Wastewater quality indicators

Last updated
Tests will determine the quality of this wastewater. EMPLOYEE OF THE PENNSYLVANIA STATE DEPARTMENT OF ENVIRONMENTAL RESOURCES APPROACHING TO TAKE WATER SAMPLES FROM THE... - NARA - 557241.jpg
Tests will determine the quality of this wastewater.

Wastewater quality indicators are laboratory test methodologies to assess suitability of wastewater for disposal, treatment or reuse. The main parameters in sewage that are measured to assess the sewage strength or quality as well as treatment options include: solids, indicators of organic matter, nitrogen, phosphorus, indicators of fecal contamination. [1] :33 Tests selected vary with the intended use or discharge location. Tests can measure physical, chemical, and biological characteristics of the wastewater. Physical characteristics include temperature and solids. Chemical characteristics include pH value, dissolved oxygen concentrations, biochemical oxygen demand (BOD) and chemical oxygen demand (COD), nitrogen, phosphorus, chlorine. Biological characteristics are determined with bioassays and aquatic toxicology tests.

Contents

Both the BOD and COD tests are a measure of the relative oxygen-depletion effect of a waste contaminant. Both have been widely adopted as a measure of pollution effect. Any oxidizable material present in an aerobic natural waterway or in an industrial wastewater will be oxidized both by biochemical (bacterial) or chemical processes. The result is that the oxygen content of the water will be decreased.

Physical characteristics

Temperature

Aquatic organisms cannot survive outside of specific temperature ranges. Irrigation runoff and water cooling of power stations may elevate temperatures above the acceptable range for some species. Elevated temperature can also cause an algae bloom which reduces oxygen levels. (See thermal pollution.) Temperature may be measured with a calibrated thermometer. [2] :125–126

Solids

Solid material in wastewater may be dissolved, suspended, or settled. Total dissolved solids or TDS (sometimes called filterable residue) is measured as the mass of residue remaining when a measured volume of filtered water is evaporated. The mass of dried solids remaining on the filter is called total suspended solids (TSS) or nonfilterable residue. Settleable solids are measured as the visible volume accumulated at the bottom of an Imhoff cone after water has settled for one hour. [2] :89–98 Turbidity is a measure of the light scattering ability of suspended matter in the water. [2] :131–137 Salinity measures water density or conductivity changes caused by dissolved materials. [2] :99–100

Chemical characteristics

Virtually any chemical may be found in water, but routine testing is commonly limited to a few chemical elements of unique significance.

pH value

Water ionizes into hydronium (H3O+) cations and hydroxyl (OH) anions. The concentration of ionized hydrogen (as protonated water) is expressed as pH. [2] :406–407

Oxygen and oxygen demand

Dissolved oxygen concentrations

Most aquatic habitats are occupied by fish or other animals requiring certain minimum dissolved oxygen concentrations to survive. Dissolved oxygen concentrations may be measured directly in wastewater, but the amount of oxygen potentially required by other chemicals in the wastewater is termed as oxygen demand. Dissolved or suspended oxidizable organic material in wastewater will be used as a food source. Finely divided material is readily available to microorganisms whose populations will increase to digest the amount of food available. Digestion of this food requires oxygen, so the oxygen content of the water will ultimately be decreased by the amount required to digest the dissolved or suspended food. Oxygen concentrations may fall below the minimum required by aquatic animals if the rate of oxygen utilization exceeds replacement by atmospheric oxygen. [3]

Basically, the reaction for biochemical oxidation may be written as:

Oxidizable material + bacteria + nutrient + O2 → CO2 + H2O + oxidized inorganics such as NO
3
or SO2−
4

Oxygen consumption by reducing chemicals such as sulfides and nitrites is typified as follows:

S2− + 2 O2SO2−
4
NO
2
+ 12 O2NO
3

Biochemical oxygen demand and chemical oxygen demand

Since all natural waterways contain bacteria and nutrient, almost any waste compounds introduced into such waterways will initiate biochemical reactions (such as shown above). Those biochemical reactions create what is measured in the laboratory as the BOD.

Oxidizable chemicals (such as reducing chemicals) introduced into a natural water will similarly initiate chemical reactions (such as shown above). Those chemical reactions create what is measured in the laboratory as COD.

Both the BOD and COD tests are a measure of the relative oxygen-depletion effect of a waste contaminant. Both have been widely adopted as a measure of pollution effect. The BOD test measures the oxygen demand of biodegradable pollutants whereas the COD test measures the oxygen demand of oxidizable pollutants.

The so-called 5-day BOD measures the amount of oxygen consumed by biochemical oxidation of waste contaminants in a 5-day period. The total amount of oxygen consumed when the biochemical reaction is allowed to proceed to completion is called the "Ultimate BOD". Because the Ultimate BOD is so time consuming, the 5-day BOD has been almost universally adopted as a measure of relative pollution effect.

There are also many different COD tests of which the 4-hour COD is probably the most common.

There is no generalized correlation between the 5-day BOD and the ultimate BOD. Similarly there is no generalized correlation between BOD and COD. It is possible to develop such correlations for specific waste contaminants in a specific wastewater stream but such correlations cannot be generalized for use with any other waste contaminants or wastewater streams. This is because the composition of any wastewater stream is different. As an example an effluent consisting of a solution of simple sugars that might discharge from a confectionery factory is likely to have organic components that degrade very quickly. In such a case, the 5 day BOD and the ultimate BOD would be very similar since there would be very little organic material left after 5 days. However a final effluent of a sewage treatment works serving a large industrialised area might have a discharge where the ultimate BOD was much greater than the 5 day BOD because much of the easily degraded material would have been removed in the sewage treatment process and many industrial processes discharge difficult to degrade organic molecules.

The laboratory test procedures for the determining the above oxygen demands are detailed in many standard texts. American versions include Standard Methods for the Examination of Water and Wastewater. [4]

Any oxidizable material present in an aerobic natural waterway or in an industrial wastewater will be oxidized both by biochemical (bacterial) or chemical processes. The result is that the oxygen content of the water will be decreased.

Nitrogen

Nitrogen is an important nutrient for plant and animal growth. Atmospheric nitrogen is less biologically available than dissolved nitrogen in the form of ammonia and nitrates. Availability of dissolved nitrogen may contribute to algal blooms. Ammonia and organic forms of nitrogen are often measured as Total Kjeldahl Nitrogen, and analysis for inorganic forms of nitrogen may be performed for more accurate estimates of total nitrogen content. [2] :406–407

Phosphorus

Total phosphorus and phosphate, PO3−
4

Phosphates enter surface waters through both nonpoint sources and point sources. Nonpoint source (NPS) pollution refers to water pollution from diffuse sources. Nonpoint source pollution can be contrasted with point source pollution, where discharges occur to a body of water at a single location. The nonpoint sources of phosphates include natural decomposition of rocks and minerals, stormwater runoff, agricultural pollution, erosion and sedimentation, atmospheric deposition, and direct input by animals/wildlife. Point sources of phosphorus may include municipal sewage treatment plants and industrial dischargers. In general, the nonpoint source pollution typically is significantly higher than the point sources of pollution. Therefore, the key to sound management is to limit the input from both point and nonpoint sources of phosphate. High concentration of phosphate in water bodies is an indication of pollution and largely responsible for eutrophication. [5]

Phosphates are not toxic to people or animals unless they are present in very high levels. Digestive problems could occur from extremely high levels of phosphate.

The following criteria for total phosphorus were recommended by the U.S. Environmental Protection Agency.

  1. No more than 0.1 mg/L for streams which do not empty into reservoirs,
  2. No more than 0.05 mg/L for streams discharging into reservoirs, and
  3. No more than 0.025 mg/L for reservoirs. [6]

Phosphorus is normally low (< 1 mg/L) in clean potable water sources and usually not regulated; [7] [8]

Chlorine

Chlorine has been widely used for bleaching, as a disinfectant, and for biofouling prevention in water cooling systems. Remaining concentrations of oxidizing hypochlorous acid and hypochlorite ions may be measured as chlorine residual to estimate effectiveness of disinfection or to demonstrate safety for discharge to aquatic ecosystems. [2] :309–315

Biological characteristics

Water may be tested by a bioassay comparing survival of an aquatic test species in the wastewater in comparison to water from some other source. [2] :685–689 Water may also be evaluated to determine the approximate biological population of the wastewater. Pathogenic micro-organisms using water as a means of moving from one host to another may be present in sewage. Coliform index measures the population of an organism commonly found in the intestines of warm-blooded animals as an indicator of the possible presence of other intestinal pathogens. [2] :875–877

Aquatic toxicology tests are used to provide qualitative and quantitative data on adverse effects on aquatic organisms from a toxicant. Testing types include acute (short-term exposure), chronic (life span) and bioaccumulation tests. [9] Many industrial facilities in the US conduct "whole effluent toxicity" (WET) tests on their wastewater discharges, typically in combination with chemical tests for selected pollutants. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Eutrophication</span> Excessive plant growth in response to excess nutrient availability

Eutrophication is the process by which an entire body of water, or parts of it, becomes progressively enriched with minerals and nutrients, particularly nitrogen and phosphorus. It has also been defined as "nutrient-induced increase in phytoplankton productivity". Water bodies with very low nutrient levels are termed oligotrophic and those with moderate nutrient levels are termed mesotrophic. Advanced eutrophication may also be referred to as dystrophic and hypertrophic conditions. Eutrophication can affect freshwater or salt water systems. In freshwater ecosystems it is almost always caused by excess phosphorus. In coastal waters on the other hand, the main contributing nutrient is more likely to be nitrogen, or nitrogen and phosphorus together. This depends on the location and other factors.

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources: sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution is either surface water pollution or groundwater pollution. This form of pollution can lead to many problems, such as the degradation of aquatic ecosystems or spreading water-borne diseases when people use polluted water for drinking or irrigation. Another problem is that water pollution reduces the ecosystem services that the water resource would otherwise provide.

<span class="mw-page-title-main">Biochemical oxygen demand</span> Oxygen needed to remove organics from water

Biochemical oxygen demand is the amount of dissolved oxygen (DO) needed by aerobic biological organisms to break down organic material present in a given water sample at a certain temperature over a specific time period. The BOD value is most commonly expressed in milligrams of oxygen consumed per liter of sample during 5 days of incubation at 20 °C and is often used as a surrogate of the degree of organic pollution of water.

In environmental chemistry, the chemical oxygen demand (COD) is an indicative measure of the amount of oxygen that can be consumed by reactions in a measured solution. It is commonly expressed in mass of oxygen consumed over volume of solution which in SI units is milligrams per litre (mg/L). A COD test can be used to easily quantify the amount of organics in water. The most common application of COD is in quantifying the amount of oxidizable pollutants found in surface water or wastewater. COD is useful in terms of water quality by providing a metric to determine the effect an effluent will have on the receiving body, much like biochemical oxygen demand (BOD).

<span class="mw-page-title-main">Wastewater treatment</span> Converting wastewater into an effluent for return to the water cycle

Wastewater treatment is a process which removes and eliminates contaminants from wastewater and converts this into an effluent that can be returned to the water cycle. Once returned to the water cycle, the effluent creates an acceptable impact on the environment or is reused for various purposes. The treatment process takes place in a wastewater treatment plant. There are several kinds of wastewater which are treated at the appropriate type of wastewater treatment plant. For domestic wastewater, the treatment plant is called a Sewage Treatment. For industrial wastewater, treatment either takes place in a separate Industrial wastewater treatment, or in a sewage treatment plant. Further types of wastewater treatment plants include Agricultural wastewater treatment and leachate treatment plants.

<span class="mw-page-title-main">Environmental chemistry</span> Scientific study of the chemical and phenomena that occur in natural places

Environmental chemistry is the scientific study of the chemical and biochemical phenomena that occur in natural places. It should not be confused with green chemistry, which seeks to reduce potential pollution at its source. It can be defined as the study of the sources, reactions, transport, effects, and fates of chemical species in the air, soil, and water environments; and the effect of human activity and biological activity on these. Environmental chemistry is an interdisciplinary science that includes atmospheric, aquatic and soil chemistry, as well as heavily relying on analytical chemistry and being related to environmental and other areas of science.

<span class="mw-page-title-main">Constructed wetland</span> Artificial wetland to treat municipal or industrial wastewater, greywater or stormwater runoff

A constructed wetland is an artificial wetland to treat sewage, greywater, stormwater runoff or industrial wastewater. It may also be designed for land reclamation after mining, or as a mitigation step for natural areas lost to land development. Constructed wetlands are engineered systems that use the natural functions of vegetation, soil, and organisms to provide secondary treatment to wastewater. The design of the constructed wetland has to be adjusted according to the type of wastewater to be treated. Constructed wetlands have been used in both centralized and decentralized wastewater systems. Primary treatment is recommended when there is a large amount of suspended solids or soluble organic matter.

<span class="mw-page-title-main">Activated sludge</span> Wastewater treatment process using aeration and a biological floc

The activated sludgeprocess is a type of biological wastewater treatment process for treating sewage or industrial wastewaters using aeration and a biological floc composed of bacteria and protozoa. It uses air and microorganisms to biologically oxidize organic pollutants, producing a waste sludge containing the oxidized material.

<span class="mw-page-title-main">Industrial wastewater treatment</span> Processes used for treating wastewater that is produced by industries as an undesirable by-product

Industrial wastewater treatment describes the processes used for treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater may be reused or released to a sanitary sewer or to a surface water in the environment. Some industrial facilities generate wastewater that can be treated in sewage treatment plants. Most industrial processes, such as petroleum refineries, chemical and petrochemical plants have their own specialized facilities to treat their wastewaters so that the pollutant concentrations in the treated wastewater comply with the regulations regarding disposal of wastewaters into sewers or into rivers, lakes or oceans. This applies to industries that generate wastewater with high concentrations of organic matter, toxic pollutants or nutrients such as ammonia. Some industries install a pre-treatment system to remove some pollutants, and then discharge the partially treated wastewater to the municipal sewer system.

<span class="mw-page-title-main">Nonpoint source pollution</span> Pollution resulting from multiple sources

Nonpoint source (NPS) pollution refers to diffuse contamination of water or air that does not originate from a single discrete source. This type of pollution is often the cumulative effect of small amounts of contaminants gathered from a large area. It is in contrast to point source pollution which results from a single source. Nonpoint source pollution generally results from land runoff, precipitation, atmospheric deposition, drainage, seepage, or hydrological modification where tracing pollution back to a single source is difficult. Nonpoint source water pollution affects a water body from sources such as polluted runoff from agricultural areas draining into a river, or wind-borne debris blowing out to sea. Nonpoint source air pollution affects air quality, from sources such as smokestacks or car tailpipes. Although these pollutants have originated from a point source, the long-range transport ability and multiple sources of the pollutant make it a nonpoint source of pollution; if the discharges were to occur to a body of water or into the atmosphere at a single location, the pollution would be single-point.

<span class="mw-page-title-main">Secondary treatment</span> Biological treatment process for wastewater or sewage

Secondary treatment is the removal of biodegradable organic matter from sewage or similar kinds of wastewater. The aim is to achieve a certain degree of effluent quality in a sewage treatment plant suitable for the intended disposal or reuse option. A "primary treatment" step often precedes secondary treatment, whereby physical phase separation is used to remove settleable solids. During secondary treatment, biological processes are used to remove dissolved and suspended organic matter measured as biochemical oxygen demand (BOD). These processes are performed by microorganisms in a managed aerobic or anaerobic process depending on the treatment technology. Bacteria and protozoa consume biodegradable soluble organic contaminants while reproducing to form cells of biological solids. Secondary treatment is widely used in sewage treatment and is also applicable to many agricultural and industrial wastewaters.

<span class="mw-page-title-main">Sequencing batch reactor</span> Type of activated sludge process for the treatment of wastewater

Sequencing batch reactors (SBR) or sequential batch reactors are a type of activated sludge process for the treatment of wastewater. SBR reactors treat wastewater such as sewage or output from anaerobic digesters or mechanical biological treatment facilities in batches. Oxygen is bubbled through the mixture of wastewater and activated sludge to reduce the organic matter. The treated effluent may be suitable for discharge to surface waters or possibly for use on land.

<span class="mw-page-title-main">Sewage treatment</span> Process of removing contaminants from municipal wastewater

Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from. These can range from decentralized systems to large centralized systems involving a network of pipes and pump stations which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter from sewage,  using aerobic or anaerobic biological processes.

<span class="mw-page-title-main">Sewage</span> Wastewater that is produced by a community of people

Sewage is a type of wastewater that is produced by a community of people. It is typically transported through a sewer system. Sewage consists of wastewater discharged from residences and from commercial, institutional and public facilities that exist in the locality. Sub-types of sewage are greywater and blackwater. Sewage also contains soaps and detergents. Food waste may be present from dishwashing, and food quantities may be increased where garbage disposal units are used. In regions where toilet paper is used rather than bidets, that paper is also added to the sewage. Sewage contains macro-pollutants and micro-pollutants, and may also incorporate some municipal solid waste and pollutants from industrial wastewater.

A Discharge Monitoring Report (DMR) is a United States regulatory term for a periodic water pollution report prepared by industries, municipalities and other facilities discharging to surface waters. The facilities collect wastewater samples, conduct chemical and/or biological tests of the samples, and submit reports to a state agency or the United States Environmental Protection Agency (EPA). All point source dischargers to ”Waters of the U.S.” must obtain a National Pollution Discharge Elimination System (NPDES) permit from the appropriate agency, and many permittees are required to file DMRs.

<span class="mw-page-title-main">Freshwater environmental quality parameters</span>

Freshwater environmental quality parameters are those chemical, physical or biological parameters that can be used to characterise a freshwater body. Because almost all water bodies are dynamic in their composition, the relevant quality parameters are typically expressed as a range of expected concentrations.

<span class="mw-page-title-main">Nutrient pollution</span> Contamination of water by excessive inputs of nutrients

Nutrient pollution, a form of water pollution, refers to contamination by excessive inputs of nutrients. It is a primary cause of eutrophication of surface waters, in which excess nutrients, usually nitrogen or phosphorus, stimulate algal growth. Sources of nutrient pollution include surface runoff from farm fields and pastures, discharges from septic tanks and feedlots, and emissions from combustion. Raw sewage is a large contributor to cultural eutrophication since sewage is high in nutrients. Releasing raw sewage into a large water body is referred to as sewage dumping, and still occurs all over the world. Excess reactive nitrogen compounds in the environment are associated with many large-scale environmental concerns. These include eutrophication of surface waters, harmful algal blooms, hypoxia, acid rain, nitrogen saturation in forests, and climate change.

Water chemistry analyses are carried out to identify and quantify the chemical components and properties of water samples. The type and sensitivity of the analysis depends on the purpose of the analysis and the anticipated use of the water. Chemical water analysis is carried out on water used in industrial processes, on waste-water stream, on rivers and stream, on rainfall and on the sea. In all cases the results of the analysis provides information that can be used to make decisions or to provide re-assurance that conditions are as expected. The analytical parameters selected are chosen to be appropriate for the decision making process or to establish acceptable normality. Water chemistry analysis is often the groundwork of studies of water quality, pollution, hydrology and geothermal waters. Analytical methods routinely used can detect and measure all the natural elements and their inorganic compounds and a very wide range of organic chemical species using methods such as gas chromatography and mass spectrometry. In water treatment plants producing drinking water and in some industrial processes using products with distinctive taste and odours, specialised organoleptic methods may be used to detect smells at very low concentrations.

<span class="mw-page-title-main">United States regulation of point source water pollution</span> Overview of the regulation of point source water pollution in the United States of America

Point source water pollution comes from discrete conveyances and alters the chemical, biological, and physical characteristics of water. In the United States, it is largely regulated by the Clean Water Act (CWA). Among other things, the Act requires dischargers to obtain a National Pollutant Discharge Elimination System (NPDES) permit to legally discharge pollutants into a water body. However, point source pollution remains an issue in some water bodies, due to some limitations of the Act. Consequently, other regulatory approaches have emerged, such as water quality trading and voluntary community-level efforts.

<span class="mw-page-title-main">Water pollution in India</span> Water pollution in India is mainly due to untreated wastewater discharge into rivers

Water pollution is a major environmental issue in India. The largest source of water pollution in India is untreated sewage. Other sources of pollution include agricultural runoff and unregulated small-scale industry. Most rivers, lakes and surface water in India are polluted due to industries, untreated sewage and solid wastes. Although the average annual precipitation in India is about 4000 billion cubic metres, only about 1122 billion cubic metres of water resources are available for utilization due to lack of infrastructure. Much of this water is unsafe, because pollution degrades water quality. Water pollution severely limits the amount of water available to Indian consumers, its industry and its agriculture.

References

  1. Von Sperling, M. (2007). "Wastewater Characteristics, Treatment and Disposal". Water Intelligence Online. 6: 9781780402086. doi: 10.2166/9781780402086 . ISSN   1476-1777. CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  2. 1 2 3 4 5 6 7 8 9 Franson, Mary Ann Standard Methods for the Examination of Water and Wastewater 14th edition (1975) APHA, AWWA & WPCF ISBN   0-87553-078-8
  3. Goldman, Charles R. & Horne, Alexander J. Limnology (1983) McGraw-Hill ISBN   0-07-023651-8 p.111
  4. Eaton, Andrew D.; Greenberg, Arnold E.; Rice, Eugene W.; Clesceri, Lenore S.; Franson, Mary Ann H., eds. (2005). Standard Methods For the Examination of Water and Wastewater (21 ed.). American Public Health Association. ISBN   978-0-87553-047-5. Also available on CD-ROM and online by subscription.
  5. MacCutheon et al., 1983[ full citation needed ]
  6. US EPA (1984)[ full citation needed ]
  7. Nduka et al., 2008
  8. World Health Organization (1984)[ full citation needed ]
  9. Rand, Gary M., ed. (1995). Fundamentals of Aquatic Toxicology (2nd ed.). London: Taylor & Francis. ISBN   1-56032-091-5.
  10. "Permit Limits-Whole Effluent Toxicity". National Pollutant Discharge Elimination System (NPDES). Washington, D.C.: U.S. Environmental Protection Agency (EPA). 2021-10-11.

Further reading