Arachidonic acid

Last updated

Contents

Arachidonic acid
Arachidonic acid.svg
Arachidonic acid spacefill.png
Arachidonic acid2.png
Names
Preferred IUPAC name
(5Z,8Z,11Z,14Z)-Icosa-5,8,11,14-tetraenoic acid [1]
Other names
5,8,11,14-all-cis-Eicosatetraenoic acid
all-cis-5,8,11,14-Eicosatetraenoic acid
Identifiers
3D model (JSmol)
3DMet
1713889
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.007.304 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-033-4
58972
KEGG
MeSH Arachidonic+acid
PubChem CID
RTECS number
  • CE6675000
UNII
  • InChI=1S/C20H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22/h6-7,9-10,12-13,15-16H,2-5,8,11,14,17-19H2,1H3,(H,21,22) X mark.svgN
    Key: YZXBAPSDXZZRGB-UHFFFAOYSA-N X mark.svgN
  • InChI=1S/C20H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22/h6-7,9-10,12-13,15-16H,2-5,8,11,14,17-19H2,1H3,(H,21,22)/b7-6-,10-9-,13-12-,16-15-
  • Key: YZXBAPSDXZZRGB-DOFZRALJSA-N
  • CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)O
Properties
C20H32O2
Molar mass 304.474 g·mol−1
Density 0.922 g/cm3
Melting point −49 °C (−56 °F; 224 K)
Boiling point 169 to 171 °C (336 to 340 °F; 442 to 444 K) at 0.15 mmHg
log P 6.994
Acidity (pKa)4.752
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H302, H312, H315, H319, H332, H335
P261, P264, P270, P271, P280, P301+P312, P302+P352, P304+P312, P304+P340, P305+P351+P338, P312, P321, P322, P330, P332+P313, P337+P313, P362, P363, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
1
0
Flash point 113 °C (235 °F; 386 K)
Related compounds
Related compounds
Eicosatetraenoic acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Arachidonic acid (AA, sometimes ARA) is a polyunsaturated omega−6 fatty acid 20:4(ω−6), or 20:4(5,8,11,14). [2] [3] If its precursors or diet contains linoleic acid it is formed by biosynthesis and can be deposited in animal fats. It is a precursor in the formation of leukotrienes, prostaglandins, and thromboxanes. [4]

Together with omega−3 fatty acids and other omega−6 fatty acids, arachidonic acid provides energy for body functions, contributes to cell membrane structure, and participates in the synthesis of eicosanoids, which have numerous roles in physiology as signaling molecules. [2] [5]

Its name derives from the ancient Greek neologism arachis 'peanut', although peanut oil does not contain any arachidonic acid. [6] Arachidonate is the name of the derived carboxylate anion (conjugate base of the acid), salts, and some esters.

Chemistry

AAnumbering.png

In chemical structure, arachidonic acid is a carboxylic acid with a 20-carbon chain and four cis -double bonds; the first double bond is located at the sixth carbon from the omega end.

Some chemistry sources define 'arachidonic acid' to designate any of the eicosatetraenoic acids. However, almost all writings in biology, medicine, and nutrition limit the term to all cis-5,8,11,14-eicosatetraenoic acid.

Biology

Arachidonic acid is a polyunsaturated fatty acid present in the phospholipids (especially phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositides) of membranes of the body's cells, and is abundant in the brain, muscles, and liver. Skeletal muscle is an especially active site of arachidonic acid retention, accounting for roughly 10–20% of the phospholipid fatty acid content typically. [7]

In addition to being involved in cellular signaling as a lipid second messenger involved in the regulation of signaling enzymes, such as PLC-γ, PLC-δ, and PKC-α, -β, and -γ isoforms, arachidonic acid is a key inflammatory intermediate and can also act as a vasodilator. [8] (Note separate synthetic pathways, as described in section below.)

Biosynthesis and cascade in humans

Eicosanoid synthesis Eicosanoid synthesis.svg
Eicosanoid synthesis

Arachidonic acid is freed from phospholipid by hydrolysis, catalyzed by the phospholipase A2 (PLA2). [8]

Arachidonic acid for signaling purposes appears to be derived by the action of group IVA cytosolic phospholipase A2 (cPLA2, 85 kDa), whereas inflammatory arachidonic acid is generated by the action of a low-molecular-weight secretory PLA2 (sPLA2, 14-18 kDa). [8]

Arachidonic acid is a precursor to a wide range of eicosanoids:

The production of these derivatives and their actions in the body are collectively known as the "arachidonic acid cascade"; see Essential fatty acid interactions and the enzyme and metabolite linkages given in the previous paragraph for more details.

PLA2 activation

PLA2, in turn, is activated by ligand binding to receptors, including:

Furthermore, any agent increasing intracellular calcium may cause activation of some forms of PLA2. [20]

PLC activation

Alternatively, arachidonic acid may be cleaved from phospholipids after phospholipase C (PLC) cleaves off the inositol trisphosphate group, yielding diacylglycerol (DAG), which subsequently is cleaved by DAG lipase to yield arachidonic acid. [19]

Receptors that activate this pathway include:

PLC may also be activated by MAP kinase. Activators of this pathway include PDGF and FGF. [20]

In the body

Cell membranes

Along with other omega−6 and omega−3 fatty acids, arachidonic acid contributes to the structure of cell membranes. [2] When incorporated into phospholipids, the omega fatty acids affect cell membrane properties, such as permeability and the activity of enzymes and cell-signaling mechanisms. [2]

Brain

Arachidonic acid, one of the most abundant fatty acids in the brain, is present in similar quantities to docosahexaenoic acid, with the two accounting for about 20% of brain fatty-acid content. [21] Arachidonic acid is involved in the early neurological development of infants. [22]

Dietary supplement

Arachidonic acid is marketed as a dietary supplement. [2] [5] A 2019 review of clinical studies investigating the potential health effects of arachidonic acid supplementation of up to 1500 mg per day on human health found there were no clear benefits. [23] There were no adverse effects in adults of using high daily doses (1500 mg) of arachidonic acid on several biomarkers of blood chemistry, immune function, and inflammation. [23]

A 2009 review indicated that consumption of 5−10% of food energy from omega−6 fatty acids including arachidonic acid may reduce the risk of cardiovascular diseases compared to lower intakes. [24] A 2014 meta-analysis of possible associations between heart disease risk and individual fatty acids reported a significantly reduced risk of heart disease with higher levels of EPA, DHA, and arachidonic acid. [25]

See also

Related Research Articles

<span class="mw-page-title-main">Eicosanoid</span> Class of compounds

Eicosanoids are signaling molecules made by the enzymatic or non-enzymatic oxidation of arachidonic acid or other polyunsaturated fatty acids (PUFAs) that are, similar to arachidonic acid, around 20 carbon units in length. Eicosanoids are a sub-category of oxylipins, i.e. oxidized fatty acids of diverse carbon units in length, and are distinguished from other oxylipins by their overwhelming importance as cell signaling molecules. Eicosanoids function in diverse physiological systems and pathological processes such as: mounting or inhibiting inflammation, allergy, fever and other immune responses; regulating the abortion of pregnancy and normal childbirth; contributing to the perception of pain; regulating cell growth; controlling blood pressure; and modulating the regional flow of blood to tissues. In performing these roles, eicosanoids most often act as autocrine signaling agents to impact their cells of origin or as paracrine signaling agents to impact cells in the proximity of their cells of origin. Some eicosanoids, such as prostaglandins, may also have endocrine roles as hormones to influence the function of distant cells.

<span class="mw-page-title-main">Leukotriene</span> Class of inflammation mediator molecules

Leukotrienes are a family of eicosanoid inflammatory mediators produced in leukocytes by the oxidation of arachidonic acid (AA) and the essential fatty acid eicosapentaenoic acid (EPA) by the enzyme arachidonate 5-lipoxygenase.

<span class="mw-page-title-main">Lipoxin</span> Acronym for lipoxygenase interaction product

A lipoxin (LX or Lx), an acronym for lipoxygenase interaction product, is a bioactive autacoid metabolite of arachidonic acid made by various cell types. They are categorized as nonclassic eicosanoids and members of the specialized pro-resolving mediators (SPMs) family of polyunsaturated fatty acid (PUFA) metabolites. Like other SPMs, LXs form during, and then act to resolve, inflammatory responses. Initially, two lipoxins were identified, lipoxin A4 (LXA4) and LXB4, but more recent studies have identified epimers of these two LXs: the epi-lipoxins, 15-epi-LXA4 and 15-epi-LXB4 respectively.

<span class="mw-page-title-main">Lipoxygenase</span>

Lipoxygenases (LOX) are a family of (non-heme) iron-containing enzymes, more specifically oxidative enzymes, most of which catalyze the dioxygenation of polyunsaturated fatty acids in lipids containing a cis,cis-1,4-pentadiene into cell signaling agents that serve diverse roles as autocrine signals that regulate the function of their parent cells, paracrine signals that regulate the function of nearby cells, and endocrine signals that regulate the function of distant cells.

Omega oxidation (ω-oxidation) is a process of fatty acid metabolism in some species of animals. It is an alternative pathway to beta oxidation that, instead of involving the β carbon, involves the oxidation of the ω carbon. The process is normally a minor catabolic pathway for medium-chain fatty acids, but becomes more important when β oxidation is defective.

<span class="mw-page-title-main">Hepoxilin</span> Chemical compound

Hepoxilins (Hx) are a set of epoxyalcohol metabolites of polyunsaturated fatty acids (PUFA), i.e. they possess both an epoxide and an alcohol residue. HxA3, HxB3, and their non-enzymatically formed isomers are nonclassic eicosanoid derived from acid the (PUFA), arachidonic acid. A second group of less well studied hepoxilins, HxA4, HxB4, and their non-enzymatically formed isomers are nonclassical eicosanoids derived from the PUFA, eicosapentaenoic acid. Recently, 14,15-HxA3 and 14,15-HxB3 have been defined as arachidonic acid derivatives that are produced by a different metabolic pathway than HxA3, HxB3, HxA4, or HxB4 and differ from the aforementioned hepoxilins in the positions of their hydroxyl and epoxide residues. Finally, hepoxilin-like products of two other PUFAs, docosahexaenoic acid and linoleic acid, have been described. All of these epoxyalcohol metabolites are at least somewhat unstable and are readily enzymatically or non-enzymatically to their corresponding trihydroxy counterparts, the trioxilins (TrX). HxA3 and HxB3, in particular, are being rapidly metabolized to TrXA3, TrXB3, and TrXC3. Hepoxilins have various biological activities in animal models and/or cultured mammalian tissues and cells. The TrX metabolites of HxA3 and HxB3 have less or no activity in most of the systems studied but in some systems retain the activity of their precursor hepoxilins. Based on these studies, it has been proposed that the hepoxilins and trioxilins function in human physiology and pathology by, for example, promoting inflammation responses and dilating arteries to regulate regional blood flow and blood pressure.

Arachidonate 5-lipoxygenase, also known as ALOX5, 5-lipoxygenase, 5-LOX, or 5-LO, is a non-heme iron-containing enzyme that in humans is encoded by the ALOX5 gene. Arachidonate 5-lipoxygenase is a member of the lipoxygenase family of enzymes. It transforms essential fatty acids (EFA) substrates into leukotrienes as well as a wide range of other biologically active products. ALOX5 is a current target for pharmaceutical intervention in a number of diseases.

<span class="mw-page-title-main">Mead acid</span> Chemical compound

Mead acid is an omega-9 fatty acid, first characterized by James F. Mead. As with some other omega-9 polyunsaturated fatty acids, animals can make Mead acid de novo. Its elevated presence in the blood is an indication of essential fatty acid deficiency. Mead acid is found in large quantities in cartilage.

<span class="mw-page-title-main">ALOX15</span> Lipoxygenase found in humans

ALOX15 is, like other lipoxygenases, a seminal enzyme in the metabolism of polyunsaturated fatty acids to a wide range of physiologically and pathologically important products. ▼ Gene Function

<span class="mw-page-title-main">ALOX12</span> Protein-coding gene in the species Homo sapiens

ALOX12, also known as arachidonate 12-lipoxygenase, 12-lipoxygenase, 12S-Lipoxygenase, 12-LOX, and 12S-LOX is a lipoxygenase-type enzyme that in humans is encoded by the ALOX12 gene which is located along with other lipoyxgenases on chromosome 17p13.3. ALOX12 is 75 kilodalton protein composed of 663 amino acids.

<span class="mw-page-title-main">5-Hydroxyeicosatetraenoic acid</span> Chemical compound

5-Hydroxyeicosatetraenoic acid (5-HETE, 5(S)-HETE, or 5S-HETE) is an eicosanoid, i.e. a metabolite of arachidonic acid. It is produced by diverse cell types in humans and other animal species. These cells may then metabolize the formed 5(S)-HETE to 5-oxo-eicosatetraenoic acid (5-oxo-ETE), 5(S),15(S)-dihydroxyeicosatetraenoic acid (5(S),15(S)-diHETE), or 5-oxo-15-hydroxyeicosatetraenoic acid (5-oxo-15(S)-HETE).

<span class="mw-page-title-main">CYP4F8</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4F8 is a protein that in humans is encoded by the CYP4F8 gene.

<span class="mw-page-title-main">12-Hydroxyeicosatetraenoic acid</span> Chemical compound

12-Hydroxyeicosatetraenoic acid (12-HETE) is a derivative of the 20 carbon polyunsaturated fatty acid, arachidonic acid, containing a hydroxyl residue at carbon 12 and a 5Z,8Z,10E,14Z Cis–trans isomerism configuration (Z=cis, E=trans) in its four double bonds. It was first found as a product of arachidonic acid metabolism made by human and bovine platelets through their 12S-lipoxygenase (i.e. ALOX12) enzyme(s). However, the term 12-HETE is ambiguous in that it has been used to indicate not only the initially detected "S" stereoisomer, 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HETE or 12S-HETE), made by platelets, but also the later detected "R" stereoisomer, 12(R)-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (also termed 12(R)-HETE or 12R-HETE) made by other tissues through their 12R-lipoxygenase enzyme, ALOX12B. The two isomers, either directly or after being further metabolized, have been suggested to be involved in a variety of human physiological and pathological reactions. Unlike hormones which are secreted by cells, travel in the circulation to alter the behavior of distant cells, and thereby act as Endocrine signalling agents, these arachidonic acid metabolites act locally as Autocrine signalling and/or Paracrine signaling agents to regulate the behavior of their cells of origin or of nearby cells, respectively. In these roles, they may amplify or dampen, expand or contract cellular and tissue responses to disturbances.

<span class="mw-page-title-main">15-Hydroxyeicosatetraenoic acid</span> Chemical compound

15-Hydroxyeicosatetraenoic acid (also termed 15-HETE, 15(S)-HETE, and 15S-HETE) is an eicosanoid, i.e. a metabolite of arachidonic acid. Various cell types metabolize arachidonic acid to 15(S)-hydroperoxyeicosatetraenoic acid (15(S)-HpETE). This initial hydroperoxide product is extremely short-lived in cells: if not otherwise metabolized, it is rapidly reduced to 15(S)-HETE. Both of these metabolites, depending on the cell type which forms them, can be further metabolized to 15-oxo-eicosatetraenoic acid (15-oxo-ETE), 5(S),15(S)-dihydroxy-eicosatetraenoic acid (5(S),15(S)-diHETE), 5-oxo-15(S)-hydroxyeicosatetraenoic acid (5-oxo-15(S)-HETE), a subset of specialized pro-resolving mediators viz., the lipoxins, a class of pro-inflammatory mediators, the eoxins, and other products that have less well-defined activities and functions. Thus, 15(S)-HETE and 15(S)-HpETE, in addition to having intrinsic biological activities, are key precursors to numerous biologically active derivatives.

<span class="mw-page-title-main">Eoxin</span> Family of proinflammatory eicosanoids

Eoxins are proposed to be a family of proinflammatory eicosanoids. They are produced by human eosinophils, mast cells, the L1236 Reed–Sternberg cell line derived from Hodgkin's lymphoma, and certain other tissues. These cells produce the eoxins by initially metabolizing arachidonic acid, an omega-6 (ω-6) fatty acid, via any enzyme possessing 15-lipoxygenase activity. The product of this initial metabolic step, 15(S)-hydroperoxyeicosatetraenoic acid, is then converted to a series of eoxins by the same enzymes that metabolize the 5-lipoxygenase product of arachidonic acid metabolism, i.e. 5-Hydroperoxy-eicosatetraenoic acid to a series of leukotrienes. That is, the eoxins are 14,15-disubstituted analogs of the 5,6-disubstituted leukotrienes.

<span class="mw-page-title-main">12-Hydroxyheptadecatrienoic acid</span> Chemical compound

12-Hydroxyheptadecatrienoic acid (also termed 12-HHT, 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid, or 12(S)-HHTrE) is a 17 carbon metabolite of the 20 carbon polyunsaturated fatty acid, arachidonic acid. 12-HHT is less ambiguously termed 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid to indicate the S stereoisomerism of its 12-hydroxyl residue and the Z, E, and E cis–trans isomerism of its three double bonds. 12-HHT was discovered and structurally defined in 1973 by Paulina Wlodawer, Bengt Samuelsson, and Mats Hamberg. It was identified as a product of arachidonic acid metabolism made by microsomes isolated from sheep seminal vesicle glands and by intact human platelets. 12-HHT was for many years thought to be merely a biologically inactive byproduct of prostaglandin synthesis. More recent studies, however, have attached potentially important activity to it.

<span class="mw-page-title-main">20-Hydroxyeicosatetraenoic acid</span> Chemical compound

20-Hydroxyeicosatetraenoic acid, also known as 20-HETE or 20-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid, is an eicosanoid metabolite of arachidonic acid that has a wide range of effects on the vascular system including the regulation of vascular tone, blood flow to specific organs, sodium and fluid transport in the kidney, and vascular pathway remodeling. These vascular and kidney effects of 20-HETE have been shown to be responsible for regulating blood pressure and blood flow to specific organs in rodents; genetic and preclinical studies suggest that 20-HETE may similarly regulate blood pressure and contribute to the development of stroke and heart attacks. Additionally the loss of its production appears to be one cause of the human neurological disease, Hereditary spastic paraplegia. Preclinical studies also suggest that the overproduction of 20-HETE may contribute to the progression of certain human cancers, particularly those of the breast.

<span class="mw-page-title-main">Epoxyeicosatetraenoic acid</span> Chemical compound

Epoxyeicosatetraenoic acids are a set of biologically active epoxides that various cell types make by metabolizing the omega 3 fatty acid, eicosapentaenoic acid (EPA), with certain cytochrome P450 epoxygenases. These epoxygenases can metabolize EPA to as many as 10 epoxides that differ in the site and/or stereoisomer of the epoxide formed; however, the formed EEQs, while differing in potency, often have similar bioactivities and are commonly considered together.

Cytochrome P450 omega hydroxylases, also termed cytochrome P450 ω-hydroxylases, CYP450 omega hydroxylases, CYP450 ω-hydroxylases, CYP omega hydroxylase, CYP ω-hydroxylases, fatty acid omega hydroxylases, cytochrome P450 monooxygenases, and fatty acid monooxygenases, are a set of cytochrome P450-containing enzymes that catalyze the addition of a hydroxyl residue to a fatty acid substrate. The CYP omega hydroxylases are often referred to as monoxygenases; however, the monooxygenases are CYP450 enzymes that add a hydroxyl group to a wide range of xenobiotic and naturally occurring endobiotic substrates, most of which are not fatty acids. The CYP450 omega hydroxylases are accordingly better viewed as a subset of monooxygenases that have the ability to hydroxylate fatty acids. While once regarded as functioning mainly in the catabolism of dietary fatty acids, the omega oxygenases are now considered critical in the production or break-down of fatty acid-derived mediators which are made by cells and act within their cells of origin as autocrine signaling agents or on nearby cells as paracrine signaling agents to regulate various functions such as blood pressure control and inflammation.

Specialized pro-resolving mediators are a large and growing class of cell signaling molecules formed in cells by the metabolism of polyunsaturated fatty acids (PUFA) by one or a combination of lipoxygenase, cyclooxygenase, and cytochrome P450 monooxygenase enzymes. Pre-clinical studies, primarily in animal models and human tissues, implicate SPM in orchestrating the resolution of inflammation. Prominent members include the resolvins and protectins.

References

  1. Pubchem. "5,8,11,14-Eicosatetraenoic acid | C20H32O2 - PubChem". pubchem.ncbi.nlm.nih.gov. Retrieved 2016-03-31.
  2. 1 2 3 4 5 "Essential fatty acids". Micronutrient Information Center, Linus Pauling Institute, Oregon State University. June 2019. Retrieved 13 May 2024.
  3. "IUPAC Lipid nomenclature: Appendix A: names of and symbols for higher fatty acids". www.sbcs.qmul.ac.uk.
  4. "Dorland's Medical Dictionary – 'A'". Archived from the original on 11 January 2007. Retrieved 2007-01-12.
  5. 1 2 "Omega-3 fatty acids". Office of Dietary Supplements, US National Institutes of Health. 15 February 2023. Retrieved 13 May 2024.
  6. Truswell A, Choudhury N, Peterson D, Mann J, Agostoni C, Riva E, Giovannini M, Marangoni F, Galli C (1994). "Arachidonic acid and peanut oil" . The Lancet. 344 (8928): 1030–1031. doi:10.1016/S0140-6736(94)91695-0. PMID   7999151. S2CID   1522233.
  7. Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, Mittendorfer B (Sep 2011). "Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women". Clinical Science. 121 (6): 267–78. doi:10.1042/cs20100597. PMC   3499967 . PMID   21501117.
  8. 1 2 3 Baynes JW, Marek H. Dominiczak (2005). Medical Biochemistry 2nd. Edition . Elsevier Mosby. p.  555. ISBN   0-7234-3341-0.
  9. Wlodawer P, Samuelsson B (1973). "On the organization and mechanism of prostaglandin synthetase". The Journal of Biological Chemistry. 248 (16): 5673–8. doi: 10.1016/S0021-9258(19)43558-8 . PMID   4723909.
  10. Smith WL, Song I (2002). "The enzymology of prostaglandin endoperoxide H synthases-1 and -2". Prostaglandins & Other Lipid Mediators. 68–69: 115–28. doi:10.1016/s0090-6980(02)00025-4. PMID   12432913.
  11. Powell WS, Rokach J (Apr 2015). "Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid". Biochim Biophys Acta. 1851 (4): 340–355. doi:10.1016/j.bbalip.2014.10.008. PMC   5710736 . PMID   25449650.
  12. Brash AR, Boeglin WE, Chang MS (Jun 1997). "Discovery of a second 15S-lipoxygenase in humans". Proc Natl Acad Sci U S A. 94 (12): 6148–52. Bibcode:1997PNAS...94.6148B. doi: 10.1073/pnas.94.12.6148 . PMC   21017 . PMID   9177185.
  13. Zhu D, Ran Y (May 2012). "Role of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in hypoxia-induced pulmonary hypertension". J Physiol Sci. 62 (3): 163–72. doi: 10.1007/s12576-012-0196-9 . PMC   10717549 . PMID   22331435. S2CID   2723454.
  14. Romano M, Cianci E, Simiele F, Recchiuti A (Aug 2015). "Lipoxins and aspirin-triggered lipoxins in resolution of inflammation". Eur J Pharmacol. 760: 49–63. doi:10.1016/j.ejphar.2015.03.083. PMID   25895638.
  15. Feltenmark S, Gautam N, Brunnström A, Griffiths W, Backman L, Edenius C, Lindbom L, Björkholm M, Claesson HE (Jan 2008). "Eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells". Proc Natl Acad Sci U S A. 105 (2): 680–5. Bibcode:2008PNAS..105..680F. doi: 10.1073/pnas.0710127105 . PMC   2206596 . PMID   18184802.
  16. Porro B, Songia P, Squellerio I, Tremoli E, Cavalca V (Aug 2014). "Analysis, physiological and clinical significance of 12-HETE: A neglected platelet-derived 12-lipoxygenase product". J Chromatogr B. 964: 26–40. doi:10.1016/j.jchromb.2014.03.015. PMID   24685839.
  17. Ueda N, Tsuboi K, Uyama T (May 2013). "Metabolism of endocannabinoids and related N -acylethanolamines: Canonical and alternative pathways". FEBS J. 280 (9): 1874–94. doi: 10.1111/febs.12152 . PMID   23425575. S2CID   205133026.
  18. Walter F., PhD. Boron (2003). Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. p. 108. ISBN   1-4160-2328-3.
  19. 1 2 3 4 5 6 Walter F., PhD. Boron (2003). Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. p. 103. ISBN   1-4160-2328-3.
  20. 1 2 3 4 5 6 Walter F., PhD. Boron (2003). Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. p. 104. ISBN   1-4160-2328-3.
  21. Crawford MA, Sinclair AJ (1971). "Nutritional influences in the evolution of mammalian brain. In: lipids, malnutrition & the developing brain". Ciba Foundation Symposium: 267–92. doi:10.1002/9780470719862.ch16. PMID   4949878.
  22. Crawford MA, Sinclair AJ, Hall B, et al. (July 2023). "The imperative of arachidonic acid in early human development". Progress in Lipid Research. 91: 101222. doi: 10.1016/j.plipres.2023.101222 . PMID   36746351.
  23. 1 2 Calder PC, Campoy C, Eilander A, Fleith M, Forsyth S, Larsson PO, Schelkle B, Lohner S, Szommer A, van de Heijning BJ, Mensink RP (June 2019). "A systematic review of the effects of increasing arachidonic acid intake on PUFA status, metabolism and health-related outcomes in humans". The British Journal of Nutrition. 121 (11): 1201–1214. doi:10.1017/S0007114519000692. hdl: 10481/60184 . PMID   31130146.
  24. Harris WS, Mozaffarian D, Rimm E, Kris-Etherton P, Rudel LL, Appel LJ, Engler MM, Engler MB, Sacks F (2009). "Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention". Circulation. 119 (6): 902–7. doi:10.1161/CIRCULATIONAHA.108.191627. PMID   19171857. S2CID   15072227.
  25. Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, Franco OH, Butterworth AS, Forouhi NG, Thompson SG, Khaw KT, Mozaffarian D, Danesh J, Di Angelantonio E (Mar 18, 2014). "Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis". Annals of Internal Medicine. 160 (6): 398–406. doi:10.7326/M13-1788. PMID   24723079.