Operator | NASA |
---|---|
Manufacturer | Southwest Research Institute |
Instrument type | mass spectrometer |
Function | chemical analyzer |
Mission duration | Cruise: 3-6 years Science phase: ≥ 3 years |
Properties | |
Mass | 8 kg |
Dimensions | 40 cm |
Resolution | 1 ppt |
Host spacecraft | |
Spacecraft | Europa Clipper |
Operator | NASA |
Launch date | ≈ 2025 [1] |
Rocket | SLS |
Launch site | Kennedy Space Center |
The MAss Spectrometer for Planetary EXploration (MASPEX) is a time-of-flight mass spectrometer capable of high-resolution and high-sensitivity that allows the determination of a wide variety of chemical compounds in complex mixtures. This instrument will fly on board the planned Europa Clipper orbiter to explore Jupiter's moon Europa. This astrobiology mission will analyse the composition of Europa's surface while in orbit, and will directly assess its internal ocean habitability by flying through Europa's tenuous atmosphere.
On 27 May 2016 it was announced that MASPEX was selected to fly on the mission. [2] The instrument has also been proposed to fly on three Discovery program missions: Enceladus Life Finder (ELF), comet Hartley 2 (PRIME), and to the main belt comet Read (Proteus). [3] It also has applications for probes, landers, and sample return missions. The original Principal Investigator was Jack Waite, and the Technical Lead is Tim Brockwell, from the Southwest Research Institute. In 2020 NASA announced that Jim Burch of Southwest Research Institute would become the Principal Investigator and that some instrument capabilities might be reduced due to technical and financial limitations.
MASPEX is a next generation spectrometer with significantly improved performance over existing instruments, [4] that was developed over 10 years by the Southwest Research Institute. Development of the MASPEX was born out of the need to separate and analyze the unexpectedly rich volatile mixtures discovered by the Cassini INMS instrument at Titan and Enceladus. The instrument is a high-resolution, high-sensitivity mass spectrometer developed for planetary applications. Its high-resolution allows the unambiguous determination of volatile isotopes of methane, water, ammonia, carbon monoxide, molecular nitrogen (N2), carbon dioxide (CO
2), and small organic compounds (C2, C3, and C4) in complex mixtures. [3] [4] MASPEX can also measure compounds in trace amounts (ppt), including the noble gases argon, krypton, xenon, and their isotopes. [3] [4]
The MASPEX can operate in a heavy radiation environment, and can be baked to 300 °C for planetary protection against forward biological contamination in case the probe impacts any potentially habitable moon of Jupiter. [4] Other areas of enhanced performance over existing instruments include: [4]
Parameter | Performance |
---|---|
Extended mass range for heavy organic molecules | >1000 amu |
Enhanced mass resolution | >30,000 M/dM |
Enhanced dynamic range | 109 in a 1s period |
Improved sensitivity | better than 1ppt with cryotrapping |
High throughput | >5000 samples/s |
Length and mass | 40 cm and < 8 kg |
Astrobiology is a scientific field within the life and environmental sciences that studies the origins, early evolution, distribution, and future of life in the universe by investigating its deterministic conditions and contingent events. As a discipline, astrobiology is founded on the premise that life may exist beyond Earth.
Europa, or Jupiter II, is the smallest of the four Galilean moons orbiting Jupiter, and the sixth-closest to the planet of all the 95 known moons of Jupiter. It is also the sixth-largest moon in the Solar System. Europa was discovered independently by Simon Marius and Galileo Galilei and was named after Europa, the Phoenician mother of King Minos of Crete and lover of Zeus.
Enceladus is the sixth-largest moon of Saturn and the 19th-largest in the Solar System. It is about 500 kilometers in diameter, about a tenth of that of Saturn's largest moon, Titan. It is mostly covered by fresh, clean ice, making it one of the most reflective bodies of the Solar System. Consequently, its surface temperature at noon reaches only −198 °C, far colder than a light-absorbing body would be. Despite its small size, Enceladus has a wide variety of surface features, ranging from old, heavily cratered regions to young, tectonically deformed terrain.
A biosignature is any substance – such as an element, isotope, molecule, or phenomenon – that provides scientific evidence of past or present life on a planet. Measurable attributes of life include its physical or chemical structures, its use of free energy, and the production of biomass and wastes.
The New Frontiers program is a series of space exploration missions being conducted by NASA with the purpose of furthering the understanding of the Solar System. The program selects medium-class missions which can provide high science returns.
The exploration of Saturn has been solely performed by crewless probes. Three missions were flybys, which formed an extended foundation of knowledge about the system. The Cassini–Huygens spacecraft, launched in 1997, was in orbit from 2004 to 2017.
Jonathan I. Lunine is an American planetary scientist and physicist. Lunine is the Chief Scientist at the Jet Propulsion Laboratory in Pasadena, CA and Professor of Planetary Science at Caltech. Previously he was the David C. Duncan Professor in the Physical Sciences and chair of the Department of Astronomy at Cornell University. Having published more than 400 research papers, Lunine is at the forefront of research into planet formation, evolution, and habitability. His work includes analysis of brown dwarfs, gas giants, and planetary satellites. Within the Solar System, bodies with potential organic chemistry and prebiotic conditions, particularly Saturn's moon Titan, have been the focus of Lunine's research.
Europa Clipper is a space probe developed by NASA to study Europa, a Galilean moon of Jupiter. It was launched on October 14, 2024. The spacecraft will use gravity assists from Mars on March 1, 2025, and Earth on December 3, 2026, before arriving at Europa in April 2030. The spacecraft will then perform a series of flybys of Europa while in orbit around Jupiter.
Enceladus Life Finder (ELF) is a proposed astrobiology mission concept for a NASA spacecraft intended to assess the habitability of the internal aquatic ocean of Enceladus, which is Saturn's sixth-largest moon of at least 146 total moons, and seemingly similar in chemical makeup to comets. The spaceprobe would orbit Saturn and fly through Enceladus's geyser-like plumes multiple times. It would be powered by energy supplied from solar panels on the spacecraft.
Journey to Enceladus and Titan (JET) is an astrobiology mission concept to assess the habitability potential of Enceladus and Titan, moons of Saturn.
Life Investigation For Enceladus (LIFE) was a proposed astrobiology mission concept that would capture icy particles from Saturn's moon Enceladus and return them to Earth, where they could be studied in detail for signs of life such as biomolecules.
THEO is a feasibility study for a New Frontiers class orbiter mission to Enceladus that would directly sample its south pole water plumes in order to study its internal habitability and to search for biosignatures. Specifically, it would take advantage of the direct sampling opportunities of a subsurface ocean.
The Europa Lander is an astrobiology mission concept by NASA to send a lander to Europa, an icy moon of Jupiter. If funded and developed as a large strategic science mission, it would be launched in 2027 to complement the studies by the Europa Clipper orbiter mission and perform analyses on site.
Oceanus is a NASA/JPL orbiter mission concept proposed in 2017 for the New Frontiers mission #4, but it was not selected for development. If selected at some future opportunity, Oceanus would travel to Saturn's moon Titan to assess its habitability. Studying Titan would help understand the early Earth and exoplanets which orbit other stars. The mission is named after Oceanus, the Greek god of oceans.
Explorer of Enceladus and Titan (E2T) is a space mission concept that would investigate the evolution and habitability of the Saturnian satellites Enceladus and Titan and is proposed by the European Space Agency in collaboration with NASA.
The Ocean Worlds Exploration Program (OWEP) is a NASA program to explore ocean worlds in the outer Solar System that could possess subsurface oceans to assess their habitability and to seek biosignatures of simple extraterrestrial life.
The Mapping Imaging Spectrometer for Europa (MISE) is an imaging near infrared spectrometer on board the Europa Clipper mission to Jupiter's moon Europa. MISE will examine Europa's surface composition and relate it to the habitability of its internal water ocean.
The Enceladus Icy Jet Analyzer (ENIJA) is a time-of-flight mass spectrometer developed to search for prebiotic molecules like amino acids and biosignatures in the plumes of Saturn's moon Enceladus.
The SUrface Dust Analyser (SUDA) is a time-of-flight mass spectrometer of reflectron-type that employs impact ionization and is optimised for a high mass resolution. The instrument was selected in May 2015 to fly on board the Europa Clipper mission which was sent to Jupiter's moon Europa in October, 2024.
The Enceladus Orbilander is a proposed NASA Flagship mission to Saturn's moon Enceladus. The Enceladus Orbilander would spend a year and a half orbiting Enceladus and sampling its water plumes, which stretch into space, before landing on the surface for a two-year mission to study materials for evidence of life. The mission, with an estimated cost of $4.9 billion, could launch in the late 2030s on a Space Launch System or Falcon Heavy with a landing in the early 2050s. It was proposed in the 2023–2032 Planetary Science Decadal Survey as the third highest priority Flagship mission, after the Uranus Orbiter and Probe and the Mars Sample Return program.