Dissolution Mechanism of YbOF in (LiF-CaF2)eut. Molten Salt
Abstract
:1. Introduction
2. Experimental and Computational Methods
2.1. Solubility Measurements and High-Temperature Raman Spectroscopy Experiments
2.2. Freezing Point Depression Experiments for the (LiF-CaF2)eut.-YbOF System
2.3. Quantum Chemistry/Molecular Dynamics Computational Methods
3. Results and Discussion
3.1. Variable Law of Solubility of YbOF
3.2. Analysis of Dissolution Reactions
3.3. Dissolution Component Quantum Chemistry/Molecular Dynamics Analysis
3.4. High-Temperature Raman Spectroscopic Analysis of the YbOF Dissolution Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuan, N.Q.; Alves, A.C.; Toptan, F.; Lopes, A.B.; Pinto, A.M. Effects of Substituting Ytterbium for Scandium on Corrosion Behaviour of Al-Sc Alloy. Mater. Corros. 2015, 66, 1504. [Google Scholar] [CrossRef]
- Fokin, V.N.; Fokina, E.E.; Tarasov, B.P. Hydrogenation of a Magnesium–Mg2Yb Alloy. Russ. J. Inorg. Chem. 2018, 63, 1605. [Google Scholar] [CrossRef]
- Huang, M.S.; Cheng, W.; Yang, L.H.; Jia, S.G. Technical Research on Preparation of High-Purity Ytterbium. Min. Metallurgical Eng. 2013, 33, 94. [Google Scholar]
- Cheng, W.; Huang, M.S.; Yang, L.H.; Jia, S.G.; Yang, T.; Bao, X.J. Study of Preparation Technology of High Purity Europium. Nonferrous Met. 2014, 6, 55. [Google Scholar]
- Ji, D.B. Study on Depositional Mechanism of La, Pr and Sm in Molten Salt on Mg and Al Cathodes. Ph.D. Thesis, Harbin Engineering University, Harbin, China, 2016. [Google Scholar]
- Guo, T.; Wang, S.D.; Ye, X.S.; Wu, Q.Z. Research Progress in the Preparation of Rare Earth Alloys by Molten Salt Electrolysis Method. Sci. Sin. Chim. 2012, 42, 1328. [Google Scholar]
- Abbasalizadeh, A. Electrochemical Recovery of Rare Earth Metals in Molten Salts. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2018. [Google Scholar]
- Wang, X.; Liao, C.F.; Wang, R.X.; Sun, Q.C. Characterization and Preparation of Ni-Yb Alloy by Molten Salt Electrolysis in Fluoride Melt. Mater. Rep. 2019, 33, 50. [Google Scholar]
- Vaidya, T.; Zhao, H. Solubility of Lanthanide Trichlorides in the Eutectic LiCl-KCl Molten Salt. Trans. Am. Nucl. Soc. 2022, 126, 119–121. [Google Scholar]
- Hu, X.W. Study on Ionic Structure and Its Application of NdF3-LiF-Nd2O3 System Melts. Ph.D. Thesis, Northeastern University, Shenyang, China, 2008. [Google Scholar]
- Liao, C.F.; Chen, S.M.; Wang, X.; Cai, B.Q.; Lin, J.Y.; Jiao, Y.F.; Zeng, Y. Identification of Ions Present in LiF-DyF3 Melts and the Mechanism of Dy2O3 Dissolution Therein. J. Rare Earths 2019, 37, 211. [Google Scholar] [CrossRef]
- Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets. J. Chem. Phys. 1984, 80, 3265. [Google Scholar] [CrossRef]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P.V.R. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3–21+ G Basis Set for First-Row Elements, Li–F. J. Comput. Chem. 1983, 4, 294. [Google Scholar] [CrossRef]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30, 2157. [Google Scholar] [CrossRef]
- Bengtson, A.; Nam, H.O.; Saha, S.; Sakidja, R.; Morgan, D. First-Principles Molecular Dynamics Modeling of the LiCl−KCl Molten Salt System. Comp. Mater. Sci. 2014, 83, 362. [Google Scholar] [CrossRef]
- Hutter, J.; Iannuzzi, M.; Schiffmann, F.; Vandevondele, J. cp2k: Atomistic Simulations of Condensed Matter Systems. Wiley Interdiscip. Rev. Comp. Mol. Sci. 2014, 4, 15. [Google Scholar] [CrossRef]
- Kühne, T.D.; Iannuzzi, M.; Ben, M.D.; Rybkin, V.V.; Hutter, J. CP2K: An Electronic Structure and Molecular Dynamics Software Package−Quickstep: Efficient and Accurate Electronic Structure Calculations. J. Chem. Phys. 2020, 152, 194103. [Google Scholar] [CrossRef] [PubMed]
- Vandevondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach. Comput. Phys. Commun. 2005, 167, 103. [Google Scholar] [CrossRef]
- Goedecker, S.; Teter, M.; Hutter, J. Separable Dual-Space Gaussian Pseudopotentials. Phys. Rev. B 1996, 54, 1703. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 183865. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Chen, C.; Li, J.; Luo, R.; Zhang, H. Ab Initio Molecular Dynamics Study on Microstructure and Diffusion Properties of CaF2-2.2NaF-AlF3 System. Chem. Phys. 2021, 11, 1294. [Google Scholar] [CrossRef]
- Murray, J.S.; Politzer, P. The Electrostatic Potential: An Overview. WIREs Comput. Mol. Sci. 2011, 1, 153. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Zheng, B.; Zhou, F.; Lu, T. A Theoretical Investigation on Cu/Ag/Au Bonding in XH2P MY (X = H, CH3, F, CN, NO2; M = Cu, Ag, Au; Y = F, Cl, Br, I) Complexes. J. Chem. Phys. 2018, 148, 194106. [Google Scholar] [CrossRef] [PubMed]
- Brandhorst, K.; Grunenberg, J. How Strong Is It? The Interpretation of Force and Compliance Constants as Bond Strength Descriptors. Chem. Soc. Rev. 2008, 37, 1558. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q.; Liu, Z. A Thorough Theoretical Exploration of Intriguing Characteristics of Cyclo[18]Carbon: Geometry, Bonding Nature, Aromaticity, Weak Interaction, Reactivity, Excited States, Vibrations, Molecular Dynamics and Various Molecular Properties. ChemRxiv 2019. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Quantitative Analysis of Molecular Surface Based on Improved Marching Tetrahedra Algorithm. J. Mol. Graph. Model. 2012, 38, 314. [Google Scholar] [CrossRef] [PubMed]
Convergence Terms | MAX_DR | RMS_DR | MAX_FORCE | RMS_FORCE |
---|---|---|---|---|
Convergence Criteria Values | 3 × 10−3 | 1.5 × 10−3 | 4.5 × 10−4 | 3 × 10−4 |
Ionic Bonds | Li–F | Ca–F | Yb–F | Yb–O |
---|---|---|---|---|
Bond Lengths (Å) | 1.810 | 1.991 | 2.023 | 1.834 |
RFC (mdyn·Å−1) | 2.809 | 2.618 | 2.725 | 3.817 |
Molecule | PSA | MPI (kcal·mol−1 ) | ||||
---|---|---|---|---|---|---|
LiF | 91.96% | 57.85 | 83.46 | –43.30 | 3462.30 | 306.98 |
CaF2 | 90.33% | 48.11 | 67.29 | –33.19 | 1818.20 | 204.69 |
YbOF | 87.97% | 44.73 | 62.74 | –31.48 | 1867.48 | 215.74 |
Li–F | Ca–F | Li–O | Ca–O | |
---|---|---|---|---|
Temperature (K) | 1073 1173 1273 | 1073 1173 1273 | 1073 1173 1273 | 1073 1173 1273 |
Max (Å) | 7.07 7.93 9.09 | 7.14 8.24 9.11 | 6.75 8.81 9.24 | 6.88 8.98 9.39 |
Min (Å) | 3.37 3.48 5.10 | 3.91 4.82 5.51 | 3.79 4.14 4.71 | 4.19 4.62 5.71 |
Mean (Å) | 4.73 5.72 6.27 | 5.38 6.14 6.84 | 5.06 5.95 6.97 | 5.26 6.32 7.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, L.; Sun, K.; Wang, X. Dissolution Mechanism of YbOF in (LiF-CaF2)eut. Molten Salt. Molecules 2025, 30, 425. https://doi.org/10.3390/molecules30020425
Luo L, Sun K, Wang X. Dissolution Mechanism of YbOF in (LiF-CaF2)eut. Molten Salt. Molecules. 2025; 30(2):425. https://doi.org/10.3390/molecules30020425
Chicago/Turabian StyleLuo, Linsheng, Kailei Sun, and Xu Wang. 2025. "Dissolution Mechanism of YbOF in (LiF-CaF2)eut. Molten Salt" Molecules 30, no. 2: 425. https://doi.org/10.3390/molecules30020425
APA StyleLuo, L., Sun, K., & Wang, X. (2025). Dissolution Mechanism of YbOF in (LiF-CaF2)eut. Molten Salt. Molecules, 30(2), 425. https://doi.org/10.3390/molecules30020425