Facile Construction of 2D/2D ZnIn2S4-Based Bifunctional Photocatalysts for H2 Production and Simultaneous Degradation of Rhodamine B and Tetracycline
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of ZnIn2S4 Nanosheets
2.3. Synthesis of TiO2/ZnIn2S4 Nanosheets
2.4. Characterization
2.5. Density Functional Theory (DFT) Calculation
2.6. Photocatalytic Hydrogen Generation
2.7. Photodegradation Activity Evaluation
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Li, Y.; Wen, L.S.; Xi, J.B.; Liu, P.; Hansen, T.W.; Li, P. Ni-Pd-incorporated Fe3O4 yolk-shelled nanospheres as efficient magnetically recyclable catalysts for reduction of N-containing unsaturated compounds. Catalysts 2023, 13, 190. [Google Scholar] [CrossRef]
- Tan, H.; Li, J.L.; He, M.; Li, J.Y.; Zhi, D.; Qin, F.Z.; Zhang, C. Global evolution of research on green energy and environmental technologies: A bibliometric study. J. Environ. Manag. 2021, 297, 113382. [Google Scholar] [CrossRef]
- Xu, J.W.; Zheng, X.L.; Feng, Z.P.; Lu, Z.Y.; Zhang, Z.W.; Huang, W.; Li, Y.B.; Vuckovic, D.; Li, Y.Q.; Dai, S.; et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 2021, 4, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.P.; Wu, H.; Chen, D.Y.; Li, N.J.; Xu, Q.F.; Li, H.; He, J.H.; Lu, J.M. A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application. Green Energy Environ. 2022, 7, 176–204. [Google Scholar] [CrossRef]
- Wang, J.; Sun, S.J.; Zhou, R.; Li, Y.Z.; He, Z.T.; Ding, H.; Chen, D.M.; Ao, W.H. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4. J. Mater. Sci. Technol. 2021, 78, 1–19. [Google Scholar] [CrossRef]
- Liu, Q.L.; Zhao, Z.Y.; Zhao, R.D.; Yi, J.H. Fundamental properties of delafossite CuFeO2 as photocatalyst for solar energy conversion. J. Alloys Compd. 2020, 819, 153032. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, H.; Jiang, Y.H.; Zhang, W.L.; Zhang, J.M.; Wu, X.Y.; Liu, Z.C.; Deng, W. Hierarchical Sb2S3/ZnIn2S4 core-shell heterostructure for highly efficient photocatalytic hydrogen production and pollutant degradation. J. Colloid Interf. Sci. 2022, 623, 109–123. [Google Scholar] [CrossRef]
- Wei, Z.D.; Liu, J.Y.; Shangguan, W.F. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. Chinese J. Catal. 2020, 41, 1440–1450. [Google Scholar] [CrossRef]
- Guo, Y.C.; Yan, B.G.; Deng, F.; Shao, P.H.; Zou, J.P.; Luo, X.B.; Zhang, S.Q.; Li, X.B. Lattice expansion boosting photocatalytic degradation performance of CuCo2S4 with an inherent dipole moment. Chinese Chem. Lett. 2023, 34, 107468. [Google Scholar] [CrossRef]
- Wang, L.B.; Cheng, B.; Zhang, L.Y.; Yu, J.G. In situ irradiated XPS investigation on S-Scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447. [Google Scholar] [CrossRef]
- Zhuge, Z.H.; Liu, X.J.; Chen, T.Q.; Gong, Y.Y.; Li, C.; Niu, L.Y.; Xu, S.Q.; Xu, X.T.; Alothman, Z.A.; Sun, C.Q.; et al. Highly efficient photocatalytic degradation of different hazardous contaminants by CaIn2S4-Ti3C2Tx Schottky heterojunction: An experimental and mechanism study. Chem. Eng. J. 2021, 421, 127838. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, L.Z.; Li, J.Z.; Qiu, L.F.; Zhou, C.H.; Xu, X.; Shen, Y.L.; Xi, J.B.; Men, D.D.; Li, P.; et al. Coupling ZnIn2S4 nanosheets with MoS2 hollow nanospheres as visible-light-active bifunctional photocatalysts for enhancing H2 evolution and RhB degradation. Inorg. Chem. 2023, 62, 7111–7122. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Jian, L.; Gong, M.; Jing, M.Y.; Li, H.X.; Mao, Q.Y.; Lu, T.B.; Guo, Y.X.; Ji, R.; Chi, W.W.; et al. Transition-metal-based cocatalysts for photocatalytic water splitting. Small Struct. 2022, 3, 2100229. [Google Scholar] [CrossRef]
- Yang, Z.F.; Xia, X.N.; Yang, W.W.; Wang, L.L.; Liu, Y.T. Photothermal effect and continuous hot electrons injection synergistically induced enhanced molecular oxygen activation for efficient selective oxidation of benzyl alcohol over plasmonic W18O49/ZnIn2S4 photocatalyst. Appl. Catal. B: Environ. 2021, 299, 120675. [Google Scholar] [CrossRef]
- Xia, M.Y.; Yan, X.Q.; Li, H.; Wells, N.; Yang, G.D. Well-designed efficient charge separation in 2D/2D N doped La2Ti2O7/ZnIn2S4 heterojunction through band structure/morphology regulation synergistic effect. Nano Energy 2020, 78, 105401. [Google Scholar] [CrossRef]
- Hao, C.C.; Tang, Y.B.; Shi, W.L.; Chen, F.Y.; Guo, F. Facile solvothermal synthesis of a Z-Scheme 0D/3D CeO2/ZnIn2S4 heterojunction with enhanced photocatalytic performance under visible light irradiation. Chem. Eng. J. 2021, 409, 128168. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.Z.; Li, P.; Zhang, G.Z.; Xu, X.; Zhang, H.; Qiu, L.F.; Qi, H.; Duo, S.W. In-situ construction of 2D/3D ZnIn2S4/TiO2 with enhanced photocatalytic performance. Acta Chim. Sinica 2021, 79, 1293–1301. [Google Scholar] [CrossRef]
- Geng, Y.L.; Zou, X.L.; Lu, Y.N.; Wang, L. Fabrication of the SnS2/ZnIn2S4 heterojunction for highly efficient visible light photocatalytic H2 evolution. Int. J. Hydrogen Energy 2022, 47, 11520–11527. [Google Scholar] [CrossRef]
- Yang, R.J.; Chen, Q.Q.; Ma, Y.Y.; Zhu, R.S.; Fan, Y.Y.; Huang, J.Y.; Niu, H.N.; Dong, Y.; Li, D.; Zhang, Y.F.; et al. Highly efficient photocatalytic hydrogen evolution and simultaneous formaldehyde degradation over Z-scheme ZnIn2S4-NiO/BiVO4 hierarchical heterojunction under visible light irradiation. Chem. Eng. J. 2021, 423, 130164. [Google Scholar] [CrossRef]
- Du, J.; Shi, H.N.; Wu, J.M.; Li, K.Y.; Song, C.S.; Guo, X.W. Interface and defect engineering of a hollow TiO2@ZnIn2S4 heterojunction for highly enhanced CO2 photoreduction activity. ACS Sustainable Chem. Eng. 2023, 11, 2531–2540. [Google Scholar] [CrossRef]
- Wen, L.S.; Wang, D.; Xi, J.B.; Tian, F.; Liu, P.; Bai, Z.W. Heterometal modified Fe3O4 hollow nanospheres as efficient catalysts for organic transformations. J. Catal. 2022, 413, 779–785. [Google Scholar] [CrossRef]
- Huang, K.L.; Li, C.H.; Meng, X.C. In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution. J. Colloid Interf. Sci. 2020, 580, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.Y.; Wang, C.X.; Wang, W.; Xu, P.; Sun, X.N.; Zhang, J.T. The enhanced performance of Cr(VI) photoreduction and antibiotic removal on 2D/3D TiO2/ZnIn2S4 nanostructures. Ceram. Int. 2021, 47, 17015–17022. [Google Scholar] [CrossRef]
- Tan, Q.Y.; Li, K.N.; Li, Q.; Ding, Y.B.; Fan, J.J.; Xu, Z.H.; Lv, K.L. Photosensitization of TiO2 nanosheets with ZnIn2S4 for enhanced visible photocatalytic activity toward hydrogen production. Mater. Today Chem. 2022, 26, 101114. [Google Scholar] [CrossRef]
- Yang, G.; Chen, D.M.; Ding, H.; Feng, J.J.; Zhang, J.Z.; Zhu, Y.F.; Hamid, S.; Bahnemann, D.W. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Appl. Catal. B: Environ. 2017, 219, 611–618. [Google Scholar] [CrossRef]
- Li, J.M.; Wu, C.C.; Li, J.; Dong, B.H.; Zhao, L.; Wang, S.M. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution. Chinese J. Catal. 2022, 43, 339–349. [Google Scholar] [CrossRef]
- Fu, J.W.; Xu, Q.L.; Low, J.X.; Jiang, C.J.; Yu, J.G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B: Environ. 2019, 243, 556–565. [Google Scholar] [CrossRef]
- Hou, H.L.; Zeng, X.K.; Zhang, X.W. 2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Sci. China Mater. 2020, 63, 2119–2152. [Google Scholar] [CrossRef] [Green Version]
- Mamiyev, Z.; Balayeva, N.O. Metal sulfide photocatalysts for hydrogen generation: A review of recent advances. Catalysts 2022, 12, 1316. [Google Scholar] [CrossRef]
- Zhang, G.P.; Li, X.X.; Wang, M.M.; Li, X.Q.; Wang, Y.R.; Huang, S.T.; Chen, D.Y.; Li, N.J.; Xu, Q.F.; Li, H.; et al. 2D/2D hierarchical Co3O4/ZnIn2S4 heterojunction with robust built-in electric field for efficient photocatalytic hydrogen evolution. Nano Res. 2023, 16, 6134–6141. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Xu, J.S.; Mei, J.; Sarina, S.; Wu, Z.Y.; Liao, T.; Yan, C.; Sun, Z.Q. Strongly interfacial-coupled 2D-2D TiO2/g-C3N4 heterostructure for enhanced visible-light induced synthesis and conversion. J. Hazard. Mater. 2020, 394, 122529. [Google Scholar] [CrossRef]
- Qian, H.X.; Liu, Z.F.; Guo, Z.G.; Ruan, M.N.; Ma, J.L. Hexagonal phase/cubic phase homogeneous ZnIn2S4 n-n junction photoanode for efficient photoelectrochemical water splitting. J. Alloys Compd. 2020, 830, 154639. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, H.; Hu, L.; Shen, Y.L.; Qiu, L.F.; Zhu, L.Z.; Shi, Q.X.; Xu, X.; Li, P.; Duo, S.W. Highly efficient visible-light photocatalytic performance of MOFs-derived TiO2 via heterojunction construction and oxygen vacancy engineering. Chem. Phys. Lett. 2023, 815, 140365. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.H.; Wang, X.T.; Hou, B.R. 3D ZnIn2S4 nanosheets/TiO2 nanotubes as photoanodes for photocathodic protection of Q235 CS with high efficiency under visible light. J. Alloys Compd. 2019, 771, 892–899. [Google Scholar] [CrossRef]
- Sun, B.J.; Bu, J.Q.; Du, Y.C.; Chen, X.Y.; Li, Z.Z.; Zhou, W. O, S-dual-vacancy defects mediated efficient charge separation in ZnIn2S4/black TiO2 heterojunction hollow spheres for boosting photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 2021, 13, 37545–37552. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Z.; Zhang, Y.C. Synthesis of CPVC-modified SnS2/TiO2 composite with improved visible light-driven photocatalysis. Mater. Res. Bull. 2021, 135, 111125. [Google Scholar] [CrossRef]
- Deng, Z.Q.; Li, L.; Ren, Y.C.; Ma, C.Q.; Liang, J.; Dong, K.; Liu, Q.; Luo, Y.L.; Li, T.S.; Tang, B.; et al. Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2. Nano Res. 2022, 15, 3880–3885. [Google Scholar] [CrossRef]
- Qiu, J.H.; Li, M.; Xu, J.; Zhang, X.F.; Yao, J.F. Bismuth sulfide bridged hierarchical Bi2S3/BiOCl@ZnIn2S4 for efficient photocatalytic Cr(VI) reduction. J. Hazard. Mater. 2020, 389, 121858. [Google Scholar] [CrossRef] [PubMed]
- Chai, B.; Peng, T.Y.; Zeng, P.; Zhang, X.H. Preparation of a MWCNTs/ZnIn2S4 composite and its enhanced photocatalytic hydrogen production under visible-light irradiation. Dalton Trans. 2012, 41, 1179–1186. [Google Scholar] [CrossRef]
- Xu, L.Z.; Deng, X.Y.; Li, Z.H. Photocatalytic splitting of thiols to produce disulfides and hydrogen over PtS/ZnIn2S4 nanocomposites under visible light. Appl. Catal. B: Environ. 2018, 234, 50–55. [Google Scholar] [CrossRef]
- Liu, C.; Ma, J.; Zhang, F.J.; Wang, Y.R.; Kong, C. Facile formation of Mo-vacancy defective MoS2/CdS nanoparticles enhanced efficient hydrogen production. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128743. [Google Scholar] [CrossRef]
- Cheng, S.; Qi, M.L.; Li, W.; Sun, W.Y.; Li, M.Q.; Lin, J.Y.; Bai, X.; Sun, Y.; Dong, B.; Wang, L. Dual-responsive nanocomposites for synergistic antibacterial therapies facilitating bacteria-infected wound healing. Adv. Healthc. Mater. 2023, 12, 2202652. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.D.; Yang, C.M.; Xue, W.W.; Hao, L.D.; Wang, D.J.; Fu, F.; Sun, Z.Y. Construction of ternary bismuth-based heterojunction by using (BiO)2CO3 as electron bridge for highly efficient degradation of phenol. Chem. Eur. J. 2023, 29, e202300748. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Hao, S.H.; Guo, J.H.; Xing, Y.P.; Zhang, L.; Xu, X.J. Design of p-n homojunctions in metal-free carbon nitride photocatalyst for overall water splitting. Chinese J. Catal. 2021, 42, 501–509. [Google Scholar] [CrossRef]
- Liu, J.F.; Wang, P.; Fan, J.J.; Yu, H.G.; Yu, J.G. In situ synthesis of Mo2C nanoparticles on graphene nanosheets for enhanced photocatalytic H2-production activity of TiO2. ACS Sustain. Chem. Eng. 2021, 9, 3828–3837. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhu, L.; Shen, Y.; Liu, J.; Xi, J.; Qiu, L.; Xu, X.; Men, D.; Li, P.; Duo, S. Facile Construction of 2D/2D ZnIn2S4-Based Bifunctional Photocatalysts for H2 Production and Simultaneous Degradation of Rhodamine B and Tetracycline. Nanomaterials 2023, 13, 2315. https://doi.org/10.3390/nano13162315
Chen Y, Zhu L, Shen Y, Liu J, Xi J, Qiu L, Xu X, Men D, Li P, Duo S. Facile Construction of 2D/2D ZnIn2S4-Based Bifunctional Photocatalysts for H2 Production and Simultaneous Degradation of Rhodamine B and Tetracycline. Nanomaterials. 2023; 13(16):2315. https://doi.org/10.3390/nano13162315
Chicago/Turabian StyleChen, Yue, Liezhen Zhu, Youliang Shen, Jing Liu, Jiangbo Xi, Lingfang Qiu, Xun Xu, Dandan Men, Ping Li, and Shuwang Duo. 2023. "Facile Construction of 2D/2D ZnIn2S4-Based Bifunctional Photocatalysts for H2 Production and Simultaneous Degradation of Rhodamine B and Tetracycline" Nanomaterials 13, no. 16: 2315. https://doi.org/10.3390/nano13162315
APA StyleChen, Y., Zhu, L., Shen, Y., Liu, J., Xi, J., Qiu, L., Xu, X., Men, D., Li, P., & Duo, S. (2023). Facile Construction of 2D/2D ZnIn2S4-Based Bifunctional Photocatalysts for H2 Production and Simultaneous Degradation of Rhodamine B and Tetracycline. Nanomaterials, 13(16), 2315. https://doi.org/10.3390/nano13162315