Wet chemistry

Last updated
Graduated cylinders and beakers filled with chemicals Graduated Cylinders and Beaker filled with Chemical Compounds.jpg
Graduated cylinders and beakers filled with chemicals

Wet chemistry is a form of analytical chemistry that uses classical methods such as observation to analyze materials. The term wet chemistry is used as most analytical work is done in the liquid phase. [1] Wet chemistry is also known as bench chemistry, since many tests are performed at lab benches. [2]

Contents

Materials

Wet chemistry commonly uses laboratory glassware such as beakers and graduated cylinders to prevent materials from being contaminated or interfered with by unintended sources. [3] Gasoline, Bunsen burners, and crucibles may also be used to evaporate and isolate substances in their dry forms. [4] [5] Wet chemistry is not performed with any advanced instruments since most automatically scan substances. [6] Although, simple instruments such as scales are used to measure the weight of a substance before and after a change occurs. [7] Many high school and college laboratories teach students basic wet chemistry methods. [8]

History

Before the age of theoretical and computational chemistry, wet chemistry was the predominant form of scientific discovery in the chemical field. This is why it is sometimes referred to as classic chemistry or classical chemistry. Scientists would continuously develop techniques to improve the accuracy of wet chemistry. Later on, instruments were developed to conduct research impossible for wet chemistry. Over time, this became a separate branch of analytical chemistry called instrumental analysis. Because of the high volume of wet chemistry that must be done in today's society and new quality control requirements, many wet chemistry methods have been automated and computerized for streamlined analysis. The manual performance of wet chemistry mostly occurs in schools.[ citation needed ]

Methods

Qualitative methods

Qualitative methods use changes in information that cannot be quantified to detect a change. This can include a change in color, smell, texture, etc. [9] [10]

Chemical tests

When burned, lead produces a bright white flame. Lead powder burning (5).JPG
When burned, lead produces a bright white flame.

Chemical tests use reagents to indicate the presence of a specific chemical in an unknown solution. The reagents cause a unique reaction to occur based on the chemical it reacts with, allowing one to know what chemical is in the solution. An example is Heller's test where a test tube containing proteins has strong acids added to it. A cloudy ring forms where the substances meet, indicating the acids are denaturing the proteins. The cloud is a sign that proteins are present in a liquid. The method is used to detect proteins in a person's urine. [11]

Flame test

The flame test is a more well known version of the chemical test. It is only used on metallic ions. The metal powder is burned, causing an emission of colors based on what metal was burned. For example, calcium (Ca) will burn orange and copper (Cu) will burn blue. Their color emissions are used to produce bright colors in fireworks.[ citation needed ]

Quantitative methods

Quantitative methods use information that can be measured and quantified to indicate a change. This can include changes in volume, concentration, weight, etc.

Gravimetric analysis

Solids are filtered out of the liquid, which is collected in the beaker. Hot FIltration.jpg
Solids are filtered out of the liquid, which is collected in the beaker.

Gravimetric analysis measures the weight or concentration of a solid that has either formed from a precipitate or dissolved in a liquid. The mass of the liquid is recorded before undergoing the reaction. For the precipitate, a reagent is added until the precipitate stops forming. The precipitate is then dried and weighed to determine the chemicals concentration in the liquid. For a dissolved substance, the liquid can be filtered until the solids are removed or boiled until all the liquid evaporates. The solids are left alone until completely dried and then weighed to determine its concentration. Evaporating all the liquid is the more common approach.[ citation needed ]

Volumetric analysis

Volumetric analysis or titration relies on volume measurements to determine the quantity of a chemical. A reagent with a known volume and concentration is added to a solution with an unknown substance or concentration. The amount of reagent required for a change to occur is proportional to the amount of the unknown substances. This reveals the amount of the unknown substance present. If no visible change is present, an indicator is added to the solution. For example, a pH indicator changes color based on the pH of the solution. The exact point where the color change occurs is called the endpoint. Since the color change can occur very suddenly, it is important to be extremely precise with all measurements.[ citation needed ]

Colorimetry

Colorimetry is a unique method since it has both qualitative and quantitative properties. Its qualitative analysis involves recording color changes to indicate a change has occurred. This can be a change in shading of the color or a change into a completely different color. The quantitative aspect involves sensory equipment that can measure the wavelength of colors. Changes in wavelengths can be precisely measured and indicate changes in the mixture or solution.[ citation needed ]

Uses

Wet chemistry techniques can be used for qualitative chemical measurements, such as changes in color (colorimetry), but often involves more quantitative chemical measurements, using methods such as gravimetry and titrimetry. Some uses for wet chemistry include tests for:[ citation needed ]

Wet chemistry is also used in environmental chemistry settings to determine the current state of the environment. It is used to test:[ citation needed ]

It can also involve the elemental analysis of samples, e.g., water sources, for chemicals such as:[ citation needed ]

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Analytical chemistry</span> Study of the separation, identification, and quantification of matter

Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separation isolates analytes. Qualitative analysis identifies analytes, while quantitative analysis determines the numerical amount or concentration.

<span class="mw-page-title-main">Solution (chemistry)</span> Homogeneous mixture of a solute and a solvent

In chemistry, a solution is a special type of homogeneous mixture composed of two or more substances. In such a mixture, a solute is a substance dissolved in another substance, known as a solvent. If the attractive forces between the solvent and solute particles are greater than the attractive forces holding the solute particles together, the solvent particles pull the solute particles apart and surround them. These surrounded solute particles then move away from the solid solute and out into the solution. The mixing process of a solution happens at a scale where the effects of chemical polarity are involved, resulting in interactions that are specific to solvation. The solution usually has the state of the solvent when the solvent is the larger fraction of the mixture, as is commonly the case. One important parameter of a solution is the concentration, which is a measure of the amount of solute in a given amount of solution or solvent. The term "aqueous solution" is used when one of the solvents is water.

<span class="mw-page-title-main">Titration</span> Laboratory method for determining the concentration of an analyte

Titration is a common laboratory method of quantitative chemical analysis to determine the concentration of an identified analyte. A reagent, termed the titrant or titrator, is prepared as a standard solution of known concentration and volume. The titrant reacts with a solution of analyte to determine the analyte's concentration. The volume of titrant that reacted with the analyte is termed the titration volume.

<span class="mw-page-title-main">Solubility</span> Capacity of a substance to dissolve in a homogeneous way

In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution.

Solubility equilibrium is a type of dynamic equilibrium that exists when a chemical compound in the solid state is in chemical equilibrium with a solution of that compound. The solid may dissolve unchanged, with dissociation, or with chemical reaction with another constituent of the solution, such as acid or alkali. Each solubility equilibrium is characterized by a temperature-dependent solubility product which functions like an equilibrium constant. Solubility equilibria are important in pharmaceutical, environmental and many other scenarios.

<span class="mw-page-title-main">ELISA</span> Method to detect an antigen using an antibody and enzyme

The enzyme-linked immunosorbent assay (ELISA) is a commonly used analytical biochemistry assay, first described by Eva Engvall and Peter Perlmann in 1971. The assay is a solid-phase type of enzyme immunoassay (EIA) to detect the presence of a ligand in a liquid sample using antibodies directed against the ligand to be measured. ELISA has been used as a diagnostic tool in medicine, plant pathology, and biotechnology, as well as a quality control check in various industries.

Benedict's reagent is a chemical reagent and complex mixture of sodium carbonate, sodium citrate, and copper(II) sulfate pentahydrate. It is often used in place of Fehling's solution to detect the presence of reducing sugars. The presence of other reducing substances also gives a positive result. Such tests that use this reagent are called the Benedict's tests. A positive test with Benedict's reagent is shown by a color change from clear blue to brick-red with a precipitate.

<span class="mw-page-title-main">Precipitation (chemistry)</span> Chemical process leading to the settling of an insoluble solid from a solution

In an aqueous solution, precipitation is the process of transforming a dissolved substance into an insoluble solid from a supersaturated solution. The solid formed is called the precipitate. In case of an inorganic chemical reaction leading to precipitation, the chemical reagent causing the solid to form is called the precipitant.

<span class="mw-page-title-main">Spectrophotometry</span> Branch of spectroscopy

Spectrophotometry is a branch of electromagnetic spectroscopy concerned with the quantitative measurement of the reflection or transmission properties of a material as a function of wavelength. Spectrophotometry uses photometers, known as spectrophotometers, that can measure the intensity of a light beam at different wavelengths. Although spectrophotometry is most commonly applied to ultraviolet, visible, and infrared radiation, modern spectrophotometers can interrogate wide swaths of the electromagnetic spectrum, including x-ray, ultraviolet, visible, infrared, and/or microwave wavelengths.

An assay is an investigative (analytic) procedure in laboratory medicine, mining, pharmacology, environmental biology and molecular biology for qualitatively assessing or quantitatively measuring the presence, amount, or functional activity of a target entity. The measured entity is often called the analyte, the measurand, or the target of the assay. The analyte can be a drug, biochemical substance, chemical element or compound, or cell in an organism or organic sample. An assay usually aims to measure an analyte's intensive property and express it in the relevant measurement unit.

<span class="mw-page-title-main">Gravimetric analysis</span> Quantitative determination of a chemical species based on its mass

Gravimetric analysis describes a set of methods used in analytical chemistry for the quantitative determination of an analyte based on its mass. The principle of this type of analysis is that once an ion's mass has been determined as a unique compound, that known measurement can then be used to determine the same analyte's mass in a mixture, as long as the relative quantities of the other constituents are known.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

<span class="mw-page-title-main">Elemental analysis</span> Process of analytical chemistry

Elemental analysis is a process where a sample of some material is analyzed for its elemental and sometimes isotopic composition. Elemental analysis can be qualitative, and it can be quantitative. Elemental analysis falls within the ambit of analytical chemistry, the instruments involved in deciphering the chemical nature of our world.

<span class="mw-page-title-main">Devarda's alloy</span> Chemical compound

Devarda's alloy is an alloy of aluminium (44% – 46%), copper (49% – 51%) and zinc (4% – 6%).

2,4-Dinitrophenylhydrazine (2,4-DNPH or DNPH) is the organic compound C6H3(NO2)2NHNH2. DNPH is a red to orange solid. It is a substituted hydrazine. The solid is relatively sensitive to shock and friction. For this reason DNPH is usually handled as a wet powder. DNPH is a precursor to the drug Sivifene.

In analytical chemistry, quantitative analysis is the determination of the absolute or relative abundance of one, several or all particular substance(s) present in a sample.

This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions; it features an extensive vocabulary and a significant amount of jargon.

Sample preparation for mass spectrometry is used for the optimization of a sample for analysis in a mass spectrometer (MS). Each ionization method has certain factors that must be considered for that method to be successful, such as volume, concentration, sample phase, and composition of the analyte solution. Quite possibly the most important consideration in sample preparation is knowing what phase the sample must be in for analysis to be successful. In some cases the analyte itself must be purified before entering the ion source. In other situations, the matrix, or everything in the solution surrounding the analyte, is the most important factor to consider and adjust. Often, sample preparation itself for mass spectrometry can be avoided by coupling mass spectrometry to a chromatography method, or some other form of separation before entering the mass spectrometer. In some cases, the analyte itself must be adjusted so that analysis is possible, such as in protein mass spectrometry, where usually the protein of interest is cleaved into peptides before analysis, either by in-gel digestion or by proteolysis in solution.

<span class="mw-page-title-main">Leaching (chemistry)</span> Extraction of some soluble substances from a solid material into a liquid

Leaching is the process of a solute becoming detached or extracted from its carrier substance by way of a solvent.

<span class="mw-page-title-main">Colorimetry (chemical method)</span> Technique to determine the concentration of colored compounds in solution.

In physical and analytical chemistry, colorimetry or colourimetry is a technique used to determine the concentration of colored compounds in solution. A colorimeter is a device used to test the magnitude of a solution by measuring its absorbance of a specific wavelength of light.

References

  1. Trusova, Elena A.; Vokhmintcev, Kirill V.; Zagainov, Igor V. (2012). "Wet-chemistry processing of powdery raw material for high-tech ceramics". Nanoscale Research Letters. 7 (1): 11. Bibcode:2012NRL.....7...58T. doi: 10.1186/1556-276X-7-58 . PMC   3275523 . PMID   22221657.
  2. Godfrey, Alexander G.; Michael, Samuel G.; Sittampalam, Gurusingham Sitta; Zahoránszky-Köhalmi, Gergely (2020). "A Perspective on Innovating the Chemistry Lab Bench". Frontiers in Robotics and AI. 7: 24. doi: 10.3389/frobt.2020.00024 . ISSN   2296-9144. PMC   7805875 . PMID   33501193.
  3. Dunnivant, F. M.; Elzerman, A. W. (1988). "Determination of polychlorinated biphenyls in sediments, using sonication extraction and capillary column gas chromatography-electron capture detection with internal standard calibration". Journal of the Association of Official Analytical Chemists. 71 (3): 551–556. doi: 10.1093/jaoac/71.3.551 . ISSN   0004-5756. PMID   3134332 via PubChem.
  4. Federherr, E.; Cerli, C.; Kirkels, F. M. S. A.; et al. (2014-12-15). "A novel high-temperature combustion based system for stable isotope analysis of dissolved organic carbon in aqueous samples. I: development and validation". Rapid Communications in Mass Spectrometry. 28 (23): 2559–2573. Bibcode:2014RCMS...28.2559F. doi:10.1002/rcm.7052. ISSN   1097-0231. PMID   25366403.
  5. Jackson, P.; Baker, R. J.; McCulloch, D. G.; et al. (June 1996). "A study of Technegas employing X-ray photoelectron spectroscopy, scanning transmission electron microscopy and wet-chemical methods". Nuclear Medicine Communications. 17 (6): 504–513. doi:10.1097/00006231-199606000-00009. ISSN   0143-3636. PMID   8822749. S2CID   26111444.
  6. Costantini, Marco; Colosi, Cristina; Święszkowski, Wojciech; Barbetta, Andrea (2018-11-09). "Co-axial wet-spinning in 3D bioprinting: state of the art and future perspective of microfluidic integration". Biofabrication. 11 (1): 012001. doi: 10.1088/1758-5090/aae605 . hdl: 11573/1176233 . ISSN   1758-5090. PMID   30284540. S2CID   52915349.
  7. Vagnozzi, Roberto; Signoretti, Stefano; Tavazzi, Barbara; et al. (2005). "Hypothesis of the postconcussive vulnerable brain: experimental evidence of its metabolic occurrence". Neurosurgery. 57 (1): 164–171, discussion 164–171. doi:10.1227/01.neu.0000163413.90259.85. ISSN   1524-4040. PMID   15987552. S2CID   45997408.
  8. Campbell, A. Malcolm; Zanta, Carolyn A.; Heyer, Laurie J.; et al. (2006). "DNA microarray wet lab simulation brings genomics into the high school curriculum". CBE: Life Sciences Education. 5 (4): 332–339. doi:10.1187/cbe.06-07-0172. ISSN   1931-7913. PMC   1681359 . PMID   17146040.
  9. Neelamegham, Sriram; Mahal, Lara K. (October 2016). "Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure". Current Opinion in Structural Biology. 40: 145–152. doi:10.1016/j.sbi.2016.09.013. ISSN   1879-033X. PMC   5161581 . PMID   27744149.
  10. Makarenko, M. A.; Malinkin, A. D.; Bessonov, V. V.; et al. (2018). "[Secondary lipid oxidation products. Human health risks evaluation (Article 1)]". Voprosy Pitaniia. 87 (6): 125–138. doi:10.24411/0042-8833-2018-10074. ISSN   0042-8833. PMID   30763498.
  11. Elizabeth A. Martin, ed. (25 February 2010). Concise Colour Medical Dictionary. Oxford University Press. p. 335. ISBN   978-0-19-955715-8.