Regionally Varying Habitat Relationships in Lichens: The Concept and Evidence with an Emphasis on North-Temperate Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Key Concepts
2.2. The Evidence Considered
2.2.1. Local Selection Pressures
2.2.2. Among-Population Variation in Habitat Preference
2.2.3. Parallel Shifts in Life-History Traits and Local Habitat Use
2.3. Methodological and Interpretational Problems
3. Causal Mechanisms: Ecophysiology and Demographic Processes
3.1. Microclimate Tolerance Based Responses
3.2. Microhabitat Shifts for Ecological Reasons
3.2.1. Climatic Gradients
3.2.2. Environmental Chemical Gradients
3.2.3. Biological Interaction Gradients
3.3. Broader Range of Habitat Types in Favorable Macroclimates
3.4. Spatial Patterns in Limiting Factors
3.5. Demographic Processes
4. Evolutionary Processes Involved in Regional Habitat Use
4.1. Genetic and Phylogeographic Background
4.2. Evolutionary Consequences
5. Conservation Implications
6. Conclusions
- It has been long observed that some lichen-forming fungi inhabit regionally distinct habitats, which cannot be explained by available habitat types or substrates alone. However, no theoretical framework has been developed to capture this phenomenon despite its apparent links to the basic lichen biology and to biodiversity conservation. We organized these observations around habitat shifts at two scales (macro- and microhabitat), their likely causal mechanisms, and possible evolutionary consequences.
- We report that consistent intraspecific habitat patterns can be usually explained with regional physiological challenges (including physiological trade-offs) or, in favorable environments, coping with competition or predation. Replicated evidence exists for three patterns: (a) regional limiting factors excluding a species from a part of its microhabitat range in suboptimal areas; (b) microhabitat shifts buffering regionally adverse macroclimates; (c) substrate suitability changed by the chemical environment, notably air pollution. There is also a role for switching algal partners in different regions and habitats, but no consistent patterns emerged based on the current evidence.
- The processes creating and maintaining regional lichen-habitat relationships are generally known (adaptive and plasticity-related responses; demographic processes and events), but not explicitly described. Thus, lichen habitat responses in the future cannot be predicted, particularly given the likely ecosystem changes toward unprecedented states due to anthropogenic pressures. For example, regional microrefugia to buffer changing climate appear to be often assumed, but the actual evidence is weak.
- To deal with the uncertainty, effective lichen conservation might integrate a precautionary approach to ecosystem conservation, restoration, and management. There are good reasons of lichens becoming a part of ecosystem heterogeneity, integrity, and resilience considerations.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Randin, C.F.; Dirnböck, T.; Dullinger, S.; Zimmermann, N.E.; Zappa, M.; Guisan, A. Are niche-based species distribution models transferable in space? J. Biogeogr. 2006, 33, 1689–1703. [Google Scholar] [CrossRef]
- Austin, M. Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model. 2007, 200, 1–19. [Google Scholar] [CrossRef]
- Oliver, T.; Hill, J.K.; Thomas, C.D.; Brereton, T.; Roy, D.B. Changes in habitat specificity of species at their climatic range boundaries. Ecol. Lett. 2009, 12, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, F.C.; Segurado, P.; Urbanič, G.; Cambra, J.; Chauvin, C.; Ciadamidaro, S.; Dörflinger, G.; Ferreira, J.; Germ, M.; Manolaki, P.; et al. Comparability of river quality assessment using macrophytes: A multi-step procedure to overcome biogeographical differences. Sci. Total Environ. 2014, 476–477, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Yates, K.L.; Bouchet, P.J.; Caley, M.J.; Mengersen, K.; Randin, C.F.; Parnell, S.; Fielding, A.H.; Bamford, A.J.; Ban, S.; Barbosa, A.M.; et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 2018, 33, 790–802. [Google Scholar] [CrossRef] [Green Version]
- Hedwall, P.O.; Brunet, J.; Diekmann, M. With Ellenberg indicator values towards the north: Does the indicative power decrease with distance from Central Europe? J. Biogeogr. 2019, 46, 1041–1053. [Google Scholar] [CrossRef]
- Diekmann, M. Species indicator values as an important tool in applied plant ecology—A review. Basic Appl. Ecol. 2003, 4, 493–506. [Google Scholar] [CrossRef]
- Saatkamp, A.; Falzon, N.; Argagnon, O.; Noble, V.; Dutoit, T.; Meineri, E. Calibrating ecological indicator values and niche width for a Mediterranean flora. Plant Biosyst. 2022, in press. [Google Scholar] [CrossRef]
- Sax, D.F.; Early, R.; Bellemare, J. Niche syndromes, species extinction risks, and management under climate change. Trends Ecol. Evol. 2013, 28, 517–523. [Google Scholar] [CrossRef] [Green Version]
- Kendrick, I. Critical habitat designations under the Endangered Species Act in an era of climate crisis. Columbia Law Rev. 2021, 121, 81–118. [Google Scholar]
- Lauriault, P.; Wiersma, Y.F. Identifying important characteristics for critical habitat of boreal felt lichen (Erioderma pedicellatum) in Newfoundland, Canada. Bryologist 2020, 123, 412–420. [Google Scholar] [CrossRef]
- Dormann, C.F.; Schymanski, S.J.; Cabral, J.; Chuine, I.; Graham, C.; Hartig, F.; Kearney, M.; Morin, X.; Römermann, C.; Schröder, B.; et al. Correlation and process in species distribution models: Bridging a dichotomy. J. Biogeogr. 2012, 39, 2119–2131. [Google Scholar] [CrossRef]
- Alvarado-Serrano, D.F.; Knowles, L.L. Ecological niche models in phylogeographic studies: Applications, advances and precautions. Mol. Ecol. Resour. 2014, 14, 233–248. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Bertness, M.D. Extreme stresses, niches, and positive species interactions along stress gradients. Ecology 2014, 95, 1437–1443. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, J.; Hattab, T.; Pierre, G. Climatic microrefugia under anthropogenic climate change: Implications for species redistribution. Ecography 2017, 40, 253–266. [Google Scholar] [CrossRef]
- Lücking, R.; Leavitt, S.D.; Hawksworth, D.L. Species in lichen-forming fungi: Balancing between conceptual and practical considerations, and between phenotype and phylogenomics. Fungal Divers. 2021, 109, 99–154. [Google Scholar] [CrossRef]
- Feuerer, T.; Hawksworth, D.L. Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodivers. Conserv. 2007, 16, 85–98. [Google Scholar] [CrossRef]
- Kershaw, K.A. Physiological Ecology of Lichens; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Ellis, C.J. Climate change, bioclimatic models and the risk to lichen diversity. Diversity 2019, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Vančurová, L.; Malíček, J.; Steinová, J.; Škaloud, P. Choosing the right life partner: Ecological drivers of lichen symbiosis. Front. Microbiol. 2021, 12, 769304. [Google Scholar] [CrossRef] [PubMed]
- Gladieux, P.; Ropars, J.; Badouin, H.; Branca, A.; Aguileta, G.; De Vienne, D.M.; Rodríguez De La Vega, R.C.; Branco, S.; Giraud, T. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol. Ecol. 2014, 23, 753–773. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.L.; McKenzie, S.K.; Sleith, R.S.; Alter, S.E. First genome-wide analysis of the endangered, endemic lichen Cetradonia linearis reveals isolation by distance and strong population structure. Am. J. Bot. 2018, 105, 1556–1567. [Google Scholar] [CrossRef] [PubMed]
- Jüriado, I.; Kaasalainen, U.; Rikkinen, J. Specialist taxa restricted to threatened habitats contribute significantly to the regional diversity of Peltigera (Lecanoromycetes, Ascomycota) in Estonia. Fungal Ecol. 2017, 30, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Lumbsch, H.T.; Leavitt, S.D. Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Divers. 2011, 50, 59–72. [Google Scholar] [CrossRef]
- Lücking, R.; Hodkinson, B.P.; Leavitt, S.D. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota–Approaching one thousand genera. Bryologist 2017, 119, 361–416. [Google Scholar] [CrossRef]
- Grime, J.P. Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd ed.; John Wiley & Sons: Chichester, UK, 2001. [Google Scholar]
- Nash, T.H., III (Ed.) Lichen Biology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Spribille, T.; Resl, P.; Stanton, D.E.; Tagirdzhanova, G. Evolutionary biology of lichen symbioses. New Phytol. 2022, 234, 1566–1582. [Google Scholar] [CrossRef] [PubMed]
- Favero-Longo, S.E.; Piervittori, R. Lichen-plant interactions. J. Plant Interact. 2010, 5, 163–177. [Google Scholar] [CrossRef]
- Scheidegger, C.; Werth, S. Conservation strategies for lichens: Insights from population biology. Fungal Biol. Rev. 2009, 23, 55–66. [Google Scholar] [CrossRef]
- Hauck, M.; Wirth, V. Preference of lichens for shady habitats is correlated with intolerance to high nitrogen levels. Lichenologist 2010, 42, 475–484. [Google Scholar] [CrossRef]
- Resl, P.; Fernández-Mendoza, F.; Mayrhofer, H.; Spribille, T. The evolution of fungal substrate specificity in a widespread group of crustose lichens. Proc. R. Soc. B 2018, 285, 20180640. [Google Scholar] [CrossRef] [Green Version]
- Nosil, P. Ecological Speciation; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- James, P.W.; Hawksworth, D.L.; Rose, F. Lichen communities in the British Isles: A preliminary conspectus. In Lichen Ecology; Seaward, M.R.D., Ed.; Academic Press: London, UK; New York, NY, USA; San Francisco, CA, USA, 1977; pp. 295–413. [Google Scholar]
- Areskoug, V.; Thor, G. Distribution, status and ecology of the lichen Cyphelium notarisii in Sweden. Ann. Bot. Fenn. 2005, 42, 317–326. [Google Scholar]
- Svensson, M.; Johansson, P.; Thor, G. Lichens of wooden barns and Pinus sylvestris snags in Dalarna, Sweden. Ann. Bot. Fenn. 2005, 42, 351–363. [Google Scholar]
- Sparrius, L.B.; Aptroot, A.; Van Herk, K. Diversity and ecology of lichens on churches in the Netherlands. Nova Hedwigia 2007, 85, 299–316. [Google Scholar] [CrossRef]
- Lõhmus, A.; Lõhmus, P. Old-forest species: The importance of specific substrata vs. stand continuity in the case of calicioid fungi. Silva Fennica 2011, 45, 1015–1039. [Google Scholar] [CrossRef] [Green Version]
- Whittet, R.; Ellis, C.J. Critical tests for lichen indicators of woodland ecological continuity. Biol. Conserv. 2013, 168, 19–23. [Google Scholar] [CrossRef]
- Wirth, V. Zeigerwerte von Flechten. Scr. Geobot. 1992, 18, 215–237. [Google Scholar]
- Wirth, V. Ökologishe Zeigerwerte von Flechten—Erweiterte und aktualisierte Fassung. Herzogia 2010, 23, 229–248. [Google Scholar] [CrossRef]
- Nimis, P.L.; Martellos, S. Testing the predictivity of ecological indicator values. A comparison of real and ‘virtual’ relevés of lichen vegetation. Plant Ecol. 2001, 157, 165–172. [Google Scholar] [CrossRef]
- Fabiszewski, J.; Szczepanska, K. Ecological indicator values of some lichen species noted in Poland. Acta Soc. Bot. Pol. 2010, 79, 305–313. [Google Scholar] [CrossRef]
- Dingová-Košuthová, A.; Šibík, J. Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians. Ecol. Indic. 2013, 34, 246–259. [Google Scholar] [CrossRef]
- Sparrius, L.B.; Aptroot, A.; van Herk, C.M. Ecological indicator values for lichens and a comparison with bryophytes and vascular plants. Buxbaumiella 2015, 104, 18–24. [Google Scholar]
- Conti, M.E.; Cecchetti, G. Biological monitoring: Lichens as bioindicators of air pollution assessment—A review. Environ. Pollut. 2001, 114, 471–492. [Google Scholar] [CrossRef]
- Giordani, P.; Brunialti, G.; Frati, L.; Incerti, G.; Ianesch, L.; Vallone, E.; Bacaro, G.; Maccherini, S. Spatial scales of variation in lichens: Implications for sampling design in biomonitoring surveys. Environ. Monit. Assess. 2013, 185, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Coppins, A.M.; Coppins, B.J. Indices of Ecological Continuity for Woodland Epiphytic Lichen Habitats in the British Isles; British Lichen Society: London, UK, 2002. [Google Scholar]
- Mallen-Cooper, M.; Rodríguez-Caballero, E.; Eldridge, D.J.; Weber, B.; Büdel, B.; Höhne, H.; Cornwell, W.K. Towards an understanding of future range shifts in lichens and mosses under climate change. J. Biogeogr 2023, 50, 406–417. [Google Scholar] [CrossRef]
- Barkman, J.J. Phytosociology and Ecology of Cryptogamic Epiphytes; Van Gorcum & Comp.: Assen, The Netherlands, 1958. [Google Scholar]
- Brodo, I.M. Substrate ecology. In The Lichens; Ahmadjian, V., Hale, M.E., Eds.; Academic Press: New York, NY, USA, 1973; pp. 401–441. [Google Scholar]
- Kappen, L. Ecophysiological relationships in different climatic regions. In CRC Handbook of Lichenology, Vol. II; Galun, M., Ed.; CRC Press: Boca Raton, FL, USA, 1988; pp. 37–100. [Google Scholar]
- Ellis, C.J. Lichen epiphyte diversity: A species, community and trait-based review. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 131–152. [Google Scholar] [CrossRef]
- Hall, L.S.; Krausman, P.R.; Morrison, M.L. The habitat concept and a plea for standard terminology. Wildl. Soc. Bull. 1997, 25, 173–182. [Google Scholar]
- Hutchinson, G.E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 1957, 22, 415–427. [Google Scholar] [CrossRef]
- Hanski, I. Dynamics of regional distribution: The core and satellite species hypothesis. Oikos 1982, 38, 210–221. [Google Scholar] [CrossRef]
- Fedrowitz, K.; Kuusinen, M.; Snäll, T. Metapopulation dynamics and future persistence of epiphytic cyanolichens in a European boreal forest ecosystem. J. Appl. Ecol. 2012, 49, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Svensson, M.; Caruso, A.; Yahr, R.; Ellis, C.; Thor, G.; Snäll, T. Combined observational and experimental data provide limited support for facilitation in lichens. Oikos 2016, 125, 278–283. [Google Scholar] [CrossRef]
- Autumn, K.; Barcenas-Pena, A.; Kish-Levine, S.; Huang, J.P.; Lumbsch, H.T. Repeated colonization between arid and seasonal wet habitats, frequent transition among substrate preferences, and chemical diversity in Western Australian Xanthoparmelia lichens. Front. Ecol. Evol. 2020, 8, 129. [Google Scholar] [CrossRef]
- Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. Dictionary of the Fungi, 10th ed.; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Wedin, M.; Döring, H.; Gilenstam, G. Saprotrophy and lichenization as options for the same fungal species on different substrata: Environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol. 2004, 164, 459–465. [Google Scholar] [CrossRef]
- Palmqvist, K. Carbon economy in lichens. New Phytol. 2000, 148, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Lawrey, J.D.; Diederich, P. Lichenicolous fungi: Interactions, evolution, and biodiversity. Bryologist 2003, 106, 81–120. [Google Scholar] [CrossRef]
- Molnár, K.; Farkas, E. Current results on biological activities of lichen secondary metabolites: A review. Z. Naturforsch. C 2010, 65, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Calcott, M.J.; Ackerley, D.F.; Knight, A.; Keyzers, R.A.; Owen, J.G. Secondary metabolism in the lichen symbiosis. Chem. Soc. Rev. 2018, 47, 1730–1760. [Google Scholar] [CrossRef] [PubMed]
- Hawksworth, D.L. Microbial collections as a tool in biodiversity and biosystematic research. In Culture Collections to Improve The Quality of Life; Samson, R.A., Stalpers, J.A., van der Mei, D., Stouthamer, A.H., Eds.; Centraalbureau voor Schimmelcultures: Baarn, The Netherlands, 1996; pp. 26–35. [Google Scholar]
- Allen, J.L.; Lendemer, J.C. A call to reconceptualize lichen symbioses. Trends Ecol. Evol. 2022, 37, 582–589. [Google Scholar] [CrossRef]
- Aptroot, A.; Zielman, R. Lobaria amplissima and other rare lichens and bryophytes on lava rock outcrops in the Eifel (Rheinland-Pfalz, Germany). Herzogia 2004, 17, 87–93. [Google Scholar]
- Kuusinen, M. Importance of spruce swamp-forests for epiphyte diversity and flora on Picea abies in southern and middle boreal Finland. Ecography 1996, 19, 41–51. [Google Scholar] [CrossRef]
- Hill, D.J. Asymmetric co-evolution in the lichen symbiosis caused by a limited capacity for adaption in the photobiont. Bot. Rev. 2009, 75, 326–338. [Google Scholar] [CrossRef]
- McCune, B.; Rosentreter, R.; Ponzetti, J.M.; Shaw, D.C. Epiphyte habitats in an old conifer forest in Western Washington, U.S.A. Bryologist 2000, 103, 417–427. [Google Scholar] [CrossRef]
- McCune, B.; Huntchinson, J.; Berryman, S. Concentration of rare epiphytic lichens along large streams in a mountainous watershed in Oregon, U.S.A. Bryologist 2002, 105, 439–450. [Google Scholar] [CrossRef]
- Martínez, I.; Flores, T.; Otálora, M.A.G.; Belinchón, R.; Prieto, M.; Aragón, G.; Escudero, A. Multiple-scale environmental modulation of lichen reproduction. Fungal Biol. 2012, 116, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- Hestmark, G. Sex, size, competition and escape—Strategies of reproduction and dispersal in Lasallia pustulata (Umbilicariaceae, Ascomycetes). Oecologia 1992, 92, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Seymour, F.A.; Crittenden, P.D.; Dyer, P.S. Sex in the extremes: Lichen-forming fungi. Mycologist 2005, 19, 51–58. [Google Scholar] [CrossRef]
- Singh, G.; Dal Grande, F.; Cornejo, C.; Schmitt, I.; Scheidegger, C. Genetic basis of self-incompatibility in the lichen-forming fungus Lobaria pulmonaria and skewed frequency distribution of mating-type idiomorphs: Implications for conservation. PLoS ONE 2012, 7, e51402. [Google Scholar] [CrossRef] [Green Version]
- Pringle, A.; Chen, D.; Taylor, J.W. Sexual fecundity is correlated to size in the lichenized fungus Xanthoparmelia cumberlandia. Bryologist 2003, 106, 221–225. [Google Scholar] [CrossRef]
- Eaton, S.; Ellis, C.J. High demographic rates of the model epiphyte Lobaria pulmonaria in an oceanic hazelwood (western Scotland). Fungal Ecol. 2014, 11, 60–70. [Google Scholar] [CrossRef]
- Merinero, S.; Hilmo, O.; Gauslaa, Y. Size is a main driver for hydration traits in cyano- and cephalolichens of boreal rainforest canopies. Fungal Ecol. 2014, 7, 59–66. [Google Scholar] [CrossRef]
- Pastore, A.I.; Prather, C.M.; Gornish, E.S.; Ryan, W.H.; Ellis, R.D.; Miller, T.E. Testing the competition–colonization trade-off with a 32-year study of a saxicolous lichen community. Ecology 2014, 95, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, R.A. The influence of environmental factors on the growth of lichens in the field. In Recent Advances in Lichenology: Modern Methods and Approaches in Biomonitoring and Bioprospection; Upreti, D.K., Divakar, P.K., Shukla, V., Bajpai, R., Eds.; Springer: New Delhi, India, 2014; Volume 1, pp. 1–18. [Google Scholar] [CrossRef]
- Armstrong, R.A.; Welch, A.R. Competition in lichen communities. Symbiosis 2007, 43, 1–12. [Google Scholar]
- Rogers, R.W. Ecological strategies of lichens. Lichenologist 1990, 22, 149–162. [Google Scholar] [CrossRef]
- Mallen-Cooper, M.; Cornwell, W.K. A systematic review of transplant experiments in lichens and bryophytes. Bryologist 2020, 123, 444–454. [Google Scholar] [CrossRef]
- Fournier-Level, A.; Korte, A.; Cooper, M.D.; Nordborg, M.; Schmitt, J.; Wilczek, A.M. A map of local adaptation in Arabidopsis thaliana. Science 2011, 334, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Antoine, M.E.; McCune, B. Contrasting fundamental and realized ecological niches with epiphytic lichen transplants in an old-growth Pseudotsuga forest. Bryologist 2004, 107, 163–172. [Google Scholar] [CrossRef]
- Asplund, J.; Gauslaa, Y. Mollusc grazing limits growth and early development of the old forest lichen Lobaria pulmonaria in broadleaved deciduous forests. Oecologia 2008, 155, 93–99. [Google Scholar] [CrossRef]
- Vatne, S.; Solhøy, T.; Asplund, J.; Gauslaa, Y. Grazing damage in the old forest lichen Lobaria pulmonaria increases with gastropod abundance in deciduous forests. Lichenologist 2010, 42, 615–619. [Google Scholar] [CrossRef]
- Asplund, J.; Strandin, O.V.; Gauslaa, Y. Gastropod grazing of epiphytic lichen-dominated communities depends on tree species. Basic Appl. Ecol. 2018, 32, 96–102. [Google Scholar] [CrossRef]
- Gauslaa, Y.; Johlander, S.; Nordén, B. Gastropod grazing may prevent reintroduction of declining N-fixing epiphytic lichens in broadleaved deciduous forests. Fungal Ecol. 2018, 35, 62–69. [Google Scholar] [CrossRef]
- Caruso, A.; Thor, G.; Snäll, T. Colonization-extinction dynamics of epixylic lichens along a decay gradient in a dynamic landscape. Oikos 2010, 119, 1947–1953. [Google Scholar] [CrossRef]
- Hedenås, H.; Lundin, K.; Ericson, L. Interaction between a lichen and a fungal parasite in a successional community: Implications for conservation. J. Veg. Sci. 2006, 17, 207–216. [Google Scholar] [CrossRef]
- Asplund, J.; Larsson, P.; Vatne, S.; Gauslaa, Y. Gastropod grazing shapes the vertical distribution of epiphytic lichens in forest canopies. J. Ecol. 2010, 98, 218–225. [Google Scholar] [CrossRef]
- Greiser, C.; Ehrlén, J.; Luoto, M.; Meineri, E.; Merinero, S.; Willman, B.; Hylander, K. Warm range margin of boreal bryophytes and lichens not directly limited by temperatures. J. Ecol. 2021, 109, 3724–3736. [Google Scholar] [CrossRef]
- Goward, T.; Arsenault, A. Cyanolichens and conifers: Implications for global conservation. For. Snow Landsc. Res. 2000, 75, 303–318. [Google Scholar]
- Marmor, L.; Tõrra, T.; Leppik, E.; Saag, L.; Randlane, T. Epiphytic lichen diversity in Estonian and Fennoscandian old coniferous forests. Folia Cryptog. Est. 2011, 48, 31–43. [Google Scholar]
- Tønsberg, T. The sorediate and isidiate, corticolous, crustose lichens in Norway. Sommerfeltia 1992, 14, 1–331. [Google Scholar] [CrossRef]
- Spribille, T.; Thor, G.; Bunnell, F.L.; Goward, T.; Björk, C.R. Lichens on dead wood: Species-substrate relationships in th epiphytic lichen floras of the Pacific Northwest and Fennoscandia. Ecography 2008, 31, 741–750. [Google Scholar] [CrossRef]
- Paukov, A.G. The lichen flora of serpentine outcrops in the Middle Urals of Russia. Northeast. Nat. 2009, 16, 341–350. [Google Scholar] [CrossRef]
- Gauslaa, Y. Rain, dew, and humid air as drivers of morphology, function and spatial distribution in epiphytic lichens. Lichenologist 2014, 46, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Aptroot, A. Global ecological patterns of nitrophytic lichens. In Lichens in a Changing Pollution Environment; Lambley, P.W., Wolseley, P.A., Eds.; English Nature: Peterborough, UK, 2004; pp. 71–75. [Google Scholar]
- Thüs, H.; Schultz, M. Freshwater Flora of Central Europe, Vol. 21/1: Fungi. 1st Part: Lichens; Spektrum Akademischer Verlag: Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Vondrák, J.; Liška, J. Changes in distribution and substrate preferences of selected threatened lichens in the Czech Republic. Biologia 2010, 65, 595–602. [Google Scholar] [CrossRef]
- Goward, T. Notes on oldgrowth-dependent epiphytic macrolichens in inland British Columbia, Canada. Acta Bot. Fennica 1994, 150, 31–38. [Google Scholar]
- Goward, T. Nephroma occultum and the maintenance of lichen diversity in British Columbia. Mitt. Eidgenöss. Forsch. Wald Schnee Landsch. 1995, 70, 93–101. [Google Scholar]
- Peterson, E.B.; McCune, B. Diversity and succession of epiphytic macrolichen communities in low-elevation managed conifer forests in western Oregon. J. Veg. Sci. 2001, 12, 511–524. [Google Scholar] [CrossRef]
- Nitare, J. (Ed.) Signalarter—Indikatorer på Skyddsvärd skog: Flora över Kryptogamer; Skogsstyrelsens Förlag: Jönköping, Sweden, 2000. [Google Scholar]
- Brodo, I.M.; Sharnoff, S.D.; Sharnoff, S. Lichens of North America; Yale University Press: New Haven, CT, USA; London, UK, 2001. [Google Scholar]
- Ahti, T.; Stenroos, S.; Moberg, R. (Eds.) Cladoniaceae. Nordic Lichen Flora Vol. 5; Museum of Evolution, Uppsala University: Uppsala, Sweden, 2013. [Google Scholar]
- Rosentreter, R. Vagrant lichens in North America. Bryologist 1993, 46, 333–338. [Google Scholar] [CrossRef]
- Pérez-Ortega, S.; Fernández-Mendoza, F.; Raggio, J.; Vivas, M.; Ascaso, C.; Sancho, L.G.; Printzen, C.; de Los Ríos, A. Extreme phenotypic variation in Cetraria aculeata (lichenized Ascomycota): Adaptation or incidental modification? Ann. Bot. 2012, 109, 1133–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Printzen, C. Lichen systematics: The role of morphological and molecular data to reconstruct phylogenetic relationships. In Progress in Botany 71; Lüttge, U., Beyschlag, W., Büdel, B., Francis, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 233–275. [Google Scholar]
- Lawrey, J.D. Sexual and asexual reproductive patterns in Parmotrema (Parmeliaceae) that correlate with latitude. Bryologist 1980, 83, 344–350. [Google Scholar] [CrossRef]
- Vázquez, D.P.; Stevens, R.D. The latitudinal gradient in niche breadth: Concepts and evidence. Am. Nat. 2004, 164, E1–E19. [Google Scholar] [CrossRef] [Green Version]
- Keon, D.B.; Muir, P.S. Growth of Usnea longissima across a variety of habitats in the Oregon Coast Range. Bryologist 2002, 105, 233–242. [Google Scholar] [CrossRef]
- Lidén, M.; Hilmo, O. Population characteristics of the suboceanic lichen Platismatia norvegica in core and fringe habitats: Relations to macroclimate, substrate, and proximity to streams. Bryologist 2005, 108, 506–517. [Google Scholar] [CrossRef]
- Haughland, D.L.; Hillman, A.; Azeria, E.T. Tackling rarity and sample bias with large-scale biodiversity monitoring: A case study examining the status, distribution and ecology of the lichen Cladonia rei in Alberta, Canada. Lichenologist 2018, 50, 211–230. [Google Scholar] [CrossRef] [Green Version]
- Lõhmus, P.; Lõhmus, A. The importance of representative inventories for lichen conservation assessments: The case of Cladonia norvegica and C. parasitica. Lichenologist 2009, 41, 61–67. [Google Scholar] [CrossRef]
- Boch, S.; Müller, J.; Prati, D.; Blaser, S.; Fischer, M. Up in the tree–the overlooked richness of bryophytes and lichens in tree crowns. PLoS ONE 2013, 8, e84913. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, J.E.; Hansson, A.C.; Lindblom, L. Genetic variation in relation to substratum preferences of Hypogymnia physodes. Lichenologist 2009, 41, 547–555. [Google Scholar] [CrossRef]
- Hurlbert, S.H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 1984, 54, 187–211. [Google Scholar] [CrossRef] [Green Version]
- Hallingbäck, T. Working with Swedish cryptogam conservation. Biol. Conserv. 2007, 135, 311–314. [Google Scholar] [CrossRef]
- Will-Wolf, S.; Geiser, L.H.; Neitlich, P.; Reis, A.H. Forest lichen communities and environment—How consistent are relationships across scales? J. Veg. Sci. 2006, 17, 171–184. [Google Scholar] [CrossRef]
- Leavitt, S.D.; Esslinger, T.L.; Hansen, E.S.; Divakar, P.K.; Crespo, A.; Loomis, B.F.; Lumbsch, H.T. DNA barcoding of brown Parmeliae (Parmeliaceae) species: A molecular approach for accurate specimen identification, emphasizing species in Greenland. Org. Divers. Evol. 2014, 14, 11–20. [Google Scholar] [CrossRef]
- Leavitt, S.D.; Johnson, L.A.; Goward, T.; St. Clair, L.L. Species delimitation in taxonomically difficult lichen-forming fungi: An example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. Mol. Phylogenet. Evol. 2011, 60, 317–332. [Google Scholar] [CrossRef]
- Muggia, L.; Pérez-Ortega, S.; Fryday, A.; Spribille, T.; Grube, M. Global assessment of genetic variation and phenotypic plasticity in the lichen-forming species Tephromela atra. Fungal Divers. 2014, 64, 233–251. [Google Scholar] [CrossRef]
- de Vera, J.P.; Schulze-Makuch, D.; Khan, A.; Lorek, A.; Koncz, A.; Möhlmann, D.; Spohn, T. Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planet. Space Sci. 2014, 98, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Jung, P.; Baumann, K.; Lehnert, L.W.; Samolov, E.; Achilles, S.; Schermer, M.; Wraase, L.M.; Eckhardt, K.U.; Bader, M.Y.; Leinweber, P.; et al. Desert breath—How fog promotes a novel type of soil biocenosis, forming the coastal Atacama Desert’s living skin. Geobiology 2020, 18, 113–124. [Google Scholar] [CrossRef]
- Leavitt, S.D.; Lumbsch, H.T. Ecological biogeography of lichen-forming fungi. In The Mycota, Vol. 4: Environmental and Microbial Relationships; Druzhinina, I.S., Kubicek, C.P., Eds.; Springer: Cham, Switzerland, 2016; pp. 15–37. [Google Scholar] [CrossRef]
- Strother, I.E.; Coxson, D.; Goward, T. Why is the rainforest lichen Methuselah’s beard (Usnea longissima) so rare in British Columbia’s inland temperate rainforest? Botany 2022, 100, 283–299. [Google Scholar] [CrossRef]
- Leger, E.A.; Forister, M.L. Colonization, abundance, and geographic range size of gravestone lichens. Basic Appl. Ecol. 2009, 10, 279–287. [Google Scholar] [CrossRef]
- Larson, D.W. Differential heat sensitivity amongst four populations of the lichen Ramalina menziesii Tayl. New Phytol. 1989, 111, 73–79. [Google Scholar] [CrossRef]
- Murtagh, G.J.; Dyer, P.S.; Furneaux, P.A.; Crittenden, P.D. Molecular and physiological diversity in the bipolar lichen-forming fungus Xanthoria elegans. Mycol. Res. 2002, 106, 1277–1286. [Google Scholar] [CrossRef]
- Sancho, L.G.; Green, T.A.; Pintado, A. Slowest to fastest: Extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora 2007, 202, 667–673. [Google Scholar] [CrossRef]
- Printzen, C.; Ekman, S.; Tønsberg, T. Phylogeography of Cavernularia hultenii: Evidence of slow genetic drift in a widely disjunct lichen. Mol. Ecol. 2003, 12, 1473–1486. [Google Scholar] [CrossRef]
- Nybakken, L.; Solhaug, K.A.; Bilger, W.; Gauslaa, Y. The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 2004, 140, 211–216. [Google Scholar] [CrossRef]
- Sun, H.J.; Friedman, E.I. Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models: II. Experimental verification. Microb. Ecol. 2005, 49, 528–535. [Google Scholar] [CrossRef]
- Domaschke, S.; Vivas, M.; Sancho, L.G.; Printzen, C. Ecophysiology and genetic structure of polar versus temperate populations of the lichen Cetraria aculeata. Oecologia 2013, 173, 699–709. [Google Scholar] [CrossRef]
- Coley, P.D.; Kursar, T.A.; Machado, J.L. Colonization of tropical rain forest leaves by epiphylls: Effects of site and host plant leaf. Ecology 1993, 74, 619–623. [Google Scholar] [CrossRef]
- Rambo, T.R. Habitat preferences of an arboreal forage lichen in a Sierra Nevada old-growth mixed-conifer forest. Can. J. For. Res. 2010, 40, 1034–1041. [Google Scholar] [CrossRef]
- Doering, M.; Coxson, D. Riparian alder ecosystems as epiphytic lichen refugia in sub-boreal spruce forests of British Columbia. Botany 2010, 88, 144–157. [Google Scholar] [CrossRef] [Green Version]
- Kraft, N.J.; Adler, P.B.; Godoy, O.; James, E.C.; Fuller, S.; Levine, J.M. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 2015, 29, 592–599. [Google Scholar] [CrossRef]
- Rikkinen, J. What’s behind the pretty colours? A study on the phytobiology of lichens. Bryobrothera 1995, 4, 1–239. [Google Scholar]
- Sonesson, M.; Osborne, C.; Sandberg, G. Epiphytic lichens as indicators of snow depth. Arct. Alpine Res. 1994, 26, 159–165. [Google Scholar] [CrossRef]
- Sonesson, M.; Grimberg, Å.; Sveinbjörnsson, B.; Carlsson, B.Å. Seasonal variation in concentrations of carbohydrates and lipids in two epiphytic lichens with contrasting, snow-depth related distribution on subarctic birch trees. Bryologist 2011, 114, 443–452. [Google Scholar] [CrossRef]
- Nardini, A.; Marchetto, A.; Tretiach, M. Water relation parameters of six Peltigera species correlate with their habitat preferences. Fungal Ecol. 2013, 6, 397–407. [Google Scholar] [CrossRef]
- Jonsson Čabrajić, A.V.; Lidén, M.; Lundmark, T.; Ottosson-Löfvenius, M.; Palmqvist, K. Modelling hydration and photosystem II activation in relation to in situ rain and humidity patterns: A tool to compare performance of rare and generalist epiphytic lichens. Plant Cell Environ. 2010, 33, 840–850. [Google Scholar] [CrossRef]
- Lidén, M.; Jonsson Čabrajić, A.V.; Ottosson-Löfvenius, M.; Palmqvist, K.; Lundmark, T. Species-specific activation time-lags can explain habitat restrictions in hydrophilic lichens. Plant Cell Environ. 2010, 33, 851–862. [Google Scholar] [CrossRef]
- Färber, L.; Solhaug, K.A.; Esseen, P.-A.; Bilger, W.; Gauslaa, Y. Sunscreening fungal pigments influence the vertical gradient of pendulous lichens in boreal forest canopies. Ecology 2014, 95, 1464–1471. [Google Scholar] [CrossRef] [Green Version]
- Pirintsos, S.A.; Diamantopoulos, J.; Stamou, G.P. Analysis of the vertical distribution of epiphytic lichens on Pinus nigra (Mount Olympos, Greece) along an altitudinal gradient. Vegetatio 1993, 109, 63–70. [Google Scholar] [CrossRef]
- Hauck, M.; Dulamsuren, C.; Mühlenberg, M. Lichen diversity on steppe slopes in the northern Mongolian mountain taiga and its dependence on microclimate. Flora 2007, 202, 530–546. [Google Scholar] [CrossRef]
- Kivistö, L.; Kuusinen, M. Edge effects on the epiphytic lichen flora of Picea abies in middle boreal Finland. Lichenologist 2000, 32, 387–398. [Google Scholar] [CrossRef]
- Dobrowski, S.Z. A climatic basis for microrefugia: The influence of terrain on climate. Glob. Chang. Biol. 2011, 17, 1022–1035. [Google Scholar] [CrossRef]
- Hylander, K.; Ehrlén, J.; Luoto, M.; Meineri, E. Microrefugia: Not for everyone. Ambio 2015, 44, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, J.M.; Renison, D.; Filippini, E.; Estrabou, C. Small shifts in microsite occupation could mitigate climate change consequences for mountain top endemics: A test analyzing saxicolous lichen distribution patterns. Biodivers. Conserv. 2017, 26, 1199–1215. [Google Scholar] [CrossRef]
- Ellis, C.J. Microclimatic refugia in riparian woodland: A climate change adaptation strategy. For. Ecol. Manag. 2020, 462, 118006. [Google Scholar] [CrossRef]
- Ellis, C.J.; Eaton, S. Microclimates hold the key to spatial forest planning under climate change: Cyanolichens in temperate rainforest. Glob. Chang. Biol. 2021, 27, 1915–1926. [Google Scholar] [CrossRef] [PubMed]
- Di Nuzzo, L.; Benesperi, R.; Nascimbene, J.; Papini, A.; Malaspina, P.; Incerti, G.; Giordani, P. Little time left. Microrefuges may fail in mitigating the effects of climate change on epiphytic lichens. Sci. Total Environ. 2022, 825, 153943. [Google Scholar] [CrossRef]
- Green, T.G.A.; Sancho, L.G.; Türk, R.; Seppelt, R.D.; Hogg, I.D. High diversity of lichens at 84° S, Queen Maud Mountains, suggests preglacial survival of species in the Ross Sea region, Antarctica. Polar Biol. 2011, 34, 1211–1220. [Google Scholar] [CrossRef]
- Bidussi, M.; Goward, T.; Gauslaa, Y. Growth and secondary compound investments in the epiphytic lichens Lobaria pulmonaria and Hypogymnia occidentalis transplanted along an altitudinal gradient in British Columbia. Botany 2013, 91, 621–630. [Google Scholar] [CrossRef]
- Gauslaa, Y.; Holien, H. Acidity of boreal Picea abies-canopy lichens and their substratum, modified by local soils and airborne acidic depositions. Flora 1998, 193, 249–257. [Google Scholar] [CrossRef]
- Cleavitt, N.L.; Ewing, H.A.; Weathers, K.C.; Lindsey, A.M. Acidic atmospheric deposition interacts with tree type and impacts the cryptogamic epiphytes in Acadia National Park, Maine, USA. Bryologist 2011, 114, 570–582. [Google Scholar] [CrossRef]
- Steindor, K.; Palowski, B.; Goras, P.; Nadgorska-Socha, A. Assessment of bark reaction of select tree species as an indicator of acid gaseous air pollution. Pol. J. Environ. Stud. 2011, 20, 619–622. [Google Scholar]
- Larsen, H.M.E.; Rasmussen, H.N. Bark extract influence on spore germination in corticolous lichen Xanthoria parietina in vitro. Mycol. Prog. 2021, 20, 313–323. [Google Scholar] [CrossRef]
- Wannebo-Nilsen, K.; Bjerke, J.W.; Beck, P.S.A.; Tømmervik, H. Epiphytic macrolichens in spruce plantations and native birch forests along a coast-inland gradient in North Norway. Boreal Environ. Res. 2010, 15, 43–57. [Google Scholar]
- Goward, T.; Arsenault, A. Cyanolichen distribution in young unmanaged forests: A dripzone effect? Bryologist 2000, 103, 28–37. [Google Scholar] [CrossRef]
- Goward, T.; Arsenault, A. Notes on the Populus “dripzone effect” on lichens in well-ventilated stands in east-central British Columbia. Can. Field-Nat. 2003, 117, 61–65. [Google Scholar]
- Hauck, M. Site factors controlling epiphytic lichen abundance in northern coniferous forests. Flora 2011, 206, 81–90. [Google Scholar] [CrossRef]
- Campbell, J.; Bengtson, P.; Fredeen, A.L.; Coxson, D.S.; Prescott, C.E. Does exogenous carbon extend the realized niche of canopy lichens? Evidence from sub-boreal forests in British Columbia. Ecology 2013, 94, 1186–1195. [Google Scholar] [CrossRef]
- Skye, E. Lichens and air pollution. A study of cryptogamic epiphytes and environment in the Stockholm region. Acta Phytogeogr. Suec. 1968, 52, 1–123. [Google Scholar]
- Skye, E.; Hallberg, I. Changes in the lichen flora following air pollution. Oikos 1969, 20, 547–552. [Google Scholar] [CrossRef]
- Søchting, U.; Johnsen, I. Changes in the distribution of epiphytic lichens in the Copenhagen area from 1936 to 1972. Bot. Tidsskr. 1974, 60, 60–63. [Google Scholar]
- Liška, J.; Dětinsky, R.; Palice, Z. Importance of the Šumava Mts. for the biodiversity of lichens in the Czech Republic. Silva Gabreta 1996, 1, 71–81. [Google Scholar]
- Coxson, D.; Björk, C.; Bourassa, M.D. The influence of regional gradients in climate and air pollution on epiphytes in riparian forest galleries of the upper Fraser River watershed. Botany 2014, 92, 23–45. [Google Scholar] [CrossRef]
- Loppi, S.; Pirintsos, S.A.; De Dominicis, V. Analysis of the distribution of epiphytic lichens on Quercus pubescens along an altitudinal gradient in a Mediterranean area (Tuscany, central Italy). Isr. J. Plant Sci. 1997, 45, 53–58. [Google Scholar] [CrossRef]
- Frati, L.; Brunialti, G.; Loppi, S. Effects of reduced nitrogen compounds on epiphytic lichen communities in Mediterranean Italy. Sci. Total Environ. 2008, 407, 630–637. [Google Scholar] [CrossRef]
- Jovan, S.; Riddell, J.; Padgett, P.E.; Nash III, T.H. Eutrophic lichens respond to multiple forms of N: Implications for critical levels and critical loads research. Ecol. Appl. 2012, 22, 1910–1922. [Google Scholar] [CrossRef]
- Giordani, P.; Calatayud, V.; Stofer, S.; Seidling, W.; Granke, O.; Fischer, R. Detecting the nitrogen critical loads on European forests by means of epiphytic lichens. A signal-to-noise evaluation. For. Ecol. Manag. 2014, 311, 29–40. [Google Scholar] [CrossRef]
- Hauck, M.; de Bruyn, U.; Leuschner, C. Dramatic diversity losses in epiphytic lichens in temperate broad-leaved forests during the last 150 years. Biol. Conserv. 2013, 157, 136–145. [Google Scholar] [CrossRef]
- Marmor, L.; Tõrra, T.; Randlane, T. The vertical gradient of bark pH and epiphytic macrolichen biota in relation to alkaline air pollution. Ecol. Indic. 2010, 10, 1137–1143. [Google Scholar] [CrossRef]
- Martin, L.; Nilson, E. Impact of the Kunda cement plant (North-East Estonia) emission on the distribution of epiphytic lichens. Proc. Estonian Acad. Sci. Ecol. 1992, 2, 181–185. [Google Scholar] [CrossRef]
- Spicer, M.E.; Woods, C.L. A case for studying biotic interactions in epiphyte ecology and evolution. Perspect. Plant Ecol. Evol. Syst. 2022, 54, 125658. [Google Scholar] [CrossRef]
- Lawrey, J.D. Biotic interactions in lichen community development: A review. Lichenologist 1991, 23, 205–214. [Google Scholar] [CrossRef]
- Mikhailova, I.N. Populations of epiphytic lichens under stress conditions: Survival strategies. Lichenologist 2007, 39, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Alatalo, J.M.; Jägerbrand, A.K.; Chen, S.; Molau, U. Responses of lichen communities to 18 years of natural and experimental warming. Ann. Bot. 2017, 120, 159–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aschenbrenner, I.A.; Cernava, T.; Erlacher, A.; Berg, G.; Grube, M. Differential sharing and distinct co-occurrence networks among spatially close bacterial microbiota of bark, mosses and lichens. Mol. Ecol. 2017, 26, 2826–2838. [Google Scholar] [CrossRef]
- Grimm, M.; Grube, M.; Schiefelbein, U.; Zühlke, D.; Bernhardt, J.; Riedel, K. The lichens’ microbiota, still a mystery? Front. Microbiol. 2021, 12, 714. [Google Scholar] [CrossRef]
- Armstrong, R.A. Adaptation of lichens to extreme conditions. In Plant Adaptation Strategies in Changing Environment; Shukla, V., Kumar, S., Kumar, N., Eds.; Springer: Singapore, 2017; pp. 1–27. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Callaghan, T.V.; Alatalo, J.M.; Michelsen, A.; Graglia, E.; Hartley, A.E.; Hik, D.S.; Hobbie, S.E.; Press, M.C.; Robinson, C.H.; et al. Global change and arctic ecosystems: Is lichen decline a function of increases in vascular plant biomass? J. Ecol. 2001, 89, 984–994. [Google Scholar] [CrossRef]
- Colesie, C.; Scheu, S.; Green, T.G.A.; Weber, B.; Wirth, R.; Büdel, B. The advantage of growing on moss: Facilitative effects on photosynthetic performance and growth in the cyanobacterial lichen Peltigera rufescens. Oecologia 2012, 169, 599–607. [Google Scholar] [CrossRef]
- Jüriado, I.; Liira, J.; Paal, J.; Suija, A. Tree and stand level variables influencing diversity of lichens on temperate broad-leaved trees in boreo-nemoral floodplain forests. Biodivers. Conserv. 2009, 18, 105–125. [Google Scholar] [CrossRef]
- Peck, J.E.; Grabner, J.; Ladd, D.; Larsen, D.R. Microhabitat affinities of Missouri Ozarks lichens. Bryologist 2004, 107, 47–61. [Google Scholar] [CrossRef]
- Coppins, B.J.; Coppins, A.M. The lichens of the Scottish native pinewoods. Forestry 2006, 79, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Dynesius, M.; Gibb, H.; Hjältén, J. Surface covering of downed logs: Drivers of a neglected process in dead wood ecology. PLoS ONE 2010, 5, e13237. [Google Scholar] [CrossRef]
- Ellis, C.J.; Coppins, B.J. Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. J. Biogeogr. 2006, 33, 1643–1656. [Google Scholar] [CrossRef]
- Carter, T.S.; Clark, C.M.; Fenn, M.E.; Jovan, S.; Perakis, S.S.; Riddell, J.; Schaberg, P.G.; Greaver, T.L.; Hastings, M.G. Mechanisms of nitrogen deposition effects on temperate forest lichens and trees. Ecosphere 2017, 8, e01717. [Google Scholar] [CrossRef]
- Palmqvist, K.; Dahlman, L.; Valladares, F.; Tehler, A.; Sancho, L.G.; Mattsson, J.-E. CO2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. Oecologia 2002, 133, 295–306. [Google Scholar] [CrossRef]
- Vail, C.A.; Walker, A.K. Vertical zonation of some crustose lichens (Verrucariaceae) in Bay of Fundy Littoral Zones of Nova Scotia. Northeast. Nat. 2021, 28, 311–326. [Google Scholar] [CrossRef]
- Gauslaa, Y. Mollusc grazing may constrain the ecological niche of the old forest lichen Pseudocyphellaria crocata. Plant Biol. 2008, 10, 711–717. [Google Scholar] [CrossRef]
- Fröberg, L.; Stoll, P.; Baur, A.; Baur, B. Snail herbivory decreases cyanobacterial abundance and lichen diversity along cracks of limestone pavements. Ecosphere 2011, 2, 1–43. [Google Scholar] [CrossRef]
- Di Nuzzo, L.; Masoni, A.; Frizzi, F.; Bianchi, E.; Castellani, M.B.; Balzani, P.; Morandi, F.; Sozzi, Y.; Vallese, C.; Santini, G.; et al. Red wood ants shape epiphytic lichen assemblages in montane silver fir forests. iForest 2022, 15, 71–76. [Google Scholar] [CrossRef]
- Ellis, C.J.; Yahr, R.; Coppins, B.J. Local extent of old-growth woodland modifies epiphyte response to climate change. J. Biogeogr. 2009, 36, 302–313. [Google Scholar] [CrossRef]
- Lumbsch, H.T.; Hipp, A.L.; Divakar, P.K.; Blanco, O.; Crespo, A. Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota). BMC Evol. Biol. 2008, 8, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otálora, M.A.G.; Aragón, G.; Martínez, I.; Wedin, M. Cardinal characters on a slippery slope—A re-evaluation of phylogeny, character evolution, and evolutionary rates in the jelly lichens (Collemataceae s. str). Mol. Phylogenet. Evol. 2013, 68, 185–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, S.D.; Rohde, K. Energy and spatial order in niche and community. Biol. J. Linn. Soc. 2013, 110, 696–714. [Google Scholar] [CrossRef] [Green Version]
- Gauslaa, Y.; Solhaug, K.A. Photoinhibition in lichens depends on cortical characteristics and hydration. Lichenologist 2004, 36, 133–143. [Google Scholar] [CrossRef]
- Gauslaa, Y.; Coxson, D. Interspecific and intraspecific variations in water storage in epiphytic old forest foliose lichens. Botany 2011, 89, 787–798. [Google Scholar] [CrossRef]
- Temina, M.; Kidron, G.J. Lichens as biomarkers for dew amount and duration in the Negev Desert. Flora 2011, 206, 646–652. [Google Scholar] [CrossRef]
- Tonteri, T. Species richness of boreal understorey forest vegetation in relation to site type and successional factors. Ann. Zool. Fenn. 1994, 31, 53–60. [Google Scholar]
- Hilmo, O.; Ely-Aastrup, H.; Hytteborn, H.; Holien, H. Population characteristics of old forest associated epiphytic lichens in Picea abies plantations in the boreal rainforest of Central Norway. Can. J. For. Res. 2011, 41, 1743–1753. [Google Scholar] [CrossRef]
- Merinero, S.; Rubio-Salcedo, M.; Aragón, G.; Martínez, I. Environmental factors that drive the distribution and abundance of a threatened cyanolichen in Southern Europe: A multi-scale approach. Am. J. Bot. 2014, 101, 1876–1885. [Google Scholar] [CrossRef] [Green Version]
- Tretiach, M.; Pavanetto, S.; Pittao, E.; di Toppi, L.S.; Piccotto, M. Water availability modifies tolerance to photo-oxidative pollutants in transplants of the lichen Flavoparmelia caperata. Oecologia 2012, 168, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Munzi, S.; Correia, O.; Silva, P.; Lopes, N.; Freitas, C.; Branquinho, C.; Pinho, P. Lichens as ecological indicators in urban areas: Beyond the effects of pollutants. J. Appl. Ecol. 2014, 51, 1750–1757. [Google Scholar] [CrossRef]
- Remm, L.; Lõhmus, P.; Leis, M.; Lõhmus, A. Long-term impacts of forest ditching on non-aquatic biodiversity: Conservation perspectives for a novel ecosystem. PLoS ONE 2013, 8, e63086. [Google Scholar] [CrossRef] [Green Version]
- Gauslaa, Y.; Lie, M.; Solhaug, K.A.; Ohlson, M. Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates. Oecologia 2006, 147, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, T.; Odani, N.; Tagawa, H. Causality of the distribution of corticolous species in forests with special reference to the physio-ecological approach. Bryologist 1964, 67, 396–411. [Google Scholar] [CrossRef]
- Zotz, G.; Schultz, S.; Rottenberger, S. Are tropical lowlands a marginal habitat for macrolichens? Evidence from a field study with Parmotrema endosulphureum in Panama. Flora 2003, 198, 71–77. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, M.; Gauslaa, Y.; Solhaug, K.A. Changes in pools of depsidones and melanins, and their function, during growth and acclimation under contrasting natural light in the lichen Lobaria pulmonaria. New Phytol. 2007, 175, 271–282. [Google Scholar] [CrossRef]
- Yahr, R.; Vilgalys, R.; Depriest, P.T. Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol. 2006, 171, 847–860. [Google Scholar] [CrossRef]
- Werth, S.; Sork, V.L. Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in southern California. Am. J. Bot. 2010, 97, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Vargas Castillo, R.; Beck, A. Photobiont selectivity and specificity in Caloplaca species in a fog-induced community in the Atacama Desert, northern Chile. Fungal Biol. 2012, 116, 665–676. [Google Scholar] [CrossRef]
- Printzen, C.; Domaschke, S.; Fernández-Mendoza, F.; Pérez-Ortega, S. Biogeography and ecology of Cetraria aculeata, a widely distributed lichen with a bipolar distribution. MycoKeys 2013, 6, 33–53. [Google Scholar] [CrossRef] [Green Version]
- Myllys, L.; Stenroos, S.; Thell, A.; Kuusinen, M. High cyanobiont selectivity of epiphytic lichens in old growth boreal forest of Finland. New Phytol. 2007, 173, 621–629. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, F.P.M.; Timsina, B.; Piercey-Normore, M.D. Diversity of Ramalina sinensis and its photobiont in local populations. Lichenologist 2012, 44, 649–660. [Google Scholar] [CrossRef]
- Peksa, O.; Škaloud, P. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol. Ecol. 2011, 20, 3936–3948. [Google Scholar] [CrossRef]
- Sanders, W.B.; Masumoto, H. Lichen algae: The photosynthetic partners in lichen symbioses. Lichenologist 2021, 53, 347–393. [Google Scholar] [CrossRef]
- Taylor, D.L.; Bruns, T.D. Population, habitat and genetic correlates of mycorrhizal specialization in the ‘cheating’ orchids Corallorhiza maculata and C. mertensiana. Mol. Ecol. 1999, 8, 1719–1732. [Google Scholar] [CrossRef] [PubMed]
- Rolstad, J.; Ekman, S.; Andersen, H.L.; Rolstad, E. Genetic variation and reproductive mode in two epiphytic lichens of conservation concern: A transatlantic study of Evernia divaricata and Usnea longissima. Botany 2013, 91, 69–81. [Google Scholar] [CrossRef]
- Werth, S.; Cheenacharoen, S.; Scheidegger, C. Propagule size is not a good predictor for regional population subdivision or fine-scale spatial structure in lichenized fungi. Fungal Biol. 2014, 118, 126–138. [Google Scholar] [CrossRef]
- Gjerde, I.; Blom, H.H.; Heegaard, E.; Sætersdal, M. Lichen colonization patterns show minor effects of dispersal distance at landscape scale. Ecography 2015, 38, 939–948. [Google Scholar] [CrossRef]
- Bohuslavová, O.; Macek, P.; Redčenko, O.; Láska, K.; Nedbalová, L.; Elster, J. Dispersal of lichens along a successional gradient after deglaciation of volcanic mesas on northern James Ross Island, Antarctic Peninsula. Polar Biol. 2018, 41, 2221–2232. [Google Scholar] [CrossRef]
- Gu, W.D.; Kuusinen, M.; Konttinen, T.; Hanski, I. Spatial pattern in the occurrence of the lichen Lobaria pulmonaria in managed and virgin boreal forests. Ecography 2001, 24, 139–150. [Google Scholar] [CrossRef]
- Velle, L.G.; Vandvik, V. Succession after prescribed burning in coastal Calluna heathlands along a 340-km latitudinal gradient. J. Veg. Sci. 2014, 25, 546–558. [Google Scholar] [CrossRef]
- Cáceres, M.E.S.; Lücking, R.; Rambold, G. Phorophyte specificity and environmental parameters versus stochasticity as determinants for species composition of corticolous crustose lichen communities in the Atlantic rain forest of northeastern Brazil. Mycol. Prog. 2007, 6, 117–136. [Google Scholar] [CrossRef]
- Medina, E.S.; Lücking, R.; Rojas, A.B. Phorophyte specificity and microenvironmental preferences of corticolous lichens in five phorophyte species from premontane forest of Finca Zíngara, Cali, Colombia). Rev. Biol. Trop. 2012, 60, 843–856. [Google Scholar]
- Culberson, W.L. Chemosystematics and ecology of lichen-forming fungi. Annu. Rev. Ecol. Syst. 1970, 1, 153–170. [Google Scholar] [CrossRef]
- Werth, S. Population genetics of lichen-forming fungi—A review. Lichenologist 2010, 42, 499–519. [Google Scholar] [CrossRef] [Green Version]
- Asplund, J. Chemical races of Lobaria pulmonaria differ in palatability to gastropods. Lichenologist 2011, 43, 491–494. [Google Scholar] [CrossRef]
- McCune, B.; Schoch, C.; Root, H.T.; Kageyama, S.A.; Miadlikowska, J. Geographic, climatic, and chemical differentiation in the Hypogymnia imshaugii species complex (Lecanoromycetes, Parmeliaceae) in North America. Bryologist 2011, 114, 526–544. [Google Scholar] [CrossRef] [Green Version]
- Stocker-Wörgötter, E.; Hager, A.; Elix, J.A. Intraspecific chemical variation within the crustose lichen genus Haematomma: Anthraquinone production in selected cultured mycobionts as a response to stress and nutrient supply. Phytochem. Rev. 2009, 8, 561–569. [Google Scholar] [CrossRef]
- Scheidegger, C.; Bilovitz, P.O.; Werth, S.; Widmer, I.; Mayrhofer, H. Hitchhiking with forests: Population genetics of the epiphytic lichen Lobaria pulmonaria in primeval and managed forests in southeastern Europe. Ecol. Evol. 2012, 2, 2223–2240. [Google Scholar] [CrossRef]
- Lindblom, L.; Ekman, S. Genetic variation and population differentiation in the lichen-forming ascomycete Xanthoria parietina on the island Storfosna, central Norway. Mol. Ecol. 2006, 15, 1545–1559. [Google Scholar] [CrossRef]
- Lindblom, L.; Ekman, S. New evidence corroborates population differentiation in Xanthoria parietina. Lichenologist 2007, 39, 259–271. [Google Scholar] [CrossRef]
- Beck, A.; Mayr, C. Nitrogen and carbon isotope variability in the green-algal lichen Xanthoria parietina and their implications on mycobiont-photobiont interactions. Ecol. Evol. 2012, 2, 3132–3144. [Google Scholar] [CrossRef] [PubMed]
- Tretiach, M.; Brown, D.H. Morphological and physiological differences between epilithic and epiphytic populations of the lichen Parmelia pastillifera. Ann. Bot. 1995, 75, 627–632. [Google Scholar] [CrossRef]
- Ametrano, C.G.; Lumbsch, H.T.; Di Stefano, I.; Sangvichien, E.; Muggia, L.; Grewe, F. Should we hail the Red King? Evolutionary consequences of a mutualistic lifestyle in genomes of lichenized ascomycetes. Ecol. Evol. 2022, 12, e8471. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.; Colesie, C.; Ullmann, A.; Westberg, M.; Wedin, M.; Büdel, B. Lichen acclimation to changing environments: Photobiont switching vs. climate-specific uniqueness in Psora decipiens. Ecol. Evol. 2017, 7, 2560–2574. [Google Scholar] [CrossRef]
- Chavarria-Pizarro, T.; Resl, P.; Janjic, A.; Werth, S. Gene expression responses to thermal shifts in the endangered lichen Lobaria pulmonaria. Mol. Ecol. 2022, 31, 839–858. [Google Scholar] [CrossRef]
- Kunkel, G. Microhabitat and structural variation in the Aspicilia desertorum group (lichenized Ascomycetes). Am. J. Bot. 1980, 67, 1137–1144. [Google Scholar] [CrossRef]
- Sojo, F.; Valladares, F.; Sancho, L.G. Structural and physiological plasticity of the lichen Catillaria corymbosa in different microhabitats of the maritime Antarctica. Bryologist 1997, 100, 171–179. [Google Scholar] [CrossRef]
- Kranner, I.; Cram, W.J.; Zorn, M.; Wornik, S.; Yoshimura, I.; Stabentheiner, E.; Pfeifhofer, H.W. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc. Natl. Acad. Sci. USA 2005, 102, 3141–3146. [Google Scholar] [CrossRef] [Green Version]
- del Campo, E.M.; Catalá, S.; Gimeno, J.; del Hoyo, A.; Martínez-Alberola, F.; Casano, L.M.; Grube, M.; Barreno, E. The genetic structure of the cosmopolitan three-partner lichen Ramalina farinacea evidences the concerted diversification of symbionts. FEMS Microbiol. Ecol. 2013, 83, 310–323. [Google Scholar] [CrossRef] [Green Version]
- Werth, S.; Sork, V.L. Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range-covering ecoregions of western North America. Am. J. Bot. 2014, 101, 1127–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osyczka, P.; Lenart-Boroń, A.; Boroń, P.; Rola, K. Lichen-forming fungi in postindustrial habitats involve alternative photobionts. Mycologia 2021, 113, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Škvorová, Z.; Černajová, I.; Steinová, J.; Peksa, O.; Moya, P.; Škaloud, P. Promiscuity in lichens follows clear rules: Partner switching in Cladonia is regulated by climatic factors and soil chemistry. Front. Microbiol. 2021, 12, 781585. [Google Scholar] [CrossRef]
- Candotto Carniel, F.; Gerdol, M.; Montagner, A.; Banchi, E.; De Moro, G.; Manfrin, C.; Muggia, L.; Pallavicini, A.; Tretiach, M. New features of desiccation tolerance in the lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach. Plant Mol. Biol. 2016, 91, 319–339. [Google Scholar] [CrossRef] [PubMed]
- Armaleo, D.; Müller, O.; Lutzoni, F.; Andrésson, Ó.S.; Blanc, G.; Bode, H.B.; Collart, F.R.; Dal Grande, F.; Dietrich, F.; Grigoriev, I.V.; et al. The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genom. 2019, 20, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, G.P. The ecology of corticolous lichens: II. The relationship between physiology and the environment. J. Ecol. 1971, 59, 441–452. [Google Scholar] [CrossRef]
- Rikkinen, J. Habitat shifts and morphological variation of Pseudevernia furfuracea along a topographical gradient. Symb. Bot. Upsal. 1997, 32, 223–245. [Google Scholar]
- Dal Grande, F.; Sharma, R.; Meiser, A.; Rolshausen, G.; Büdel, B.; Mishra, B.; Thines, M.; Otte, J.; Pfenninger, M.; Schmitt, I. Adaptive differentiation coincides with local bioclimatic conditions along an elevational cline in populations of a lichen-forming fungus. BMC Evol. Biol. 2017, 17, 93. [Google Scholar] [CrossRef] [Green Version]
- Solhaug, K.A.; Lind, M.; Nybakken, L.; Gauslaa, Y. Possible functional roles of cortical depsides and medullary depsidones in the foliose lichen Hypogymnia physodes. Flora 2009, 204, 40–48. [Google Scholar] [CrossRef]
- Vatne, S.; Asplund, J.; Gauslaa, Y. Contents of carbon based defence compounds in the old forest lichen Lobaria pulmonaria vary along environmental gradients. Fungal Ecol. 2011, 4, 350–355. [Google Scholar] [CrossRef]
- Kantelinen, A.; Printzen, C.; Poczai, P.; Myllys, L. Lichen speciation is sparked by a substrate requirement shift and reproduction mode differentiation. Sci. Rep. 2022, 12, 11048. [Google Scholar] [CrossRef]
- Allen, J.L.; McMullin, R.T.; Tripp, E.A.; Lendemer, J.C. Lichen conservation in North America: A review of current practices and research in Canada and the United States. Biodivers. Conserv. 2019, 28, 3103–3138. [Google Scholar] [CrossRef]
- Thor, G. Red Lists—Aspects of their compilation and use in lichen conservation. Mitt. Eidgenoss. Forsch. Wald Schnee Landsch. 1995, 70, 29–39. [Google Scholar]
- Ellis, C.J.; Coppins, B.J.; Dawson, T.P.; Seaward, M.R. Response of British lichens to climate change scenarios: Trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol. Conserv. 2007, 140, 217–235. [Google Scholar] [CrossRef]
- Dahlberg, A.; Thor, G.; Allmér, J.; Jonsell, M.; Jonsson, M.; Ranius, T. Modelled impact of Norway spruce logging residue extraction on biodiversity in Sweden. Can. J. For. Res. 2011, 41, 1220–1232. [Google Scholar] [CrossRef]
- Maphangwa, K.W.; Musil, C.F.; Raitt, L.; Zedda, L. Will climate warming exceed lethal photosynthetic temperature thresholds of lichens in a southern African arid region? Afr. J. Ecol. 2014, 52, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Lõhmus, P.; Lõhmus, A. The potential of production forests for sustaining lichen diversity: A perspective on sustainable forest management. Forests 2019, 10, 1063. [Google Scholar] [CrossRef] [Green Version]
- Gross, A.; Holdenrieder, O.; Pautasso, M.; Queloz, V.; Sieber, T.N. Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol. Plant Pathol. 2014, 15, 5–21. [Google Scholar] [CrossRef]
- George, J.P.; Sanders, T.G.; Timmermann, V.; Potočić, N.; Lang, M. European-wide forest monitoring substantiate the neccessity for a joint conservation strategy to rescue European ash species (Fraxinus spp.). Sci. Rep. 2022, 12, 4764. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, M.T.; Thor, G. Estimating coextinction risks from epidemic tree death: Affiliate lichen communities among diseased host tree populations of Fraxinus excelsior. PLoS ONE 2012, 7, e45701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lõhmus, A.; Runnel, K. Ash dieback can rapidly eradicate isolated epiphyte populations in production forests: A case study. Biol. Conserv. 2014, 169, 185–188. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Beaton, J.K.; Bellamy, P.E.; Broome, A.; Chetcuti, J.; Eaton, S.; Ellis, C.J.; Gimona, A.; Harmer, R.; Hester, A.J.; et al. Ash dieback in the UK: A review of the ecological and conservation implications and potential management options. Biol. Conserv. 2014, 175, 95–109. [Google Scholar] [CrossRef]
- Hultberg, T.; Sandström, J.; Felton, A.; Öhman, K.; Rönnberg, J.; Witzell, J.; Cleary, M. Ash dieback risks an extinction cascade. Biol. Conserv. 2020, 244, 108516. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Bellamy, P.E.; Broome, A.; Ellis, C.J.; Hewison, R.L.; Iason, G.R.; Littlewood, N.A.; Newey, S.; Pozsgai, G.; Ray, D.; et al. Cumulative impact assessments of multiple host species loss from plant diseases show disproportionate reductions in associated biodiversity. J. Ecol. 2022, 110, 221–231. [Google Scholar] [CrossRef]
- Miller, R.M.; Rodríguez, J.P.; Aniskowicz-Fowler, T.; Bambaradeniya, C.; Boles, R.; Eaton, M.A.; Gärdenfors, U.; Keller, V.; Molur, S.; Walker, S.; et al. National threatened species listing based on IUCN criteria and regional guidelines: Current status and future perspectives. Conserv. Biol. 2007, 21, 684–696. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Higgs, E.; Hall, C.M.; Bridgewater, P.; Chapin III, F.S.; Ellis, E.C.; Ewel, J.J.; Hallett, L.M.; Harris, J.; Hulvey, K.B.; et al. Managing the whole landscape: Historical, hybrid, and novel ecosystems. Front. Ecol. Environ. 2014, 12, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Svensson, M.; Dahlberg, A.; Ranius, T.; Thor, G. Dead branches on living trees constitute a large part of the dead wood in managed boreal forests, but are not important for wood-dependent lichens. J. Veg. Sci. 2014, 25, 819–828. [Google Scholar] [CrossRef]
- González-Montelongo, C.; Pérez-Vargas, I. Is an invasive alien tree able to sustain a similar lichen diversity as the native forest? The case of the sweet chestnut (Castanea sativa Mill.) and the laurel forest in Macaronesia. For. Ecol. Manag. 2021, 488, 119009. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Hewison, R.L.; Beaton, J.; Douglass, J.R. Identifying substitute host tree species for epiphytes: The relative importance of tree size and species, bark and site characteristics. Appl. Veg. Sci. 2021, 24, 12569. [Google Scholar] [CrossRef]
- Porada, P.; Bader, M.Y.; Berdugo, M.B.; Colesie, C.; Ellis, C.J.; Giordani, P.; Herzschuh, U.; Ma, Y.; Launiainen, S.; Nascimbene, J.; et al. A research agenda for non-vascular photoautotrophs under climate change. New Phytol. 2022, 237, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Caro, T. Conservation by Proxy: Indicator, Umbrella, Keystone, Flagship, and Other Surrogate Species; Island Press: Washington, DC, USA, 2010. [Google Scholar]
- Bergamini, A.; Scheidegger, C.; Stofer, S.; Carvalho, P.; Davey, S.; Dietrich, M.; Dubs, F.; Farkas, E.; Groner, U.; Kärkkäinen, K.; et al. Performance of macrolichens and lichen genera as indicators of lichen species richness and composition. Conserv. Biol. 2005, 19, 1051–1062. [Google Scholar] [CrossRef]
- Brunialti, G.; Frati, L.; Aleffi, M.; Marignani, M.; Rosati, L.; Burrascano, S.; Ravera, S. Lichens and bryophytes as indicators of old-growth features in Mediterranean forests. Plant Biosyst. 2010, 144, 221–233. [Google Scholar] [CrossRef]
Habitat Relationship | Geographic Scale Studied | Evidence [Source] a | Mechanism b |
---|---|---|---|
Phorophyte specificity in epiphytes | North America vs. Europe | For cyanolichens, conifer hosts more frequent than hardwoods in N America; opposite in Europe, despite many species shared [95] | 2 * |
Britain (BR) vs. subcontinental Europe (SC) | Varying tree-species specificity among lichens of conservation concern: On old Quercus robur, only 7 specialists (Bactrospora dryina, Calicium adspersum, C. quercinum, Caloplaca lucifuga, Lopadium disciforme, Peltigera horizontalis, and Pertusaria flavida) shared in the two regions; the rest on the BR list absent or not confined to oak in SC, where six species mainly found on oak not listed as “faithful” to oak in BR (Table S1). Betula spp. harbors more species in BR, including those typical of other hardwoods in SC (Table S2). | 3 | |
North Europe | Lichens found on European ash in Sweden, Estonia, Lithuania, NE Poland: 94 of 343 species in all countries, 38 in one country; spatial pattern in adjacent countries in 14 species (Table S3). | 3 | |
Fennoscandia (FS) vs. Estonia (EE) | Regional preferences for Scots pine vs. Norway spruce: Cladonia ochrochlora and Lepraria jackii prefer spruce in FS, but pine in EE; Ochrolechia androgyna and Pseudevernia furfuracea prefer spruce and Parmeliopsis hyperopta pine in EE, indifferent in FS [96]. | unclear | |
Climatic gradients in Norway | Regional substrate use in epiphytic crustose lichens; e.g., Micarea coppinsii on tree bark in addition to acidic shrubs in optimal conditions; some species vary in shade tolerance and phorophytes [97]. | 2–4 | |
Dead-wood specificity | Pacific Northwest (PNW) vs. Fennoscandia (FS) | Of 65 crustose lichens present in both regions and obligately lignicolous in at least one, 4 species not known on wood in the other region: Absconditella celata, A. trivialis and Micarea alabastrites strictly wood-inhabiting in PNW but terricolous, bryicolous or corticolous in FS; Caloplaca furfuracea confined to anthropogenic wood in FS and to bark in PNW. Many species obligate lignicoles in one region and facultative in the other [98]. | 1–4 |
North-south gradient from Fennoscandia to Lithuania | Twenty-six species inhabit wood facultatively or not at all in Fennoscandia, but become obligate or facultative lignicoles further south (e.g., Chaenotheca chlorella, Cladonia floerkeana, Icmadophila ericetorum) [A]. | 1–2 | |
Rock type preference | global | 16% of 75 serpentine specialists of Europe and America elsewhere in Middle Urals (7 on granite; 5 on limestone); serpentine (113 species) and granite biota (70) still distinct (14 species shared) [99]. | 1–3 |
Shift between corticolous and saxicolous substrate use | global | Many observations worldwide [51]. Attributed to usable water source (dew) in Menegazzia terebrata, which is epiphytic in oceanic regions but uses exposed rocks in dry regions of Norway [100]. | 4 |
global | Three nitrophytic macrolichens have latitudinal substrate shifts; Physcia caesia also 20th century switch to eutrophicated tree bark in the Netherlands [101] | 2 | |
Central Europe vs. elsewhere | Freshwater saxicolous lichens frequent on tree roots in the Alps and NE Europe but rarely in Central European lowlands, perhaps due to eutrophication and silting of water bodies) [102]. Air pollution may also explain why some seriously declined corticolous lichens in Czechia retain remnant populations on rocks [103]. | 2 * | |
Forest type specificity | Baltic countries | Among 30 species in two contrasting forest types in Estonia (dry pine and eutrophic mixed forests), Cladonia cenotea and Pertusaria amara inhabit a single type in Lithuania. Attributed to ground-level competition and light conditions on tree trunks, respectively [A]. | 2 |
Finland | Moisture demanding species concentrate to spruce swamps more in southern than in middle-boreal sites [69]. | 2 | |
Old-growth affinity | Climatic gradients in the Pacific Northwest | Most old-growth-dependent epiphytic macrolichens of inland areas use wider successional stages in oceanic areas [104,105]. Some continental macrolichens exhibit an inverse relationship, being restricted to old-forest canopies in oceanic areas [106]. | 2–3 |
Sweden | Several species only regionally old-growth specific, e.g., Arthonia spadicea, A. vinosa, Bacidia rubella, Chaenotheca brachypoda [107] | unclear | |
Use of artificial substrates | The Netherlands | Stone churches host regionally distinct lichen assemblages [37]. | 2 |
N America vs. N Europe | Cladonia parasitica common on exposed fence rails in N America, not found on worked timber in Europe [108,109]. See also Figure 2. | unclear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lõhmus, A.; Motiejūnaitė, J.; Lõhmus, P. Regionally Varying Habitat Relationships in Lichens: The Concept and Evidence with an Emphasis on North-Temperate Ecosystems. J. Fungi 2023, 9, 341. https://doi.org/10.3390/jof9030341
Lõhmus A, Motiejūnaitė J, Lõhmus P. Regionally Varying Habitat Relationships in Lichens: The Concept and Evidence with an Emphasis on North-Temperate Ecosystems. Journal of Fungi. 2023; 9(3):341. https://doi.org/10.3390/jof9030341
Chicago/Turabian StyleLõhmus, Asko, Jurga Motiejūnaitė, and Piret Lõhmus. 2023. "Regionally Varying Habitat Relationships in Lichens: The Concept and Evidence with an Emphasis on North-Temperate Ecosystems" Journal of Fungi 9, no. 3: 341. https://doi.org/10.3390/jof9030341
APA StyleLõhmus, A., Motiejūnaitė, J., & Lõhmus, P. (2023). Regionally Varying Habitat Relationships in Lichens: The Concept and Evidence with an Emphasis on North-Temperate Ecosystems. Journal of Fungi, 9(3), 341. https://doi.org/10.3390/jof9030341