Investigation of Two Novel Heterojunction Photocatalysts with Boosted Hydrogen Evolution Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Pristine ZnIn2S4
2.2. Preparation of SrTiO3
2.3. Preparation of SrCrO3
2.4. Construction of the Heterojunction
2.5. Characterization
3. Results and Discussion
3.1. Morphology and Structure
3.2. Optical Properties and Band Structure
3.3. Photoelectrochemical and Photocatalytic Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ran, J.; Zhang, H.; Fu, S.; Jaroniec, M.; Shan, J.; Xia, B.; Qu, Y.; Qu, J.; Chen, S.; Song, L.; et al. NiPS3 ultrathin nanosheets as versatile platform advancing highly active photocatalytic H2 production. Nat. Commun. 2022, 13, 4600. [Google Scholar] [CrossRef] [PubMed]
- Chong, W.-K.; Ng, B.-J.; Lee, Y.J.; Tan, L.-L.; Putri, L.K.; Low, J.; Mohamed, A.R.; Chai, S.-P. Self-activated superhydrophilic green ZnIn2S4 realizing solar-driven overall water splitting: Close-to-unity stability for a full daytime. Nat. Commun. 2023, 14, 7676. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Lee, C.W.; Cha, G.D.; Lee, B.-H.; Jeong, J.H.; Park, H.; Heo, J.; Bootharaju, M.S.; Sunwoo, S.-H.; Kim, J.H.; et al. Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production. Nat. Nanotechnol. 2023, 18, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 2021, 598, 304–307. [Google Scholar] [CrossRef]
- Hisatomi, T.; Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2019, 2, 387–399. [Google Scholar] [CrossRef]
- Zhou, P.; Navid, I.A.; Ma, Y.; Xiao, Y.; Wang, P.; Ye, Z.; Zhou, B.; Sun, K.; Mi, Z. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66–70. [Google Scholar] [CrossRef]
- Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295. [Google Scholar] [CrossRef]
- Bai, Y.; Li, C.; Liu, L.; Yamaguchi, Y.; Bahri, M.; Yang, H.; Gardner, A.; Zwijnenburg, M.A.; Browning, N.D.; Cowan, A.J.; et al. Photocatalytic Overall Water Splitting Under Visible Light Enabled by a Particulate Conjugated Polymer Loaded with Palladium and Iridium. Angew. Chem. Int. Ed. 2022, 61, e202201299. [Google Scholar] [CrossRef]
- Lin, L.; Lin, Z.; Zhang, J.; Cai, X.; Lin, W.; Yu, Z.; Wang, X. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 2020, 3, 649–655. [Google Scholar] [CrossRef]
- Bai, Y.; Woods, D.J.; Wilbraham, L.; Aitchison, C.M.; Zwijnenburg, M.A.; Sprick, R.S.; Cooper, A.I. Hydrogen evolution from water using heteroatom substituted fluorene conjugated co-polymers. J. Mater. Chem. A 2020, 8, 8700–8705. [Google Scholar] [CrossRef]
- Elbanna, O.; Fujitsuka, M.; Majima, T. g-C3N4/TiO2 Mesocrystals Composite for H2 Evolution under Visible-Light Irradiation and Its Charge Carrier Dynamics. ACS Appl. Mater. Interfaces 2017, 9, 34844–34854. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Cooperative Coupling of H2O2 Production and Organic Synthesis over a Floatable Polystyrene-Sphere-Supported TiO2/Bi2O3 S-Scheme Photocatalyst. Adv. Mater. 2022, 34, 2203225. [Google Scholar] [CrossRef]
- Yang, Y.; Ceder, A.; Zhang, W.; Tang, H. Unconstrained Estimation of Multitype Car Rental Demand. Appl. Sci. 2021, 11, 4506. [Google Scholar] [CrossRef]
- Shi, X.; Dai, C.; Wang, X.; Hu, J.; Zhang, J.; Zheng, L.; Mao, L.; Zheng, H.; Zhu, M. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Song, Y.; Liu, Y.; Yang, Y.; Wu, D.; Yang, Y.; Feng, S.; Li, J.; Liu, W.; Shen, Y.; et al. ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting. Coord. Chem. Rev. 2023, 475, 214898. [Google Scholar] [CrossRef]
- Wang, J.; Pan, R.; Yan, S.; Wang, R.; Niu, X.; Hao, Q.; Ye, J.; Wu, Y.; Ying Yang, H. Construction of 1D/2D core-shell structured K6Nb10.8O30@Zn2In2S5 as S-scheme photocatalysts for cocatalyst-free hydrogen production. Chem. Eng. J. 2023, 463, 142489. [Google Scholar] [CrossRef]
- Bariki, R.; Das, K.; Pradhan, S.K.; Prusti, B.; Mishra, B.G. MOF-Derived Hollow Tubular In2O3/MIIIn2S4 (MII: Ca, Mn, and Zn) Heterostructures: Synergetic Charge-Transfer Mechanism and Excellent Photocatalytic Performance to Boost Activation of Small Atmospheric Molecules. ACS Appl. Energy Mater. 2022, 5, 11002–11017. [Google Scholar] [CrossRef]
- Xiang, X.; Chou, L.; Li, X. Synthesis of PdS-CdSe@CdS-Au nanorods with asymmetric tips with improved H2 production efficiency in water splitting and increased photostability. Chin. J. Catal. 2018, 39, 407–412. [Google Scholar] [CrossRef]
- Divyasri, Y.V.; Lakshmana Reddy, N.; Lee, K.; Sakar, M.; Navakoteswara Rao, V.; Venkatramu, V.; Shankar, M.V.; Gangi Reddy, N.C. Optimization of N doping in TiO2 nanotubes for the enhanced solar light mediated photocatalytic H2 production and dye degradation. Environ. Pollut. 2021, 269, 116170. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Xing, M.; Kang, S.; Du, M.; Qiu, B.; Chai, Y. Spin state engineering of spinel oxides by integration of Cr doping and a p–n junction for water oxidation. Chem. Commun. 2022, 58, 6642–6645. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Liu, L.; Xi, X.; Li, Y.; Geng, Z.; Jiang, G.; Zhao, Z. Novel metal doped carbon quantum dots/CdS composites for efficient photocatalytic hydrogen evolution. Nanoscale 2019, 11, 1618–1625. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Cai, L.; Wang, Y.; Ma, S.; Tsang, Y.H.; Chai, Y. Accelerated oxygen evolution kinetics on nickel–iron diselenide nanotubes by modulating electronic structure. Mater. Today Energy 2019, 11, 89–96. [Google Scholar] [CrossRef]
- Qiu, B.; Du, M.; Ma, Y.; Zhu, Q.; Xing, M.; Zhang, J. Integration of redox cocatalysts for artificial photosynthesis. Energy Environ. Sci. 2021, 14, 5260–5288. [Google Scholar] [CrossRef]
- Shi, R.; Zhao, Y.; Waterhouse, G.I.N.; Zhang, S.; Zhang, T. Defect Engineering in Photocatalytic Nitrogen Fixation. ACS Catal. 2019, 9, 9739–9750. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, L.; Shen, Y.; Liu, J.; Xi, J.; Qiu, L.; Xu, X.; Men, D.; Li, P.; Duo, S. Facile Construction of 2D/2D ZnIn2S4-Based Bifunctional Photocatalysts for H2 Production and Simultaneous Degradation of Rhodamine B and Tetracycline. Nanomaterials 2023, 13, 2315. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-C.; Chiao, Y.-C.; Hsu, P.-C. Rapid Microwave-Assisted Synthesis of ZnIn2S4 Nanosheets for Highly Efficient Photocatalytic Hydrogen Production. Nanomaterials 2023, 13, 1957. [Google Scholar] [CrossRef]
- Zhang, L.; Qiu, J.; Xia, G.; Dai, D.; Zhong, X.; Yao, J. Constructing a Z-scheme Fe-MOF-based heterostructure for visible-light-driven oxidation of aromatic alcohol in ambient air. J. Mater. Sci. Technol. 2023, 138, 214–220. [Google Scholar] [CrossRef]
- Cao, S.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Mousavi, M.; Ghasemi, J.B.; Xu, F. H2-production and electron-transfer mechanism of a noble-metal-free WO3@ZnIn2S4 S-scheme heterojunction photocatalyst. J. Mater. Chem. A 2022, 10, 17174–17184. [Google Scholar] [CrossRef]
- Chen, C.; Hou, W.; Xu, Y. Significantly increased production of H2 on ZnIn2S4 under visible light through co-deposited CoWO4 and Co3O4. Appl. Catal. B Environ. 2022, 316, 121676. [Google Scholar] [CrossRef]
- Li, P.; He, T. Common-cation based Z-scheme ZnS@ZnO core-shell nanostructure for efficient solar-fuel production. Appl. Catal. B Environ. 2018, 238, 518–524. [Google Scholar] [CrossRef]
- Ran, J.; Guo, W.; Wang, H.; Zhu, B.; Yu, J.; Qiao, S.Z. Metal-free 2D/2D phosphorene/g-C3N4 Van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv. Mater. 2018, 30, 1800128. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Liang, J.; Luo, L.; Deng, R.; Li, G.; He, Q.; Chen, Y. Facile defect engineering in ZnIn2S4 coupled with carbon dots for rapid diclofenac degradation. Chin. Chem. Lett. 2021, 32, 2534–2538. [Google Scholar] [CrossRef]
- Shi, Y.; Li, L.; Xu, Z.; Qin, X.; Cai, Y.; Zhang, W.; Shi, W.; Du, X.; Guo, F. Coupled internal electric field with hydrogen release kinetics for promoted photocatalytic hydrogen production through employing carbon coated transition metal as co-catalyst. J. Colloid Interface Sci. 2023, 630, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Shi, Q.; Zuo, L.; Chen, Y.; Li, W.; Fan, H.; Li, B.; Wang, L. A novel direct Z-scheme heterojunction of CoTiO3/ZnIn2S4 for enhanced photocatalytic H2 evolution activity. Int. J. Hydrogen Energy 2023, 48, 8101–8114. [Google Scholar] [CrossRef]
- Han, K.; Li, W.; Ren, C.; Li, H.; Liu, X.; Li, X.; Ma, X.; Liu, H.; Khan, A. Dye-sensitized SrTiO3-based photocatalysts for highly efficient photocatalytic hydrogen evolution under visible light. J. Taiwan Inst. Chem. E 2020, 112, 4–14. [Google Scholar] [CrossRef]
- Kumar, A.; Navakoteswara Rao, V.; Kumar, A.; Mushtaq, A.; Sharma, L.; Halder, A.; Pal, S.K.; Shankar, M.V.; Krishnan, V. Three-Dimensional Carbonaceous Aerogels Embedded with Rh-SrTiO3 for Enhanced Hydrogen Evolution Triggered by Efficient Charge Transfer and Light Absorption. ACS Appl. Energy Mater. 2020, 3, 12134–12147. [Google Scholar] [CrossRef]
- Manchala, S.; Gandamalla, A.; Rao, V.N.; Venkatakrishnan, S.M.; Shanker, V. Solar-light responsive efficient H2 evolution using a novel ternary hierarchical SrTiO3/CdS/carbon nanospheres photocatalytic system. J. Nanostruct. Chem. 2022, 12, 179–191. [Google Scholar] [CrossRef]
- Niknam, H.; Sadeghzadeh-Attar, A. Mg-doped TiO2 nanorods-SrTiO3 heterojunction composites for efficient visible-light photocatalytic degradation of basic yellow 28. Opt. Mater. 2023, 136, 113395. [Google Scholar] [CrossRef]
- Cui, Y.; Sun, H.; Guo, P. Highly efficient SrTiO3/Ag2O n-p heterojunction photocatalysts: Improved charge carrier separation and enhanced visible-light harvesting. Nanotechnology 2020, 31, 245702. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, Y.; Guo, Q.; Xu, H.; Gu, L.; Huang, F.; Luo, D.; Huang, Y.; Fan, L.; Wu, J. Solvothermal fabrication of La-WO3/SrTiO3 heterojunction with high photocatalytic performance under visible light irradiation. Sol. Energy Mater. Sol. Cells 2018, 176, 230–238. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, J.; Zhao, Z.; Chen, C.; Cui, S.; Wang, Y.; Pan, L.; Ni, Y.; Lu, C. S-scheme SrTiO3/porous ZnO derived by pyrolysis of ZIF-8 composite with efficient photocatalytic activity for pollutant degradation. J. Alloys Compd. 2022, 896, 163064. [Google Scholar] [CrossRef]
- Chen, S.; Chen, C.; Cheng, C.; Shu, L.; Tang, Z.; Wang, Y.; Pan, L.; Guan, Z. Construction of SrTiO3/CaIn2S4 S-scheme heterojunction for enhanced photocatalytic degradation of organic pollutants. Mater. Sci. Semicond. Process. 2023, 164, 107627. [Google Scholar] [CrossRef]
- Ahmad, T.; Alotaibi, B.M.; Alrowaily, A.W.; Alyousef, H.A.; Al-Sehemi, A.G.; Ahmad, K.; Henaish, A.M.A. Heterostructure formation of perovskite with rGO as energy storage electrode material. Mater. Sci. Eng. B 2024, 305, 117434. [Google Scholar] [CrossRef]
- Castillo-Martínez, E.; Arévalo-López, A.M.; Ruiz-Bustos, R.; Alario-Franco, M.A. Increasing the Structural Complexity of Chromium(IV) Oxides by High-Pressure and High-Temperature Reactions of CrO2. Inorg. Chem. 2008, 47, 8526–8542. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Martínez, E.; Alario-Franco, M.Á. Revisiting the Sr–Cr(IV)–O system at high pressure and temperature with special reference to Sr3Cr2O7. Solid State Sci. 2007, 9, 564–573. [Google Scholar] [CrossRef]
- Tan, M.; Ma, Y.; Yu, C.; Luan, Q.; Li, J.; Liu, C.; Dong, W.; Su, Y.; Qiao, L.; Gao, L.; et al. Boosting Photocatalytic Hydrogen Production via Interfacial Engineering on 2D Ultrathin Z-Scheme ZnIn2S4/g-C3N4 Heterojunction. Adv. Funct. Mater. 2022, 32, 2111740. [Google Scholar] [CrossRef]
- Han, S.-Y.; Pan, D.-L.; Chen, H.; Bu, X.-B.; Gao, Y.-X.; Gao, H.; Tian, Y.; Li, G.-S.; Wang, G.; Cao, S.-L.; et al. A Methylthio-Functionalized-MOF Photocatalyst with High Performance for Visible-Light-Driven H2 Evolution. Angew. Chem. Int. Ed. 2018, 57, 9864–9869. [Google Scholar] [CrossRef]
- Gao, B.; Liu, L.; Liu, J.; Yang, F. Photocatalytic degradation of 2,4,6-tribromophenol over Fe-doped ZnIn2S4: Stable activity and enhanced debromination. Appl. Catal. B Environ. 2013, 129, 89–97. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485–2534. [Google Scholar] [CrossRef]
- Yi, S.-S.; Yan, J.-M.; Wulan, B.-R.; Li, S.-J.; Liu, K.-H.; Jiang, Q. Noble-metal-free cobalt phosphide modified carbon nitride: An efficient photocatalyst for hydrogen generation. Appl. Catal. B Environ. 2017, 200, 477–483. [Google Scholar] [CrossRef]
- Tan, M.; Yu, C.; Luan, Q.; Liu, C.; Dong, W.; Su, Y.; Qiao, L.; Gao, L.; Lu, Q.; Bai, Y. The Mott–Schottky heterojunction MoC@NG@ZIS with enhanced kinetic response for promoting photocatalytic hydrogen production. J. Mater. Chem. A 2022, 10, 21465–21473. [Google Scholar] [CrossRef]
- Zhou, D.; Xue, X.; Wang, X.; Luan, Q.; Li, A.; Zhang, L.; Li, B.; Dong, W.; Wang, G.; Hou, C. Ni, In co-doped ZnIn2S4 for efficient hydrogen evolution: Modulating charge flow and balancing H adsorption/desorption. Appl. Catal. B Environ. 2022, 310, 121337. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Wang, X.; Su, Y. Investigation of Two Novel Heterojunction Photocatalysts with Boosted Hydrogen Evolution Performance. Nanomaterials 2024, 14, 1947. https://doi.org/10.3390/nano14231947
Zhang K, Wang X, Su Y. Investigation of Two Novel Heterojunction Photocatalysts with Boosted Hydrogen Evolution Performance. Nanomaterials. 2024; 14(23):1947. https://doi.org/10.3390/nano14231947
Chicago/Turabian StyleZhang, Kaifeng, Xudong Wang, and Yanjing Su. 2024. "Investigation of Two Novel Heterojunction Photocatalysts with Boosted Hydrogen Evolution Performance" Nanomaterials 14, no. 23: 1947. https://doi.org/10.3390/nano14231947
APA StyleZhang, K., Wang, X., & Su, Y. (2024). Investigation of Two Novel Heterojunction Photocatalysts with Boosted Hydrogen Evolution Performance. Nanomaterials, 14(23), 1947. https://doi.org/10.3390/nano14231947