Masonry

Last updated
A mason laying a brick on top of the mortar Bricklayer J4.jpg
A mason laying a brick on top of the mortar
Bridge over the Isabena river in the Monastery of Santa Maria de Obarra, masonry construction with stones Pont de Santa Maria d'Ovarra (Vall de l'Isavena, Ribagorca).jpg
Bridge over the Isábena river in the Monastery of Santa María de Obarra, masonry construction with stones

Masonry is the craft of building a structure with brick, stone, or similar material, including mortar plastering which are often laid in, bound, and pasted together by mortar. The term masonry can also refer to the building units (stone, brick, etc.) themselves.

Contents

The common materials of masonry construction are bricks and building stone such as marble, granite, and limestone, cast stone, concrete blocks, glass blocks, and adobe. Masonry is generally a highly durable form of construction. However, the materials used, the quality of the mortar and workmanship, and the pattern in which the units are assembled can substantially affect the durability of the overall masonry construction.

A person who constructs masonry is called a mason or bricklayer. These are both classified as construction trades.

History

Masonry is one of the oldest building crafts in the world. The construction of Egyptian pyramids, Roman aqueducts, and medieval cathedrals are all examples of masonry. Early structures used the weight of the masonry itself to stabilize the structure against lateral movements. The types and techniques of masonry used evolved with architectural needs and cultural norms. Since mid-20th century, masonry has often featured steel-reinforced elements to help carry the tension force present in modern thin, light, tall building systems. [1]

Applications

Masonry has both structural and non-structural applications. Structural applications include walls, columns, beams, foundations, load-bearing arches, and others. On the other hand, masonry is also used in non-structural applications such as fireplaces chimneys and veneer systems. [1]

Brick and concrete block are the most common types of masonry in use in industrialized nations and may be either load-bearing or non-load-bearing. Concrete blocks, especially those with hollow cores, offer various possibilities in masonry construction. They generally provide great compressive strength and are best suited to structures with light transverse loading when the cores remain unfilled. Filling some or all of the cores with concrete or concrete with steel reinforcement (typically rebar) offers much greater tensile and lateral strength to structures.

Advantages

Disadvantages

Structural limitations

One problem with masonry walls is that they rely mainly on their weight to keep them in place; each block or brick is only loosely connected to the next via a thin layer of mortar. This is why they do not perform well in earthquakes, when entire buildings are shaken horizontally. Many collapses during earthquakes occur in buildings that have load-bearing masonry walls. Besides, heavier buildings having masonry suffer more damage.

Dry set masonry

Dry set masonry supports a rustic log bridge, where it provides a well-drained support for the log (which will lengthen its service life). Vallorcine bridge abutment 2003-12-13.jpg
Dry set masonry supports a rustic log bridge, where it provides a well-drained support for the log (which will lengthen its service life).

The strength of a masonry wall is not entirely dependent on the bond between the building material and the mortar; the friction between the interlocking blocks of masonry is often strong enough to provide a great deal of strength on its own. The blocks sometimes have grooves or other surface features added to enhance this interlocking, and some dry set masonry structures forgo mortar altogether.

Stonework

Stone masonry Kelibia stone masonry.JPG
Stone masonry

Stone blocks used in masonry can be dressed or rough, though in both examples corners, door and window jambs, and similar areas are usually dressed. Stonemasonry utilizing dressed stones is known as ashlar masonry, whereas masonry using irregularly shaped stones is known as rubble masonry. Both rubble and ashlar masonry can be laid in coursed rows of even height through the careful selection or cutting of stones, but a great deal of stone masonry is uncoursed.

Brick

Brick work Brick Work 2015-02-8 278.jpg
Brick work

Solid brickwork is made of two or more wythes of bricks with the units running horizontally (called stretcher bricks) bound together with bricks running transverse to the wall (called "header" bricks). Each row of bricks is known as a course. The pattern of headers and stretchers employed gives rise to different 'bonds' such as the common bond (with every sixth course composed of headers), the English bond, and the Flemish bond (with alternating stretcher and header bricks present on every course). Bonds can differ in strength and in insulating ability. Vertically staggered bonds tend to be somewhat stronger and less prone to major cracking than a non-staggered bond.

Uniformity and rusticity

Masonry repair work done to a brick wall Athruzmasonry.jpg
Masonry repair work done to a brick wall

The wide selection of brick styles and types generally available in industrialized nations allow much variety in the appearance of the final product. In buildings built during the 1950s-1970s, a high degree of uniformity of brick and accuracy in masonry was typical. In the period since then this style was thought to be too sterile, so attempts were made to emulate older, rougher work. Some brick surfaces are made to look particularly rustic by including burnt bricks, which have a darker color or an irregular shape. Others may use antique salvage bricks, or new bricks may be artificially aged by applying various surface treatments, such as tumbling. The attempts at rusticity of the late 20th century have been carried forward by masons specializing in a free, artistic style, where the courses are intentionally not straight, instead weaving to form more organic impressions.

Serpentine masonry

A crinkle-crankle wall is a brick wall that follows a serpentine path, rather than a straight line. This type of wall is more resistant to toppling than a straight wall; so much so that it may be made of a single wythe of unreinforced brick and so despite its longer length may be more economical than a straight wall.

Concrete block

Concrete masonry units (CMUs) or blocks in a basement wall before burial CMUs.jpg
Concrete masonry units (CMUs) or blocks in a basement wall before burial

Blocks of cinder concrete ( cinder blocks or breezeblocks), ordinary concrete ( concrete blocks ), or hollow tile are generically known as Concrete Masonry Units (CMUs). They usually are much larger than ordinary bricks and so are much faster to lay for a wall of a given size. Furthermore, cinder and concrete blocks typically have much lower water absorption rates than brick. They often are used as the structural core for veneered brick masonry or are used alone for the walls of factories, garages, and other industrial-style buildings where such appearance is acceptable or desirable. Such blocks often receive a stucco surface for decoration. Surface-bonding cement, which contains synthetic fibers for reinforcement, is sometimes used in this application and can impart extra strength to a block wall. Surface-bonding cement is often pre-colored and can be stained or painted thus resulting in a finished stucco-like surface.

The primary structural advantage of concrete blocks in comparison to smaller clay-based bricks is that a CMU wall can be reinforced by filling the block voids with concrete with or without steel rebar. Generally, certain voids are designated for filling and reinforcement, particularly at corners, wall-ends, and openings while other voids are left empty. This increases wall strength and stability more economically than filling and reinforcing all voids. Typically, structures made of CMUs will have the top course of blocks in the walls filled with concrete and tied together with steel reinforcement to form a bond beam. Bond beams are often a requirement of modern building codes and controls. Another type of steel reinforcement referred to as ladder-reinforcement, can also be embedded in horizontal mortar joints of concrete block walls. The introduction of steel reinforcement generally results in a CMU wall having much greater lateral and tensile strength than unreinforced walls.

"Architectural masonry is the evolvement of standard concrete masonry blocks into aesthetically pleasing concrete masonry units (CMUs)". [5] [ failed verification ] CMUs can be manufactured to provide a variety of surface appearances. They can be colored during manufacturing or stained or painted after installation. They can be split as part of the manufacturing process, giving the blocks a rough face replicating the appearance of natural stone, such as brownstone. CMUs may also be scored, ribbed, sandblasted, polished, striated (raked or brushed), include decorative aggregates, be allowed to slump in a controlled fashion during curing, or include several of these techniques in their manufacture to provide a decorative appearance. [6]

"Glazed concrete masonry units are manufactured by bonding a permanent colored facing (typically composed of polyester resins, silica sand and various other chemicals) to a concrete masonry unit, providing a smooth impervious surface." [7]

Glass block or glass brick are blocks made from glass and provide a translucent to clear vision through the block.

Veneer masonry

A masonry veneer wall consists of masonry units, usually clay-based bricks, installed on one or both sides of a structurally independent wall usually constructed of wood or masonry. In this context, the brick masonry is primarily decorative, not structural. The brick veneer is generally connected to the structural wall by brick ties (metal strips that are attached to the structural wall, as well as the mortar joints of the brick veneer). There is typically an air gap between the brick veneer and the structural wall. As clay-based brick is usually not completely waterproof, the structural wall will often have a water-resistant surface (usually tar paper) and weep holes can be left at the base of the brick veneer to drain moisture that accumulates inside the air gap. Concrete blocks, real and cultured stones, and veneer adobe are sometimes used in a very similar veneer fashion.

Most insulated buildings that use concrete block, brick, adobe, stone, veneers or some combination thereof feature interior insulation in the form of fiberglass batts between wooden wall studs or in the form of rigid insulation boards covered with plaster or drywall. In most climates this insulation is much more effective on the exterior of the wall, allowing the building interior to take advantage of the aforementioned thermal mass of the masonry. This technique does, however, require some sort of weather-resistant exterior surface over the insulation and, consequently, is generally more expensive.

Gabions

Gabion Wall A Voros es a Kek kapolnak kozotti setany kerti lugassal, gabion tamfalrendszerrel, 2018 Balatonboglar.jpg
Gabion Wall

Gabions are baskets, usually now of zinc-protected steel (galvanized steel) that are filled with fractured stone of medium size. These will act as a single unit and are stacked with setbacks to form a revetment or retaining wall. They have the advantage of being well drained, flexible, and resistant to flood, water flow from above, frost damage, and soil flow. Their expected useful life is only as long as the wire they are composed of and if used in severe climates (such as shore-side in a salt water environment) must be made of appropriate corrosion-resistant wire. Most modern gabions are rectangular. Earlier gabions were often cylindrical wicker baskets, open at both ends, used usually for temporary, often military, construction.

Similar work can be done with finer aggregates using cellular confinement.

Passive fire protection (PFP)

Masonry walls have an endothermic effect of its hydrates, as in chemically bound water, unbound moisture from the concrete block, and the poured concrete if the hollow cores inside the blocks are filled. Masonry can withstand temperatures up to 1,000 °F (538 °C) and it can withstand direct exposure to fire for up to 4 hours.[ citation needed ] In addition to that, concrete masonry keeps fires contained to their room of origin 93% of the time.[ citation needed ] For those reasons, concrete and masonry units hold the highest flame spread index classification, Class A. [8]

Fire cuts can be used to increase safety and reduce fire damage to masonry buildings.

Mechanical modeling of masonry structures

A comparison (using transmission photoelasticity) between the stress diffusion in an elastic body (on the left) and a model of masonry (on the right). A highly localized stress percolation is visible on the right. Comparison masonry.jpg
A comparison (using transmission photoelasticity) between the stress diffusion in an elastic body (on the left) and a model of masonry (on the right). A highly localized stress percolation is visible on the right.

From the point of view of material modeling, masonry is a special material of extreme mechanical properties (with a very high ratio between strength in compression and in tension), so that the applied loads do not diffuse as they do in elastic bodies, but tend to percolate along lines of high stiffness. [9] [10]

See also

  • Castle  – Fortified residential structure of medieval Europe
  • Clay panel  – Building material made of clay with some additives
  • Concrete finisher
  • CEN/TC 125  – European Union technical committee
  • Defensive wall  – Fortification used to protect an area from potential aggressors

Related Research Articles

<span class="mw-page-title-main">Brick</span> Block or a single unit of a ceramic material used in masonry construction

A brick is a type of construction material used to build walls, pavements and other elements in masonry construction. Properly, the term brick denotes a unit primarily composed of clay, but is now also used informally to denote units made of other materials or other chemically cured construction blocks. Bricks can be joined using mortar, adhesives or by interlocking. Bricks are usually produced at brickworks in numerous classes, types, materials, and sizes which vary with region, and are produced in bulk quantities.

<span class="mw-page-title-main">Concrete</span> Composite construction material

Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures to a solid over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined.

<span class="mw-page-title-main">Stonemasonry</span> Creation of buildings, structures, and sculpture using stone

Stonemasonry or stonecraft is the creation of buildings, structures, and sculpture using stone as the primary material. Stonemasonry is the craft of shaping and arranging stones, often together with mortar and even the ancient lime mortar, to wall or cover formed structures.

<span class="mw-page-title-main">Rebar</span> Steel reinforcement

Rebar, known when massed as reinforcing steel or steel reinforcement, is a steel bar used as a tension device in reinforced concrete and reinforced masonry structures to strengthen and aid the concrete under tension. Concrete is strong under compression, but has low tensile strength. Rebar significantly increases the tensile strength of the structure. Rebar's surface features a continuous series of ribs, lugs or indentations to promote a better bond with the concrete and reduce the risk of slippage.

<span class="mw-page-title-main">Grout</span> Building material

Grout is a dense fluid that hardens used to fill gaps or as reinforcement in existing structures. Grout is generally a mixture of water, cement, and sand, and is employed in pressure grouting, embedding rebar in masonry walls, connecting sections of precast concrete, filling voids, and sealing joints such as those between tiles. Common uses for grout in the household include filling in tiles of shower floors and kitchen tiles. It is often color tinted when it has to be kept visible and sometimes includes fine gravel when being used to fill large spaces. Unlike other structural pastes such as plaster or joint compound, correctly mixed and applied grout forms a water-resistant seal.

<span class="mw-page-title-main">Building material</span> Material which is used for construction purposes

Building material is material used for construction. Many naturally occurring substances, such as clay, rocks, sand, wood, and even twigs and leaves, have been used to construct buildings and other structures, like bridges. Apart from naturally occurring materials, many man-made products are in use, some more and some less synthetic. The manufacturing of building materials is an established industry in many countries and the use of these materials is typically segmented into specific specialty trades, such as carpentry, insulation, plumbing, and roofing work. They provide the make-up of habitats and structures including homes.

<span class="mw-page-title-main">Retaining wall</span> Artificial wall used for supporting soil between two different elevations

Retaining walls are relatively rigid walls used for supporting soil laterally so that it can be retained at different levels on the two sides. Retaining walls are structures designed to restrain soil to a slope that it would not naturally keep to. They are used to bound soils between two different elevations often in areas of inconveniently steep terrain in areas where the landscape needs to be shaped severely and engineered for more specific purposes like hillside farming or roadway overpasses. A retaining wall that retains soil on the backside and water on the frontside is called a seawall or a bulkhead.

<span class="mw-page-title-main">Siding (construction)</span> Exterior cladding on building walls

Siding or wall cladding is the protective material attached to the exterior side of a wall of a house or other building. Along with the roof, it forms the first line of defense against the elements, most importantly sun, rain/snow, heat and cold, thus creating a stable, more comfortable environment on the interior side. The siding material and style also can enhance or detract from the building's beauty. There is a wide and expanding variety of materials to side with, both natural and artificial, each with its own benefits and drawbacks. Masonry walls as such do not require siding, but any wall can be sided. Walls that are internally framed, whether with wood, or steel I-beams, however, must always be sided.

<span class="mw-page-title-main">Seismic retrofit</span> Modification of existing structures to make them more resistant to seismic activity

Seismic retrofitting is the modification of existing structures to make them more resistant to seismic activity, ground motion, or soil failure due to earthquakes. With better understanding of seismic demand on structures and with recent experiences with large earthquakes near urban centers, the need of seismic retrofitting is well acknowledged. Prior to the introduction of modern seismic codes in the late 1960s for developed countries and late 1970s for many other parts of the world, many structures were designed without adequate detailing and reinforcement for seismic protection. In view of the imminent problem, various research work has been carried out. State-of-the-art technical guidelines for seismic assessment, retrofit and rehabilitation have been published around the world – such as the ASCE-SEI 41 and the New Zealand Society for Earthquake Engineering (NZSEE)'s guidelines. These codes must be regularly updated; the 1994 Northridge earthquake brought to light the brittleness of welded steel frames, for example.

<span class="mw-page-title-main">Concrete block</span> Standard-sized block used in construction

A concrete block, also known as a cinder block in North American English, breeze block in British English, concrete masonry unit (CMU), or by various other terms, is a standard-size rectangular block used in building construction. The use of blockwork allows structures to be built in the traditional masonry style with layers of staggered blocks.

This page is a list of construction topics.

<span class="mw-page-title-main">Efflorescence</span> Migration of a salt to the surface of a porous material

In chemistry, efflorescence is the migration of a salt to the surface of a porous material, where it forms a coating. The essential process involves the dissolving of an internally held salt in water or occasionally, in another solvent. The water, with the salt now held in solution, migrates to the surface, then evaporates, leaving a coating of the salt.

<span class="mw-page-title-main">Compressed earth block</span> Building material

A compressed earth block (CEB), also known as a pressed earth block or a compressed soil block, is a building material made primarily from an appropriate mix of fairly dry inorganic subsoil, non-expansive clay, sand, and aggregate. Forming compressed earth blocks requires dampening, mechanically pressing at high pressure, and then drying the resulting material. If the blocks are stabilized with a chemical binder such as Portland cement they are called compressed stabilized earth block (CSEB) or stabilized earth block (SEB). Typically, around 3,000 psi (21 MPa) of pressure is applied in compression, and the original material volume is reduced by about half.

<span class="mw-page-title-main">Masonry veneer</span>

Masonry veneer walls consist of a single non-structural external layer of masonry, typically made of brick, stone or manufactured stone. Masonry veneer can have an air space behind it and is technically called "anchored veneer". A masonry veneer attached directly to the backing is called "adhered veneer". The innermost element is structural, and may consist of masonry, concrete, timber or metal frame.

<span class="mw-page-title-main">Rubble masonry</span> Type of building stone

Rubble masonry or rubble stone is rough, uneven building stone not laid in regular courses. It may fill the core of a wall which is faced with unit masonry such as brick or ashlar. Some medieval cathedral walls have outer shells of ashlar with an inner backfill of mortarless rubble and dirt.

<span class="mw-page-title-main">Course (architecture)</span> Architecture term for a layer of the same unit running horizontally in a wall

A course is a layer of the same unit running horizontally in a wall. It can also be defined as a continuous row of any masonry unit such as bricks, concrete masonry units (CMU), stone, shingles, tiles, etc.

<span class="mw-page-title-main">Structural material</span>

Structural engineering depends on the knowledge of materials and their properties, in order to understand how different materials resist and support loads.

<span class="mw-page-title-main">Structural clay tile</span> Class of building block

Structural clay tile describes a category of burned-clay building materials used to construct roofing, walls, and flooring for structural and non-structural purposes, especially in fireproofing applications. Also called building tile, structural terra cotta, hollow tile, saltillo tile, and clay block, the material is an extruded clay shape with substantial depth that allows it to be laid in the same manner as other clay or concrete masonry. In North America it was chiefly used during the late 19th and early 20th centuries, reaching peak popularity at the turn of the century and declining around the 1950s. Structural clay tile grew in popularity in the end of the nineteenth-century because it could be constructed faster, was lighter, and required simpler flat falsework than earlier brick vaulting construction.

<span class="mw-page-title-main">Infill wall</span>

The infill wall is the supported wall that closes the perimeter of a building constructed with a three-dimensional framework structure. Therefore, the structural frame ensures the bearing function, whereas the infill wall serves to separate inner and outer space, filling up the boxes of the outer frames. The infill wall has the unique static function to bear its own weight. The infill wall is an external vertical opaque type of closure. With respect to other categories of wall, the infill wall differs from the partition that serves to separate two interior spaces, yet also non-load bearing, and from the load bearing wall. The latter performs the same functions of the infill wall, hygro-thermically and acoustically, but performs static functions too.

References

  1. 1 2 3 Kingsley, Gregory R. (2003-01-01), "Masonry", in Meyers, Robert A. (ed.), Encyclopedia of Physical Science and Technology (Third Edition), New York: Academic Press, pp. 133–143, doi:10.1016/b0-12-227410-5/00405-1, ISBN   978-0-12-227410-7, archived from the original on 2023-01-13, retrieved 2023-01-13
  2. Holmes, Mike (2008-04-25). "A brick house isn't as solid as you think". The Globe and Mail. Archived from the original on 2023-01-13. Retrieved 2023-01-13.
  3. "Common Problems with Brick Masonry (U.S. National Park Service)". www.nps.gov. Archived from the original on 2023-01-23. Retrieved 2023-01-13.
  4. House, This Old (2020-01-18). "The Basics of Masonry". This Old House. Archived from the original on 2023-01-13. Retrieved 2023-01-13.
  5. "Architectural Concrete Masonry Units". NCMA. Archived from the original on 2020-06-21. Retrieved 2020-06-18.
  6. "Ground Face Units (Burnished, Honed)". Archived from the original on 2009-05-21. Retrieved 2009-11-21.
  7. "Glazed (Prefaced) Units". Archived from the original on 2009-05-21. Retrieved 2009-11-21.
  8. Allen, Edward; Rand, Patrick (2016). Architectural Detailing: Function, Constructibility, Aesthetics (3rd ed.). Hoboken, NJ: Wiley. p. 137. ISBN   978-1118881996. Archived from the original on 1 January 2024. Retrieved 18 October 2022.
  9. "Davide Bigoni". www.ing.unitn.it. Solid and Structural Mechanics Group – University of Trento. Archived from the original on 2020-08-18. Retrieved 2011-11-27.
  10. "video". Archived from the original on 2012-05-01. Retrieved 2011-11-27.

General references