Relativistic star

Last updated
VFTS 102 is the most rapidly rotating star ever found - ~ 200 times faster than the sun, or with a speed of 447 kilometres per second (1,610,000 km/h) VFTS 102.jpg
VFTS 102 is the most rapidly rotating star ever found - ~ 200 times faster than the sun, or with a speed of 447 kilometres per second (1,610,000 km/h)

A relativistic star is a rotating star whose behavior is well described by general relativity, but not by classical mechanics. The first such object to be identified was radio pulsars, which consist of rotating neutron stars. Rotating supermassive stars are a hypothetical form of a relativistic star. [3] Relativistic stars are one possible source to allow gravitational waves to be studied.

Another definition of a relativistic star is one with the equation of state of a special relativistic gas. This can happen when the core of a massive main-sequence star becomes hot enough to generate electron-positron pairs. Stability analysis shows that such a star is only marginally bound, and is unstable to either collapse or explode. This instability is believed to limit the mass of main-sequence stars to a couple of hundred solar masses or so. Stars of this size and larger are able to directly collapse into a black hole of either intermediate or supermassive size. [4]

Related Research Articles

<span class="mw-page-title-main">Black hole</span> Object that has a no-return boundary

A black hole is a region of spacetime where gravity is so strong that nothing, not even light and other electromagnetic waves, is capable of possessing enough energy to escape it. Einstein's theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. A black hole has a great effect on the fate and circumstances of an object crossing it, but it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.

The Chandrasekhar limit is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about 1.4 M (2.765×1030 kg). The limit was named after Subrahmanyan Chandrasekhar.

<span class="mw-page-title-main">Neutron star</span> Collapsed core of a massive star

A neutron star is a collapsed core of a massive supergiant star. The stars that later collapse into neutron stars have a total mass of between 10 and 25 solar masses (M), possibly more if the star was especially rich in elements heavier than hydrogen and helium. Except for black holes, neutron stars are the smallest and densest known class of stellar objects. Neutron stars have a radius on the order of 10 kilometers (6 mi) and a mass of about 1.4 M. They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.

In general relativity, a naked singularity is a hypothetical gravitational singularity without an event horizon.

<span class="mw-page-title-main">Stellar evolution</span> Changes to stars over their lifespans

Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star.

<span class="mw-page-title-main">Gravitational singularity</span> Condition in which spacetime itself breaks down

A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Gravitational singularities exist at a junction between general relativity and quantum mechanics; therefore, the properties of the singularity cannot be described without an established theory of quantum gravity. Trying to find a complete and precise definition of singularities in the theory of general relativity, the current best theory of gravity, remains a difficult problem. A singularity in general relativity can be defined by the scalar invariant curvature becoming infinite or, better, by a geodesic being incomplete.

Timeline of stellar astronomy

The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass. The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916.

<span class="mw-page-title-main">Supermassive black hole</span> Largest type of black hole

A supermassive black hole is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions, of times the mass of the Sun (M). Black holes are a class of astronomical objects that have undergone gravitational collapse, leaving behind spheroidal regions of space from which nothing can escape, including light. Observational evidence indicates that almost every large galaxy has a supermassive black hole at its center. For example, the Milky Way galaxy has a supermassive black hole at its center, corresponding to the radio source Sagittarius A*. Accretion of interstellar gas onto supermassive black holes is the process responsible for powering active galactic nuclei (AGNs) and quasars.

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

<span class="mw-page-title-main">Rotating black hole</span> Black hole which possesses angular momentum

A rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry.

<span class="mw-page-title-main">Astrophysical jet</span> Beam of ionized matter flowing along the axis of a rotating astronomical object

An astrophysical jet is an astronomical phenomenon where outflows of ionised matter are emitted as extended beams along the axis of rotation. When this greatly accelerated matter in the beam approaches the speed of light, astrophysical jets become relativistic jets as they show effects from special relativity.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena described by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

In general relativity, Lense–Thirring precession or the Lense–Thirring effect is a relativistic correction to the precession of a gyroscope near a large rotating mass such as the Earth. It is a gravitomagnetic frame-dragging effect. It is a prediction of general relativity consisting of secular precessions of the longitude of the ascending node and the argument of pericenter of a test particle freely orbiting a central spinning mass endowed with angular momentum .

The following outline is provided as an overview of and topical guide to black holes:

Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses causing that field may be non-static ⁠— rotating, for instance. More generally, the subject that deals with the effects caused by mass–energy currents is known as gravitoelectromagnetism, which is analogous to the magnetism of classical electromagnetism.

<span class="mw-page-title-main">Extreme mass ratio inspiral</span>

In astrophysics, an extreme mass ratio inspiral (EMRI) is the orbit of a relatively light object around a much heavier object, that gradually spirals in due to the emission of gravitational waves. Such systems are likely to be found in the centers of galaxies, where stellar mass compact objects, such as stellar black holes and neutron stars, may be found orbiting a supermassive black hole. In the case of a black hole in orbit around another black hole this is an extreme mass ratio binary black hole. The term EMRI is sometimes used as a shorthand to denote the emitted gravitational waveform as well as the orbit itself.

<span class="mw-page-title-main">Luciano Rezzolla</span> Italian professor of relativistic astrophysics and numerical relativity

Luciano Rezzolla is an Italian professor of relativistic astrophysics and numerical relativity at the Goethe University Frankfurt. His main field of study is the physics and astrophysics of compact objects such as black holes and neutron stars. It was announced in 2019 that he had been appointed honorary Andrews Professor of Astronomy at Trinity College Dublin (TCD).

Stuart Louis Shapiro is an American theoretical astrophysicist, who works on numerical relativity with applications in astrophysics, specialising in compact objects such as neutron stars and black holes.

References

  1. "VLT Finds Fastest Rotating Star". ESO Science Release. Retrieved 12 December 2011.
  2. "Fastest Rotating Star Found in Neighboring Galaxy" . Retrieved 2011-12-29.
  3. Baumgarte, Thomas W.; Shapiro, Stuart L. (June 24, 2010). Numerical Relativity: Solving Einstein's Equations on the Computer. Cambridge University Press. p. 459. ISBN   9780521514071.
  4. Nikolaos Stergioulas (2003-03-07). "Rotating Stars in Relativity".