Next Issue
Volume 30, February-1
Previous Issue
Volume 30, January-1
 
 
molecules-logo

Journal Browser

Journal Browser

Molecules, Volume 30, Issue 2 (January-2 2025) – 228 articles

Cover Story (view full-size image): Molecules (ISSN 1420-3049, CODEN: MOLEFW) provides an advanced forum for science of chemistry and all interfacing disciplines. Our aim is to provide rigorous peer review and enable rapid publication of cutting-edge research to educate and inspire the scientific community worldwide. Scientists are encouraged to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the maximum length of the papers. Full experimental details must be provided so that the results can be reproduced. In addition, the availability of compound samples is published and considered important information, and authors are encouraged to register or deposit their chemical samples.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
10 pages, 4522 KiB  
Article
The Facile Solid-Phase Synthesis of Thiazolo-Pyrimidinone Derivatives
by Shuanghui Hua, Jimin Moon and Taeho Lee
Molecules 2025, 30(2), 430; https://doi.org/10.3390/molecules30020430 - 20 Jan 2025
Viewed by 374
Abstract
A thiazolo-pyrimidinone derivative library was developed through a facile solid-phase synthesis method. For the reaction, the thiazolo[4,5-d]pyrimidin-7(6H)-one structure was synthesized through efficient Thorpe–Ziegler and cyclization reactions. The thiazolo[4,5-d]pyrimidin-7(6H)-one derivative library with a diversity of three [...] Read more.
A thiazolo-pyrimidinone derivative library was developed through a facile solid-phase synthesis method. For the reaction, the thiazolo[4,5-d]pyrimidin-7(6H)-one structure was synthesized through efficient Thorpe–Ziegler and cyclization reactions. The thiazolo[4,5-d]pyrimidin-7(6H)-one derivative library with a diversity of three had a total of four synthesis steps and 57 compounds. In addition, the yield per synthesis step was 65–97%, which was very high. The developed synthesis method and compounds will be used to find compounds with biological activity through the thiazole derivative structure–activity relationship. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

16 pages, 1196 KiB  
Review
Peptide with Dual Roles in Immune and Metabolic Regulation: Liver-Expressed Antimicrobial Peptide-2 (LEAP-2)
by Yitong Li, Ying Liu and Meng Gou
Molecules 2025, 30(2), 429; https://doi.org/10.3390/molecules30020429 - 20 Jan 2025
Viewed by 479
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2) was originally discovered as an antimicrobial peptide that plays a vital role in the host innate immune system of various vertebrates. Recent research discovered LEAP-2 as an endogenous antagonist and inverse agonist of the GHSR1a receptor. By acting [...] Read more.
Liver-expressed antimicrobial peptide 2 (LEAP-2) was originally discovered as an antimicrobial peptide that plays a vital role in the host innate immune system of various vertebrates. Recent research discovered LEAP-2 as an endogenous antagonist and inverse agonist of the GHSR1a receptor. By acting as a competitive antagonist to ghrelin, LEAP-2 influences energy balance and metabolic processes via the ghrelin–GHSR1a signaling pathway. LEAP-2 alone or the LEAP-2/ghrelin molar ratio showed potential as therapeutic targets for obesity, diabetes, and metabolic disorders. This review explores the recent advances of LEAP-2 in immune modulation and energy regulation, highlighting its potential in treating the above diseases. Full article
(This article belongs to the Topic Peptoids and Peptide Based Drugs)
Show Figures

Figure 1

18 pages, 7621 KiB  
Article
The Synthesis, Crystal Structure, Modification, and Cytotoxic Activity of α-Hydroxy-Alkylphosphonates
by Zsuzsanna Szalai, Anna Sára Kis, Angéla Takács, László Kőhidai, Konstantin Karaghiosoff, Mátyás Czugler, László Drahos and György Keglevich
Molecules 2025, 30(2), 428; https://doi.org/10.3390/molecules30020428 - 20 Jan 2025
Viewed by 379
Abstract
A series of α-hydroxy-alkylphosphonates and α-hydroxy-alkylphosphine oxides were synthesized by the Pudovik reaction of acetaldehyde and acetone with dialkyl phosphites or diarylphosphine oxides. The additions were performed in three different ways: in liquid phase using triethylamine as the catalyst (1), on the surface [...] Read more.
A series of α-hydroxy-alkylphosphonates and α-hydroxy-alkylphosphine oxides were synthesized by the Pudovik reaction of acetaldehyde and acetone with dialkyl phosphites or diarylphosphine oxides. The additions were performed in three different ways: in liquid phase using triethylamine as the catalyst (1), on the surface of Al2O3/KF solid catalyst (2), or by a MW-assisted Na2CO3-catalyzed procedure (3). In most of the cases, our methods were more efficient and more robust than those applied in the literature. Two of the α-hydroxy-alkylphosphonates were subjected to single-crystal X-ray analysis, suggesting a dimeric and a chain supramolecular buildup in their respective crystals. Four α-hydroxy-alkylphosphonates and one α-hydroxy-ethylphosphine oxide were reacted with different acid chlorides to afford ten α-acyloxyphosphonates. Diethyl α-hydroxy-ethylphosphonate was transformed to the methanesulfonyloxy derivative that was useful in the Michaelis–Arbuzov reaction with triethyl phosphite and ethyl diphenylphosphinite to afford tetraethyl ethylidenebisphosphonate and diethyl α-(diphenylphosphinoyl)-ethylphosphonate, respectively. The α-hydroxyphosphonates and α-hydroxyphosphine oxides prepared were subjected to bioactivity studies, and the compounds tested exhibited limited cytotoxic effects on U266 cells with modest reductions in viability at a concentration of 100 μM. Full article
(This article belongs to the Special Issue The Preparations and Applications of Organophosphorus Compounds)
Show Figures

Figure 1

22 pages, 2793 KiB  
Article
Effect of Glycoconjugation on Cytotoxicity and Selectivity of 8-Aminoquinoline Derivatives Compared to 8-Hydroxyquinoline
by Gabriela Pastuch-Gawołek and Julia Szreder
Molecules 2025, 30(2), 427; https://doi.org/10.3390/molecules30020427 - 20 Jan 2025
Viewed by 327
Abstract
Numerous emerging chemotherapeutic agents incorporate N-heterocyclic fragments in their structures, with the quinoline skeleton being particularly significant. Our recent works have focused on glycoconjugates of 8-hydroxyquinoline (8-HQ), which demonstrated enhanced bioavailability and solubility compared to their parent compounds, although they fell short [...] Read more.
Numerous emerging chemotherapeutic agents incorporate N-heterocyclic fragments in their structures, with the quinoline skeleton being particularly significant. Our recent works have focused on glycoconjugates of 8-hydroxyquinoline (8-HQ), which demonstrated enhanced bioavailability and solubility compared to their parent compounds, although they fell short in selectivity. In this study, our objective was to improve the selectivity of glycoconjugates by replacing the oxygen atom with nitrogen by substituting the 8-HQ moiety with 8-aminoquinoline (8-AQ). The 8-AQ derivatives were functionalized through the amino group and linked to sugar derivatives (D-glucose or D-galactose) that were modified with an azide, alkylazide, or propargyl group at the anomeric position by copper(I)-catalyzed 1,3-dipolar azido-alkyne cycloaddition (CuAAC). The resulting glycoconjugates, as well as their potential metabolites, were evaluated for their ability to inhibit the proliferation of cancer cell lines (including HCT 116 and MCF-7) and a healthy cell line (NHDF-Neo). Two of the synthesized glycoconjugates (17 and 18) demonstrated higher cytotoxicity than their oxygen-containing counterparts and showed improved selectivity for cancer cells, thus enhancing their anticancer potential. Furthermore, it was found that glycoconjugates exhibited greater cytotoxicity in comparison to their potential metabolites. Full article
(This article belongs to the Special Issue Bioorganic Chemistry in Europe)
Show Figures

Graphical abstract

15 pages, 2961 KiB  
Article
Sustainable CO2 Capture: N,S-Codoped Porous Carbons Derived from Petroleum Coke with High Selectivity and Stability
by Jiawei Shao, Yingyi Wang, Mingyang Che, Ya Liu, Yongfu Jiang, Qiang Xiao, Muslum Demir, Linlin Wang and Xin Hu
Molecules 2025, 30(2), 426; https://doi.org/10.3390/molecules30020426 - 20 Jan 2025
Viewed by 337
Abstract
CO2 capture from the flue gas is a promising approach to mitigate global warming. However, regulating the carbon-based adsorbent in terms of textural and surface modification is still a challenge. To overcome this issue, the present study depicts the development of cost-effective [...] Read more.
CO2 capture from the flue gas is a promising approach to mitigate global warming. However, regulating the carbon-based adsorbent in terms of textural and surface modification is still a challenge. To overcome this issue, the present study depicts the development of cost-effective and high-performance CO2 adsorbents derived from petroleum coke, an industrial by-product, using a two-step process involving thiourea modification and KOH activation. A series of N,S-codoped porous carbons was synthesized by varying activation temperatures and KOH quantity. The optimized sample exhibited a high specific surface area of 1088 m2/g, a narrow micropore volume of 0.52 cm3/g, and considerable heteroatom doping (1.57 at.% nitrogen and 0.19 at.% sulfur). The as-prepared adsorbent achieved a CO2 adsorption capacity of 3.69 and 5.08 mmol/g at 1 bar, 25 °C and 0 °C, respectively, along with a CO2/N2 selectivity of 17. Adsorption kinetics showed 90% of equilibrium uptake was achieved within 5 min, while cyclic studies revealed excellent stability with 97% capacity retention after five cycles. Thermodynamic analysis indicated moderate isosteric heat of adsorption (Qst) values ranging from 18 to 47 kJ/mol, ensuring both strong adsorption and efficient desorption. These findings highlight the potential of petroleum coke-derived porous carbons for sustainable and efficient CO2 capture applications. Full article
(This article belongs to the Special Issue Porous Carbons for Gas Adsorption and Capture)
Show Figures

Figure 1

14 pages, 4274 KiB  
Article
Dissolution Mechanism of YbOF in (LiF-CaF2)eut. Molten Salt
by Linsheng Luo, Kailei Sun and Xu Wang
Molecules 2025, 30(2), 425; https://doi.org/10.3390/molecules30020425 - 20 Jan 2025
Viewed by 295
Abstract
The dissolution mechanism of YbOF in a fluoride-containing (LiF-CaF2)eut. molten salt is the basis for analyzing the structure of the resulting medium and optimizing the electrolytic preparation of rare-earth Yb alloys. In this study, isothermal saturation was used to analyze [...] Read more.
The dissolution mechanism of YbOF in a fluoride-containing (LiF-CaF2)eut. molten salt is the basis for analyzing the structure of the resulting medium and optimizing the electrolytic preparation of rare-earth Yb alloys. In this study, isothermal saturation was used to analyze solubility changes of YbOF in the (LiF-CaF2)eut. system. Quantum chemical and molecular dynamics ab initio methods were used to study the basic properties of the components of the (LiF-CaF2)eut.-YbOF system and the microscopic structural changes during the dissolution process. In addition, structural changes in the YbOF-saturated (LiF-CaF2)eut. system were analyzed by combining cryogenic-temperature Raman spectroscopy with experimental methods. The results show the solubility of YbOF increased linearly in the temperature range of 1073–1323 K. As the melting temperature exceeded 1073 K, LiF and CaF2 gradually dissociated into Li+, Ca2+, and F. In the initial stages of YbOF dissolution (1073–1173 K), the Yb–F bond was less stable than the Yb–O bond; YbOF dissociated into YbO+ and F in this temperature range. When the temperature was increased above 1173 K, YbO+ further dissociated into Yb3+ and O2−. Overall, the dissolution of YbOF did not affect the main structure of the (LiF-CaF2)eut. system. Full article
Show Figures

Figure 1

17 pages, 8844 KiB  
Article
From Anatase TiO2 Nano-Cuboids to Nano-Bipyramids: Influence of Particle Shape on the TiO2 Photocatalytic Degradation of Emerging Contaminants in Contrasted Water Matrices
by Humaira Asghar, Daphne Hermosilla, Francesco Pellegrino, Virginia Muelas-Ramos, Christian de los Ríos, Antonio Gascó, Valter Maurino and Muhammad Ahsan Iqbal
Molecules 2025, 30(2), 424; https://doi.org/10.3390/molecules30020424 - 20 Jan 2025
Viewed by 389
Abstract
Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium [...] Read more.
Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO2 NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices. The size and shape of the nano-cuboids were accurately controlled during synthesis to assess their impact on photoactivity and selectivity. Regarding total organic carbon removal using TiO2 nano-cuboids in basic environments, the results were particularly remarkable. TiO2 nano-cuboids and truncated bipyramids synthesized in the 200–250 °C temperature range showed an enhanced photocatalytic efficiency when compared to alternative formulations. Diclofenac, methomyl, and phenol were fully mineralized from ultrapure water and basic stormwater. The TiO2 nano-cuboids/nano-bipyramids demonstrated better selectivity and photoactivity in comparison to irregular TiO2 nanoparticles. The differences in photoactivity and selectivity are explained in terms of charge carrier separation and trapping on the different crystal facets. Their performance demonstrates their potential as sustainable materials for the photodegradation of emerging pollutants in various water matrices. Full article
(This article belongs to the Special Issue New Research on Novel Photo-/Electrochemical Materials)
Show Figures

Figure 1

15 pages, 2047 KiB  
Article
Colorimetric Detection of Dopamine Based on Peroxidase-like Activity of β-CD Functionalized AuNPs
by Sara Anderson, Hamish Shepherd, Kiran Boggavarapu and Janak Paudyal
Molecules 2025, 30(2), 423; https://doi.org/10.3390/molecules30020423 - 20 Jan 2025
Viewed by 494
Abstract
Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in [...] Read more.
Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA. We found that β-CD-AuNPs can catalyze the H2O2-mediated oxidation of DA. The dopamine signal-off sensor was developed by taking advantage of the peroxidase-like activity of β-CD-AuNPs towards TMB and DA, where both 3,3′,5,5′-tetramethylbenzidine (TMB) and dopamine (DA) may compete for the binding sites with β-CD-AuNPs. As a result, the presence of dopamine can be detected even through the naked eye (up to the concentration of 3.75 µM) and using a spectrophotometer (up to the concentration of 1.0 µM) by monitoring the disappearance of the blue color of the oxidized form of TMB in the presence of dopamine. Furthermore, no obvious disappearance of color was observed at lower concentrations of interferences including ascorbic and uric acid. Given the versatility of cyclodextrin to host large numbers of analyte molecules, we envision that a similar principle can be applied for the detection of other analyte molecules of biological, medical, and environmental significance. Full article
Show Figures

Figure 1

18 pages, 5079 KiB  
Article
Epigynum auritum-Derived Near-Infrared Carbon Dots for Bioimaging and Antimicrobial Applications
by Wenfeng Shi, Jiahui Li, Junmei Pu, Guiguang Cheng, Yaping Liu, Shanshan Xiao and Jianxin Cao
Molecules 2025, 30(2), 422; https://doi.org/10.3390/molecules30020422 - 20 Jan 2025
Viewed by 350
Abstract
The use of biomass feedstocks for producing high-value-added chemicals is gaining significant attention in the academic community. In this study, near-infrared carbon dots (NIR-CDs) with antimicrobial and bioimaging functions were prepared from Epigynum auritum branches and leaves using a novel green synthesis approach. [...] Read more.
The use of biomass feedstocks for producing high-value-added chemicals is gaining significant attention in the academic community. In this study, near-infrared carbon dots (NIR-CDs) with antimicrobial and bioimaging functions were prepared from Epigynum auritum branches and leaves using a novel green synthesis approach. The spectral properties of the synthesized NIR-CDs were characterized by ultraviolet–visible (UV-Vis) absorption and fluorescence spectroscopy. The crystal structures of the NIR-CDs were further characterized by high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), and X-ray diffraction (XRD). The NIR-CDs exhibited minimal toxicity, excellent biocompatibility, and high penetrability in both in vivo and in vitro environments, making them ideal luminescent probes for bioimaging applications. Moreover, the antimicrobial activity of NIR-CDs was tested against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), showing significant bacterial growth inhibition. The antimicrobial effect is likely attributed to the NIR-CDs disrupting the cell membrane integrity, leading to the leakage of the intracellular contents. Therefore, NIR-CDs hold promise as fluorescent bioimaging probes and antimicrobial agents. Full article
Show Figures

Figure 1

12 pages, 4615 KiB  
Article
Water-Resistant Poly(ethylene oxide) Electrospun Membranes Enabled by In Situ UV-Cross-Linking for Efficient Daytime Radiative Cooling
by Haiyan Zhang, Qingpeng Wang, Zhiguang Xu and Yan Zhao
Molecules 2025, 30(2), 421; https://doi.org/10.3390/molecules30020421 - 20 Jan 2025
Viewed by 358
Abstract
Daytime radiative cooling, based on selective infrared emissions through atmospheric transparency windows to outer space and the reflection of solar irradiance, is a zero-energy and environmentally friendly cooling technology. Poly(ethylene oxide) (PEO) electrospun membranes have both selective mid-infrared emissions and effective sunlight reflection, [...] Read more.
Daytime radiative cooling, based on selective infrared emissions through atmospheric transparency windows to outer space and the reflection of solar irradiance, is a zero-energy and environmentally friendly cooling technology. Poly(ethylene oxide) (PEO) electrospun membranes have both selective mid-infrared emissions and effective sunlight reflection, inducing excellent daytime radiative cooling performance. However, PEO is highly water soluble, which makes electrospun PEO membranes unable to cope with rainy conditions when used for outdoor daytime radiative cooling. Herein, we report an in situ UV-crosslinking strategy for preparing PEO electrospun membranes with water resistance for the application of daytime radiative cooling. Acrylate-terminated PEO was synthesized and mixed together with cross-linking agents and photoinitiators to prepare the electrospinning solution. During electrospinning, the nanofibers were irradiated with UV light to initiate the cross-linking. For a membrane with a thickness of 200 μm, the average solar reflectance was 89.6%, and the infrared emissivity (8–13 μm) was 96.3%. Although slight swelling happens to the cross-linked membrane once it comes into contact with water, the fibrous morphology shows no obvious change when prolonging the water soaking time, indicating excellent water resistance. The outdoor cooling performance test results showed that compared to the average temperature of the air in the test box, the average temperature drop in the membrane before and after water soaking was 13.8 °C and 11.5 °C, respectively. Crosslinked PEO-based electrospun membranes with both water resistance and radiative cooling performance may have real applications for outdoor daytime radiative cooling. Full article
Show Figures

Figure 1

15 pages, 3754 KiB  
Article
The Effect of Zeolite Na-X and Clinoptilolite as Functional Fillers on the Mechanical, Thermal and Barrier Properties of Thermoplastic Polyurethane
by Nello Russo, Letizia Verdolotti, Giuseppe Cesare Lama, Federica Recupido, Barbara Liguori and Maria Oliviero
Molecules 2025, 30(2), 420; https://doi.org/10.3390/molecules30020420 - 20 Jan 2025
Viewed by 407
Abstract
To obtain sustainable food packaging materials, alternatives to traditional ones must be researched. In this work, two different kinds of zeolites, i.e., a natural one, Clinoptilolite, and a synthetic one, Zeolite Na-X, were mixed with thermoplastic polyurethane for the fabrication of composites. Composite [...] Read more.
To obtain sustainable food packaging materials, alternatives to traditional ones must be researched. In this work, two different kinds of zeolites, i.e., a natural one, Clinoptilolite, and a synthetic one, Zeolite Na-X, were mixed with thermoplastic polyurethane for the fabrication of composites. Composite films were prepared via a hot mixing stage and then by means of a hot compression molding process. Several TPU/zeolite composites were produced with a filler concentration ranging from 5% to 10%wt. Finally, the obtained films were characterized by Fourier Transform Spectroscopy (FT-IR, ATR), thermal analysis (TGA and DSC), frequency sweep test, scanning electron microscopy (SEM), mechanical tensile test and oxygen permeability test. For both fillers and at all concentrations, the inclusion of zeolites significantly influenced the analyzed properties. In the TPU/zeolite composites, an overall enhancement was observed compared to the neat polymer, attributed to improved processability, superior barrier properties and the potential to create active materials by loading zeolite combined with various chemicals for specific applications. These findings suggest that the resulting composites hold considerable promise for applications in the food packaging sector. Full article
(This article belongs to the Special Issue Zeolites and Related Materials)
Show Figures

Figure 1

12 pages, 2191 KiB  
Article
Phenolic and Iridoid Glycosides from Leonurus cardiaca L. and Their Effects on the α, δ, and γ Subtypes of the PPAR System—Including the Discovery of the Novel Phenylethanoid Cardiaphenyloside A and the Most Active 7-Chloro-6-desoxy-harpagide
by Kenny Kuchta, Nobuyasu Matsuura, Tung Huu Nguyen, Christian Rusch, Munekazu Iinuma, Yukihiro Shoyama and Hans Wilhelm Rauwald
Molecules 2025, 30(2), 419; https://doi.org/10.3390/molecules30020419 - 20 Jan 2025
Viewed by 448
Abstract
Leonurus cardiaca L. is known in Europe for its cardioactivity—also in interrelation with known risk factors of the metabolic syndrome—just as L. japonicus Houtt. in East Asia; however, up to now, no active constituents could be identified. The three sub-types of PPARs (α, [...] Read more.
Leonurus cardiaca L. is known in Europe for its cardioactivity—also in interrelation with known risk factors of the metabolic syndrome—just as L. japonicus Houtt. in East Asia; however, up to now, no active constituents could be identified. The three sub-types of PPARs (α, δ, and γ), are involved in controlling the lipid metabolism in the liver and skeletal muscles. Although PPARδ especially is a potential therapeutic target for the metabolic syndrome, insulin resistance, and obesity, no PPARδ agonists with clinical potential have presently been developed. Therefore, nineteen dominant isolated constituents of both species were screened for activity on the metabolic syndrome related PPAR α, δ, and γ in a newly developed luciferase reporter gene assay. Eight phenylethanoid glycosides not previously detected in L. cardiaca, including the novel cardiaphenyloside A, as well as the iridoids ajugol and harpagide were found via bioassay-guided isolation and structural elucidation of spectroscopic and chemical evidence. For the PPARδ experiment, all nineteen isolated constituents and GW0742 (positive control) were added to the medium of transfected COS-1 cells and further processed according to a standardized luciferase assay protocol. Only the major iridoid 7-chloro-6-desoxy-harpagide displayed significant activity in the PPARδ assay at 50 μg/mL, while the result for 100 μg/mL was higher than for the GW0742 positive control. Rutin, chicoric acid, and cardiaphenyloside A at 100 μg/mL showed PPARα agonistic activity. For PPARγ, no significant effects were observed. This activity of Leonurus extracts and especially of their active constituent 7-chloro-6-desoxy-harpagide on the δ subtype of the PPAR system strongly indicates their potential for anti-obesity therapy. Full article
(This article belongs to the Special Issue Bioactivity of Natural Compounds: From Plants to Humans)
Show Figures

Figure 1

17 pages, 7586 KiB  
Article
Corrosion of Low-Alloy Steel in Ethanolamine Steam Generator Chemistry—The Effect of Temperature and Flow Rate
by Iva Betova, Martin Bojinov and Vasil Karastoyanov
Molecules 2025, 30(2), 418; https://doi.org/10.3390/molecules30020418 - 20 Jan 2025
Viewed by 349
Abstract
The corrosion of low-alloy steel in ethanolamine solution, simulating steam generator chemistry, is studied by in situ chronopotentiometry and electrochemical impedance spectroscopy combined with ex situ analysis of the obtained oxide films and model calculations. Hydrodynamic calculations of the proposed setup to study [...] Read more.
The corrosion of low-alloy steel in ethanolamine solution, simulating steam generator chemistry, is studied by in situ chronopotentiometry and electrochemical impedance spectroscopy combined with ex situ analysis of the obtained oxide films and model calculations. Hydrodynamic calculations of the proposed setup to study flow-assisted corrosion demonstrate that turbulent conditions are achieved. Quantum chemical calculations indicate the adsorption orientation of ethanolamine on the oxide surface. Interpretation of impedance spectra with a kinetic approach based on the mixed-conduction model enabled estimating the rate constants of oxidation at the alloy–oxide interface, as well as charge transfer and ionic transport resistances of the corrosion process. In turbulent conditions, the dissolution of Fe oxide and ejection of Fe cations are enhanced, leading to Cr enrichment in the oxide and alteration of its electronic and electrochemical properties that influence the corrosion rate. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

28 pages, 4327 KiB  
Review
Recent Advances in Paper Conservation Using Nanocellulose and Its Composites
by Mei Jiang, Jingjing Yao, Qiang Guo, Yueer Yan, Yi Tang and Yuliang Yang
Molecules 2025, 30(2), 417; https://doi.org/10.3390/molecules30020417 - 19 Jan 2025
Viewed by 774
Abstract
Paper-based cultural relics experience aging and deterioration during their long-term preservation, which poses a serious threat to their lifetime. The development of conservation materials with high compatibility and low intervention has been expected to extend the lifetime of paper artifacts. As a new [...] Read more.
Paper-based cultural relics experience aging and deterioration during their long-term preservation, which poses a serious threat to their lifetime. The development of conservation materials with high compatibility and low intervention has been expected to extend the lifetime of paper artifacts. As a new type of biological macromolecule, nanocellulose has been extensively utilized in paper conservation, attributed to its excellent paper compatibility, high optical transparency, outstanding mechanical strength, and large specific surface area with abundant hydroxyl groups. This review systematically summarizes the latest development of three kinds of nanocellulose (cellulose nanofibril, cellulose nanocrystal, and bacterial nanocellulose) and their composites used for the multifunctional conservation of paper relics. Owing to the strong hydrogen bond interactions between hydroxyls of nanocellulose and paper fibers, nanocellulose can effectively consolidate paper without adding adhesives. The composite of nanocellulose with other functional materials greatly expands its application scope, and the superior performance has been emphasized in paper deacidification, consolidation, antimicrobial effect, antioxidation, UV resistance, self-cleaning, promotion of printing property, reduction in air permeability, and flame retardancy. The application characteristics and future prospects of nanocellulose composites are highlighted in the conservation of paper-based cultural relics. Full article
Show Figures

Figure 1

21 pages, 2172 KiB  
Article
Crude Drugs for Clearing Heat Contain Compounds Exhibiting Anti-Inflammatory Effects in Interleukin-1β-Treated Rat Hepatocytes
by Airi Fujii, Saki Onishi, Nodoka Watanabe, Mizuki Kajimura, Kentaro Ito, Keita Minamisaka, Yuto Nishidono, Saki Shirako, Yukinobu Ikeya and Mikio Nishizawa
Molecules 2025, 30(2), 416; https://doi.org/10.3390/molecules30020416 - 19 Jan 2025
Viewed by 542
Abstract
Traditional Japanese medicines, i.e., Kampo medicines, consist of crude drugs (mostly plants) that have empirical pharmacological functions (‘Yakuno’ in Japanese), such as clearing heat. Crude drugs with cold properties, such as Phellodendron bark, have the empirical function of clearing heat as [...] Read more.
Traditional Japanese medicines, i.e., Kampo medicines, consist of crude drugs (mostly plants) that have empirical pharmacological functions (‘Yakuno’ in Japanese), such as clearing heat. Crude drugs with cold properties, such as Phellodendron bark, have the empirical function of clearing heat as they cool the body. Because we found that anti-inflammatory compounds were present in several crude drugs for clearing heat, it is speculated that the empirical function of clearing heat may be linked to anti-inflammatory activities. When 10 typical crude drugs were selected from 22 herbal crude drugs for clearing heat, we identified anti-inflammatory compounds in five crude drugs, including Phellodendron bark. In this study, the other crude drugs were extracted and partitioned with ethyl acetate (EtOAc) and n-butanol to obtain three crude fractions. All the EtOAc-soluble fractions, except that from Forsythia fruits, inhibited interleukin (IL)-1β-induced nitric oxide (NO) production in primary-cultured rat hepatocytes. Anti-inflammatory compounds were identified from these EtOAc-soluble fractions: baicalein from Scutellaria roots, (−)-nyasol from Anemarrhena rhizomes, and loniflavone from Lonicera leaves and stems. (+)-Phillygenin was purified from Forsythia fruits by removing cytotoxic oleanolic and betulinic acids. These compounds suppressed the production of NO and cytokines in hepatocytes. Anti-inflammatory compounds were not purified from the EtOAc-soluble fraction of Rehmannia roots because of their low abundance. Collectively, these findings indicate that anti-inflammatory compounds are present in all 10 crude drugs for clearing heat, confirming that these anti-inflammatory compounds in crude drugs provide the empirical functions for clearing heat. Other empirical functions of Kampo medicine can also be explained by modern pharmacological activities. Full article
(This article belongs to the Special Issue Natural Bioactive Compounds from Traditional Asian Plants)
Show Figures

Graphical abstract

14 pages, 1435 KiB  
Article
Concise Synthesis of Naphthalene-Based 14-Aza-12-Oxasteroids
by Smriti Srivastava, Jun Luo, Daniel Whalen, Katherine N. Robertson and Amitabh Jha
Molecules 2025, 30(2), 415; https://doi.org/10.3390/molecules30020415 - 19 Jan 2025
Viewed by 464
Abstract
A concise, transition metal-free four-step synthetic pathway has been developed for the synthesis of tetracyclic heterosteroidal compounds, 14-aza-12-oxasteroids, starting from readily available 2-naphthol analogues. After conversion of 2-naphthols to 2-naphthylamines by the Bucherer reaction, subsequent selective C-acetylation was achieved via the Sugasawa reaction [...] Read more.
A concise, transition metal-free four-step synthetic pathway has been developed for the synthesis of tetracyclic heterosteroidal compounds, 14-aza-12-oxasteroids, starting from readily available 2-naphthol analogues. After conversion of 2-naphthols to 2-naphthylamines by the Bucherer reaction, subsequent selective C-acetylation was achieved via the Sugasawa reaction and reduction of the acetyl group using borohydride, which resulted into the corresponding amino-alcohols. The naphthalene-based amino-alcohols underwent double dehydrations and double intramolecular cyclization with oxo-acids leading to one-pot formation of a C-N bond, a C-O bond and an amide bond in tandem, to generate two additional rings completing the steroidal framework. A series of 14-aza-12-oxasteroids were synthesized using our developed synthetic strategy in moderate yields, and the structure of one of the final products, 12a-Methyl-11-phenyl-11,12a-dihydro-1H-naphtho[2,1-d]pyrrolo[2,1-b][1,3]oxazin-3(2H)-one, was further confirmed by single crystal X-ray crystallography. Full article
Show Figures

Figure 1

12 pages, 1455 KiB  
Article
Enzymatic β-Mannosylation of Phenylethanoid Alcohols
by Lucia Černáková, Peter Haluz, Vladimír Mastihuba, Zuzana Košťálová, Elena Karnišová Potocká and Mária Mastihubová
Molecules 2025, 30(2), 414; https://doi.org/10.3390/molecules30020414 - 19 Jan 2025
Viewed by 497
Abstract
Phenylethanoid glycosides (PhGs) are widely occurring secondary metabolites of medicinal plants with interesting biological activities such as antioxidant, anti-inflammatory, neuroprotective, antiviral, hepatoprotective, immunomodulatory, etc. They are characterized by a structural core formed by a phenethyl alcohol, usually tyrosol or hydroxytyrosol, attached to β-D-glucopyranose [...] Read more.
Phenylethanoid glycosides (PhGs) are widely occurring secondary metabolites of medicinal plants with interesting biological activities such as antioxidant, anti-inflammatory, neuroprotective, antiviral, hepatoprotective, immunomodulatory, etc. They are characterized by a structural core formed by a phenethyl alcohol, usually tyrosol or hydroxytyrosol, attached to β-D-glucopyranose via a glycosidic bond. This core is usually further decorated by attached phenolic acids or another saccharide. Several studies suggest an important role of the saccharidic fragment in the biological activities of PhGs, provoking demand for new glycovariants of natural PhGs. This study presents the preparation of β-mannosylated analogs of tyrosol β-D-glucopyranoside (salidroside) and hydroxytyrosol β-D-glucopyranoside (hydroxysalidroside). While the chemical synthesis of β-D-mannopyranosides is rather challenging, they can be prepared by enzymatic catalysis. We found that Novozym 188, an industrial β-glucosidase, also contains β-mannosidase and used this enzyme in the preparation of tyrosol β-D-mannopyranoside and hydroxytyrosol β-D-mannopyranoside in 12 and 16% chemical yields, respectively, by transglycosylation from β-D-mannopyranosyl-(1→4)-D-mannose. The mannosylation was chemoselective and occurred exclusively on the primary hydroxyls of tyrosol and hydroxytyrosol, and the glycosylation of phenolic moieties of the aglycons was observed. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

12 pages, 2590 KiB  
Article
An Electrochemical Dopamine Assay with Cobalt Oxide Palatinose Carbon Dots
by Ram Chandra Nepal, Elif S. Seven, Roger M. Leblanc and Charles C. Chusuei
Molecules 2025, 30(2), 413; https://doi.org/10.3390/molecules30020413 - 19 Jan 2025
Viewed by 490
Abstract
Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene [...] Read more.
Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs). Co3O4 nanoparticles (NPs) were encapsulated by the CDs. Cyclic (CV) and linear sweep (LSV) voltammetry measurements were obtained, drop-casting the CDs onto GCEs and measuring DA in a phosphate-buffer solution (pH = 7). DA had an oxidation peak at +0.2 V with SucCDs, with the highest current correlating with the highest defect density. PalCD-Co3O4 exhibited the largest signal for DA detection in simulated urine (SU) using the oxidation peak at +0.5 V; the composite had a lower defect density compared to SucCD-Co3O4. The Co3O4-PalCDs had a DA detection range of 1 to 90 µM with an LOD of 0.88 μM in SU. SEM-EDX analysis of the electrode surface revealed semi-spherical structures with an average particle diameter of 80 ± 19 nm (n = 347) with PalCDs decorating the Co3O4 NPs. XRD characterization showed the incorporation of PalCD and Co3O4 within the composite. XPS showed electron density donation from the PalCD to Co3O4. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

19 pages, 4186 KiB  
Article
Thiamine and Thiamine Pyrophosphate as Non-Competitive Inhibitors of Acetylcholinesterase—Experimental and Theoretical Investigations
by Łukasz Szeleszczuk, Dariusz Maciej Pisklak and Błażej Grodner
Molecules 2025, 30(2), 412; https://doi.org/10.3390/molecules30020412 - 19 Jan 2025
Viewed by 391
Abstract
Vitamin B1 (thiamine) plays an important role in human metabolism. It is essential for the proper growth and development of the body and has a positive effect on the functioning of the digestive, cardiovascular, and nervous systems. Additionally, it stimulates the brain [...] Read more.
Vitamin B1 (thiamine) plays an important role in human metabolism. It is essential for the proper growth and development of the body and has a positive effect on the functioning of the digestive, cardiovascular, and nervous systems. Additionally, it stimulates the brain and improves the psycho-emotional state. In vivo, vitamin B1 occurs in free form as thiamine or as its ester with phosphate residue(s), i.e., as mono-, di-, or triphosphate. It has been proven that supportive therapy with vitamin B1 can not only provide neuroprotection but also has a positive effect on advanced neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, Wernicke–Korsakoff syndrome, or Huntington’s disease. This paper presents studies on the effect of free thiamine (T) and thiamine pyrophosphate (TPP) on the activity of acetylcholinesterase (AChE), which is an enzyme considered to play an important role in the therapies for neurodegenerative diseases, especially Alzheimer’s disease. The mechanisms of action of these compounds as potential inhibitors of AChE were evaluated using both experimental (enzymatic activity) as well as computational (molecular docking, molecular dynamics simulations, and MM-GBSA calculations) methods. The results of the current study indicate a non-competitive type of enzyme inhibition, in contrast to the previously published works suggesting a competitive one. Full article
Show Figures

Figure 1

22 pages, 3962 KiB  
Review
Compounds Involved in the Invasive Characteristics of Lantana camara
by Hisashi Kato-Noguchi and Midori Kato
Molecules 2025, 30(2), 411; https://doi.org/10.3390/molecules30020411 - 19 Jan 2025
Viewed by 331
Abstract
Lantana camara L. is native to tropical America and has naturalized in many other tropical, subtropical, and temperate regions in Asia, Africa, Oceania, North and South America, and Europe. L. camara infests diverse habitats with a wide range of climatic factors, and its [...] Read more.
Lantana camara L. is native to tropical America and has naturalized in many other tropical, subtropical, and temperate regions in Asia, Africa, Oceania, North and South America, and Europe. L. camara infests diverse habitats with a wide range of climatic factors, and its population increases aggressively as one of the world’s 100 worst invasive alien species. Its infestation reduces species diversity and abundance in the natural ecosystems and reduces agricultural production. The life history characteristics of L. camara, such as its high reproductive ability and high adaptive ability to various environmental conditions, may contribute to its ability to infest and increase its population. Possible evidence of the compounds involved in the defense functions of L. camara against natural enemies, such as herbivore mammals and insects, parasitic nematodes, pathogenic fungi and bacteria, and the allelochemicals involved in its allelopathy against neighboring competitive plant species, have accumulated in the literature over three decades. Lantadenes A and B, oleanonic acid, and icterogenin are highly toxic to herbivore mammals, and β-humulene, isoledene, α-copaene thymol, and hexadecanoic acid have high insecticidal activity. β-Caryophyllene and cis-3-hexen-1-ol may function as herbivore-induced plant volatiles which are involved in sending warning signals to undamaged tissues and the next plants of the same species. Farnesol and farnesal may interrupt insect juvenile hormone biosynthesis and cause abnormal metamorphosis of insects. Several triterpenes, such as lantanolic acid, lantoic acid, pomolic acid, camarin, lantacin, camarinin, ursolic acid, and oleanonic acid, have demonstrated nematocidal activity. Lantadene A, β-caryophyllene, germacrene-D, β-curcumene, eicosapentaenoic acid, and loliolide may possess antimicrobial activity. Allelochemicals, such as caffeic acid, ferulic acid, salicylic acid, α-resorcylic acid, p-hydroxybenzoic acid, vanillic acid, unbelliferone, and quercetin, including lantadenes A and B and β-caryophyllene, suppress the germination and growth of neighboring plant species. These compounds may be involved in the defense functions and allelopathy and may contribute to L. camara’s ability to infest and to expand its population as an invasive plant species in new habitats. This is the first review to focus on how compounds enhance the invasive characteristics of L. camara. Full article
Show Figures

Graphical abstract

17 pages, 2379 KiB  
Article
New Insights on Quality, Safety, Nutritional, and Nutraceutical Properties of Honeydew Honeys from Italy
by Andrea Mara, Federica Mainente, Vasiliki Soursou, Yolanda Picó, Iratxe Perales, Asma Ghorab, Gavino Sanna, Isabel Borrás-Linares, Gianni Zoccatelli and Marco Ciulu
Molecules 2025, 30(2), 410; https://doi.org/10.3390/molecules30020410 - 19 Jan 2025
Viewed by 545
Abstract
Honeydew honey is less studied than nectar honey, although it is characterized by peculiar nutritional properties. This is mainly due to its challenging production, which leads to easy counterfeiting and difficult valorization. This contribution aims to provide a comprehensive characterization of the physico-chemical, [...] Read more.
Honeydew honey is less studied than nectar honey, although it is characterized by peculiar nutritional properties. This is mainly due to its challenging production, which leads to easy counterfeiting and difficult valorization. This contribution aims to provide a comprehensive characterization of the physico-chemical, palynological, functional, and food safety properties of a large sampling of honeydew honeys collected throughout Italy. The honeydew elements, conductivity, color, antioxidant properties, total polyphenol content, hydroxymethylfurfural, major and trace elements, toxic and rare earth elements, and pesticide residues were measured in 59 samples of honeydew honey from forest, eucalyptus, fir, oak, and citrus sources. Physico-chemical and antioxidant properties were unable to differentiate the botanical origin of Italian honeydew honeys. Similarly, the mineral composition did not vary significantly, whereas rare earth elements appeared to be promising markers for classifying their origin. Multivariate analysis allowed discriminating fir honeydews from the other varieties. Concerning safety aspects, pesticide residues were detected in 90% of the samples, with fir honeydews exhibiting the lowest contamination levels, probably due to its production in less industrialized areas. Acetamiprid and imidacloprid were the most prevalent pesticide residues, but their concentrations were below the limit indicated by the EFSA. These findings suggest the need for a continuous monitoring program for contaminants to ensure safety and to assess risk. Full article
Show Figures

Graphical abstract

13 pages, 1492 KiB  
Article
Screening of Solvent Systems for Countercurrent Chromatography Separation of Polar Constituents from Ginkgo biloba L. Seeds
by Ruxi Hu, Zhuo Liu, Yi Zhou, Peng Tian, Luqi Li, Zhi Yang and Yatuan Ma
Molecules 2025, 30(2), 409; https://doi.org/10.3390/molecules30020409 - 19 Jan 2025
Viewed by 338
Abstract
The separation of large polar constituents presents a substantial challenge in natural product research when employing column chromatography techniques, as the process is both complex and time-consuming. In this study, an acetonitrile/tetrahydrofuran/di-(2-ethylhexyl) phosphoric acid/aqueous saturated sodium chloride solvent system was developed and utilized [...] Read more.
The separation of large polar constituents presents a substantial challenge in natural product research when employing column chromatography techniques, as the process is both complex and time-consuming. In this study, an acetonitrile/tetrahydrofuran/di-(2-ethylhexyl) phosphoric acid/aqueous saturated sodium chloride solvent system was developed and utilized for the countercurrent chromatography of polar constituents from Ginkgo biloba L. seeds. Five polar constituents were effectively isolated using an acetonitrile/tetrahydrofuran/di-(2-ethylhexyl) phosphoric acid/aqueous saturated sodium chloride (2:2:0.8:3, v/v) solvent system using a two-step countercurrent chromatography method. In the initial countercurrent chromatography process, three constituents were successfully purified from the methanol extract: compound 1, compound 4, and compound 5. Compounds 2 and 3, co-eluted from the column, were further subjected to three inner-recycling chromatographic procedures. At last, five constituents were purified and identified, including 4′-O-methylpyridoxine (1); two indole alkaloid N-glucosides, ginkgoside B (2) and ginkgoside A (3); 2-(4-hydroxybenzyl) malic acid (4); and coniferyl alcohol (5). The results demonstrated that the acetonitrile/tetrahydrofuran/di-(2-ethylhexyl) phosphoric acid/aqueous saturated sodium chloride solvent system serves as a feasible system for the efficient countercurrent chromatography separation of polar components. Full article
Show Figures

Figure 1

11 pages, 221 KiB  
Article
Evaluation of the Proximate Composition of Amsonia tabernaemontana Walt. Seeds and Glyceride Oil
by Olga Teneva, Zhana Petkova, Ana Dobreva, Anatoli Dzhurmanski and Ginka Antova
Molecules 2025, 30(2), 408; https://doi.org/10.3390/molecules30020408 - 19 Jan 2025
Viewed by 312
Abstract
The genus Amsonia, a member of the Apocynaceae family, comprises plants with notable medicinal benefits. In 2022 and 2023, Amsonia tabernaemontana Walt. seeds introduced to Bulgaria were collected and analyzed. Given the limited information available on the chemical composition of A. tabernaemontana, [...] Read more.
The genus Amsonia, a member of the Apocynaceae family, comprises plants with notable medicinal benefits. In 2022 and 2023, Amsonia tabernaemontana Walt. seeds introduced to Bulgaria were collected and analyzed. Given the limited information available on the chemical composition of A. tabernaemontana, this study aimed to evaluate the phytochemical profile of the plant seeds collected over two consecutive years. Although members of the genus Amsonia are not conventional oilseed crops, the glyceride oil content was 7.8% and 11.1% in the respective samples. The chemical composition was meticulously analyzed, revealing carbohydrates in the largest amounts (60.4% and 61.3%), with crude fibers at 18.3% and 24.8%, and protein content at 19.5% and 13.0%. The amounts of ash and moisture content were also quantified. Additionally, the fatty acids, sterols, tocopherols, and phospholipids of the seed oil were examined. β-Sitosterol emerged as the main component in both harvests. The total tocopherol content was relatively low (52.7 mg/kg vs. 20.0 mg/kg), with α-tocopherol being predominant. Phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine were identified as the principal components of the phospholipid fraction. The fatty acid composition primarily included linoleic (61.0 and 61.2%) and oleic acids (28.7 and 28.6%). Full article
16 pages, 2571 KiB  
Article
Removal of Malachite Green Dye from Aqueous Solution by a Novel Activated Carbon Prepared from Baobab Seeds Using Chemical Activation Method
by Samah Daffalla
Molecules 2025, 30(2), 407; https://doi.org/10.3390/molecules30020407 - 19 Jan 2025
Viewed by 370
Abstract
Two activated carbons were synthesized from baobab seeds (BSs) using two activators, sulfuric acid (BS-AAC) and sodium hydroxide (BS-BAC), for dye removal from aqueous solutions. Malachite green (MG) was used as a model dye. SEM, FTIR, TGA, and surface area were used to [...] Read more.
Two activated carbons were synthesized from baobab seeds (BSs) using two activators, sulfuric acid (BS-AAC) and sodium hydroxide (BS-BAC), for dye removal from aqueous solutions. Malachite green (MG) was used as a model dye. SEM, FTIR, TGA, and surface area were used to characterize the feedstock and synthesis activated carbons. According to the SEM results, the surface morphology differed significantly from that of the raw material due to the many pores created by activating agents during carbonization. Various surface groups existed on the activated carbon surface as shown by FTIR analysis. An oxidation process utilizing hydrogen peroxide (H2O2) was investigated for MG. Various reaction parameters such as pH value, H2O2 concentration, and activated carbon dosage were investigated for the oxidative degradation of MG. By using BS-AAC and BS-BAC, 97.9% and 78% dye degradation efficiency in aqueous solutions, respectively, was achieved under optimal conditions. This study reveals that MG dye degradation increases with solution pH, making BS-AAC and BS-BAC ineffective at low pH values. However, degradation declines above pH 6. Based on the BS-AAC data, MG removal kinetics were fitted with a first-order kinetic model, while BS-BAC data were fitted with a second-order kinetic model. It was demonstrated that activating baobab with sulfuric acid can form a novel activated carbon that can quickly remove MG from aqueous solutions. The results showed that the removal of malachite green was over 89% for AC-AAC and 77% for AC-BAC, even after four regeneration cycles. Full article
(This article belongs to the Special Issue Porous and Nanoporous Materials in Heterogeneous Catalysis)
Show Figures

Figure 1

13 pages, 6133 KiB  
Article
Specialized Metabolite Profiling-Based Variations of Watercress Leaves (Nasturtium officinale R.Br.) from Hydroponic and Aquaponic Systems
by Ivon Buitrago-Villanueva, Ricardo Barbosa-Cornelio and Ericsson Coy-Barrera
Molecules 2025, 30(2), 406; https://doi.org/10.3390/molecules30020406 - 19 Jan 2025
Viewed by 408
Abstract
Watercress (Nasturtium officinale), a freshwater aquatic plant in the Brassicaceae family, is characterized by its high content of specialized metabolites, including flavonoids, glucosinolates, and isothiocyanates. Traditionally, commercial cultivation is conducted in submerged beds using river or spring water, often on soil [...] Read more.
Watercress (Nasturtium officinale), a freshwater aquatic plant in the Brassicaceae family, is characterized by its high content of specialized metabolites, including flavonoids, glucosinolates, and isothiocyanates. Traditionally, commercial cultivation is conducted in submerged beds using river or spring water, often on soil or gravel substrates. However, these methods have significant environmental impacts, such as promoting eutrophication due to excessive fertilizer use and contaminating water sources with pesticides. This study aimed to explore two emerging cultivation strategies, i.e., hydroponics and aquaponics, to grow watercress and evaluate its specialized metabolite content using an untargeted metabolomic approach. The goal was to characterize metabolic profiles, identify component variations, and assess changes in metabolite accumulation at two harvest times. Two culture systems (hydroponic and aquaponic) and two harvest stages (‘baby leaf’ and traditional harvest) were examined. The results revealed 23 key metabolites, predominantly glucosinolates and flavonoids, that significantly influenced the metabolic profile discrimination, with the aquaponic system yielding the highest diversity and relative abundance of metabolites (variable importance in the projection (VIP) > 1). Important condition-related compounds were identified via cross-validation (area under the curve (AUC) > 0.7), including isorhamnetin sophoroside–glucoside and gluconasturtiin at the traditional harvest in the hydroponic system and glucoarabin at the ‘baby leaf’ stage in the aquaponic system. These findings highlight the potential of aquaponic and hydroponic systems as sustainable alternatives for watercress cultivation, offering environmental benefits and enhanced metabolite quality. Full article
Show Figures

Figure 1

13 pages, 4758 KiB  
Article
Evaluation of Mechanochemically Prepared CePO4∙H2O Nanoparticles as UV Filter for Photoprotective Formulations
by Stanislav Kurajica, Filip Brleković, Sabina Keser, Goran Dražić, Katarina Mužina and Vanesa Mihajlović
Molecules 2025, 30(2), 405; https://doi.org/10.3390/molecules30020405 - 18 Jan 2025
Viewed by 495
Abstract
Rhabdophane, CePO4∙H2O, nanoparticles were prepared by mechanochemical synthesis with different durations and thoroughly characterized by various characterization techniques. X-ray diffraction analysis showed that the optimal synthesis duration was 15 min, since, in this case, pure rhabdophane is obtained, without [...] Read more.
Rhabdophane, CePO4∙H2O, nanoparticles were prepared by mechanochemical synthesis with different durations and thoroughly characterized by various characterization techniques. X-ray diffraction analysis showed that the optimal synthesis duration was 15 min, since, in this case, pure rhabdophane is obtained, without traces of contamination by the vessel material. The size of the obtained nanoparticles, as determined from high-resolution transmission electron microscopy images, was around 5 nm. According to UV-Vis diffuse reflectance spectroscopy results, rhabdophane nanoparticles show transparency to visible light and high absorption in the UV region, with a direct bandgap of 3.1 eV. The photocatalytic activity in the Castor oil degradation process and the cytotoxicity for human skin cells were determined and compared to commercial TiO2 nanoparticles, with rhabdophane nanoparticles exhibiting superior properties. Small particle size, purity, absorption in the UV range, transparency to visible light, low photocatalytic activity, and low cytotoxicity indicated the possibility of prepared rhabdophane application as an inorganic UV filter in photoprotective formulations. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

12 pages, 3229 KiB  
Article
Anion-Directed Assembly of a Bimetallic Pd/Ag Nanocluster: Synthesis, Characterization, and HER Activity
by Yu-Rong Ni, Rugma Thekke Pangal, Michael N. Pillay, Tzu-Hao Chiu, Samia Kahlal, Jean-Yves Saillard and C. W. Liu
Molecules 2025, 30(2), 404; https://doi.org/10.3390/molecules30020404 - 18 Jan 2025
Viewed by 572
Abstract
Palladium-doped silver nanoclusters (NCs) have been highlighted for their unique physicochemical properties and potential applications in catalysis, optics, and electronics. Anion-directed synthesis offers a powerful route to control the morphology and properties of these NCs. Herein, we report a novel Pd-doped Ag NC, [...] Read more.
Palladium-doped silver nanoclusters (NCs) have been highlighted for their unique physicochemical properties and potential applications in catalysis, optics, and electronics. Anion-directed synthesis offers a powerful route to control the morphology and properties of these NCs. Herein, we report a novel Pd-doped Ag NC, [Pd(H)Ag13(S){S2P(OiPr)2}10] (PdHAg13S), synthesized through the inclusion of sulfide and hydride anions. This NC features a unique linear S-Pd-H axis enclosed in a 4-5-4 stacked arrangement of silver atoms. The distinctive hydride environment was characterized by NMR spectroscopy, and the total structure was determined by single-crystal X-ray diffraction (SCXRD) and supported by computational studies. Mass spectrometry and X-ray photoelectron spectroscopy (XPS) further confirmed the assigned composition. This unique construct exhibits promising hydrogen evolution reaction (HER) activity. Our findings highlight the potential of anion-directed synthesis for creating novel bimetallic NCs with tailored structures and catalytic properties. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 2nd Edition)
Show Figures

Graphical abstract

12 pages, 19545 KiB  
Article
Label-Free Surface-Enhanced Raman Scattering for Genomic DNA Cytosine Methylation Reading
by Kazi Morshed Alom, Anastasiia Tukova, Nana Lyu, Alison Rodger and Yuling Wang
Molecules 2025, 30(2), 403; https://doi.org/10.3390/molecules30020403 - 18 Jan 2025
Viewed by 458
Abstract
DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., [...] Read more.
DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., to identify DNA methylation. In this article, we report a facile label-free surface-enhanced Raman scattering (SERS) spectroscopy system that utilizes gold nanoparticles (AuNPs) for signal enhancement of methylated DNA. The key innovation of this work is to use anionic nanoparticles at a high ionic strength to introduce the aggregation of AuNPs with anionic DNA. When target methylated DNA is present, the presence of a methyl group in the cytosine C5 position of CpG sites induces a Raman peak at 1350 cm−1. Our amplification-free system has a limit of detection (LOD) of 5% and a limit of quantification (LOQ) of 16% with good specificity. The method was applied to determine the hypermethylated levels of the germline of colorectal cancer cell lines SW48 and SW480. Our simple label-free method holds the potential to read the disease-associated methylation of genomic DNA. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

12 pages, 2298 KiB  
Article
PTR-ToF-MS VOC Profiling of Raw and Cooked Gilthead Sea Bream Fillet (Sparus aurata): Effect of Rearing System, Season, and Geographical Origin
by Iuliia Khomenko, Valentina Ting, Fabio Brambilla, Mirco Perbellini, Luca Cappellin and Franco Biasioli
Molecules 2025, 30(2), 402; https://doi.org/10.3390/molecules30020402 - 18 Jan 2025
Viewed by 358
Abstract
This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction–Time of Flight–Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with [...] Read more.
This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction–Time of Flight–Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with high sensitivity and high throughput. A total of 227 mass peaks were identified. Principal component analysis (PCA) showed a clear separation between cooked and raw samples, with cooking causing a significant increase in 64% of VOCs, especially hydrogen sulphide, methanethiol, and butanal. A two-way ANOVA revealed significant effects of origin, time, and their interaction on VOC concentration, with 102 mass peaks varying significantly based on all three factors. Seasonal effects were also notable, particularly in reared fish from the Adriatic Sea, where compounds like monoterpenes and aromatics were higher during non-breeding months, likely due to environmental factors unique to that area. Differences between wild and reared fish were influenced by lipid content and seasonal changes, impacting the VOC profile of seabream. These findings provide valuable insights into how cooking, geographical origin, and seasonality interact to define the flavour profile of seabream, with potential applications in improving quality control and product differentiation in seafood production. Full article
(This article belongs to the Special Issue Innovative Analytical Techniques in Food Chemistry)
Show Figures

Figure 1

16 pages, 4381 KiB  
Article
Hierarchically Structured Stimuli-Responsive Liquid Crystalline Terpolymer–Rhodamine Dye Conjugates
by Samiksha Vaidya, Meenakshi Sharma, Christian Brückner and Rajeswari M. Kasi
Molecules 2025, 30(2), 401; https://doi.org/10.3390/molecules30020401 - 18 Jan 2025
Viewed by 381
Abstract
Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and [...] Read more.
Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and mildly crosslinked terpolymers prepared by the ROMP of norbornene-based monomers. The three monomers were composed of (i) rhodamine dye through one or two norbornene end groups utilizing flexible C10-alkane spacers, (ii) a cholesteryl liquid crystal (LC) using C9-alkane spacers, and (iii) PEG side chains. We investigated how these architectural variations in these terpolymers impacted their hierarchically self-assembled mesophase properties. We probed their composition, morphology, thermal, mechanic, photochromic, and mechanochromic properties using, inter alia, 1H NMR spectroscopy, DSC, temperature-dependent SAXS, diffuse reflectance UV-vis spectroscopy, and optical polarization microscopy. The new terpolymers exhibited architecture-dependent thermochromic, mechanochromic, and piezochromic properties arising from LC–rhodamine dye interactions. We found that a compromise between the rigidity and flexibility of the terpolymer architectures needed to be stricken to fully express stimuli-responsive properties. These terpolymers also showed distinctly different properties compared to those of a previously reported structurally related liquid crystalline copolymer made from two monomers. These findings help to define the design principles for optimally stimuli-responsive liquid crystalline polymers. Full article
(This article belongs to the Special Issue Polymeric Liquid Crystals and Applications, 2nd Edition)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop