Names | |
---|---|
IUPAC name 1,6-Dichloro-1,6-dideoxy-β-D-fructofuranosyl 4-chloro-4-deoxy-α-D-galactopyranoside | |
Systematic IUPAC name (2R,3R,4R,5R,6R)-2-{[(2R,3S,4S,5S)-2,5-Bis(chloromethyl)-3,4-dihydroxyoxolan-2-yl]oxy}-5-chloro-6-(hydroxymethyl)oxane-3,4-diol | |
Other names
| |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.054.484 |
EC Number |
|
E number | E955 (glazing agents, ...) |
KEGG | |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C12H19Cl3O8 | |
Molar mass | 397.63 g·mol−1 |
Appearance | Off-white to white powder |
Odor | Odorless |
Density | 1.69 g/cm3 |
Melting point | 125 °C (257 °F; 398 K) |
283 g/L (20 °C) | |
Acidity (pKa) | 12.52±0.70 |
Hazards | |
NFPA 704 (fire diamond) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Sucralose is an artificial sweetener and sugar substitute. As the majority of ingested sucralose is not metabolized by the body, it adds very little food energy (14 kJ [3.3 kcal] per gram). [3] In the European Union, it is also known under the E number E955. It is produced by chlorination of sucrose, selectively replacing three of the hydroxy groups —in the C1 and C6 positions of the fructose portion and the C4 position of the glucose portion—to give a 1,6-dichloro-1,6-dideoxyfructose–4-chloro-4-deoxygalactose disaccharide. Sucralose is about 600 times sweeter than sucrose (table sugar), [4] [5] 3 times as sweet as both aspartame and acesulfame potassium, and 2 times as sweet as sodium saccharin. [4]
The commercial success of sucralose-based products stems from its favorable comparison to other low-calorie sweeteners in terms of taste, stability, and safety. [4] [6] It is commonly sold under the Splenda brand name. [4]
Sucralose is used in many food and beverage products because it is a non-nutritive sweetener (14 kilojoules [3.3 kcal] per typical one-gram serving), [3] does not promote dental cavities, [7] is safe for consumption by diabetics and nondiabetics [8] and does not affect insulin levels. [9] The powdered form of the sucralose-based sweetener product Splenda contains the bulking agents – dextrose and maltodextrin. Sucralose content is about 1.1% and remainder is bulking agents. [10] [11]
Sucralose is used as a replacement for (or in combination with) other artificial or natural sweeteners such as aspartame, acesulfame potassium or high-fructose corn syrup. It is used in products such as candy, breakfast bars, coffee pods, and soft drinks. It is also used in canned fruits wherein water and sucralose take the place of much higher-energy corn syrup-based additives. Sucralose mixed with dextrose or maltodextrin (both made from corn) as bulking agents is sold internationally by McNeil Nutritionals under the Splenda brand name. [10]
Sucralose is available in a granulated form that allows same-volume substitution with sugar. [12] This mix of granulated sucralose includes fillers, all of which rapidly dissolve in water. Sucralose is not hygroscopic when humidity is below 80%, which can lead to baked goods that are noticeably drier and manifest a less dense texture than those made with sucrose. [13]
Unlike sucrose, which melts when baked at high temperatures, sucralose maintains its granular structure when subjected to dry, high heat (e.g., in a 180 °C or 350 °F oven). Furthermore, in its pure state, sucralose begins to decompose at 119 °C (246 °F). [14] In some recipes, such as crème brûlée , which require sugar sprinkled on top to partially or fully melt and crystallize, substituting sucralose does not result in the same surface texture, crispness, or crystalline structure.[ citation needed ]
Sucralose has been accepted as safe by several food safety regulatory bodies worldwide, including the U.S. Food and Drug Administration (FDA), the Joint FAO/WHO Expert Committee Report on Food Additives, the European Union's Scientific Committee on Food, Health Protection Branch of Health and Welfare Canada, and Food Standards Australia New Zealand.
At normal baking temperatures, sucralose is mostly heat-stable, indicating that it retains its sweetness and is suitable as a sugar substitute for use in baked goods. [4] However, there is concern about the possible formation of dioxines when sucralose is heated. [15] Especially when heating sucralose above 120 °C, chlorinated organic compounds such as polychlorinated dibenzo-p-dioxins (PCDD) or dibenzofurans (PCDF) or chloropropanol might form. [16]
Various assessments have reported different amounts of maximum acceptable daily intake (ADI), usually measured as mg per kg of body weight. According to the Canadian Diabetes Association, the amount of sucralose that can be consumed over a person's lifetime without any adverse effects is 9 milligrams per kilogram of body weight per day. [17] [18] The FDA approval process indicated that consuming sucralose in typical amounts as a sweetener was safe. [18] [19] The intake at which adverse effects are seen is 1500 mg per kilogram of body weight per day, [19] providing a large margin of safety compared to the estimated daily intake. The European Food Safety Authority (EFSA) proposed an ADI of 5 mg per kilogram of body weight, while the FDA established it as 15 mg per kilogram of body weight, that is, 350–1050 mg per day for a person of 70 kg. [18]
Most ingested sucralose is directly excreted in the feces, while about 11–27% is absorbed by the gastrointestinal tract (gut). [18] [19] The amount absorbed from the gut is largely removed from the blood by the kidneys and eliminated via urine, with 20–30% of absorbed sucralose being metabolized. [18] [19]
In reviewing a 1987 food additive petition by McNeil Nutritionals, the FDA stated that "in the 2-year rodent bioassays ... there was no evidence of carcinogenic activity for either sucralose or its hydrolysis products". [19] [20]
In 2023, the World Health Organization conditionally recommended against the use of non-sugar sweeteners including sucralose due to concerns about the diet quality of manufactured, sweetened food products. [21]
As of 2024 [update] , reviews of numerous safety and toxicology studies on sucralose concluded that it is not toxic or carcinogenic, even at levels of daily consumption much larger than those typically used. [4] [18] [19]
Sucralose was discovered in 1976 by scientists from Tate & Lyle, working with researchers Leslie Hough and Shashikant Phadnis at Queen Elizabeth College (now part of King's College London). [22] While researching novel uses of sucrose and its synthetic derivatives, Phadnis was told to "test" a chlorinated sugar compound. According to an anecdotal account, Phadnis thought Hough asked him to "taste" it, so he did and found the compound to be exceptionally sweet. [23]
Tate & Lyle patented the substance in 1976; as of 2008, the only remaining patents concerned specific manufacturing processes. [24]
A Duke University animal study funded by the Sugar Association [25] found evidence that doses of Splenda (containing ~1% sucralose and ~99% maltodextrin by weight) between 100 and 1000 mg/kg BW/day, containing sucralose at 1.1 to 11 mg/kg BW/day, fed to rats reduced gut microbiota, increased the pH level in the intestines, contributed to increases in body weight, and increased levels of P-glycoprotein (P-gp). [26] These effects have not been reported in humans. [5] An expert panel, including scientists from Duke University, Rutgers University, New York Medical College, Harvard School of Public Health, and Columbia University reported in Regulatory Toxicology and Pharmacology that the Duke study was "not scientifically rigorous and is deficient in several critical areas that preclude reliable interpretation of the study results". [27]
Sucralose was first approved for use in Canada in 1991. Subsequent approvals came in Australia in 1993, in New Zealand in 1996, in the United States in 1998, and in the European Union in 2004. By 2008, it had been approved in over 80 countries, including Mexico, Brazil, China, India, and Japan. [28] In 2006, the FDA amended the regulations for foods to include sucralose as a "non-nutritive sweetener" in food. [29] In May 2008, Fusion Nutraceuticals launched a generic product to the market, using Tate & Lyle patents.
In April 2015, PepsiCo announced that it would be moving from aspartame to sucralose for most of its diet drinks in the U.S. [30] due to sales of Diet Pepsi falling by more than 5% in the U.S. The company stated that its decision was a commercial one, responding to consumer preferences.
In February 2018, PepsiCo went back to using aspartame in Diet Pepsi because of an 8% drop in sales for the previous year. [31] [32]
Sucralose is a disaccharide composed of 1,6-dichloro-1,6-dideoxyfructose and 4-chloro-4-deoxygalactose. It is synthesized by the selective chlorination of sucrose in a multistep route that substitutes three specific hydroxyl groups with chlorine atoms. This chlorination is achieved by selective protection of one of the primary alcohols as an ester (acetate or benzoate), followed by chlorination with an excess of any of several chlorinating agent to replace the two remaining primary alcohols and one of the secondary alcohols, and then by hydrolysis of the ester. [33] [34]
Sucralose is stable when stored under normal conditions of temperature, pressure and humidity. [35] Upon prolonged heating during storage at elevated temperatures (38 °C, 100 °F), sucralose may break down, releasing carbon dioxide, carbon monoxide and minor amounts of hydrogen chloride. [35]
Though sucralose contains 14 kJ (3.3 kcal) per gram, [3] products that contain fillers such as dextrose and/or maltodextrin add about 2–4 kcal (8.4–16.7 kJ) per teaspoon or individual packet, depending on the product, the fillers used, brand, and the intended use of the product. [36] The FDA allows any product containing fewer than 5 kcal (21 kJ) per serving to be labeled as "zero calories"; [37] a typical one-gram serving packet of sucralose supplies 14 kJ (3.3 kcal) derived from its composition as 0.9 gram of carbohydrates and 0.1 gram of water. [3]
There is no evidence of an effect of sucralose on long-term weight loss or body mass index, with cohort studies showing a minor effect on weight gain and heart disease risks. [38]
According to one study, sucralose is digestible by a number of microorganisms and is broken down once released into the environment. [39] However, measurements by the Swedish Environmental Research Institute have shown that sewage treatment has little effect on sucralose, which is present in wastewater effluents at levels of several μg/L (ppb). [40] No ecotoxicological effects are known at such levels, but the Swedish Environmental Protection Agency warns that a continuous increase in levels may occur if the compound is only slowly degraded in nature. When heated to very high temperatures (over 350 °C or 662 °F) in metal containers, sucralose can produce polychlorinated dibenzo-p-dioxins and other persistent organic pollutants in the resulting smoke. [41]
Sucralose has been detected in natural waters, but research indicates that the levels found in the environment are far below those required to cause adverse effects to certain kinds of aquatic life. [42]
Aspartame is an artificial non-saccharide sweetener 200 times sweeter than sucrose and is commonly used as a sugar substitute in foods and beverages. It is a methyl ester of the aspartic acid/phenylalanine dipeptide with brand names NutraSweet, Equal, and Canderel. Aspartame was approved by the US Food and Drug Administration (FDA) in 1974, and then again in 1981, after approval was revoked in 1980.
Splenda is a global brand of sugar substitutes and reduced-calorie food products. While the company is known for its original formulation containing sucralose, it also manufactures items using natural sweeteners such as stevia, monk fruit and allulose. It is owned by the American company Heartland Food Products Group. The high-intensity sweetener ingredient sucralose used in Splenda Original is manufactured by the British company Tate & Lyle.
A sugar substitute is a food additive that provides a sweetness like that of sugar while containing significantly less food energy than sugar-based sweeteners, making it a zero-calorie or low-calorie sweetener. Artificial sweeteners may be derived through manufacturing of plant extracts or processed by chemical synthesis. Sugar substitute products are commercially available in various forms, such as small pills, powders, and packets.
Xylitol is a chemical compound with the formula C
5H
12O
5, or HO(CH2)(CHOH)3(CH2)OH; specifically, one particular stereoisomer with that structural formula. It is a colorless or white crystalline solid. It is classified as a polyalcohol and a sugar alcohol, specifically an alditol. Of the common sugar alcohols, only sorbitol is more soluble in water.
Saccharin, also called saccharine, benzosulfimide, or E954, or used in saccharin sodium or saccharin calcium forms, is a non-nutritive artificial sweetener. Saccharin is a sultam that is about 500 times sweeter than sucrose, but has a bitter or metallic aftertaste, especially at high concentrations. It is used to sweeten products, such as drinks, candies, baked goods, tobacco products, excipients, and for masking the bitter taste of some medicines. It appears as white crystals and is odorless.
Acesulfame potassium, also known as acesulfame K or Ace K, is a synthetic calorie-free sugar substitute often marketed under the trade names Sunett and Sweet One. In the European Union, it is known under the E number E950. It was discovered accidentally in 1967 by German chemist Karl Clauss at Hoechst AG. Acesulfame potassium is the potassium salt of 6-methyl-1,2,3-oxathiazine-4(3H)-one 2,2-dioxide. It is a white crystalline powder with molecular formula C
4H
4KNO
4S and a molecular weight of 201.24 g/mol.
Pepsi One, corporately styled PEPSI ONE, was a sugar-free cola, marketed by PepsiCo in the United States as an alternative to regular Pepsi and Diet Pepsi.
Diet sodas are soft drinks which contain little or no sugar or calories. First introduced onto the market in 1949, diet sodas are typically marketed for those with diabetes or who wish to reduce their sugar or caloric intake.
Erythritol (, ) is an organic compound, the naturally occurring achiral meso four-carbon sugar alcohol (or polyol). It is the reduced form of either D- or L-erythrose and one of the two reduced forms of erythrulose. It is used as a food additive and sugar substitute. It is synthesized from corn using enzymes and fermentation. Its formula is C
4H
10O
4, or HO(CH2)(CHOH)2(CH2)OH.
Neotame, also known by the brand name Newtame, is a non-caloric artificial sweetener and aspartame analog by NutraSweet. By mass, it is 7,000 to 13,000 times sweeter than sucrose. It has no notable off-flavors when compared to sucrose. It enhances original food flavors. It can be used alone, but is often mixed with other sweeteners to increase their individual sweetness and decrease their off-flavors. It is chemically somewhat more stable than aspartame. Its use can be cost effective in comparison to other sweeteners as smaller amounts of neotame are needed.
Diet Pepsi, currently stylised in all caps as PEPSI DIET, is a diet carbonated cola soft drink produced by PepsiCo, introduced in 1964 as a variant of Pepsi with no sugar. First test marketed in 1963 under the name Patio Diet Cola, it was re-branded as Diet Pepsi the following year, becoming the first diet cola to be distributed on a national scale in the United States. In the 1960s and 1970s, its competition consisted of the Coca-Cola Company's subsequently discontinued Tab. The United States represents the largest single market for Diet Pepsi.
Tagatose is a hexose monosaccharide. It is found in small quantities in a variety of foods, and has attracted attention as an alternative sweetener. It is often found in dairy products, because it is formed when milk is heated. It is similar in texture and appearance to sucrose :215 and is 92% as sweet,:198 but with only 38% of the calories.:209 Tagatose is generally recognized as safe by the Food and Agriculture Organization and the World Health Organization, and has been since 2001. Since it is metabolized differently from sucrose, tagatose has a minimal effect on blood glucose and insulin levels. Tagatose is also approved as a tooth-friendly ingredient for dental products. Consumption of more than about 30 grams of tagatose in a dose may cause gastric disturbance in some people, as it is mostly processed in the large intestine, similar to soluble fiber.:214
Equal is an American brand of artificial sweetener containing aspartame, acesulfame potassium, dextrose and maltodextrin. It is marketed as a tabletop sweetener by Merisant, a global corporation which also previously owned the well-known NutraSweet brand when it was a subsidiary of Monsanto and which has headquarters in Chicago, Illinois, Switzerland, Mexico, and Singapore. In French Canada, Equal is known as "Égal".
High-fructose corn syrup (HFCS), also known as glucose–fructose, isoglucose and glucose–fructose syrup, is a sweetener made from corn starch. As in the production of conventional corn syrup, the starch is broken down into glucose by enzymes. To make HFCS, the corn syrup is further processed by D-xylose isomerase to convert some of its glucose into fructose. HFCS was first marketed in the early 1970s by the Clinton Corn Processing Company, together with the Japanese Agency of Industrial Science and Technology, where the enzyme was discovered in 1965.
Isomalt is a sugar substitute, a mixture of the two disaccharide alcohols 1,6-GPS and 1,1-GPM. It is used primarily for its sugar-like physical properties. It has little to no impact on blood sugar levels, and does not stimulate the release of insulin. It also does not promote tooth decay and is considered to be tooth-friendly. Its energy value is 2 kcal per gram, half that of sugars. It is less sweet than sugar, but can be blended with high-intensity sweeteners such as sucralose to create a mixture with the same sweetness as sucrose (‘sugar’).
D-Psicose (C6H12O6), also known as D-allulose or simply allulose, is an epimer of fructose that is used by some commercial food and beverage manufacturers as a low-calorie sweetener. Allulose occurs naturally in small quantities in a variety of foods. It was first identified in the 1940s, although the enzymes needed to produce it on an industrial scale were not discovered until the 1990s.
The artificial sweetener aspartame has been the subject of several controversies since its initial approval by the U.S. Food and Drug Administration (FDA) in 1974. The FDA approval of aspartame was highly contested, beginning with suspicions of its involvement in brain cancer, alleging that the quality of the initial research supporting its safety was inadequate and flawed, and that conflicts of interest marred the 1981 approval of aspartame, previously evaluated by two FDA panels that concluded to keep the approval on hold before further investigation. In 1987, the U.S. Government Accountability Office concluded that the food additive approval process had been followed properly for aspartame. The irregularities fueled a conspiracy theory, which the "Nancy Markle" email hoax circulated, along with claims—counter to the weight of medical evidence—that numerous health conditions are caused by the consumption of aspartame in normal doses.
Russell L. Blaylock is an author and a retired U.S. neurosurgeon.
Truvia is a brand of stevia-based sugar substitute developed jointly by The Coca-Cola Company and Cargill. It is distributed and marketed by Cargill as a tabletop sweetener as well as a food ingredient. Truvia is made of stevia leaf extract, erythritol, and natural flavors. Because it comes from the stevia plant, Cargill classifies Truvia as a natural sweetener in addition to being a non-nutritive sweetener, although Cargill has settled lawsuits alleging deceptive marketing of Truvia as "natural". Since its launch in 2008, Truvia natural sweetener has become the second best-selling sugar substitute in units in the U.S. behind Splenda, surpassing Equal and Sweet'n Low. Truvia competes with Stevia In The Raw, the #2 brand of stevia, owned by Cumberland Packaging who also makes Sweet 'n Low.
Added sugars or free sugars are sugar carbohydrates added to food and beverages at some point before their consumption. These include added carbohydrates, and more broadly, sugars naturally present in honey, syrup, fruit juices and fruit juice concentrates. They can take multiple chemical forms, including sucrose, glucose (dextrose), and fructose.
Lead Deputy Commissioner for the FDA