Functional Traits in Lichen Ecology: A Review of Challenge and Opportunity
Abstract
:1. Introduction
- First, the trait-based approach is integrative, since traits can be explored with respect to community composition and richness, explaining the response of species to the environment, but also the effect that species have within ecosystems, bridging therefore between the classic dichotomy of ‘Grinnelian’ and ‘Eltonian’ niche models (see Effect Traits, below).
- Second, it is an approach that links evolutionary biology—the adaptation of the phenotype—with ecology because it focuses on phenotypic attributes that confer fitness differences across environmental space (see Trait Combinations and Interactions, below); these are the outcome of both natural selection and stochastic processes that can explain species distributions, occurrence or abundance, and community structure.
- Third, it is scalable, since traits can be linked to acclimation if they are labile, explaining community composition and richness with respect to intraspecific trait variation, or explaining interspecific compositional turnover where environmental change (spatial or temporal) causes the declining and increasing fitness of species at the boundaries of their trait differences (see Spatial-Temporal Scales, below).
2. Types of Traits
2.1. Response Traits
2.1.1. Explanatory Power or Information Assembly Effort
2.1.2. Qualitative versus Quantitative Traits
2.1.3. Bibliographic or Primary Data
2.1.4. Proximal or Distal Traits
2.1.5. Variation among Individuals
2.2. Effect Traits
2.2.1. Regulating: Water Availability and Energy Balance
2.2.2. Supporting: Biogeochemistry
3. Trait Combinations and Interactions
3.1. Why Bundle Traits?
3.2. An Evolutionary Niche Model
3.3. Life-History Strategies
3.4. Conceptual Advances and Challenges
- One needs to take account of phylogenetic relationships, based on the assumption that closely related species share underlying similarities (they are not evolutionarily independent), with this non-independence incorporated into tests of trait-environment relationships to avoid statistical error, i.e., erroneously high degrees of freedom, type I error [138];
- One might also include phylogenetic relationships in order to account for similarities among species that exist because of niche conservatism, but that are unmeasured by the traits being used; effectively using phylogenetic clustering as a proxy for unmeasured functional traits, and prompting a search for new functional traits [139];
4. Spatial-Temporal Scales
4.1. Biological Scale
4.2. Spatial Scale
4.3. Temporal Scales
4.4. Interactions Across Scales
5. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menezes, S.; Baird, D.J.; Soares, A.M.V.M. Beyond taxonomy: A review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. J. Appl. Ecol. 2010, 47, 711–719. [Google Scholar] [CrossRef]
- Funk, J.L.; Larson, J.E.; Ames, G.M.; Butterfield, B.J.; Cavender-Bares, J.; Firn, J.; Laughlin, D.C.; Sutton-Grier, A.E.; Williams, L.; Wright, J. Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biol. Rev. 2017, 92, 1156–1173. [Google Scholar] [CrossRef]
- Tansley, A.G. The classification of vegetation and the concept of development. J. Ecol. 1920, 8, 118–149. [Google Scholar] [CrossRef]
- Whittaker, R.H. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 1956, 26, 1–80. [Google Scholar] [CrossRef]
- Whittaker, R.H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 1960, 30, 279–338. [Google Scholar] [CrossRef]
- McGill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006, 21, 178–185. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Ackerly, D.D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 2009, 79, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Kraft, N.J.B.; Ackerly, D.D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol. Monogr. 2010, 80, 401–422. [Google Scholar] [CrossRef]
- Violle, C.; Navas, M.-L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Weiher, E.; Keddy, P.A. Assembly rules, null models, and trait dispersion: New questions from old patterns. Oikos 1995, 74, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Weiher, E.; Clarke, G.D.P.; Keddy, P.A. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 1998, 81, 309–322. [Google Scholar] [CrossRef]
- Rose, F. The epiphytes of oak. In The British Oak; Morris, M.G., Perrring, F.H., Eds.; Classey: London, UK, 1974; pp. 250–273. [Google Scholar]
- Rose, F. Lichenological indicators of age and environmental continuity in woodlands. In Lichenology: Progress and Problems, Proceedings of an International Symposium, Amsterdam, the Netherlands, 6–10 September 1976; Brown, D.H., Hawksworth, D.L., Bailey, R.H., Eds.; Academic Press: Cambridge, MA, USA, 1976; pp. 279–307. [Google Scholar]
- Selva, S.B. Lichen diversity and stand continuity in the northern hardwoods and spruce-fir forests of northern New England and western New Brunswick. Bryologist 1994, 97, 424–429. [Google Scholar] [CrossRef]
- Coppins, A.M.; Coppins, B.J. Indices of Ecological Continuity for Woodland Epiphytic Lichen Habitats in the British Isles; British Lichen Society: London, UK, 2002. [Google Scholar]
- Löbel, S.; Snäll, T.; Rydin, H. Species richness patterns and metapopulation processes – evidence from epiphyte communities in boreo-nemoral forests. Ecography 2006, 29, 169–182. [Google Scholar] [CrossRef]
- Johansson, V.; Ranius, T.; Snäll, T. Epiphyte metapopulation dynamics are explained by species traits, connectivity, and patch dynamics. Ecology 2012, 93, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.; Ellis, C.J. Ecological constraints to ‘old-growth’ lichen indicators: Niche specialism or dispersal limitation? Fungal Ecol. 2018, 34, 20–27. [Google Scholar] [CrossRef]
- Crespo, A.; Lumbsch, H.T. Cryptic species in lichen-forming fungi. IMA Fungus 2010, 1, 167–170. [Google Scholar] [CrossRef]
- Nunez-Zapata, J.; Divakar, P.K.; Ruth, D.-P.; Cubas, P.; Hawksworth, D.L.; Crespo, A. Conundrums in species concepts: The discovery of a new cryptic species segregated from Parmelina tiliacea (Ascomycota: Parmeliaceae). Lichenologist 2011, 43, 603–616. [Google Scholar] [CrossRef] [Green Version]
- Corsie, E.I.; Harrold, P.; Rebecca, Y. No combination of morphological, ecological or chemical characters can reliably diagnose species in the Parmelia saxatilis aggregate in Scotland. Lichenologist 2019, 51, 107–121. [Google Scholar] [CrossRef]
- Benítez, A.; Aragón, G.; González, Y.; Prieto, M. Functional traits of epiphytic lichens in response to forest disturbance and as predictors of total richness and diversity. Ecol. Indic. 2018, 86, 18–26. [Google Scholar] [CrossRef]
- Lange, O.L.; Kilian, E.; Ziegler, H. Water vapor uptake and photosynthesis of lichens: Performance differences in species with green and blue-green algae as phycobionts. Oecologia 1986, 71, 104–110. [Google Scholar] [CrossRef]
- Lange, O.L.; Büdel, B.; Meyer, A.; Kilian, E. Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. Lichenologist 1993, 25, 175–189. [Google Scholar] [CrossRef]
- Phinney, N.H.; Solhaug, K.A.; Gauslaa, Y. Photobiont-dependent humidity threshold for chlorolichen photosystem II activation. Planta 2019, 250, 2023–2031. [Google Scholar] [CrossRef] [PubMed]
- Gauslaa, Y. Rain, dew, and humid air as drivers of morphology, function and spatial distribution in epiphytic lichens. Lichenologist 2014, 46, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ure, J.D.; Stanton, D.E. Co-dominant anatomically disparate lichens converge in hydrological functional traits. Bryologist 2019, 122, 463–470. [Google Scholar] [CrossRef]
- Lavorel, S.; Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 2002, 16, 545–556. [Google Scholar] [CrossRef]
- Forman, R.T.T. Canopy lichens with blue-green algae: A nitrogen source in a Colombian rain forest. Ecology 1975, 56, 1176–1184. [Google Scholar] [CrossRef]
- Crittenden, P.D.; Kershaw, K.A. Discovering the role of lichens in the nitrogen cycle in boreal-arctic ecosystems. Bryologist 1978, 81, 258–267. [Google Scholar] [CrossRef]
- Green, T.G.A.; Horstmann, J.; Bonnett, H.; Wilkins, A.; Silvester, W.B. Nitrogen fixation by members of the Stictaceae (Lichenes) of New Zealand. New Phytol. 1980, 84, 339–348. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Lang, S.I.; Soudzilovskaia, N.A.; During, H.J. Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry. Ann. Bot. 2007, 99, 987–1001. [Google Scholar] [CrossRef] [Green Version]
- Asplund, J.; Wardle, D.A. The impact of secondary compounds and functional characteristics on lichen palatability and decomposition. J. Ecol. 2013, 101, 689–700. [Google Scholar] [CrossRef]
- Matos, P.; Pinho, P.; Aragón, G.; Martínez, I.; Nunes, A.; Soares, A.M.V.M.; Branquinho, C. Lichen traits responding to aridity. J. Ecol. 2015, 103, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Matos, P.; Vieira, J.; Rocha, B.; Branquinho, C.; Pinho, P. Modeling the provision of air-quality regulation ecosystem service provided by urban green spaces using lichens as ecological indicators. Sci. Total Environ. 2019, 665, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.; Pinho, P.; Branquinho, C.; Boieiro, M.; Matos, P. Bringing the concept of ammonia critical levels into managing cork-oak woodland for conservation. For. Ecol. Manag. 2019, 453, 117566. [Google Scholar] [CrossRef]
- Hurtado, P.; Prieto, M.; Aragón, G.; de Bello, F.; Martínez, I. Intraspecific variability drives functional changes in lichen epiphytic communities across Europe. Ecology 2020, 101, 03017. [Google Scholar] [CrossRef]
- Hurtado, P.; Prieto, M.; Martínez-Vilalta, J.; Giordani, P.; Aragón, G.; López-Angulo, J.; Košuthová, A.; Merinero, S.; Díaz-Peña, E.M.; Rosas, T.; et al. Disentangling functional trait variation and covariation in epiphytic lichens along a continent-wide latitudinal gradient. Proc. R. Soc. B Biol. Sci. 2020, 287, 20192862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurtado, P.; Matos, P.; Aragón, G.; Branquinho, C.; Prieto, M.; Martínez, I. How much matching there is in functional, phylogenetic and taxonomic optima of epiphytic macrolichen communities along a European climatic gradient? Sci. Total Environ. 2020, 712, 136533. [Google Scholar] [CrossRef]
- Koch, N.M.; Matos, P.; Branquinho, C.; Pinho, P.; Lucheta, F.; de Azevedo Martins, S.M.; Vargas, V.M.F. Selecting lichen functional traits as ecological indicators of the effects of urban environment. Sci. Total Environ. 2019, 654, 705–713. [Google Scholar] [CrossRef]
- Favero-Longo, S.E.; Matteucci, E.; Giordani, P.; Paukov, A.G.; Rajakaruna, N. Diversity and functional traits of lichens in ultramafic areas: A literature-based worldwide analysis integrated by field data at the regional scale. Ecol. Res. 2018, 33, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Wan, S.; Ellis, C.J. Are lichen growth form categories supported by continuous functional traits: Water-holding capacity and specific thallus mass? Edinb. J. Bot. 2020, 77, 65–76. [Google Scholar] [CrossRef]
- Aragón, G.; Belinchón, R.; Martínez, I.; Prieto, M. A survey method for assessing the richness of epiphytic lichens using growth forms. Ecol. Indic. 2016, 62, 101–105. [Google Scholar] [CrossRef]
- Bässler, C.; Cadotte, M.W.; Beudert, B.; Heibl, C.; Blaschke, M.; Bradtka, J.H.; Langbehn, T.; Werth, S.; Müller, J. Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography 2016, 39, 689–698. [Google Scholar] [CrossRef]
- Bokhorst, S.; Asplund, J.; Kardol, P.; Wardle, D.A. Lichen physiological traits and growth forms affect communities of associated invertebrates. Ecology 2015, 96, 2394–2407. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.W.; Aptroot, A.; Coppins, B.J.; Fletcher, A.; Gilbert, O.L.; James, R.W.; Wolseley, P.A. The Lichens of Great Britain and Ireland; British Lichen Society: London, UK, 2009. [Google Scholar]
- Nash, T.H.; Ryan, B.D.; Gries, C.; Bungartz, F. Lichen Flora of the Greater Sonoran Desert Region.; Arizona State University: Tempe, AZ, USA, 2002; Volume 1–3. [Google Scholar]
- Rambold, G.; Davydov, E.; Elix, J.A.; Nash III, T.H.; Scheidegger, C.; Zedda, L. LIAS Light—A Database for Rapid Identification of Lichens. Available online: http://liaslight.lias.net/ (accessed on 1 March 2021).
- Consortium of North American Lichen Herbaria. Available online: https://lichenportal.org/cnalh/ (accessed on 17 February 2021).
- Nimis, P.L.; Martellos, S. ITALIC 6.0–the Information System on Italian Lichens. Available online: http://dryades.units.it/italic (accessed on 20 January 2021).
- Austin, M.P. Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecol. Model. 2002, 157, 101–118. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Valverde, A.; Nakazawa, Y.; Lira-Noriega, A.; Peterson, A.T. Environmental correlation structure and ecological niche model projections. Biodivers. Inform. 2009, 6, 28–35. [Google Scholar] [CrossRef]
- Longinotti, S.; Solhaug, K.A.; Gauslaa, Y. Hydration traits in cephalolichen members of the epiphytic old forest genus Lobaria (s. lat.). Lichenologist 2017, 49, 493–506. [Google Scholar] [CrossRef]
- Phinney, N.H.; Solhaug, K.A.; Gauslaa, Y. Rapid resurrection of chlorolichens in humid air: Specific thallus mass drives rehydration and reactivation kinetics. Environ. Exp. Bot. 2018, 148, 184–191. [Google Scholar] [CrossRef]
- John, E. Distribution patterns and interthalline interactions of epiphytic foliose lichens. Can. J. Bot. 2011, 70, 818–823. [Google Scholar] [CrossRef]
- Walser, J.-C. Molecular evidence for limited dispersal of vegetative propagules in the epiphytic lichen Lobaria pulmonaria. Am. J. Bot. 2004, 91, 1273–1276. [Google Scholar] [CrossRef]
- Ott, S.; Treiber, K.; Jahns, H.M. The development of regenerative thallus structures in lichens. Bot. J. Linn. Soc. 1993, 113, 61–76. [Google Scholar] [CrossRef]
- Tretiach, M.; Crisafulli, P.; Pittao, E.; Rinno, S.; Roccotiello, E.; Modenesi, P. Isidia ontogeny and its effect on the CO2 gas exchanges of the epiphytic lichen Pseudevernia furfuracea (L.) Zopf. Lichenologist 2005, 37, 445–462. [Google Scholar] [CrossRef]
- Higgins, N.F.; Connan, S.; Stengel, D.B. Factors influencing the distribution of coastal lichens Hydropunctaria maura and Wahlenbergiella mucosa. Mar. Ecol. 2015, 36, 1400–1414. [Google Scholar] [CrossRef]
- Osyczka, P.; Rola, K.; Lenart-Boroń, A.; Boroń, P. High intraspecific genetic and morphological variation in the pioneer lichen Cladonia rei colonising slag dumps. Open Life Sci. 2014, 9, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Yahr, R.; Vilgalys, R.; DePriest, P.T. Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol. 2006, 171, 847–860. [Google Scholar] [CrossRef]
- Muggia, L.; Pérez-Ortega, S.; Kopun, T.; Zellnig, G.; Grube, M. Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann. Bot. 2014, 114, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Otálora, M.A.G.; Martínez, I.; O’Brien, H.; Molina, M.C.; Aragón, G.; Lutzoni, F. Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Mol. Phylogenet. Evol. 2010, 56, 1089–1095. [Google Scholar] [CrossRef]
- Leavitt, S.D.; Kraichak, E.; Nelsen, M.P.; Altermann, S.; Divakar, P.K.; Alors, D.; Esslinger, T.L.; Crespo, A.; Lumbsch, T. Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol. Ecol. 2015, 24, 3779–3797. [Google Scholar] [CrossRef]
- Magain, N.; Miadlikowska, J.; Goffinet, B.; Sérusiaux, E.; Lutzoni, F. Macroevolution of specificity in cyanolichens of the genus Peltigera Section Polydactylon (Lecanoromycetes, Ascomycota). Syst. Biol. 2017, 66, 74–99. [Google Scholar] [CrossRef] [Green Version]
- Trenbirth, H.E. Lichenometry. In Geomorphological Techniques; British Society for Geomorphology: London, UK, 2010; pp. 1–12. [Google Scholar]
- Oliveira, M.A.; Llop, E.; Andrade, C.; Branquinho, C.; Goble, R.; Queiroz, S.; Freitas, M.C.; Pinho, P. Estimating the age and mechanism of boulder transport related with extreme waves using lichenometry. Prog. Phys. Geogr. Earth Environ. 2020, 44, 870–897. [Google Scholar] [CrossRef]
- Roca Valiente, B.; Hawksworth, D.; Pérez-Ortega, S.; Sancho, L.; Crespo, A. Type studies in the Rhizocarpon geographicum group (Rhizocarpaceae, lichenized Ascomycota). Lichenologist 2016, 48, 97–110. [Google Scholar] [CrossRef]
- Armstrong, R.A. Lichenometric dating (Lichenometry) and the biology of the lichen genus Rhizocarpon: Challenges and future directions. Geogr. Ann. Ser. Phys. Geogr. 2016, 98, 183–206. [Google Scholar] [CrossRef] [Green Version]
- Merinero, S.; Martínez, I.; Rubio-Salcedo, M.; Gauslaa, Y. Epiphytic lichen growth in Mediterranean forests: Effects of proximity to the ground and reproductive stage. Basic Appl. Ecol. 2015, 16, 220–230. [Google Scholar] [CrossRef]
- Merinero, S.; Aragón, G.; Martínez, I. Intraspecific life history variation in contrasting habitats: Insights from an obligate symbiotic organism. Am. J. Bot. 2017, 104, 1099–1107. [Google Scholar] [CrossRef]
- Shivarov, V.V.; Denchev, C.M.; Thüs, H. Ecology and distribution of Dermatocarpon (Verrucariaceae, Ascomycota) in the catchment areas of two Bulgarian rivers. Lichenologist 2018, 50, 679–690. [Google Scholar] [CrossRef]
- Coyle, J.R. Intraspecific variation in epiphyte functional traits reveals limited effects of microclimate on community assembly in temperate deciduous oak canopies. Oikos 2017, 126, 111–120. [Google Scholar] [CrossRef]
- Roos, R.E.; Zuijlen, K.; Birkemoe, T.; Klanderud, K.; Lang, S.I.; Bokhorst, S.; Wardle, D.A.; Asplund, J. Contrasting drivers of community-level trait variation for vascular plants, lichens and bryophytes across an elevational gradient. Funct. Ecol. 2019, 33, 2430–2446. [Google Scholar] [CrossRef] [Green Version]
- Asplund, J.; Wardle, D.A. How lichens impact on terrestrial community and ecosystem properties: How lichens impact on communities and ecosystems. Biol. Rev. 2017, 92, 1720–1738. [Google Scholar] [CrossRef]
- Zedda, L.; Rambold, G. The diversity of lichenised fungi: Ecosystem functions and ecosystem services. In Recent Advances in Lichenology: Modern Methods and Approaches in Lichen Systematics and Culture Techniques, Volume 2; Upreti, D.K., Divakar, P.K., Shukla, V., Bajpai, R., Eds.; Springer India: New Delhi, India, 2015; pp. 121–145. ISBN 978-81-322-2235-4. [Google Scholar]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES) V5. 1 Guidance on the Application of the Revised Structure, UK, 2017; The Paddocks, Chestnut Lane: Nottingham, UK, 2020. [Google Scholar]
- Concostrina-Zubiri, L.; Molla, I.; Velizarova, E.; Branquinho, C. Grazing or not grazing: Implications for ecosystem services provided by biocrusts in Mediterranean cork oak woodlands. Land Degrad. Dev. 2017, 28, 1345–1353. [Google Scholar] [CrossRef]
- Van Zuijlen, K.; Roos, R.E.; Klanderud, K.; Lang, S.I.; Asplund, J. Mat-forming lichens affect microclimate and litter decomposition by different mechanisms. Fungal Ecol. 2020, 44, 100905. [Google Scholar] [CrossRef]
- Nystuen, K.O.; Sundsdal, K.; Opedal, Ø.H.; Holien, H.; Strimbeck, G.R.; Graae, B.J. Lichens facilitate seedling recruitment in alpine heath. J. Veg. Sci. 2019, 30, 868–880. [Google Scholar] [CrossRef]
- Soudzilovskaia, N.A.; van Bodegom, P.M.; Cornelissen, J.H.C. Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation. Funct. Ecol. 2013, 27, 1442–1454. [Google Scholar] [CrossRef]
- Kershaw, K.A. Studies on lichen-dominated systems. XII. The ecological significance of thallus color. Can. J. Bot. 2011, 53, 660–667. [Google Scholar] [CrossRef]
- Gauslaa, Y. Heat resistance and energy budget in different Scandinavian plants. Ecography 1984, 7, 5–6. [Google Scholar] [CrossRef]
- Aartsma, P.; Asplund, J.; Odland, A.; Reinhardt, S.; Renssen, H. Surface albedo of alpine lichen heaths and shrub vegetation. Arct. Antarct. Alp. Res. 2020, 52, 312–322. [Google Scholar] [CrossRef]
- Porada, P.; Van Stan, J.T.; Kleidon, A. Significant contribution of non-vascular vegetation to global rainfall interception. Nat. Geosci. 2018, 11, 563–567. [Google Scholar] [CrossRef]
- Van Stan, J.T.; Pypker, T.G. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Sci. Total Environ. 2015, 536, 813–824. [Google Scholar] [CrossRef]
- Pypker, T.G.; Unsworth, M.H.; Bond, B.J. The role of epiphytes in rainfall interception by forests in the Pacific Northwest. I. Laboratory measurements of water storage. Can. J. For. Res. 2006, 36, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Stanton, D.E.; Chávez, J.H.; Villegas, L.; Villasante, F.; Armesto, J.; Hedin, L.O.; Horn, H. Epiphytes improve host plant water use by microenvironment modification. Funct. Ecol. 2014, 28, 1274–1283. [Google Scholar] [CrossRef]
- Solhaug, K.A.; Lind, M.; Nybakken, L.; Gauslaa, Y. Possible functional roles of cortical depsides and medullary depsidones in the foliose lichen Hypogymnia physodes. Flora 2009, 204, 40–48. [Google Scholar] [CrossRef]
- Gauslaa, Y.; Coxson, D. Interspecific and intraspecific variations in water storage in epiphytic old forest foliose lichens. Botany 2011, 89, 787–798. [Google Scholar] [CrossRef]
- Knops, J.M.H.; Nash, T.H.I.; Boucher, V.L.; Schlesinger, W.H. Mineral cycling and epiphytic lichens: Implications at the ecosystem level. Lichenologist 1991, 23, 309–321. [Google Scholar] [CrossRef]
- Knops, J.M.H.; Nash, T.H.; Schlesinger, W.H. The influence of epiphytic lichens on the nutrient cycling of an oak woodland. Ecol. Monogr. 1996, 66, 159–180. [Google Scholar] [CrossRef]
- Porada, P.; Weber, B.; Elbert, W.; Pöschl, U.; Kleidon, A. Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Glob. Biogeochem. Cycles 2014, 28, 71–85. [Google Scholar] [CrossRef]
- Adamo, P.; Violante, P. Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl. Clay Sci. 2000, 16, 229–256. [Google Scholar] [CrossRef]
- Chen, J.; Blume, H.-P.; Beyer, L. Weathering of rocks induced by lichen colonization–A review. CATENA 2000, 39, 121–146. [Google Scholar] [CrossRef]
- Carter, N.E.A.; Viles, H.A. Lichen hotspots: Raised rock temperatures beneath Verrucaria nigrescens on limestone. Geomorphology 2004, 62, 1–16. [Google Scholar] [CrossRef]
- Favero-Longo, S.E.; Viles, H.A. A review of the nature, role and control of lithobionts on stone cultural heritage: Weighing-up and managing biodeterioration and bioprotection. World J. Microbiol. Biotechnol. 2020, 36, 100. [Google Scholar] [CrossRef]
- Van Zuijlen, K.; Roos, R.E.; Klanderud, K.; Lang, S.I.; Wardle, D.A.; Asplund, J. Decomposability of lichens and bryophytes from across an elevational gradient under standardized conditions. Oikos 2020, 129, 1358–1368. [Google Scholar] [CrossRef]
- Benesperi, R.; Tretiach, M. Differential land snail damage to selected species of the lichen genus Peltigera. Biochem. Syst. Ecol. 2004, 32, 127–138. [Google Scholar] [CrossRef]
- Gauslaa, Y. Lichen palatability depends on investments in herbivore defence. Oecologia 2005, 143, 94–105. [Google Scholar] [CrossRef]
- Nimis, P.L.; Skert, N. Lichen chemistry and selective grazing by the coleopteran Lasioderma serricorne. Environ. Exp. Bot. 2006, 55, 175–182. [Google Scholar] [CrossRef]
- Asplund, J.; Bokhorst, S.; Kardol, P.; Wardle, D.A. Removal of secondary compounds increases invertebrate abundance in lichens. Fungal Ecol. 2015, 18, 18–25. [Google Scholar] [CrossRef]
- Geiser, L.H.; Nelson, P.R.; Jovan, S.E.; Root, H.T.; Clark, C.M. Assessing ecological risks from atmospheric deposition of nitrogen and sulfur to US forests using epiphytic macrolichens. Diversity 2019, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Ladrón de Guevara, M.; Gozalo, B.; Raggio, J.; Lafuente, A.; Prieto, M.; Maestre, F.T. Warming reduces the cover, richness and evenness of lichen-dominated biocrusts but promotes moss growth: Insights from an 8 yr experiment. New Phytol. 2018, 220, 811–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudero, A.; Martínez, I.; de la Cruz, A.; Otálora, M.A.G.; Maestre, F.T. Soil lichens have species-specific effects on the seedling emergence of three gypsophile plant species. J. Arid Environ. 2007, 70, 18–28. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Rosentreter, R. Morphological groups: A framework for monitoring microphytic crusts in arid landscapes. J. Arid Environ. 1999, 41, 11–25. [Google Scholar] [CrossRef]
- Chamizo, S.; Canton, Y.; Afana, A.; Lazaro, R.; Domingo, F.; Sole-Benet, A. How development and disturbance of biological soil crust do affect runoff and erosion in drylands? In Advances in Studies on Desertification; Romero-Díaz, A., Belmonte, F., Alonso, F., López Bermúdez, F., Eds.; Servicio Publicaciones Universidad de Murcia EDITUM: Murcia, Spain, 2009; pp. 203–206. [Google Scholar]
- Southwood, T.R.E. Habitat, the templet for ecological strategies? J. Anim. Ecol. 1977, 46, 337–365. [Google Scholar] [CrossRef]
- Southwood, T.R.E. Tactics, strategies and templets. Oikos 1988, 52, 3–18. [Google Scholar] [CrossRef]
- Gauslaa, Y.; Solhaug, K.A. The significance of thallus size for the water economy of the cyanobacterial old-forest lichen Degelia plumbea. Oecologia 1998, 116, 76–84. [Google Scholar] [CrossRef]
- Went, F.W. Soziologie der Epiphyten eines tropischen Regenwaldes. Ann. Jard. Bot. Buitenzorg 1940, 50, 1–98. [Google Scholar]
- Zotz, G.; Winkler, U. Aerial roots of epiphytic orchids: The velamen radicum and its role in water and nutrient uptake. Oecologia 2013, 171, 733–741. [Google Scholar] [CrossRef]
- Grube, M.; Hawksworth, D.L. Trouble with lichen: The re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycol. Res. 2007, 111, 1116–1132. [Google Scholar] [CrossRef]
- Muggia, L.; Nelson, P.; Wheeler, T.; Yakovchenko, L.S.; Tønsberg, T.; Spribille, T. Convergent evolution of a symbiotic duet: The case of the lichen genus Polychidium (Peltigerales, Ascomycota). Am. J. Bot. 2011, 98, 1647–1656. [Google Scholar] [CrossRef]
- Aptroot, A.; Schumm, F. The genus Melanophloea, an example of convergent evolution towards polyspory. Lichenologist 2012, 44, 501–509. [Google Scholar] [CrossRef]
- Prieto, M.; Baloch, E.; Tehler, A.; Wedin, M. Mazaedium evolution in the Ascomycota (Fungi) and the classification of mazaediate groups of formerly unclear relationship. Cladistics 2013, 29, 296–308. [Google Scholar] [CrossRef]
- Miadlikowska, J.; Kauff, F.; Hofstetter, V.; Fraker, E.; Grube, M.; Hafellner, J.; Reeb, V.; Hodkinson, B.P.; Kukwa, M.; Lücking, R.; et al. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 2006, 98, 1088–1103. [Google Scholar] [CrossRef] [PubMed]
- Hodkinson, B.P.; Gottel, N.R.; Schadt, C.W.; Lutzoni, F. Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environ. Microbiol. 2012, 14, 147–161. [Google Scholar] [CrossRef] [PubMed]
- McCune, B. Gradients in epiphyte biomass in three Pseudotsuga-Tsuga forests of different ages in Western Oregon and Washington. Bryologist 1993, 96, 405–411. [Google Scholar] [CrossRef]
- McCune, B.; Amsberry, K.A.; Camacho, F.J.; Clery, S.; Cole, C.; Emerson, C.; Felder, G.; French, P.; Greene, D.; Harris, R. Vertical profile of epiphytes in a Pacific Northwest old-growth forest. Northwest. Sci. 1997, 71, 145–152. [Google Scholar]
- Sillett, S.C.; Rambo, T.R. Vertical distribution of dominant epiphytes in Douglas-fir forests of the central Oregon Cascades. Northwest. Sci. 2000, 74, 44–49. [Google Scholar]
- Lange, O.L.; Green, T.G.A.; Ziegler, H. Water status related photosynthesis and carbon isotope discrimination in species of the lichen genus Pseudocyphellaria with green or blue-green photobionts and in photosymbiodemes. Oecologia 1988, 75, 494–501. [Google Scholar] [CrossRef]
- Green, T.G.A.; Büdel, B.; Meyer, A.; Zellner, H.; Lange, O.L. Temperate rainforest lichens in New Zealand: Light response of photosynthesis. N. Z. J. Bot. 1997, 35, 493–504. [Google Scholar] [CrossRef]
- Färber, L.; Solhaug, K.A.; Esseen, P.-A.; Bilger, W.; Gauslaa, Y. Sunscreening fungal pigments influence the vertical gradient of pendulous lichens in boreal forest canopies. Ecology 2014, 95, 1464–1471. [Google Scholar] [CrossRef] [Green Version]
- Ellis, C.J.; Ellis, S.C. Signatures of autogenic epiphyte succession for an aspen chronosequence. J. Veg. Sci. 2013, 24, 688–701. [Google Scholar] [CrossRef]
- Nascimbene, J.; Mayrhofer, H.; Dainese, M.; Bilovitz, P.O. Assembly patterns of soil-dwelling lichens after glacier retreat in the European Alps. J. Biogeogr. 2017, 44, 1393–1404. [Google Scholar] [CrossRef]
- Ellis, C.J.; Coppins, B.J. Reproductive strategy and the compositional dynamics of crustose lichen communities on aspen (Populus tremula L.) in Scotland. Lichenologist 2007, 39, 377–391. [Google Scholar] [CrossRef]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 2001. [Google Scholar]
- Pianka, E.R. On r-and K-selection. Am. Nat. 1970, 104, 592–597. [Google Scholar] [CrossRef]
- Hauck, M.; Jürgens, S.-R.; Brinkmann, M.; Herminghaus, S. Surface hydrophobicity causes SO2 tolerance in lichens. Ann. Bot. 2008, 101, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauck, M.; Wirth, V. Preference of lichens for shady habitats is correlated with intolerance to high nitrogen levels. Lichenologist 2010, 42, 475. [Google Scholar] [CrossRef]
- Grime, J.P. Vegetation classification by reference to strategies. Nature 1974, 250, 26–31. [Google Scholar] [CrossRef]
- Grime, J.P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 1977, 111, 1169–1194. [Google Scholar] [CrossRef]
- Lutzoni, F.; Pagel, M.; Reeb, V. Major fungal lineages are derived from lichen symbiotic ancestors. Nature 2001, 411, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.W. Ecological strategies of lichens. Lichenologist 1990, 22, 149–162. [Google Scholar] [CrossRef]
- Di Nuzzo, L.; Vallese, C.; Benesperi, R.; Giordani, P.; Chiarucci, A.; Di Cecco, V.; Di Martino, L.; Di Musciano, M.; Gheza, G.; Lelli, C.; et al. Contrasting multitaxon responses to climate change in Mediterranean mountains. Sci. Rep. 2021, 11, 4438. [Google Scholar] [CrossRef]
- De Bello, F.; Berg, M.P.; Dias, A.T.; Diniz-Filho, J.A.F.; Götzenberger, L.; Hortal, J.; Ladle, R.J.; Lepš, J. On the need for phylogenetic’ corrections’ in functional trait-based approaches. Folia Geobot. 2015, 50, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Ives, A.R. The statistical need to include phylogeny in trait-based analyses of community composition. Methods Ecol. Evol. 2017, 8, 1192–1199. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Ives, A.R.; Waller, D.M. Can functional traits account for phylogenetic signal in community composition? New Phytol. 2017, 214, 607–618. [Google Scholar] [CrossRef] [Green Version]
- Horner-Devine, M.C.; Bohannan, B.J.M. Phylogenetic clustering and overdispersion in bacterial communities. Ecology 2006, 87, S100–S108. [Google Scholar] [CrossRef] [Green Version]
- Goberna, M.; Navarro-Cano, J.A.; Valiente-Banuet, A.; García, C.; Verdú, M. Abiotic stress tolerance and competition-related traits underlie phylogenetic clustering in soil bacterial communities. Ecol. Lett. 2014, 17, 1191–1201. [Google Scholar] [CrossRef]
- Ives, A.R.; Helmus, M.R. Generalized linear mixed models for phylogenetic analyses of community structure. Ecol. Monogr. 2011, 81, 511–525. [Google Scholar] [CrossRef]
- Ives, A.R. R2s for correlated data: Phylogenetic models, LMMs, and GLMMs. Syst. Biol. 2019, 68, 234–251. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.; Martínez, I.; Aragón, G.; Verdú, M. Phylogenetic and functional structure of lichen communities under contrasting environmental conditions. J. Veg. Sci. 2017, 28, 871–881. [Google Scholar] [CrossRef]
- McGill, B.J. Exploring predictions of abundance from body mass using hierarchical comparative approaches. Am. Nat. 2008, 172, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Ellis, C.J.; Eaton, S. Microclimates hold the key to spatial forest planning under climate change: Cyanolichens in temperate rainforest. Glob. Change Biol. 2021, 1–12. [Google Scholar] [CrossRef]
- Ellis, C.; Eaton, S. Climate change refugia: Landscape, stand and tree-scale microclimates in epiphyte community composition. Lichenologist 2021, 53, 135–148. [Google Scholar] [CrossRef]
- Levin, S.A. The problem of pattern and scale in ecology: The Robert, H. MacArthur award lecture. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- Odum, E.P.; Barrett, G.W. Fundamentals of Ecology; Saunders: Philadelphia, PA, USA, 1971; Volume 3. [Google Scholar]
- Pardow, A.; Hartard, B.; Lakatos, M. Morphological, photosynthetic and water relations traits underpin the contrasting success of two tropical lichen groups at the interior and edge of forest fragments. AoB Plants 2010, 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawkins, R. The Extended Phenotype; Oxford University Press: Oxford, UK, 1982. [Google Scholar]
- Cruz de Carvalho, R.; Varela, Z.; do Paço, T.A.; Branquinho, C. Selecting potential moss species for green roofs in the Mediterranean Basin. Urban. Sci. 2019, 3, 57. [Google Scholar] [CrossRef] [Green Version]
- Cruz de Carvalho, R.; Branquinho, C.; Marques da Silva, J. Physiological consequences of desiccation in the aquatic bryophyte Fontinalis antipyretica. Planta 2011, 234, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Branquinho, C.; Serrano, H.C.; Nunes, A.; Pinho, P.; Matos, P. Essential biodiversity change indicators for evaluating the effects of Anthropocene in ecosystems at a global scale. In From Assessing to Conserving Biodiversity; Casetta, E., Marques da Silva, J., Vecchi, D., Eds.; Springer: Cham, Germany, 2019; pp. 137–163. [Google Scholar]
- Matos, P.; Geiser, L.; Hardman, A.; Glavich, D.; Pinho, P.; Nunes, A.; Soares, A.M.V.M.; Branquinho, C. Tracking global change using lichen diversity: Towards a global-scale ecological indicator. Methods Ecol. Evol. 2017, 8, 788–798. [Google Scholar] [CrossRef] [Green Version]
- Giordani, P.; Incerti, G.; Rizzi, G.; Rellini, I.; Nimis, P.L.; Modenesi, P. Functional traits of cryptogams in Mediterranean ecosystems are driven by water, light and substrate interactions. J. Veg. Sci. 2014, 25, 778–792. [Google Scholar] [CrossRef]
- Porada, P.; Weber, B.; Elbert, W.; Pöschl, U.; Kleidon, A. Estimating global carbon uptake by lichens and bryophytes with a process-based model. Biogeosciences 2013, 10, 6989–7033. [Google Scholar] [CrossRef] [Green Version]
- Pinho, P.; Augusto, S.; Máguas, C.; Pereira, M.J.; Soares, A.; Branquinho, C. Impact of neighbourhood land-cover in epiphytic lichen diversity: Analysis of multiple factors working at different spatial scales. Environ. Pollut. 2008, 151, 414–422. [Google Scholar] [CrossRef]
- Hurtado, P.; Prieto, M.; Aragón, G.; Escudero, A.; Martínez, I. Critical predictors of functional, phylogenetic and taxonomic diversity are geographically structured in lichen epiphytic communities. J. Ecol. 2019, 107, 2303–2316. [Google Scholar] [CrossRef]
- Nascimbene, J.; Benesperi, R.; Brunialti, G.; Catalano, I.; Vedove, M.D.; Grillo, M.; Isocrono, D.; Matteucci, E.; Potenza, G.; Puntillo, D.; et al. Patterns and drivers of β-diversity and similarity of Lobaria pulmonaria communities in Italian forests. J. Ecol. 2013, 101, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Merinero, S.; Rubio-Salcedo, M.; Aragón, G.; Martínez, I. Environmental factors that drive the distribution and abundance of a threatened cyanolichen in Southern Europe: A multi-scale approach. Am. J. Bot. 2014, 101, 1876–1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werth, S.; Cheenacharoen, S.; Scheidegger, C. Propagule size is not a good predictor for regional population subdivision or fine-scale spatial structure in lichenized fungi. Fungal Biol. 2014, 118, 126–138. [Google Scholar] [CrossRef]
- Rubio-Salcedo, M.; Merinero, S.; Martínez, I. Tree species and microhabitat influence the population structure of the epiphytic lichen Lobaria pulmonaria. Fungal Ecol. 2015, 18, 1–9. [Google Scholar] [CrossRef]
- Benesperi, R.; Nascimbene, J.; Lazzaro, L.; Bianchi, E.; Tepsich, A.; Longinotti, S.; Giordani, P. Successful conservation of the endangered forest lichen Lobaria pulmonaria requires knowledge of fine-scale population structure. Fungal Ecol. 2018, 33, 65–71. [Google Scholar] [CrossRef]
- Príncipe, A.; Matos, P.; Sarris, D.; Gaiola, G.; do Rosário, L.; Correia, O.; Branquinho, C. In Mediterranean drylands microclimate affects more tree seedlings than adult trees. Ecol. Indic. 2019, 106, 105476. [Google Scholar] [CrossRef]
- Pinho, P.; Dias, T.; Cruz, C.; Tang, Y.S.; Sutton, M.A.; Martins-Loução, M.-A.; Máguas, C.; Branquinho, C. Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. J. Appl. Ecol. 2011, 48, 1107–1116. [Google Scholar] [CrossRef] [Green Version]
- Pinho, P.; Theobald, M.R.; Dias, T.; Tang, Y.S.; Cruz, C.; Martins-Loução, M.A.; Máguas, C.; Sutton, M.; Branquinho, C. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. Biogeosciences 2012, 9, 1205–1215. [Google Scholar] [CrossRef] [Green Version]
- Bowker, M.A.; Belnap, J.; Davidson, D.W.; Goldstein, H. Correlates of biological soil crust abundance across a continuum of spatial scales: Support for a hierarchical conceptual model. J. Appl. Ecol. 2006, 43, 152–163. [Google Scholar] [CrossRef]
- Giordani, P.; Rizzi, G.; Caselli, A.; Modenesi, P.; Malaspina, P.; Mariotti, M.G. Fire affects the functional diversity of epilithic lichen communities. Fungal Ecol. 2016, 20, 49–55. [Google Scholar] [CrossRef]
- Concostrina-Zubiri, L.; Huber-Sannwald, E.; Martínez, I.; Flores Flores, J.L.; Escudero, A. Biological soil crusts greatly contribute to small-scale soil heterogeneity along a grazing gradient. Soil Biol. Biochem. 2013, 64, 28–36. [Google Scholar] [CrossRef]
- Concostrina-Zubiri, L.; Pescador, D.S.; Martínez, I.; Escudero, A. Climate and small scale factors determine functional diversity shifts of biological soil crusts in Iberian drylands. Biodivers. Conserv. 2014, 23, 1757–1770. [Google Scholar] [CrossRef]
- Van Herk, C.M.; Aptroot, A.; van Dobben, H.F. Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 2002, 34, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Aptroot, A.; van Herk, C.M. Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environ. Pollut. 2007, 146, 293–298. [Google Scholar] [CrossRef]
- Matos, P. Development of Ecological Indicators of Climate Change Based on Lichen Functional Diversity. PhD Thesis, Universidade de Aveiro (Portugal), Averio, Portugal, 2016. [Google Scholar]
- Saniewski, M.; Wietrzyk-Pełka, P.; Zalewska, T.; Osyczka, P.; Węgrzyn, M.H. Impact of distance from the glacier on the content of 137Cs and 90Sr in the lichen Cetrariella delisei. Chemosphere 2020, 259, 127433. [Google Scholar] [CrossRef] [PubMed]
- Marini, L.; Nascimbene, J.; Nimis, P.L. Large-scale patterns of epiphytic lichen species richness: Photobiont-dependent response to climate and forest structure. Sci. Total Environ. 2011, 409, 4381–4386. [Google Scholar] [CrossRef]
- Giordani, P. Assessing the effects of forest management on epiphytic lichens in coppiced forests using different indicators. Plant. Biosyst.–Int. J. Deal. Asp. Plant. Biol. 2012, 1–10. [Google Scholar] [CrossRef]
- Giordani, P.; Malaspina, P.; Benesperi, R.; Incerti, G.; Nascimbene, J. Functional over-redundancy and vulnerability of lichen communities decouple across spatial scales and environmental severity. Sci. Total Environ. 2019, 666, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Reutimann, P.; Scheidegger, C. Importance of lichen secondary products in food choice of two oribatid mites (Acari) in an alpine meadow ecosystem. J. Chem. Ecol. 1987, 13, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Hesbacher, S.; Giez, I.; Embacher, G.; Fiedler, K.; Max, W.; Trawöger, A.; Türk, R.; Lange, O.L.; Proksch, P. Sequestration of lichen compounds by lichen-feeding members of the Arctiidae (Lepidoptera). J. Chem. Ecol. 1995, 21, 2079–2089. [Google Scholar] [CrossRef] [PubMed]
- Boch, S.; Fischer, M.; Prati, D. To eat or not to eat—relationship of lichen herbivory by snails with secondary compounds and field frequency of lichens. J. Plant. Ecol. 2015, 8, 642–650. [Google Scholar] [CrossRef] [Green Version]
- Lücking, R.; Bernecker-Lücking, A. Lichen feeders and lichenicolous fungi: Do they affect dispersal and diversity in tropical foliicolous lichen communities. Ecotropica 2000, 6, 23–41. [Google Scholar]
- Asplund, J.; Gauslaa, Y. Mollusc grazing limits growth and early development of the old forest lichen Lobaria pulmonaria in broadleaved deciduous forests. Oecologia 2008, 155, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Vatne, S.; Solhøy, T.; Asplund, J.; Gauslaa, Y. Grazing damage in the old forest lichen Lobaria pulmonaria increases with gastropod abundance in deciduous forests. Lichenologist 2010, 42, 615–619. [Google Scholar] [CrossRef]
- Boch, S.; Prati, D.; Werth, S.; Rüetschi, J.; Fischer, M. Lichen endozoochory by snails. PLoS ONE 2011, 6, 18770. [Google Scholar] [CrossRef] [Green Version]
- Asplund, J.; Larsson, P.; Vatne, S.; Gauslaa, Y. Gastropod grazing shapes the vertical distribution of epiphytic lichens in forest canopies. J. Ecol. 2010, 98, 218–225. [Google Scholar] [CrossRef]
- Prentice, I.C. Non-metric ordination methods in ecology. J. Ecol. 1977, 65, 85–94. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Miller, P.J.; Lubke, G.H.; McArtor, D.B.; Bergeman, C.S. Finding structure in data using multivariate tree boosting. Psychol. Methods 2016, 21, 583–602. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.J. Boosted Decision Trees for Multivariate, Hierarchically Clustered, and Longitudinal Data; University of Notre Dame: Notre Dame, IN, USA, 2017. [Google Scholar]
- Nelson, P.R.; McCune, B.; Swanson, D.K. Lichen traits and species as indicators of vegetation and environment. Bryologist 2015, 118, 252. [Google Scholar] [CrossRef]
- Nelson, P.R.; McCune, B.; Roland, C.; Stehn, S. Non-parametric methods reveal non-linear functional trait variation of lichens along environmental and fire age gradients. J. Veg. Sci. 2015, 26, 848–865. [Google Scholar] [CrossRef]
- Dray, S.; Legendre, P. Testing the species traits–environment relationships: The fourth-corner problem revisited. Ecology 2008, 89, 3400–3412. [Google Scholar] [CrossRef]
- Dray, S.; Choler, P.; Dolédec, S.; Peres-Neto, P.R.; Thuiller, W.; Pavoine, S.; ter Braak, C.J.F. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 2014, 95, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ter Braak, C.J.F. New robust weighted averaging- and model-based methods for assessing trait–environment relationships. Methods Ecol. Evol. 2019, 10, 1962–1971. [Google Scholar] [CrossRef]
- Braga, J.; Ter Braak, C.J.F.; Thuiller, W.; Dray, S. Integrating spatial and phylogenetic information in the fourth-corner analysis to test trait–environment relationships. Ecology 2018, 99, 2667–2674. [Google Scholar] [CrossRef]
- Eriksson, A.; Gauslaa, Y.; Palmqvist, K.; Ekström, M.; Esseen, P.-A. Morphology drives water storage traits in the globally widespread lichen genus Usnea. Fungal Ecol. 2018, 35, 51–61. [Google Scholar] [CrossRef]
- Casano, L.M.; del Campo, E.M.; García-Breijo, F.J.; Reig-Armiñana, J.; Gasulla, F.; del Hoyo, A.; Guéra, A.; Barreno, E. Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus Competition? Environ. Microbiol. 2011, 13, 806–818. [Google Scholar] [CrossRef]
- Eaton, S.; Zúñiga, C.; Czyzewski, J.; Ellis, C.; Genney, D.R.; Haydon, D.; Mirzai, N.; Yahr, R. A method for the direct detection of airborne dispersal in lichens. Mol. Ecol. Resour. 2018, 18, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, E.; Benesperi, R.; Colzi, I.; Coppi, A.; Lazzaro, L.; Paoli, L.; Papini, A.; Pignattelli, S.; Tani, C.; Vignolini, P.; et al. The multi-purpose role of hairiness in the lichens of coastal environments: Insights from Seirophora villosa (Ach.) Frödén. Plant. Physiol. Biochem. 2019, 141, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.; Martínez, I.; Aragón, G.; Gueidan, C.; Lutzoni, F. Molecular phylogeny of Heteroplacidium, Placidium, and related catapyrenioid genera (Verrucariaceae, lichen-forming Ascomycota). Am. J. Bot. 2012, 99, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Thüs, H. Taxonomie, Verbreitung und Ökologie silicoler-Süßwasserflechten im außeralpinen Mitteleuropa. Mycotaxon 2003, 87, 66. [Google Scholar]
- Esseen, P.-A.; Olsson, T.; Coxson, D.; Gauslaa, Y. Morphology influences water storage in hair lichens from boreal forest canopies. Fungal Ecol. 2015, 18, 26–35. [Google Scholar] [CrossRef]
- Bianchi, E.; Paoli, L.; Colzi, I.; Coppi, A.; Gonnelli, C.; Lazzaro, L.; Loppi, S.; Papini, A.; Vannini, A.; Benesperi, R. High-light stress in wet and dry thalli of the endangered Mediterranean lichen Seirophora villosa (Ach.) Frödén: Does size matter? Mycol. Prog. 2019, 18, 463–470. [Google Scholar] [CrossRef]
- Gauslaa, Y.; Solhaug, K.A. Photoinhibition in lichens depends on cortical characteristics and hydration. Lichenologist 2004, 36, 133–143. [Google Scholar] [CrossRef]
- Olivier-Jimenez, D.; Chollet-Krugler, M.; Rondeau, D.; Beniddir, M.A.; Ferron, S.; Delhaye, T.; Allard, P.-M.; Wolfender, J.-L.; Sipman, H.J.M.; Lücking, R.; et al. A database of high-resolution MS/MS spectra for lichen metabolites. Sci. Data 2019, 6, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.T.T.; Chollet-Krugler, M.; Dévéhat, F.L.-L.; Rouaud, I.; Boustie, J. Mycosporine-like compounds in chlorolichens: Isolation from Dermatocarpon luridum and Dermatocarpon miniatum, and their photoprotective properties. Planta Medica Lett. 2015, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Lang, S.I.; Cornelissen, J.H.C.; Klahn, T.; Logtestijn, R.S.P.V.; Broekman, R.; Schweikert, W.; Aerts, R. An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. J. Ecol. 2009, 97, 886–900. [Google Scholar] [CrossRef]
- Dı́az, S.; Symstad, A.J.; Stuart Chapin, F.; Wardle, D.A.; Huenneke, L.F. Functional diversity revealed by removal experiments. Trends Ecol. Evol. 2003, 18, 140–146. [Google Scholar] [CrossRef]
- Fanin, N.; Kardol, P.; Farrell, M.; Kempel, A.; Ciobanu, M.; Nilsson, M.; Gundale, M.J.; Wardle, D.A. Effects of plant functional group removal on structure and function of soil communities across contrasting ecosystems. Ecol. Lett. 2019, 22, 1095–1103. [Google Scholar] [CrossRef]
- Wardle, D.A.; Gundale, M.J.; Kardol, P.; Nilsson, M.; Fanin, N. Impact of plant functional group and species removals on soil and plant nitrogen and phosphorus across a retrogressive chronosequence. J. Ecol. 2020, 108, 561–573. [Google Scholar] [CrossRef]
- Mensens, C.; De Laender, F.; Janssen, C.R.; Sabbe, K.; De Troch, M. Different response-effect trait relationships underlie contrasting responses to two chemical stressors. J. Ecol. 2017, 105, 1598–1609. [Google Scholar] [CrossRef] [Green Version]
- Zambare, V.P.; Christopher, L.P. Biopharmaceutical potential of lichens. Pharm. Biol. 2012, 50, 778–798. [Google Scholar] [CrossRef]
- Devkota, S.; Chaudhary, R.P.; Werth, S.; Scheidegger, C. Indigenous knowledge and use of lichens by the lichenophilic communities of the Nepal Himalaya. J. Ethnobiol. Ethnomedicine 2017, 13, 15. [Google Scholar] [CrossRef] [Green Version]
Trait Classification | Explanation |
---|---|
Response trait | A phenotypic attribute that links to fitness differences (rates of establishment, survival, reproduction), affecting the lichen response to the environment |
Effect trait | A phenotypic attribute that affects the lichen role in the ecosystem, and ecosystem functioning and services |
Soft trait | An easily measured (often categorical) trait; such a trait may nevertheless be cost effective and provide high explanatory power |
Hard trait | A hard to measure (often quantitative trait); these terms (soft and hard) are subjective and used differently across the ecological literature, e.g., a hard trait may sometimes be considered analogous to a proximal trait |
Qualitative trait | A trait measured on a nominal or ordinal scale |
Quantitative trait | A trait measured on an interval or ratio scale |
Proximal trait | Borrowing from the language of niche theory, a trait that captures, relatively directly, the lichen physiological response or ecosystem effect |
Distal trait | In contrast, a summary trait that is less directly related to the lichen environmental response or ecosystem effect |
Compound trait | A trait (often distal) that integrates numerous proximal and direct effects, into a broader summary response to the environment or ecosystem effect |
Intraspecific trait variability | The concept that variability in a trait—plasticity—can be a trait itself, creating potential for acclimation and affecting—through response/effect—the lichen niche |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellis, C.J.; Asplund, J.; Benesperi, R.; Branquinho, C.; Di Nuzzo, L.; Hurtado, P.; Martínez, I.; Matos, P.; Nascimbene, J.; Pinho, P.; et al. Functional Traits in Lichen Ecology: A Review of Challenge and Opportunity. Microorganisms 2021, 9, 766. https://doi.org/10.3390/microorganisms9040766
Ellis CJ, Asplund J, Benesperi R, Branquinho C, Di Nuzzo L, Hurtado P, Martínez I, Matos P, Nascimbene J, Pinho P, et al. Functional Traits in Lichen Ecology: A Review of Challenge and Opportunity. Microorganisms. 2021; 9(4):766. https://doi.org/10.3390/microorganisms9040766
Chicago/Turabian StyleEllis, Christopher J., Johan Asplund, Renato Benesperi, Cristina Branquinho, Luca Di Nuzzo, Pilar Hurtado, Isabel Martínez, Paula Matos, Juri Nascimbene, Pedro Pinho, and et al. 2021. "Functional Traits in Lichen Ecology: A Review of Challenge and Opportunity" Microorganisms 9, no. 4: 766. https://doi.org/10.3390/microorganisms9040766
APA StyleEllis, C. J., Asplund, J., Benesperi, R., Branquinho, C., Di Nuzzo, L., Hurtado, P., Martínez, I., Matos, P., Nascimbene, J., Pinho, P., Prieto, M., Rocha, B., Rodríguez-Arribas, C., Thüs, H., & Giordani, P. (2021). Functional Traits in Lichen Ecology: A Review of Challenge and Opportunity. Microorganisms, 9(4), 766. https://doi.org/10.3390/microorganisms9040766