [PubMed]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of Climate Change on the Future of Biodiversity: Biodiversity and Climate Change. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Körner, C.; Paulsen, J. A World-Wide Study of High Altitude Treeline Temperatures. J. Biogeogr. 2004, 31, 713–732. [Google Scholar] [CrossRef]
- Verrall, B.; Pickering, C.M. Alpine Vegetation in the Context of Climate Change: A Global Review of Past Research and Future Directions. Sci. Total Environ. 2020, 748, 141344. [Google Scholar] [CrossRef]
- Nagy, L.; Grabherr, G.; Körner, C.; Thompson, D.B. Alpine Biodiversity in Europe; Springer Science & Business Media: Berlin, Germany, 2012; Volume 167. [Google Scholar]
- Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-59537-1. [Google Scholar]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-Dependent Warming in Mountain Regions of the World. Nat. Clim. Change 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Rangwala, I.; Miller, J.R. Climate Change in Mountains: A Review of Elevation-Dependent Warming and Its Possible Causes. Clim. Change 2012, 114, 527–547. [Google Scholar] [CrossRef]
- Gobiet, A.; Kotlarski, S. Future Climate Change in the European Alps. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: Oxford, UK, 2020; ISBN 978-0-19-022862-0. [Google Scholar]
- Nemer, D.; Liancourt, P.; Delerue, F.; Randé, H.; Michalet, R. Species Stress Tolerance and Community Competitive Effects Drive Differences in Species Composition between Calcareous and Siliceous Plant Communities. J. Ecol. 2021, 109, 4132–4142. [Google Scholar] [CrossRef]
- Malanson, G.P.; Fagre, D.B.; Butler, D.R.; Shen, Z. Alpine Plant Communities and Current Topographic Microrefugia Vary with Regional Climates. Geomorphology 2024, 458, 109241. [Google Scholar] [CrossRef]
- Michalet, R.; Touzard, B.; Billard, G.; Choler, P.; Loucougaray, G. Changes in Taxonomic and Functional Composition of Subalpine Plant Communities in Response to Climate Change under Contrasting Conditions of Bedrock and Snow Cover Duration. J. Veg. Sci. 2024, 35, e13253. [Google Scholar] [CrossRef]
- Thurmann, J.; Thurmann, J. Essai de Phytostatique Appliqué à La Chaîne Du Jura et Aux Contrées Voisines, Ou Étude de La Dispersion Des Plantes Vasculaires Envisagée Principalement Quant à l’influence Des Roches Soujacentes; Jent et Gassmann: Berne, Switzerland, 1849. [Google Scholar]
- Michalet, R.; Gandoy, C.; Joud, D.; Pagès, J.-P.; Choler, P. Plant Community Composition and Biomass on Calcareous and Siliceous Substrates in the Northern French Alps: Comparative Effects of Soil Chemistry and Water Status. Arct. Antarct. Alp. Res. 2002, 34, 102–113. [Google Scholar] [CrossRef]
- Wohlgemuth, T.; Gigon, A. Calcicole Plant Diversity in Switzerland May Reflect a Variety of Habitat Templets. Folia Geobot. 2003, 38, 443–452. [Google Scholar] [CrossRef]
- Virtanen, R.; Dirnböck, T.; Dullinger, S.; Grabherr, G.; Pauli, H.; Staudinger, M.; Villar, L. Patterns in the Plant Species Richness of European High Mountain Vegetation. In Alpine Biodiversity in Europe; Nagy, L., Grabherr, G., Körner, C., Thompson, D.B.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 149–172. ISBN 978-3-642-18967-8. [Google Scholar]
- Nicklas, L.; Walde, J.; Wipf, S.; Lamprecht, A.; Mallaun, M.; Rixen, C.; Steinbauer, K.; Theurillat, J.-P.; Unterluggauer, P.; Vittoz, P.; et al. Climate Change Affects Vegetation Differently on Siliceous and Calcareous Summits of the European Alps. Front. Ecol. Evol. 2021, 9, 642309. [Google Scholar] [CrossRef]
- Green, T.G.A.; Nash III, T.H.; Lange, O.L. Physiological Ecology of Carbon Dioxide Exchange. In Lichen Biology; Cambridge University Press: Cambridge, UK, 2008; pp. 152–181. [Google Scholar]
- Gauslaa, Y. Rain, Dew, and Humid Air as Drivers of Morphology, Function and Spatial Distribution in Epiphytic Lichens. Lichenologist 2014, 46, 1–16. [Google Scholar] [CrossRef]
- Insarov, G.; Schroeter, B. Lichen Monitoring and Climate Change. In Monitoring with Lichens—Monitoring Lichens; Nimis, P.L., Scheidegger, C., Wolseley, P.A., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 183–201. ISBN 978-1-4020-0430-8. [Google Scholar]
- Nascimbene, J.; Marini, L. Epiphytic Lichen Diversity along Elevational Gradients: Biological Traits Reveal a Complex Response to Water and Energy. J. Biogeogr. 2015, 42, 1222–1232. [Google Scholar] [CrossRef]
- Di Nuzzo, L.; Vallese, C.; Benesperi, R.; Giordani, P.; Chiarucci, A.; Di Cecco, V.; Di Martino, L.; Di Musciano, M.; Gheza, G.; Lelli, C.; et al. Contrasting Multitaxon Responses to Climate Change in Mediterranean Mountains. Sci. Rep. 2021, 11, 4438. [Google Scholar] [CrossRef]
- Giordani, P.; Incerti, G.; Rizzi, G.; Rellini, I.; Nimis, P.L.; Modenesi, P. Functional Traits of Cryptogams in Mediterranean Ecosystems Are Driven by Water, Light and Substrate Interactions. J. Veg. Sci. 2014, 25, 778–792. [Google Scholar] [CrossRef]
- Ellis, C.J.; Asplund, J.; Benesperi, R.; Branquinho, C.; Di Nuzzo, L.; Hurtado, P.; Martínez, I.; Matos, P.; Nascimbene, J.; Pinho, P.; et al. Functional Traits in Lichen Ecology: A Review of Challenge and Opportunity. Microorganisms 2021, 9, 766. [Google Scholar] [CrossRef]
- Lakatos, M.; Rascher, U.; Büdel, B. Functional Characteristics of Corticolous Lichens in the Understory of a Tropical Lowland Rain Forest. New Phytol. 2006, 172, 679–695. [Google Scholar] [CrossRef]
- Stanton, D.E.; Ormond, A.; Koch, N.M.; Colesie, C. Lichen Ecophysiology in a Changing Climate. Am. J. Bot. 2023, 110, e16131. [Google Scholar] [CrossRef]
- Green, T.G.A.; Pintado, A.; Raggio, J.; Sancho, L.G. The Lifestyle of Lichens in Soil Crusts. Lichenologist 2018, 50, 397–410. [Google Scholar] [CrossRef]
- Colesie, C.; Green, T.G.A.; Raggio, J.; Büdel, B. Summer Activity Patterns of Antarctic and High Alpine Lichendominated Biological Soil Crusts—Similar But Different? Arct. Antarct. Alp. Res. 2016, 48, 449–460. [Google Scholar] [CrossRef]
- Porada, P.; Bader, M.Y.; Berdugo, M.B.; Colesie, C.; Ellis, C.J.; Giordani, P.; Herzschuh, U.; Ma, Y.; Launiainen, S.; Nascimbene, J.; et al. A Research Agenda for Nonvascular Photoautotrophs under Climate Change. New Phytol. 2023, 237, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Aartsma, P.; Asplund, J.; Odland, A.; Reinhardt, S.; Renssen, H. Surface Albedo of Alpine Lichen Heaths and Shrub Vegetation. Arct. Antarct. Alp. Res. 2020, 52, 312–322. [Google Scholar] [CrossRef]
- van Zuijlen, K.; Roos, R.E.; Klanderud, K.; Lang, S.I.; Asplund, J. Mat-Forming Lichens Affect Microclimate and Litter Decomposition by Different Mechanisms. Fungal Ecol. 2020, 44, 100905. [Google Scholar] [CrossRef]
- Qu, M.; Duan, W.; Chen, L. The Role of Cryptogams in Soil Property Regulation and Vascular Plant Regeneration: A Review. Appl. Sci. 2024, 14, 2. [Google Scholar] [CrossRef]
- Nascimbene, J.; Mayrhofer, H.; Dainese, M.; Bilovitz, P.O. Assembly Patterns of Soil-Dwelling Lichens after Glacier Retreat in the European Alps. J. Biogeogr. 2017, 44, 1393–1404. [Google Scholar] [CrossRef]
- McCain, C.M.; Grytnes, J.-A. Elevational Gradients in Species Richness. In Encyclopedia of Life Sciences; John Wiley & Sons, Ltd., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2010; p. a0022548. ISBN 978-0-470-01617-6. [Google Scholar]
- Vetaas, O.R.; Paudel, K.P.; Christensen, M. Principal Factors Controlling Biodiversity along an Elevation Gradient: Water, Energy and Their Interaction. J. Biogeogr. 2019, 46, 1652–1663. [Google Scholar] [CrossRef]
- Marazzi, S. Atlante Orografico Delle Alpi: SOIUSA: Suddivisione Orografica Internazionale Unificata Del Sistema Alpino; Priuli & Verlucca: Scarmagno, Italy, 2005. [Google Scholar]
- Bosellini, A.; Gianolla, P.; Stefani, M. Geology of the Dolomites. Epis. J. Int. Geosci. 2003, 26, 181–185. [Google Scholar] [CrossRef]
- Crespi, A.; Brunetti, M.; Lentini, G.; Maugeri, M. 1961–1990 High-Resolution Monthly Precipitation Climatologies for Italy. Int. J. Climatol. 2018, 38, 878–895. [Google Scholar] [CrossRef]
- Orange, A.; James, P.W.; White, F.J. Microchemical Methods for the Identification of Lichens; British Lichen Society: London, UK, 2001. [Google Scholar]
- Nimis, P.L. The Lichens of Italy. A Second Annotated Catalogue; EUT Edizioni Università di Trieste: Trieste, Italy, 2016. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P. Vegan: Community Ecology Package, R Package Version 2.5-6. 2019.
- R Core Team. R: A Language and Environment for Statistical Computing Computer Software, Version 4.3.2; R Foundation for Statistical Computing: Vienna, Austria, 2023.
- Podani, J.; Schmera, D. A New Conceptual and Methodological Framework for Exploring and Explaining Pattern in Presence—Absence Data. Oikos 2011, 120, 1625–1638. [Google Scholar] [CrossRef]
- Cardoso, P.; Rigal, F.; Carvalho, J.C. BAT—Biodiversity Assessment Tools, an R Package for the Measurement and Estimation of Alpha and Beta Taxon, Phylogenetic and Functional Diversity. Methods Ecol. Evol. 2015, 6, 232–236. [Google Scholar] [CrossRef]
- Nekola, J.C.; White, P.S. The Distance Decay of Similarity in Biogeography and Ecology. J. Biogeogr. 1999, 26, 867–878. [Google Scholar] [CrossRef]
- Martellos, S.; Conti, M.; Nimis, P.L. Aggregation of Italian Lichen Data in ITALIC 7.0. J. Fungi 2023, 9, 556. [Google Scholar] [CrossRef]
- Vallese, C.; Di Musciano, M.; Muggia, L.; Giordani, P.; Francesconi, L.; Benesperi, R.; Chiarucci, A.; Di Cecco, V.; Di Martino, L.; Di Nuzzo, L.; et al. Water-Energy Relationships Shape the Phylogenetic Diversity of Terricolous Lichen Communities in Mediterranean Mountains: Implications for Conservation in a Climate Change Scenario. Fungal Ecol. 2022, 60, 101189. [Google Scholar] [CrossRef]
- Di Nuzzo, L.; Benesperi, R.; Nascimbene, J.; Papini, A.; Malaspina, P.; Incerti, G.; Giordani, P. Little Time Left. Microrefuges May Fail in Mitigating the Effects of Climate Change on Epiphytic Lichens. Sci. Total Environ. 2022, 825, 153943. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P.; Shipley, B.; Laliberté, M.E. Package “FD”: Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology, R Package Version 1.0-12.1. 2014.
- de Bello, F.; Carmona, C.P.; Lepš, J.; Szava-Kovats, R.; Pärtel, M. Functional Diversity through the Mean Trait Dissimilarity: Resolving Shortcomings with Existing Paradigms and Algorithms. Oecologia 2016, 180, 933–940. [Google Scholar] [CrossRef]
- Nimis, P.L.; Martellos, S. ITALIC—The Information System on Italian Lichens, Version 7.0; University of Trieste, Dept. of Biology: Trieste, Italy, 2023; Available online: https://italic.units.it/ (accessed on 11 October 2023).
- Martellos, S.; d’Agostino, M.; Chiarucci, A.; Nimis, P.L.; Nascimbene, J. Lichen Distribution Patterns in the Ecoregions of Italy. Diversity 2020, 12, 294. [Google Scholar] [CrossRef]
- Vittoz, P.; Camenisch, M.; Mayor, R.; Miserere, L.; Vust, M.; Theurillat, J.-P. Subalpine-Nival Gradient of Species Richness for Vascular Plants, Bryophytes and Lichens in the Swiss Inner Alps. Bot. Helv. 2010, 120, 139–149. [Google Scholar] [CrossRef]
- Peery, M.Z.; Kirby, R.; Reid, B.N.; Stoelting, R.; Doucet-Bëer, E.; Robinson, S.; Vásquez-Carrillo, C.; Pauli, J.N.; Palsbøll, P.J. Reliability of Genetic Bottleneck Tests for Detecting Recent Population Declines. Mol. Ecol. 2012, 21, 3403–3418. [Google Scholar] [CrossRef]
- Ackerly, D.D.; Kling, M.M.; Clark, M.L.; Papper, P.; Oldfather, M.F.; Flint, A.L.; Flint, L.E. Topoclimates, Refugia, and Biotic Responses to Climate Change. Front. Ecol. Environ. 2020, 18, 288–297. [Google Scholar] [CrossRef]
- Keppel, G.; Van Niel, K.P.; Wardell-Johnson, G.W.; Yates, C.J.; Byrne, M.; Mucina, L.; Schut, A.G.T.; Hopper, S.D.; Franklin, S.E. Refugia: Identifying and Understanding Safe Havens for Biodiversity under Climate Change. Glob. Ecol. Biogeogr. 2012, 21, 393–404. [Google Scholar] [CrossRef]
- Ashcroft, M.B. Identifying Refugia from Climate Change. J. Biogeogr. 2010, 37, 1407–1413. [Google Scholar] [CrossRef]
- Kuussaari, M.; Bommarco, R.; Heikkinen, R.K.; Helm, A.; Krauss, J.; Lindborg, R.; Öckinger, E.; Pärtel, M.; Pino, J.; Rodà, F.; et al. Extinction Debt: A Challenge for Biodiversity Conservation. Trends Ecol. Evol. 2009, 24, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Hudek, C.; Barni, E.; Stanchi, S.; D’Amico, M.; Pintaldi, E.; Freppaz, M. Mid and Long-Term Ecological Impacts of Ski Run Construction on Alpine Ecosystems. Sci. Rep. 2020, 10, 11654. [Google Scholar] [CrossRef]
- Mitterwallner, V.; Steinbauer, M.; Mathes, G.; Walentowitz, A. Global Reduction of Snow Cover in Ski Areas under Climate Change. PLoS ONE 2024, 19, e0299735. [Google Scholar] [CrossRef]
Carbonatic | Siliceous | |
---|---|---|
βtot | r = 0.399, p = 0.001 | r = 0.408, p = 0.001 |
βrepl | r = 0.317, p = 0.001 | r = 0.185, p = 0.004 |
βrich | r = −0.01, p = 0.981 | r = 0.164, p = 0.0026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallese, C.; Di Nuzzo, L.; Francesconi, L.; Giordani, P.; Spitale, D.; Benesperi, R.; Gheza, G.; Mair, P.; Nascimbene, J. Bedrock-Dependent Effects of Climate Change on Terricolous Lichens Along Elevational Gradients in the Alps. J. Fungi 2024, 10, 836. https://doi.org/10.3390/jof10120836
Vallese C, Di Nuzzo L, Francesconi L, Giordani P, Spitale D, Benesperi R, Gheza G, Mair P, Nascimbene J. Bedrock-Dependent Effects of Climate Change on Terricolous Lichens Along Elevational Gradients in the Alps. Journal of Fungi. 2024; 10(12):836. https://doi.org/10.3390/jof10120836
Chicago/Turabian StyleVallese, Chiara, Luca Di Nuzzo, Luana Francesconi, Paolo Giordani, Daniel Spitale, Renato Benesperi, Gabriele Gheza, Petra Mair, and Juri Nascimbene. 2024. "Bedrock-Dependent Effects of Climate Change on Terricolous Lichens Along Elevational Gradients in the Alps" Journal of Fungi 10, no. 12: 836. https://doi.org/10.3390/jof10120836
APA StyleVallese, C., Di Nuzzo, L., Francesconi, L., Giordani, P., Spitale, D., Benesperi, R., Gheza, G., Mair, P., & Nascimbene, J. (2024). Bedrock-Dependent Effects of Climate Change on Terricolous Lichens Along Elevational Gradients in the Alps. Journal of Fungi, 10(12), 836. https://doi.org/10.3390/jof10120836