General information | |
---|---|
Launched | 1997 |
Discontinued | 1999 |
Marketed by | IDT |
Designed by | Centaur Technology |
CPUID code | 0540h, 0541h, 0585h, 0587h, 058Ah, 0595h |
Performance | |
Max. CPU clock rate | 180 Mhz to 266 Mhz |
FSB speeds | 60 MT/s to 100 MT/s |
Cache | |
L1 cache | 64 KiB (C6, W2, W2A and W2B) 128 KiB (W3) |
L2 cache | Motherboard dependent |
L3 cache | none |
Architecture and classification | |
Technology node | 0.35 μm to 0.25 μm |
Microarchitecture | Single, 4-stage, pipeline in-order execution |
Instruction set | x86-16, IA-32 |
Physical specifications | |
Cores |
|
Package(s) | |
Socket(s) | |
Products, models, variants | |
Core name(s) |
|
Brand name(s) |
|
History | |
Successor(s) | Cyrix III |
The WinChip series was a low-power Socket 7-based x86 processor designed by Centaur Technology and marketed by its parent company IDT.
The design of the WinChip was quite different from other processors of the time. Instead of a large gate count and die area, IDT, using its experience from the RISC processor market, created a small and electrically efficient processor similar to the 80486, because of its single pipeline and in-order execution microarchitecture. It was of much simpler design than its Socket 7 competitors, such as AMD K5/K6, which were superscalar and based on dynamic translation to buffered micro-operations with advanced instruction reordering (out of order execution).
WinChip was, in general, designed to perform well with popular applications that did few (if any) floating point calculations. This included operating systems of the time and the majority of software used in businesses. It was also designed to be a drop-in replacement for the more complex, and thus more expensive, processors it was competing with. This allowed IDT/Centaur to take advantage of an established system platform (Intel's Socket 7).
WinChip 2, an update of C6, retained the simple in-order execution pipeline of its predecessor, but added dual MMX/3DNow! processing units that could operate in superscalar execution. [1] This made it the only non-AMD CPU on Socket 7 to support 3DNow! instructions. WinChip 2A added fractional multipliers and adopted a 100 MHz front side bus to improve memory access and L2 cache performance. [2] It also adopted a performance rating nomenclature instead of reporting the real clock speed, similar to contemporary AMD and Cyrix processors.
Another revision, the WinChip 2B, was also planned. This featured a die shrink to 0.25 μm, but was only shipped in limited numbers. [3]
A third model, the WinChip 3, was planned as well. This was meant to receive a doubled L1 cache, but the W3 CPU never made it to market. [3]
Although the small die size and low power-usage made the processor notably inexpensive to manufacture, it never gained much market share. WinChip C6 was a competitor to the Intel Pentium and Pentium MMX, Cyrix 6x86, and AMD K5/K6. It performed adequately, but only in applications that used little floating point math. Its floating point performance was simply well below that of the Pentium and K6, being even slower than the Cyrix 6x86. [4]
The industry's move away from Socket 7 and the release of the Intel Celeron processor signalled the end of the WinChip. In 1999, the Centaur Technology division of IDT was sold to VIA. Although VIA branded the processors as "Cyrix", the company initially used technology similar to the WinChip in its Cyrix III line. [5]
Processor model | Frequency | FSB | Mult. | L1 cache | TDP | CPU core voltage | Socket | Release date | Part number(s) | Introduction price |
---|---|---|---|---|---|---|---|---|---|---|
WinChip 180 | 180 MHz | 60 MT/s | 3 | 64 KiB | 9.4 W | 3.45—3.6 V | 13 October 1997 | DS180GAEM | $90 | |
WinChip 200 | 200 MHz | 66 Mt/s | 3 | 64 KiB | 10.4 W | 3.45—3.6 V |
| 13 October 1997 | DS200GAEM | $135 |
WinChip 225 | 225 MHz | 75 MT/s | 3 | 64 KiB | 12.3 W | 3.45—3.6 V |
| 13 October 1997 | PSME225GA | |
WinChip 240 | 240 MHz | 60 MT/s | 4 | 64 KiB | 13.1 W | 3.45—3.6 V |
| November 1997? | PSME240GA |
Processor model | Frequency | FSB | Mult. | L1 cache | TDP | CPU core voltage | Socket | Release date | Part number(s) | Introduction price |
---|---|---|---|---|---|---|---|---|---|---|
WinChip 2-200 | 200 MHz | 66 MT/s | 3 | 64 KiB | 8.8 W | 3.45—3.6 V | 3DEE200GSA 3DFF200GSA | |||
WinChip 2-225 | 225 MHz | 75 MT/s | 3 | 64 KiB | 10.0 W | 3.45—3.6 V |
| 3DEE225GSA | ||
WinChip 2-240 | 240 MHz | 60 MT/s | 4 | 64 KiB | 10.5 W | 3.45—3.6 V |
| 3DEE240GSA | ||
WinChip 2-250 | 250 MHz | 83 MT/s | 3 | 64 KiB | 10.9 W | 3.45—3.6 V |
| ? |
Processor model | Frequency | FSB | Mult. | L1 cache | TDP | CPU core voltage | Socket | Release date | Part number(s) | Introduction price |
---|---|---|---|---|---|---|---|---|---|---|
WinChip 2A-200 | 200 MHz | 66 MT/s | 3 | 64 KiB | 12.0 W | 3.45—3.6 V | March 1999? | 3DEE200GTA | ||
WinChip 2A-233 | 233 MHz | 66 MT/s | 3.5 | 64 KiB | 13.0 W | 3.45—3.6 V |
| March 1999? | 3DEE233GTA | |
WinChip 2A-266 | 233 MHz | 100 MT/s | 2.33 | 64 KiB | 14.0 W | 3.45—3.6 V |
| March 1999? | 3DEE266GSA | |
WinChip 2A-300 | 250 MHz | 100 MT/s | 2.5 | 64 KiB | 16.0 W | 3.45—3.6 V |
| 3DEE300GSA |
Processor model | Frequency | FSB | Mult. | L1 cache | TDP | CPU core voltage | Socket | Release date | Part number(s) | Introduction price |
---|---|---|---|---|---|---|---|---|---|---|
WinChip 2B-200 | 200 MHz | 66 MT/s | 3 | 64 KiB | 6.3 W | 2.7—2.9 V |
| 3DFK200BTA | ||
WinChip 2B-233 | 200 MHz | 100 MT/s | 2 | 64 KiB | 6.3 W | 2.7—2.9 V |
|
Processor model | Frequency | FSB | Mult. | L1 cache | TDP | CPU core voltage | Socket | Release date | Part number(s) | Introduction price |
---|---|---|---|---|---|---|---|---|---|---|
WinChip 3-233 | 200 MHz | 66 MT/s | 3 | 128 KiB | ? W | 2.7—2.9 V | ||||
WinChip 3-266 | 233 MHz | 66 MT/s | 3.5 | 128 KiB | 8.4 W | 2.7—2.9 V |
| Samples only | FK233GDA | |
WinChip 3-300 | 233 MHz | 100 MT/s | 2.33 | 128 KiB | 8.4 W | 2.7—2.9 V |
| Samples only | FK300GDA | |
WinChip 3-300 | 266 MHz | 66 MT/s | 4 | 128 KiB | 9.3 W | 2.7—2.9 V |
| |||
WinChip 3-333 | 250 MHz | 100 MT/s | 2.5 | 128 KiB | 8.8 W | 2.7—2.9 V |
| |||
WinChip 3-333 | 266 MHz | 100 MT/s | 2.66 | 128 KiB | 9.3 W | 2.7—2.9 V |
|
Athlon is the brand name applied to a series of x86-compatible microprocessors designed and manufactured by AMD. The original Athlon was the first seventh-generation x86 processor and the first desktop processor to reach speeds of one gigahertz (GHz). It made its debut as AMD's high-end processor brand on June 23, 1999. Over the years AMD has used the Athlon name with the 64-bit Athlon 64 architecture, the Athlon II, and Accelerated Processing Unit (APU) chips targeting the Socket AM1 desktop SoC architecture, and Socket AM4 Zen (microarchitecture). The modern Zen-based Athlon with a Radeon Graphics processor was introduced in 2019 as AMD's highest-performance entry-level processor.
The K6 microprocessor was launched by AMD in 1997. The main advantage of this particular microprocessor is that it was designed to fit into existing desktop designs for Pentium-branded CPUs. It was marketed as a product that could perform as well as its Intel Pentium II equivalent but at a significantly lower price. The K6 had a considerable impact on the PC market and presented Intel with serious competition.
The Pentium is a x86 microprocessor introduced by Intel on March 22, 1993. It is the first CPU using the Pentium brand. Considered the fifth generation in the 8086 compatible line of processors, its implementation and microarchitecture was internally called P5.
Duron is a line of budget x86-compatible microprocessors manufactured by AMD and released on June 19, 2000. Duron was intended to be a lower-cost offering to complement AMD's then mainstream performance Athlon processor line, and it also competed with rival chipmaker Intel's Pentium III and Celeron processor offerings. The Duron brand name was retired in 2004, succeeded by the AMD's Sempron line of processors as their budget offering.
Cyrix Corporation was a microprocessor developer that was founded in 1988 in Richardson, Texas, as a specialist supplier of floating point units for 286 and 386 microprocessors. The company was founded by Tom Brightman and Jerry Rogers.
The Athlon 64 is a ninth-generation, AMD64-architecture microprocessor produced by Advanced Micro Devices (AMD), released on September 23, 2003. It is the third processor to bear the name Athlon, and the immediate successor to the Athlon XP. The Athlon 64 was the second processor to implement the AMD64 architecture and the first 64-bit processor targeted at the average consumer. Variants of the Athlon 64 have been produced for Socket 754, Socket 939, Socket 940, and Socket AM2. It was AMD's primary consumer CPU, and primarily competed with Intel's Pentium 4, especially the Prescott and Cedar Mill core revisions.
The K6-III was an x86 microprocessor line manufactured by AMD that launched on February 22, 1999. The launch consisted of both 400 and 450 MHz models and was based on the preceding K6-2 architecture. Its improved 256 KB on-chip L2 cache gave it significant improvements in system performance over its predecessor the K6-2. The K6-III was the last processor officially released for desktop Socket 7 systems, however later mobile K6-III+ and K6-2+ processors could be run unofficially in certain socket 7 motherboards if an updated BIOS was made available for a given board. The Pentium III processor from Intel launched 6 days later.
Sempron has been the marketing name used by AMD for several different budget desktop CPUs, using several different technologies and CPU socket formats. The Sempron replaced the AMD Duron processor and competed against Intel's Celeron series of processors. AMD coined the name from the Latin semper, which means "always", to suggest the Sempron is suitable for "daily use, practical, and part of everyday life". The last Semprons were launched in April 2014. The brand was retired with the launch of the AMD A-Series APUs.
Geode was a series of x86-compatible system-on-a-chip (SoC) microprocessors and I/O companions produced by AMD, targeted at the embedded computing market.
The Athlon 64 X2 is the first native dual-core desktop central processing unit (CPU) designed by Advanced Micro Devices (AMD). It was designed from scratch as native dual-core by using an already multi-CPU enabled Athlon 64, joining it with another functional core on one die, and connecting both via a shared dual-channel memory controller/north bridge and additional control logic. The initial versions are based on the E stepping model of the Athlon 64 and, depending on the model, have either 512 or 1024 KB of L2 cache per core. The Athlon 64 X2 can decode instructions for Streaming SIMD Extensions 3 (SSE3), except those few specific to Intel's architecture. The first Athlon 64 X2 CPUs were released in May 2005, in the same month as Intel's first dual-core processor, the Pentium D.
The AMD Family 10h, or K10, is a microprocessor microarchitecture by AMD based on the K8 microarchitecture. The first third-generation Opteron products for servers were launched on September 10, 2007, with the Phenom processors for desktops following and launching on November 11, 2007 as the immediate successors to the K8 series of processors.
Cyrix III is an x86-compatible Socket 370 CPU. VIA Technologies launched the processor in February 2000. VIA had purchased both Centaur Technology and Cyrix. Cyrix III was to be based upon a core from one of the two companies.
Phenom II is a family of AMD's multi-core 45 nm processors using the AMD K10 microarchitecture, succeeding the original Phenom. Advanced Micro Devices released the Socket AM2+ version of Phenom II in December 2008, while Socket AM3 versions with DDR3 support, along with an initial batch of triple- and quad-core processors were released on February 9, 2009. Dual-processor systems require Socket F+ for the Quad FX platform. The next-generation Phenom II X6 was released on April 27, 2010.
Athlon II is a family of AMD multi-core 45 nm central processing units, which is aimed at the budget to mid-range market and is a complementary product lineup to the Phenom II.
{{cite web}}
: CS1 maint: unfit URL (link){{cite web}}
: CS1 maint: unfit URL (link){{cite web}}
: CS1 maint: unfit URL (link)