Resistin

Last updated
RETN
Resistin (ribbon diagram).png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases RETN , ADSF, FIZZ3, RETN1, RSTN, XCP1, resistin
External IDs OMIM: 605565; MGI: 1888506; HomoloGene: 10703; GeneCards: RETN; OMA:RETN - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_020415
NM_001193374
NM_001385725
NM_001385726
NM_001385727

Contents

NM_001204959
NM_022984

RefSeq (protein)

NP_001180303
NP_065148

NP_001191888
NP_075360

Location (UCSC) Chr 19: 7.67 – 7.67 Mb Chr 8: 3.71 – 3.71 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Resistin also known as adipose tissue-specific secretory factor (ADSF) or C/EBP-epsilon-regulated myeloid-specific secreted cysteine-rich protein (XCP1) is a cysteine-rich peptide hormone derived from adipose tissue that in humans is encoded by the RETN gene. [5]

In primates, pigs, and dogs, resistin is secreted by immune and epithelial cells, while, in rodents, it is secreted by adipose tissue. The length of the resistin pre-peptide in human is 108 amino acid residues and in the mouse and rat it is 114 aa; the molecular weight is ~12.5 kDa. Resistin is an adipose-derived hormone (similar to a cytokine) whose physiologic role has been the subject of much controversy regarding its involvement with obesity and type II diabetes mellitus (T2DM). [6]

Discovery

Resistin was discovered in 2001 by the group of Dr Mitchell A. Lazar from the University of Pennsylvania School of Medicine. [7] It was called "resistin" because of the observed insulin resistance in mice injected with resistin. Resistin was found to be produced and released from adipose tissue to serve endocrine functions likely involved in insulin resistance.

This idea primarily stems from studies demonstrating that serum resistin levels increase with obesity in several model systems (humans, rats, and mice). [7] [8] [9] [10] [11] Since these observations, further research has linked resistin to other physiological systems such as inflammation and energy homeostasis. [12] [13] [14]

This article discusses the current research proposing to link resistin to inflammation and energy homeostasis, including its alleged role in insulin resistance in obese subjects, a subject reviewed by Vidal-Puig and O'Rahilly in 2001, [15] and by M.A. Lazar in 2007. [16]

Inflammation

Inflammation is the first innate immune response to infection or irritation resulting from leukocyte (neutrophils, mast cells, etc.) accumulation and their secretion of inflammatory, biogenic chemicals such as histamine, prostaglandin, and pro-inflammatory cytokines. As cited, it has recently been discovered that resistin also participates in the inflammatory response. [17] [18] [19] [20]

In further support of its inflammatory profile, resistin has been shown to increase transcriptional events, leading to an increased expression of several pro-inflammatory cytokines including (but not limited to) interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-12 (IL-12), and tumor necrosis factor-α (TNF-α) in an NF-κB-mediated (nuclear factor kappa-light-chain-enhancer of activated B cells-mediated) fashion. [21] [22] It has also been demonstrated that resistin upregulates intercellular adhesion molecule-1 (ICAM1) vascular cell-adhesion molecule-1 (VCAM1) and chemokine (C-C motif) ligand 2 (CCL2), all of which are occupied in chemotactic pathways involved in leukocyte recruitment to sites of infection. [23] Resistin itself can be upregulated by interleukins and also by microbial antigens such as lipopolysaccharide, [24] which are recognized by leukocytes. Taken together, because resistin is reputed to contribute to insulin resistance, results such as those mentioned suggest that resistin may be a link in the well-known association between inflammation and insulin resistance. [25]

In accordance, it is expected that, if resistin does serve as a link between obesity and T2DM while at the same time contributing to the inflammatory response, then proportional increases in chronic inflammation in association with obesity and insulin resistance should be observed. Recent data has shown that this is possible by demonstrating positive correlations between obesity, insulin resistance, and chronic inflammation, [26] [27] which is believed to be directed in part by resistin signaling. This idea has recently been challenged by a study showing that increased levels of resistin in people with chronic kidney disease are associated with lowered renal function and inflammation, but not with insulin resistance. [28] Notwithstanding, regarding resistin and the inflammatory response, it can be concluded that resistin does bear features of a pro-inflammatory cytokine, and could act as a key node in inflammatory diseases with or without associated insulin resistance.

This adipokine is associated with markers of inflammation in seminal plasma and the concentrations of seminal resistin correlate positively with those of proinflammatory mediators such as interleukin-6 (IL-6), elastase and tumor necrosis factor-α (TNF-α). During inflammation, the concentrations of cytokines and ROS increase, and this may have a deleterious effect on the male reproductive function. [29] One study showed that there was a negative correlation between the concentrations of seminal resistin and spermatic motility and vitality. (The seminal concentrations of resistin were significantly higher in cases of leukocyte spermia or if the patients were smokers.) [30]

Obesity and insulin resistance

Arguments for

Much of what is hypothesized about a resistin role in energy metabolism and T2DM can be derived from studies showing strong correlations between resistin and obesity. The premise being that serum resistin levels increase with increased adiposity. [8] [14] [31] [32] Conversely, serum resistin levels to decline with decreased adiposity following medical treatment. [33] Specifically, central obesity (waistline adipose tissue) is the region of adipose tissue that contributes most to rising levels of serum resistin. [34] This is significant, considering the link between central obesity and insulin resistance, two marked peculiarities of T2DM. [9] [35]

Although resistin levels increase with obesity, it is questioned whether this increase is responsible for the insulin resistance associated with increased adiposity.[ citation needed ] Several reports have shown a positive correlation between resistin levels and insulin resistance. [36] [37] [38] [39] This is supported by reports of correlation between resistin levels and subjects with T2DM. [7] [31] [40] [41] If resistin contributes to the pathogenesis of insulin resistance in T2DM, then designing drugs to promote decreased serum resistin in T2DM subjects may deliver therapeutic benefits. [42]

Resistin can increase levels of circulating low-density lipoprotein (LDL) and accelerates LDL accumulation in arteries, increasing risk of heart disease has an adverse impact on the efficacy of statins, the primary drug used to reduce cholesterol in fighting of cardiovascular disease. [43] In the liver, resistin increases LDL production and degrades LDL receptors, impairing the ability to process LDL.

Arguments against

The amount of evidence supporting the resistin link theory between obesity and T2DM is vast.[ citation needed ] Nevertheless, this theory lacks support from the entire scientific community, as a number of studies present evidence against it. [44] [45] [46] Such studies have found significantly decreased serum concentrations of resistin with increased adiposity, [47] [48] [49] suggesting not only that resistin is downregulated in obese subjects, but also that decreased resistin levels may contribute to the links between obesity and T2DM. Data contradicting the idea that weight loss coincides with decreased serum resistin concentrations have also been presented; such studies instead report that weight loss is associated with marked increases in serum resistin. [21] The idea that resistin links obesity to T2DM is under scrutiny, reports have been made of ubiquitous resistin expression in many tissues, rather than only those characteristic of obesity, such as adipocytes [ citation needed ].

Although nearly as many scientists oppose the theory as those who support it [ citation needed ], there is sufficient evidence to support the idea that resistin does have some incompletely defined role in energy homeostasis, while also demonstrating properties that help to incite inflammatory responses to sites of infection.

Structure

Resistin
Identifiers
SymbolResistin
Pfam PF06954
InterPro IPR009714
SCOP2 1rgx / SCOPe / SUPFAM
OPM superfamily 384
OPM protein 1rgx
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

Crystal structures of resistin reveal an unusual composition of several subunits that are held together by non-covalent interactions that make up its structure. The crystal structure shows a multimeric assembly consisting of hexamer-forming disulfide bonds. Each protein subunit comprises a carboxy-terminal disulfide-rich beta sandwich "head" domain and an amino-terminal alpha-helical "tail" segment. The alpha-helical segments associate to form three-stranded coils, and surface-exposed interchain disulfide linkages mediate the formation of tail-to-tail hexamers. The globular domain from resistin contains five disulfide bonds (Cys35-Cys88, Cys47-Cys87, Cys56-Cys73, Cys58-Cys75, and Cys62-Cys77). This suggests that the disulfide pattern will be conserved.

The interchain disulfide bonds of resistin and resistin-like molecule β (RELMß) are novel in that they are highly solvent when exposed, ranging from 84.6% to 89.5%. An average solvent exposure for all disulfide bonds is 9.9%, and 16.7% for 1,209 interchain disulfide bonds. Therefore, the most highly uncovered disulfide bonds found for intact proteins are resistin's disulfides in high-resolution.

A Cys6Ser resistin mutant was substantially more potent at the low concentration and had a greater effect than the wild-type resistin at the high concentration. This result suggests that processing of the intertrimer disulfide bonds may reflect a mandatory step toward activation. Other results also suggest that both the Cys6Ser-mutant and wild-type resistin target mainly the liver.

Related Research Articles

Insulin resistance (IR) is a pathological condition in which cells in insulin-sensitive tissues in the body fail to respond normally to the hormone insulin or downregulate insulin receptors in response to hyperinsulinemia.

<span class="mw-page-title-main">Abdominal obesity</span> Excess fat around the stomach and abdomen

Abdominal obesity, also known as central obesity and truncal obesity, is the human condition of an excessive concentration of visceral fat around the stomach and abdomen to such an extent that it is likely to harm its bearer's health. Abdominal obesity has been strongly linked to cardiovascular disease, Alzheimer's disease, and other metabolic and vascular diseases.

<span class="mw-page-title-main">Leptin</span> Hormone that inhibits hunger

Leptin, also known as obese protein, is a protein hormone predominantly made by adipocytes. Its primary role is likely to regulate long-term energy balance.

<span class="mw-page-title-main">Adipose tissue</span> Loose connective tissue composed mostly by adipocytes

Adipose tissue is a loose connective tissue composed mostly of adipocytes. It also contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, vascular endothelial cells and a variety of immune cells such as adipose tissue macrophages. Its main role is to store energy in the form of lipids, although it also cushions and insulates the body.

<span class="mw-page-title-main">Adipocyte</span> Cells that primarily compose adipose tissue, specialized in storing energy as fat

Adipocytes, also known as lipocytes and fat cells, are the cells that primarily compose adipose tissue, specialized in storing energy as fat. Adipocytes are derived from mesenchymal stem cells which give rise to adipocytes through adipogenesis. In cell culture, adipocyte progenitors can also form osteoblasts, myocytes and other cell types.

<span class="mw-page-title-main">Adiponectin</span> Mammalian protein found in Homo sapiens

Adiponectin is a protein hormone and adipokine, which is involved in regulating glucose levels and fatty acid breakdown. In humans, it is encoded by the ADIPOQ gene and is produced primarily in adipose tissue, but also in muscle and even in the brain.

The adipokines, or adipocytokines are cytokines secreted by adipose tissue. Some contribute to an obesity-related low-grade state of inflammation or to the development of metabolic syndrome, a constellation of diseases including, but not limited to, type 2 diabetes, cardiovascular disease and atherosclerosis. The first adipokine to be discovered was leptin in 1994. Since that time, hundreds of adipokines have been discovered.

<span class="mw-page-title-main">Hyperinsulinemia</span> Abnormal increase in insulin in the bloodstream relative to glucose

Hyperinsulinemia is a condition in which there are excess levels of insulin circulating in the blood relative to the level of glucose. While it is often mistaken for diabetes or hyperglycaemia, hyperinsulinemia can result from a variety of metabolic diseases and conditions, as well as non-nutritive sugars in the diet. While hyperinsulinemia is often seen in people with early stage type 2 diabetes mellitus, it is not the cause of the condition and is only one symptom of the disease. Type 1 diabetes only occurs when pancreatic beta-cell function is impaired. Hyperinsulinemia can be seen in a variety of conditions including diabetes mellitus type 2, in neonates and in drug-induced hyperinsulinemia. It can also occur in congenital hyperinsulinism, including nesidioblastosis.

<span class="mw-page-title-main">Free fatty acid receptor 4</span> Protein-coding gene in the species Homo sapiens

Free Fatty acid receptor 4 (FFAR4), also termed G-protein coupled receptor 120 (GPR120), is a protein that in humans is encoded by the FFAR4 gene. This gene is located on the long arm of chromosome 10 at position 23.33. G protein-coupled receptors reside on their parent cells' surface membranes, bind any one of the specific set of ligands that they recognize, and thereby are activated to trigger certain responses in their parent cells. FFAR4 is a rhodopsin-like GPR in the broad family of GPRs which in humans are encoded by more than 800 different genes. It is also a member of a small family of structurally and functionally related GPRs that include at least three other free fatty acid receptors (FFARs) viz., FFAR1, FFAR2, and FFAR3. These four FFARs bind and thereby are activated by certain fatty acids.

alpha-2-HS-glycoprotein Protein-coding gene in the species Homo sapiens

alpha-2-HS-glycoprotein also known as fetuin-A is a protein that in humans is encoded by the AHSG gene. Fetuin-A belongs to the fetuin class of plasma binding proteins and is more abundant in fetal than adult blood.

Adipose tissue is an endocrine organ that secretes numerous protein hormones, including leptin, adiponectin, and resistin. These hormones generally influence energy metabolism, which is of great interest to the understanding and treatment of type 2 diabetes and obesity.

<span class="mw-page-title-main">Chemerin</span> Protein-coding gene in the species Homo sapiens

Chemerin, also known as retinoic acid receptor responder protein 2 (RARRES2), tazarotene-induced gene 2 protein (TIG2), or RAR-responsive protein TIG2 is a protein that in humans is encoded by the RARRES2 gene.

<span class="mw-page-title-main">Sarcopenic obesity</span> Medical condition: obesity and loss of muscle

Sarcopenic obesity is a combination of two disease states, sarcopenia and obesity. Sarcopenia is the muscle mass/strength/physical function loss associated with increased age, and obesity is based off a weight to height ratio or body mass index (BMI) that is characterized by high body fat or being overweight.

Most cases of type 2 diabetes involved many genes contributing small amount to the overall condition. As of 2011 more than 36 genes have been found that contribute to the risk of type 2 diabetes. All of these genes together still only account for 10% of the total genetic component of the disease.

A number of lifestyle factors are known to be important to the development of type 2 diabetes including: obesity, physical activity, diet, stress, and urbanization. Excess body fat underlies 64% of cases of diabetes in men and 77% of cases in women. A number of dietary factors such as sugar sweetened drinks and the type of fat in the diet appear to play a role.

Adipose tissue macrophages (ATMs) comprise resident macrophages present in adipose tissue. Besides adipocytes, adipose tissue contains the stromal vascular fraction (SVF) of cells that includes pre-adipocytes, fibroblasts, vascular endothelial cells, and a large variety of immune cells. The latter ones are composed of mast cells, eosinophils, B cells, T cells and macrophages. The number of macrophages within adipose tissue differs depending on the metabolic status. As discovered by Rudolph Leibel and Anthony Ferrante et al. in 2003 at Columbia University, the percentage of macrophages within adipose tissue ranges from 10% in lean mice and humans up to 50% in obese leptin deficient mice, and up to 40% in obese humans. ATMs comprise nearly 50% of all immune cells in normal conditions, suggesting an important role in supporting normal functioning of the adipose tissue. Increased number of adipose tissue macrophages may correlate with increased production of pro-inflammatory molecules and might therefore contribute to the pathophysiological consequences of obesity, although is becoming recognized that in healthy conditions tissue-resident macrophages actively support a variety of critical physiological functions in nearly all organs and tissues, including adipose tissue.

<span class="mw-page-title-main">Christos Socrates Mantzoros</span> Greek American physician and scientist

Christos Socrates Mantzoros is a Greek American physician-scientist, practicing internist-endocrinologist, teacher and researcher. He is a professor of medicine at Harvard Medical School and an adjunct professor at Boston University School of Medicine. He currently serves as the chief of endocrinology, diabetes and metabolism at the VA Boston Healthcare System, where he created de novo a leading academic division true to its tripartite mission and as the founding director of human nutrition at Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School. Finally, he holds the editor-in-chief position of the journal Metabolism: Clinical and Experimental.

<span class="mw-page-title-main">Pathophysiology of obesity</span> Physiological processes in obese people

Pathophysiology of obesity is the study of disordered physiological processes that cause, result from, or are otherwise associated with obesity. A number of possible pathophysiological mechanisms have been identified which may contribute in the development and maintenance of obesity.

Diabetes mellitus (DM) is a type of metabolic disease characterized by hyperglycemia. It is caused by either defected insulin secretion or damaged biological function, or both. The high-level blood glucose for a long time will lead to dysfunction of a variety of tissues.

An Error has occurred retrieving Wikidata item for infobox

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000104918 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000012705 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Wang H, Chu WS, Hemphill C, Elbein SC (June 2002). "Human resistin gene: molecular scanning and evaluation of association with insulin sensitivity and type 2 diabetes in Caucasians". J. Clin. Endocrinol. Metab. 87 (6): 2520–4. doi: 10.1210/jcem.87.6.8528 . PMID   12050208.
  6. Lazar MA (October 2007). "Resistin- and Obesity-associated metabolic diseases". Horm. Metab. Res. 39 (10): 710–6. doi: 10.1055/s-2007-985897 . PMID   17952831.
  7. 1 2 3 Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (January 2001). "The hormone resistin links obesity to diabetes". Nature. 409 (6818): 307–12. doi:10.1038/35053000. PMID   11201732. S2CID   4358808.
  8. 1 2 Degawa-Yamauchi M, Bovenkerk JE, Juliar BE, Watson W, Kerr K, Jones R, Zhu Q, Considine RV (November 2003). "Serum resistin (FIZZ3) protein is increased in obese humans". J. Clin. Endocrinol. Metab. 88 (11): 5452–5. doi: 10.1210/jc.2002-021808 . PMID   14602788.
  9. 1 2 Gabriely I, Ma XH, Yang XM, Atzmon G, Rajala MW, Berg AH, Scherer P, Rossetti L, Barzilai N (October 2002). "Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process?". Diabetes. 51 (10): 2951–8. doi: 10.2337/diabetes.51.10.2951 . PMID   12351432.
  10. Levy JR, Davenport B, Clore JN, Stevens W (March 2002). "Lipid metabolism and resistin gene expression in insulin-resistant Fischer 344 rats". Am. J. Physiol. Endocrinol. Metab. 282 (3): E626–33. doi:10.1152/ajpendo.00346.2001. PMID   11832366. S2CID   25303054.
  11. McTernan CL, McTernan PG, Harte AL, Levick PL, Barnett AH, Kumar S (January 2002). "Resistin, central obesity, and type 2 diabetes". Lancet. 359 (9300): 46–7. doi:10.1016/S0140-6736(02)07281-1. PMID   11809189. S2CID   21927880.
  12. Adeghate E (October 2004). "An update on the biology and physiology of resistin". Cell. Mol. Life Sci. 61 (19–20): 2485–96. doi:10.1007/s00018-004-4083-2. PMID   15526156. S2CID   22832421.
  13. Stumvoll M, Häring H (November 2002). "Resistin and adiponectin--of mice and men". Obes. Res. 10 (11): 1197–9. doi:10.1038/oby.2002.162. PMID   12429885.
  14. 1 2 Vendrell J, Broch M, Vilarrasa N, Molina A, Gómez JM, Gutiérrez C, Simón I, Soler J, Richart C (June 2004). "Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity". Obes. Res. 12 (6): 962–71. doi: 10.1038/oby.2004.118 . PMID   15229336.
  15. Vidal-Puig, A.; O'Rahilly, S. (2001). "Resistin: a new link between obesity and insulin resistance?". Clinical Endocrinology. 55 (4): 437–438. doi:10.1046/j.1365-2265.2001.01377.x. ISSN   0300-0664. PMID   11678824. S2CID   6087337.
  16. Lazar, M. A. (2007). "Resistin- and Obesity-associated metabolic diseases". Hormone and Metabolic Research. 39 (10): 710–716. doi: 10.1055/s-2007-985897 . ISSN   0018-5043. PMID   17952831.
  17. Holcomb IN, Kabakoff RC, Chan B, Baker TW, Gurney A, Henzel W, Nelson C, Lowman HB, Wright BD, Skelton NJ, Frantz GD, Tumas DB, Peale Jr FV, Shelton DL, Hébert CC (August 2000). "FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family". EMBO J. 19 (15): 4046–55. doi:10.1093/emboj/19.15.4046. PMC   306596 . PMID   10921885.
  18. Kusminski CM, da Silva NF, Creely SJ, Fisher FM, Harte AL, Baker AR, Kumar S, McTernan PG (January 2007). "The in vitro effects of resistin on the innate immune signaling pathway in isolated human subcutaneous adipocytes". J. Clin. Endocrinol. Metab. 92 (1): 270–6. doi: 10.1210/jc.2006-1151 . PMID   17062773.
  19. Malyszko J, Malyszko JS, Pawlak K, Mysliwiec M (December 2006). "Resistin, a new adipokine, is related to inflammation and renal function in kidney allograft recipients". Transplant. Proc. 38 (10): 3434–6. doi:10.1016/j.transproceed.2006.10.140. PMID   17175295.
  20. Nagaev I, Bokarewa M, Tarkowski A, Smith U (2006). Valcarcel J (ed.). "Human Resistin Is a Systemic Immune-Derived Proinflammatory Cytokine Targeting both Leukocytes and Adipocytes". PLOS ONE. 1 (1): e31. Bibcode:2006PLoSO...1...31N. doi: 10.1371/journal.pone.0000031 . PMC   1762367 . PMID   17183659.
  21. 1 2 Milan G, Granzotto M, Scarda A, Calcagno A, Pagano C, Federspil G, Vettor R (November 2002). "Resistin and adiponectin expression in visceral fat of obese rats: effect of weight loss". Obes. Res. 10 (11): 1095–103. doi: 10.1038/oby.2002.149 . PMID   12429872.
  22. Silswal N, Singh AK, Aruna B, Mukhopadhyay S, Ghosh S, Ehtesham NZ (September 2005). "Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway". Biochem. Biophys. Res. Commun. 334 (4): 1092–101. doi:10.1016/j.bbrc.2005.06.202. PMID   16039994. S2CID   29273978.
  23. Verma S, Li SH, Wang CH, Fedak PW, Li RK, Weisel RD, Mickle DA (August 2003). "Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction". Circulation. 108 (6): 736–40. doi: 10.1161/01.CIR.0000084503.91330.49 . PMID   12874180.
  24. Lu SC, Shieh WY, Chen CY, Hsu SC, Chen HL (October 2002). "Lipopolysaccharide increases resistin gene expression in vivo and in vitro". FEBS Lett. 530 (1–3): 158–62. doi:10.1016/S0014-5793(02)03450-6. PMID   12387885. S2CID   45491974.
  25. Wellen KE, Hotamisligil GS (May 2005). "Inflammation, stress, and diabetes". J. Clin. Invest. 115 (5): 1111–9. doi:10.1172/JCI25102. PMC   1087185 . PMID   15864338.
  26. Wulster-Radcliffe MC, Ajuwon KM, Wang J, Christian JA, Spurlock ME (April 2004). "Adiponectin differentially regulates cytokines in porcine macrophages". Biochem. Biophys. Res. Commun. 316 (3): 924–9. doi:10.1016/j.bbrc.2004.02.130. PMID   15033490.
  27. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, Kihara S, Funahashi T, Tenner AJ, Tomiyama Y, Matsuzawa Y (September 2000). "Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages". Blood. 96 (5): 1723–32. doi:10.1182/blood.V96.5.1723. PMID   10961870.
  28. Axelsson J, Bergsten A, Qureshi AR, Heimbürger O, Bárány P, Lönnqvist F, Lindholm B, Nordfors L, Alvestrand A, Stenvinkel P (February 2006). "Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance". Kidney Int. 69 (3): 596–604. doi: 10.1038/sj.ki.5000089 . PMID   16395259.
  29. Elfassy Y, Bastard JP, McAvoy C, Fellahi S, Dupont J, Levy R (2018). "Adipokines in Semen: Physiopathology and Effects on Spermatozoas". International Journal of Endocrinology. 2018: 3906490. doi: 10.1155/2018/3906490 . PMC   6008818 . PMID   29971101.
  30. Moretti E, Micheli L, Noto D, Fiaschi AI, Menchiari A, Cerretani D (2019). "Resistin in Human Seminal Plasma: Relationship with Lipid Peroxidation, CAT Activity, GSH/GSSG Ratio, and Semen Parameters". Oxidative Medicine and Cellular Longevity. 2019: 2192093. doi: 10.1155/2019/2192093 . PMC   6854241 . PMID   31772701.
  31. 1 2 Asensio C, Cettour-Rose P, Theander-Carrillo C, Rohner-Jeanrenaud F, Muzzin P (May 2004). "Changes in glycemia by leptin administration or high- fat feeding in rodent models of obesity/type 2 diabetes suggest a link between resistin expression and control of glucose homeostasis". Endocrinology. 145 (5): 2206–13. doi: 10.1210/en.2003-1679 . PMID   14962997.
  32. Lee JH, Bullen JW, Stoyneva VL, Mantzoros CS (March 2005). "Circulating resistin in lean, obese, and insulin-resistant mouse models: lack of association with insulinemia and glycemia". American Journal of Physiology. Endocrinology and Metabolism. 288 (3): E625-32. doi:10.1152/ajpendo.00184.2004. PMID   15522996. S2CID   20609673.
  33. Valsamakis G, McTernan PG, Chetty R, Al Daghri N, Field A, Hanif W, et al. (April 2004). "Modest weight loss and reduction in waist circumference after medical treatment are associated with favorable changes in serum adipocytokines". Metabolism. 53 (4): 430–4. doi:10.1016/j.metabol.2003.11.022. PMID   15045687.
  34. McTernan PG, McTernan CL, Chetty R, Jenner K, Fisher FM, Lauer MN, et al. (May 2002). "Increased resistin gene and protein expression in human abdominal adipose tissue". The Journal of Clinical Endocrinology and Metabolism. 87 (5): 2407–2410. doi: 10.1210/jcem.87.5.8627 . PMID   11994397.
  35. Duman BS, Turkoglu C, Gunay D, Cagatay P, Demiroglu C, Buyukdevrim AS (August 2003). "The interrelationship between insulin secretion and action in type 2 diabetes mellitus with different degrees of obesity: evidence supporting central obesity". Diabetes, Nutrition & Metabolism. 16 (4): 243–50. PMID   14768774.
  36. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. (November 2002). "A central role for JNK in obesity and insulin resistance". Nature. 420 (6913): 333–6. Bibcode:2002Natur.420..333H. doi:10.1038/nature01137. PMID   12447443. S2CID   1659156.
  37. Rajala MW, Qi Y, Patel HR, Takahashi N, Banerjee R, Pajvani UB, et al. (July 2004). "Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting". Diabetes. 53 (7): 1671–9. doi: 10.2337/diabetes.53.7.1671 . PMID   15220189.
  38. Silha JV, Krsek M, Skrha JV, Sucharda P, Nyomba BL, Murphy LJ (October 2003). "Plasma resistin, adiponectin and leptin levels in lean and obese subjects: correlations with insulin resistance". European Journal of Endocrinology. 149 (4): 331–5. doi: 10.1530/eje.0.1490331 . PMID   14514348.
  39. Smith SR, Bai F, Charbonneau C, Janderová L, Argyropoulos G (July 2003). "A promoter genotype and oxidative stress potentially link resistin to human insulin resistance". Diabetes. 52 (7): 1611–8. doi: 10.2337/diabetes.52.7.1611 . PMID   12829623.
  40. Fujinami A, Obayashi H, Ohta K, Ichimura T, Nishimura M, Matsui H, et al. (January 2004). "Enzyme-linked immunosorbent assay for circulating human resistin: resistin concentrations in normal subjects and patients with type 2 diabetes". Clinica Chimica Acta; International Journal of Clinical Chemistry. 339 (1–2): 57–63. doi:10.1016/j.cccn.2003.09.009. PMID   14687894.
  41. McTernan PG, Fisher FM, Valsamakis G, Chetty R, Harte A, McTernan CL, et al. (December 2003). "Resistin and type 2 diabetes: regulation of resistin expression by insulin and rosiglitazone and the effects of recombinant resistin on lipid and glucose metabolism in human differentiated adipocytes". The Journal of Clinical Endocrinology and Metabolism. 88 (12): 6098–106. doi: 10.1210/jc.2003-030898 . PMID   14671216.
  42. Tjokroprawiro A (2006). "New approach in the treatment of T2DM and metabolic syndrome (focus on a novel insulin sensitizer)". Acta Medica Indonesiana. 38 (3): 160–6. PMID   17119268.
  43. "Canadian scientists discover cause of high cholesterol". Science Codex. October 28, 2012.
  44. Fain JN, Cheema PS, Bahouth SW, Lloyd Hiler M (January 2003). "Resistin release by human adipose tissue explants in primary culture". Biochem. Biophys. Res. Commun. 300 (3): 674–8. doi:10.1016/S0006-291X(02)02864-4. PMID   12507502.
  45. Lee JH, Chan JL, Yiannakouris N, Kontogianni M, Estrada E, Seip R, Orlova C, Mantzoros CS (October 2003). "Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects". J. Clin. Endocrinol. Metab. 88 (10): 4848–56. doi: 10.1210/jc.2003-030519 . PMID   14557464.
  46. Nagaev I, Smith U (July 2001). "Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle". Biochem. Biophys. Res. Commun. 285 (2): 561–4. doi:10.1006/bbrc.2001.5173. PMID   11444881.
  47. Heilbronn LK, Rood J, Janderova L, Albu JB, Kelley DE, Ravussin E, Smith SR (April 2004). "Relationship between serum resistin concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects". J. Clin. Endocrinol. Metab. 89 (4): 1844–8. doi: 10.1210/jc.2003-031410 . PMID   15070954.
  48. Savage DB, Sewter CP, Klenk ES, Segal DG, Vidal-Puig A, Considine RV, O'Rahilly S (October 2001). "Resistin / Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans". Diabetes. 50 (10): 2199–202. doi: 10.2337/diabetes.50.10.2199 . PMID   11574398.
  49. Way JM, Görgün CZ, Tong Q, Uysal KT, Brown KK, Harrington WW, Oliver WR Jr, Willson TM, Kliewer SA, Hotamisligil GS (July 2001). "Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists". J. Biol. Chem. 276 (28): 25651–3. doi: 10.1074/jbc.C100189200 . PMID   11373275.