Surface of revolution

Last updated
A portion of the curve x = 2 + cos(z) rotated around the z-axis Surface of revolution illustration.png
A portion of the curve x = 2 + cos(z) rotated around the z-axis
A torus as a square revolved around an axis parallel to one of its diagonals. Square-torus.png
A torus as a square revolved around an axis parallel to one of its diagonals.

A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix ) one full revolution around an axis of rotation (normally not intersecting the generatrix, except at its endpoints). [1] The volume bounded by the surface created by this revolution is the solid of revolution .

Contents

Examples of surfaces of revolution generated by a straight line are cylindrical and conical surfaces depending on whether or not the line is parallel to the axis. A circle that is rotated around any diameter generates a sphere of which it is then a great circle, and if the circle is rotated around an axis that does not intersect the interior of a circle, then it generates a torus which does not intersect itself (a ring torus).

Properties

The sections of the surface of revolution made by planes through the axis are called meridional sections. Any meridional section can be considered to be the generatrix in the plane determined by it and the axis. [2]

The sections of the surface of revolution made by planes that are perpendicular to the axis are circles.

Some special cases of hyperboloids (of either one or two sheets) and elliptic paraboloids are surfaces of revolution. These may be identified as those quadratic surfaces all of whose cross sections perpendicular to the axis are circular.

Area formula

If the curve is described by the parametric functions x(t), y(t), with t ranging over some interval [a,b], and the axis of revolution is the y-axis, then the surface area Ay is given by the integral provided that x(t) is never negative between the endpoints a and b. This formula is the calculus equivalent of Pappus's centroid theorem. [3] The quantity comes from the Pythagorean theorem and represents a small segment of the arc of the curve, as in the arc length formula. The quantity x(t) is the path of (the centroid of) this small segment, as required by Pappus' theorem.

Likewise, when the axis of rotation is the x-axis and provided that y(t) is never negative, the area is given by [4]

If the continuous curve is described by the function y = f(x), axb, then the integral becomes for revolution around the x-axis, and for revolution around the y-axis (provided a ≥ 0). These come from the above formula. [5]

This can also be derived from multivariable integration. If a plane curve is given by then its corresponding surface of revolution when revolved around the x-axis has Cartesian coordinates given by with . Then the surface area is given by the surface integral

Computing the partial derivatives yields and computing the cross product yields where the trigonometric identity was used. With this cross product, we get where the same trigonometric identity was used again. The derivation for a surface obtained by revolving around the y-axis is similar.

For example, the spherical surface with unit radius is generated by the curve y(t) = sin(t), x(t) = cos(t), when t ranges over [0,π]. Its area is therefore

For the case of the spherical curve with radius r, y(x) = r2x2 rotated about the x-axis

A minimal surface of revolution is the surface of revolution of the curve between two given points which minimizes surface area. [6] A basic problem in the calculus of variations is finding the curve between two points that produces this minimal surface of revolution. [6]

There are only two minimal surfaces of revolution (surfaces of revolution which are also minimal surfaces): the plane and the catenoid. [7]

Coordinate expressions

A surface of revolution given by rotating a curve described by around the x-axis may be most simply described by . This yields the parametrization in terms of and as . If instead we revolve the curve around the y-axis, then the curve is described by , yielding the expression in terms of the parameters and .

If x and y are defined in terms of a parameter , then we obtain a parametrization in terms of and . If and are functions of , then the surface of revolution obtained by revolving the curve around the x-axis is described by , and the surface of revolution obtained by revolving the curve around the y-axis is described by .

Geodesics

Meridians are always geodesics on a surface of revolution. Other geodesics are governed by Clairaut's relation. [8]

Toroids

A toroid generated from a square Toroid by Zureks.svg
A toroid generated from a square

A surface of revolution with a hole in, where the axis of revolution does not intersect the surface, is called a toroid. [9] For example, when a rectangle is rotated around an axis parallel to one of its edges, then a hollow square-section ring is produced. If the revolved figure is a circle, then the object is called a torus.

See also

Related Research Articles

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates comprising a distance and an angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Spherical coordinate system</span> Coordinates comprising a distance and two angles

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three numbers, : the radial distance of the radial liner connecting the point to the fixed point of origin ; the polar angle θ of the radial line r; and the azimuthal angle φ of the radial line r.

<span class="mw-page-title-main">Tautochrone curve</span> Curve for which the time to roll to the end is equal for all starting points

A tautochrone curve or isochrone curve is the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independent of its starting point on the curve. The curve is a cycloid, and the time is equal to π times the square root of the radius over the acceleration of gravity. The tautochrone curve is related to the brachistochrone curve, which is also a cycloid.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form

<span class="mw-page-title-main">Solid of revolution</span> Type of three-dimensional shape

In geometry, a solid of revolution is a solid figure obtained by rotating a plane figure around some straight line, which may not intersect the generatrix. The surface created by this revolution and which bounds the solid is the surface of revolution.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Pappus's centroid theorem</span> Results on the surface areas and volumes of surfaces and solids of revolution

In mathematics, Pappus's centroid theorem is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of revolution.

<span class="mw-page-title-main">Gaussian integral</span> Integral of the Gaussian function, equal to sqrt(π)

The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is

<span class="mw-page-title-main">Sinc function</span> Special mathematical function defined as sin(x)/x

In mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized.

In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane.

In geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

<span class="mw-page-title-main">Arc length</span> Distance along a curve

Arc length is the distance between two points along a section of a curve.

In classical mechanics, the shell theorem gives gravitational simplifications that can be applied to objects inside or outside a spherically symmetrical body. This theorem has particular application to astronomy.

In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form where and the integrands are functions dependent on the derivative of this integral is expressible as where the partial derivative indicates that inside the integral, only the variation of with is considered in taking the derivative.

<span class="mw-page-title-main">Multiple integral</span> Generalization of definite integrals to functions of multiple variables

In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).

<span class="mw-page-title-main">Pendulum (mechanics)</span> Free swinging suspended body

A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.

<span class="mw-page-title-main">Differentiation of trigonometric functions</span> Mathematical process of finding the derivative of a trigonometric function

The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin(a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

References

  1. Middlemiss; Marks; Smart. "15-4. Surfaces of Revolution". Analytic Geometry (3rd ed.). p. 378. LCCN   68015472.
  2. Wilson, W.A.; Tracey, J.I. (1925), Analytic Geometry (Revised ed.), D.C. Heath and Co., p. 227
  3. Thomas, George B. "6.7: Area of a Surface of Revolution; 6.11: The Theorems of Pappus". Calculus (3rd ed.). pp. 206–209, 217–219. LCCN   69016407.
  4. Singh, R.R. (1993). Engineering Mathematics (6 ed.). Tata McGraw-Hill. p. 6.90. ISBN   0-07-014615-2.
  5. Swokowski, Earl W. (1983). Calculus with analytic geometry (Alternate ed.). Prindle, Weber & Schmidt. p.  617. ISBN   0-87150-341-7.
  6. 1 2 Weisstein, Eric W. "Minimal Surface of Revolution". MathWorld .
  7. Weisstein, Eric W. "Catenoid". MathWorld .
  8. Pressley, Andrew. “Chapter 9 - Geodesics.” Elementary Differential Geometry, 2nd ed., Springer, London, 2012, pp. 227–230.
  9. Weisstein, Eric W. "Toroid". MathWorld .