National firsts | |
---|---|
Spaceflight | France |
Rockets | |
Maiden flights | Aerobee RTV-N-10b Nike-Nike-T40-T55 A-1 R-1D Véronique-NA |
Retirements | Aerobee RTV-N-10b R-1D Véronique-NA |
The year 1954 saw the conception of Project Orbiter, the first practicable satellite launching project, utilizing the Redstone, a newly developed Short Range Ballistic Missile.
A variety of sounding rockets continued to return scientific data from beyond the 100 kilometres (62 mi) boundary of space (as defined by the World Air Sports Federation), [1] including the Viking and Aerobee rockets, University of Iowa and Naval Research Laboratory ship-launched rockoons, and derivatives of the Soviet R-1 missile. The French also launched their first sounding rocket into space, the Véronique-NA.
1954 also marked a year of development of the Intercontinental Ballistic Missile (ICBM). The United States prioritized the development of its Atlas while the Soviet Union authorized the draft proposal for the R-7 Semyorka, its first ICBM.
After ten months of salvage, testing, and troubleshooting following the failed launch of Viking 10 on 30 June 1953, a successful static firing of the rebuilt rocket took place at the end of April 1954. Launch was scheduled for 4 May. Control issues revealed in the static firing as well as gusty, sand-laden winds caused a delay of three days. At 10:00 AM local time, Viking 10 blasted off from its pad at the White Sands Missile Range in New Mexico, reaching an altitude of 136 mi (219 km)—a tie with the highest altitude ever reached by a first-generation Viking (Viking 7 on 7 August 1951). Data was received from the rocket for all stages of the flight, and its scientific package returned the first measurement of positive ion composition at high altitudes. [2]
Viking 11, which was ready for erection on 5 May, also had a successful static test and was ready for launch, 24 May 1954. Again, the countdown went without hold, and Viking 11, the heaviest rocket yet in the series, was launched at 10:00 AM. Forty seconds into the flight, several puffs of smoke issued from the vehicle, but these accidental excitations of the rocket's roll jets did no harm. Viking 11 ultimately reached 158 mi (254 km) in altitude, a record for the series, snapping the highest altitude photographs of the Earth to date. Both Vikings 10 and 11 carried successful emulsions experiments, measuring cosmic rays at high altitudes. [2]
Three more Viking flights were scheduled, one of which would fly in 1955, [2] the other two later incorporated into the subsequent Project Vanguard. [3]
For the third summer in a row, members of the State University of Iowa (SUI) physics department embarked 15 July 1954 on an Atlantic expedition to launch a series of balloon-launched Deacon rockets (rockoons), this time aboard the icebreaker, USS Atka. Once again, a Naval Research Laboratory team accompanied them to launch their own rockoons. Beginning with the fourth SUI launch on 21 July 1954 off the northern tip of Labrador, eleven rockoon launches (seven of them successful) over a five-day period probed the heart of the auroral zone at high altitude. Each rockoon carried two geiger counters with different thicknesses of shielding; two of the flights determined that aurorae produced detectable "soft" (lower energy/penetrative) radiation. [4]
By 1954, the array of Viking, Aerobee, V-2, Deacon Rockoon, and other high altitude sounding rocket flights had returned a bonanza of knowledge about the upper atmosphere. Previously, it had been believed that, at altitudes above 20 mi (32 km), Earth's atmosphere was highly stratified and peaceful, an indefinite continuation of the stratosphere. Rocket research discovered winds, turbulence, and mixing up to heights of 80 mi (130 km), and wind velocities of 180 mph (290 km/h) were measured 125 mi (201 km) above the Earth's surface. The density of the upper atmosphere was found to be thinner than expected: the estimated average distance an air atom or molecule must travel before colliding with another (mean free path) was refined to .5 mi (0.80 km). Ionized particles were discovered in what were previously thought to be distinct gaps between the E and F layers in the ionosphere. [2]
Sounding rockets returned the first measurements of extraterrestrial X-rays, blocked from observation from the ground by the lower layers of the atmosphere. It was determined that these X-rays were one of the major producers of atmospheric ionization. Ultraviolet radiation was extensively observed as well as its contribution to the ozone layer. Solar radiation data determined that the Sun was hotter than had been calculated from strictly earthbound measurements. Cosmic rays were found to consist mainly of protons, alpha particles, and heavier atomic nuclei; the range of measured elements extended to iron, with greater abundance in even mass numbered elements. [2]
On February 1, 1954, [5] the Strategic Missiles Evaluation Committee or 'Teapot Committee', comprising eleven of the top scientists and engineers in the country, issued a report recommending prioritization of the development of the Atlas, the nation's first ICBM. Trevor Gardner, special assistant for research and development to Secretary of the Air Force, Harold Talbott, selected Ramo Wooldridge (R-W) to handle the systems engineering and technical direction for the entire project, a considerable expansion of duties for the year-old company, which had hitherto been contracted by the Air Force to advise and perform research. [6] : 178–9 From spring 1954 through the end of the year, R-W's work was confined to the evaluation of the project and the accumulation of personnel to handle development of the ICBM. [6] : 185 Convair, which had been developing the Atlas for the prior eight years, remained the manufacturer of the missile proper. [5]
The public first became aware of the Atlas project with the publication of the 8 March 1954 issue of Aviation Weekly, in which appeared the short item: "Convair is developing a long range ballistic missile known as the Atlas. Its development was begun in the era when Floyd Odlum's Atlas Corp. was the controlling stockholder in Convair." [5]
Before the Teapot commission had determined the likely weight of a thermonuclear payload, the Atlas specification had called for a missile 90 ft (27 m) long and 10 ft (3.0 m) wide, carrying five rocket engines, and a full-scale wooden model as well as a metal test example of the tank were built in 1954. By the time the design was frozen at the end of the year, the specifications had been downscaled to 75 ft (23 m) long, retaining the same width, and the number of engines was reduced to three. [5]
By 1954, there was growing consensus in the United States that rocket technology had evolved to the point the launch of an Earth orbiting satellite was becoming feasible. A 16 March meeting in Washington D.C. involving several of the nation's leading space specialists was arranged by past president of the American Rocket Society Frederick C. Durant III. They included Fred Singer, proposer of the "MOUSE" (Minimum Orbiting Unmanned Satellite of the Earth), rocket scientist Wernher von Braun, David Young of the Army Ballistic Missile Agency, Commander George Hoover and Alexander Satin of the Air Branch of the Office of Naval Research (ONR), and noted astronomer, Fred Whipple. They determined that a slightly modified Redstone (a 200 miles (320 km) range surface-to-surface missile developed the prior year) [7] combined with upper stages employing 31 Loki solid-propellant rockets could put a 5 lb (2.3 kg) satellite into orbit, which could be tracked optically. [8]
Whipple approached the National Science Foundation (NSF) to sponsor a conference for further study of the idea, particularly to develop instrumentation for a satellite. The NSF took no immediate action. Hoover, however, was able to secure interest from the ONR, and by November 1954, a satellite-launching plan had been developed. Dubbed Project Orbiter, the "no-cost satellite" would be built largely from existing hardware; the Army would design and construct the booster system (using Redstone and Loki) while the Navy would handle creation of the satellite, tracking facilities, and the acquisition and analysis of data. By the end of the year, ONR had let $60,000 in three contracts for feasibility studies and initial design. [8]
The R-5 missile, able to carry the same 1,000 kilograms (2,200 lb) payload as the R-1 and R-2 but over a distance of 1,200 kilometres (750 mi) [9] : 242 underwent its third series of test launches, beginning 12 August 1954 and continuing through 7 February 1955. These tests confirmed the soundness of the design and cleared the way for nuclear and sounding rocket variants. [10] : 120, 138
Paralleling developments in the United States, 1954 marked the authorization of the R-7 Semyorka ICBM (on 20 May). Mikhail Tikhonravov, whose team at had completed the ICBM studies that formed the conceptual framework for the R-7, on 27 May, at the urging of OKB-1 Chief Designer Sergei Korolev, submitted a memorandum entitled, "A Report on an Artificial Satellite of the Earth" to Deputy Minister of Medium Machine Building Vasiliy Rabikov and Georgiy Pashkov, Rabikov's department chief in charge of missiles. This memorandum, containing summaries of both Soviet research of recent years as well as translations of Western articles on satellites, served as the catalyst for the Soviet satellite program. [10] : 139–144
Date and time (UTC) | Rocket | Flight number | Launch site | LSP | |||
---|---|---|---|---|---|---|---|
Payload | Operator | Orbit | Function | Decay (UTC) | Outcome | ||
Remarks | |||||||
2 February 18:35 | Aerobee RTV-N-10 | NRL 20 | White Sands LC-35 | US Navy | |||
NRL | Suborbital | Solar UV | 2 February | Successful | |||
Apogee: 101 kilometres (63 mi) [11] | |||||||
20 February | Véronique-NA [12] | Hammaguir Bechar | LRBA | ||||
LRBA | Suborbital | Test flight | 20 February | Launch failure | |||
Apogee: 29 kilometres (18 mi), maiden flight of the Véronique-NA [13] | |||||||
21 February | Véronique-NA [12] | Hammaguir Bechar | LRBA | ||||
LRBA | Suborbital | Test flight | 21 February | Successful | |||
Apogee: 135 kilometres (84 mi), first French spaceflight [13] |
Date and time (UTC) | Rocket | Flight number | Launch site | LSP | |||
---|---|---|---|---|---|---|---|
Payload | Operator | Orbit | Function | Decay (UTC) | Outcome | ||
Remarks | |||||||
11 March | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 11 March | Successful [14] | |||
16 March | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 16 March | Successful [14] | |||
16 March | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 16 March | Successful [14] | |||
20 March | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 20 March | Successful [14] |
Date and time (UTC) | Rocket | Flight number | Launch site | LSP | |||
---|---|---|---|---|---|---|---|
Payload | Operator | Orbit | Function | Decay (UTC) | Outcome | ||
Remarks | |||||||
9 April 21:12 | Aerobee RTV-N-10 | NRL 18 | White Sands LC-35 | US Navy | |||
NRL | Suborbital | Spectrometry | 9 April | Successful | |||
Apogee: 143 kilometres (89 mi) [11] | |||||||
10 April 09:00 | Aerobee RTV-N-10 | NRL 19 | White Sands LC-35 | US Navy | |||
NRL | Suborbital | Spectrometry | 10 April | Launch Failure | |||
Apogee: 5 kilometres (3.1 mi) [11] | |||||||
23 April | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 23 April | Successful [14] | |||
24 April | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 24 April | Successful [14] | |||
26 April | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 26 April | Successful [14] | |||
29 April | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 29 April | Successful [14] |
Date and time (UTC) | Rocket | Flight number | Launch site | LSP | |||
---|---|---|---|---|---|---|---|
Payload | Operator | Orbit | Function | Decay (UTC) | Outcome | ||
Remarks | |||||||
May | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | Same Day | ||||
First of ten production missile test launches, eight of which were successful [15] | |||||||
May | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | Same Day | ||||
Second of ten production missile test launches, eight of which were successful [15] | |||||||
May | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | Same Day | ||||
Third of ten production missile test launches, eight of which were successful [15] | |||||||
May | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | Same Day | ||||
Fourth of ten production missile test launches, eight of which were successful [15] | |||||||
May | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | Same Day | ||||
Fifth of ten production missile test launches, eight of which were successful [15] | |||||||
May | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | Same Day | ||||
Sixth of ten production missile test launches, eight of which were successful [15] | |||||||
May | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | Same Day | ||||
Seventh of ten production missile test launches, eight of which were successful [15] | |||||||
May | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | Same Day | ||||
Eighth of ten production missile test launches, eight of which were successful [15] | |||||||
May | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | Same Day | ||||
Ninth of ten production missile test launches, eight of which were successful [15] | |||||||
May | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | Same Day | ||||
Tenth of ten production missile test launches, eight of which were successful [15] | |||||||
3 May | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 3 May | Successful [14] | |||
4 May | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 4 May | Successful [14] | |||
4 May | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 4 May | Successful [14] | |||
7 May | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 7 May | Successful [14] | |||
7 May 17:00 | Viking (second model) | White Sands LC-33 | US Navy | ||||
Viking 10 | NRL | Suborbital | Ionospheric / Aeronomy | 7 May | Successful | ||
Apogee: 219 kilometres (136 mi) [16] | |||||||
11 May 15:00 | Aerobee RTV-A-1a | USAF 46 | Holloman LC-A | US Air Force | |||
AFCRC | Suborbital | Beacon test | 11 May | Successful | |||
Apogee: 98 kilometres (61 mi) [17] : 135–136 | |||||||
21 May | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 21 May | Successful [14] | |||
24 May 17:00 | Viking (second model) | White Sands LC-33 | US Navy | ||||
Viking 11 | NRL | Suborbital | REV test / Photography | 24 May | Successful | ||
Apogee: 254 kilometres (158 mi) [16] | |||||||
26 May 14:24 | A-1 | Kapustin Yar | OKB-1 | ||||
MVS | Suborbital | Ionospheric | 26 May | Successful | |||
Apogee: 106 kilometres (66 mi), maiden flight of the A-1 [18] |
Date and time (UTC) | Rocket | Flight number | Launch site | LSP | |||
---|---|---|---|---|---|---|---|
Payload | Operator | Orbit | Function | Decay (UTC) | Outcome | ||
Remarks | |||||||
2 June 16:10 | Aerobee RTV-A-1a | USAF 47 | Holloman LC-A | US Air Force | |||
AFCRC / University of Colorado | Suborbital | Solar UV | 2 June | Successful | |||
Apogee: 93 kilometres (58 mi) [17] : 137–138 | |||||||
8 June | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 8 June | Successful [15] | |||
9 June | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 9 June | Successful [15] | |||
11 June | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 11 June | Successful [14] | |||
12 June | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 12 June | Successful [14] | |||
14 June | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 14 June | Successful [14] | |||
26 June 13:24 | R-1D | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Biology / Ionosphere / Aeronomy | 26 June | Successful | |||
Apogee: 106 kilometres (66 mi), maiden flight of R-1D [19] |
Date and time (UTC) | Rocket | Flight number | Launch site | LSP | |||
---|---|---|---|---|---|---|---|
Payload | Operator | Orbit | Function | Decay (UTC) | Outcome | ||
Remarks | |||||||
2 July | R-1D | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Biology / Ionosphere / Aeronomy | 2 July | Successful | |||
Payload, instruments, left and right animal containers all recovered. Smoke container failed. Carried dogs Lyza and Ryjik. [19] | |||||||
7 July | R-1D | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Biology / Ionosphere / Aeronomy | 7 July | Successful | |||
Final flight of the R-1D [19] | |||||||
14 July 13:55 | Aerobee RTV-A-1a | USAF 48 | Holloman LC-A | US Air Force | |||
AFCRC / University of Michigan | Suborbital | Aeronomy | 14 July | Successful | |||
Apogee: 92 kilometres (57 mi) [17] : 139–140 | |||||||
16 July 12:13 | Deacon Rockoon | SUI 24 | USS Atka, [20] Atlantic Ocean, 360 kilometres (220 mi) east of Boston | US Navy | |||
University of Iowa | Suborbital | Ionospheric / Aeronomy | 16 July | Launch failure [21] | |||
Apogee: 11 kilometres (6.8 mi) [4] | |||||||
16 July 21:58 | Deacon Rockoon | SUI 25 | USS Atka, Atlantic Ocean, 360 kilometres (220 mi) east of Boston | US Navy | |||
University of Iowa | Suborbital | Ionospheric / Aeronomy | 16 July | Launch failure | |||
Apogee: 11 kilometres (6.8 mi) [21] | |||||||
19 July 16:00 | Deacon Rockoon | NRL Rockoon 7 | USS Atka, Labrador Sea | US Navy | |||
NRL | Suborbital | Aeronomy | 19 July | Successful | |||
Apogee: 88 kilometres (55 mi) [21] | |||||||
19 July 20:30 | Deacon Rockoon | SUI 26 | USS Atka, Labrador Sea | US Navy | |||
University of Iowa | Suborbital | Ionospheric / Aeronomy | 19 July | Spacecraft failure [4] | |||
Apogee: 43 kilometres (27 mi) [21] | |||||||
20 July 02:55 | Deacon Rockoon | NRL Rockoon 8 | USS Atka, Labrador Sea | US Navy | |||
NRL | Suborbital | Ionospheric / Aeronomy | 20 July | Successful | |||
Apogee: 90 kilometres (56 mi) [21] | |||||||
21 July 09:03 | Deacon Rockoon | SUI 27 | USS Atka, Labrador Sea | US Navy | |||
University of Iowa | Suborbital | Ionospheric / Aeronomy | 21 July | Successful [4] | |||
Apogee: 60 kilometres (37 mi); [21] first in series of 11 SUI flights, 7 of which were successful [4] | |||||||
21 July 12:45 | Deacon Rockoon | SUI 28 | USS Atka, Labrador Sea | US Navy | |||
University of Iowa | Suborbital | Ionospheric / Aeronomy | 21 July | ||||
Apogee: 90 kilometres (56 mi); [21] second in series of 11 SUI flights, 7 of which were successful [4] | |||||||
21 July 20:49 | Deacon Rockoon | SUI 29 | USS Atka, Labrador Sea | US Navy | |||
University of Iowa | Suborbital | Ionospheric / Aeronomy | 21 July | Launch failure [21] | |||
Apogee: 40 kilometres (25 mi); [21] third in series of 11 SUI flights, 7 of which were successful [4] | |||||||
22 July | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 22 July | Successful [15] | |||
23 July 14:46 | Deacon Rockoon | SUI 30 | USS Atka, Labrador Sea | US Navy | |||
University of Iowa | Suborbital | Ionospheric / Aeronomy | 23 July | ||||
Apogee: 90 kilometres (56 mi); [21] fourth in series of 11 SUI flights, 7 of which were successful [4] | |||||||
23 July 17:09 | Deacon Rockoon | NRL Rockoon 9 | USS Atka, Labrador Sea | US Navy | |||
Naval Research Laboratory | Suborbital | Ionospheric / Aeronomy | 23 July | Successful | |||
Apogee: 90 kilometres (56 mi) [21] | |||||||
23 July 17:54 | Deacon Rockoon | SUI 31 | USS Atka, Labrador Sea | US Navy | |||
University of Iowa | Suborbital | Ionospheric / Aeronomy | 23 July | ||||
Apogee: 90 kilometres (56 mi); [21] fifth in series of 11 SUI flights, 7 of which were successful [4] | |||||||
23 July 19:37 | Deacon Rockoon | SUI 32 | USS Atka, Labrador Sea | US Navy | |||
University of Iowa | Suborbital | Ionospheric / Aeronomy | 23 July | Launch failure | |||
Apogee: 23 kilometres (14 mi); [21] sixth in series of 11 SUI flights, 7 of which were successful [4] | |||||||
24 July 08:57 | Deacon Rockoon | SUI 33 | USS Atka, Labrador Sea | US Navy | |||
University of Iowa | Suborbital | Ionospheric / Aeronomy | 24 July | ||||
Apogee: 90 kilometres (56 mi); [21] seventh in series of 11 SUI flights, 7 of which were successful [4] | |||||||
24 July 13:16 | Deacon Rockoon | SUI 34 | USS Atka, Labrador Sea | US Navy | |||
University of Iowa | Suborbital | Ionospheric / Aeronomy | 24 July | ||||
Apogee: 90 kilometres (56 mi); [21] eighth in series of 11 SUI flights, 7 of which were successful [4] | |||||||
25 July 06:51 | Deacon Rockoon | SUI 35 | USS Atka, Labrador Sea | US Navy | |||
University of Iowa | Suborbital | Ionospheric / Aeronomy | 25 July | ||||
Apogee: 90 kilometres (56 mi); [21] ninth in series of 11 SUI flights, 7 of which were successful [4] | |||||||
25 July 12:36 | Deacon Rockoon | SUI 36 | USS Atka, Labrador Sea | US Navy | |||
University of Iowa | Suborbital | Ionospheric / Aeronomy | 25 July | Successful [4] | |||
Apogee: 90 kilometres (56 mi); [21] tenth in series of 11 SUI flights, 7 of which were successful [4] | |||||||
25 July 15:30 | Deacon Rockoon | SUI 37 | USS Atka, Labrador Sea | US Navy | |||
University of Iowa | Suborbital | Ionospheric / Aeronomy | 25 July | ||||
Apogee: 90 kilometres (56 mi); [21] eleventh in series of 11 SUI flights, 7 of which were successful [4] | |||||||
25 July 18:45 | Deacon Rockoon | NRL Rockoon 10 | USS Atka, Labrador Sea | US Navy | |||
Naval Research Laboratory | Suborbital | Aeronomy | 25 July | Successful | |||
Apogee: 85 kilometres (53 mi) [21] | |||||||
26 July 00:29 | Deacon Rockoon | NRL Rockoon 11 | USS Atka, Labrador Sea | US Navy | |||
NRL | Suborbital | Ionospheric / Aeronomy | 26 July | Launch failure | |||
Apogee: 10 kilometres (6.2 mi) [21] | |||||||
26 July 11:02 | Deacon Rockoon | NRL Rockoon 12 | USS Atka, southern Davis Strait | US Navy | |||
NRL | Suborbital | Ionospheric / Aeronomy | 26 July | Successful | |||
Apogee: 90 kilometres (56 mi) [21] |
Date and time (UTC) | Rocket | Flight number | Launch site | LSP | |||
---|---|---|---|---|---|---|---|
Payload | Operator | Orbit | Function | Decay (UTC) | Outcome | ||
Remarks | |||||||
2 August | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 2 August | Successful [14] | |||
11 August 17:25 | Aerobee RTV-A-1a | USAF 49 | Holloman LC-A | US Air Force | |||
AFCRC / University of Utah | Suborbital | Ionospheric | 11 August | Successful | |||
Apogee: 92 kilometres (57 mi) [17] : 141–142 | |||||||
12 August | R-5 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 12 August | Partial failure | |||
First flight of range test series [22] | |||||||
17 August | R-5 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 17 August | Successful [22] | |||
19 August | R-5 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 19 August | Successful [22] | |||
24 August | R-5 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 24 August | Successful [22] | |||
25 August | R-5 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 25 August | Successful [22] | |||
27 August | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 27 August | Successful [14] | |||
27 August | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 27 August | Successful [14] |
Date and time (UTC) | Rocket | Flight number | Launch site | LSP | |||
---|---|---|---|---|---|---|---|
Payload | Operator | Orbit | Function | Decay (UTC) | Outcome | ||
Remarks | |||||||
5 September | R-5 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 5 September | Successful [22] | |||
8 September | R-5 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 8 September | Successful [22] | |||
17 September 14:31 | Aerobee RTV-A-1a | USAF 50 | Holloman LC-A | US Air Force | |||
AFCRC / University of Rhode Island | Suborbital | Solar UV | 17 September | Successful | |||
Apogee: 94.6 kilometres (58.8 mi) [17] : 143–144 | |||||||
30 September | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 30 September | Successful [15] |
Date and time (UTC) | Rocket | Flight number | Launch site | LSP | |||
---|---|---|---|---|---|---|---|
Payload | Operator | Orbit | Function | Decay (UTC) | Outcome | ||
Remarks | |||||||
1 October | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 1 October | Successful [15] | |||
5 October | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 5 October | Successful [15] | |||
5 October 18:15 | Aerobee RTV-N-10b | White Sands LC-35 | US Navy | ||||
NRL | Suborbital | Remote sensing | 5 October | Successful | |||
Apogee: 158 kilometres (98 mi); maiden (and only) flight of the RTV-N-10b; [11] returned first images of a complete hurricane [23] [24] | |||||||
9 October | R-5 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 9 October | Successful | |||
Airborne destruction of warhead [22] | |||||||
14 October 21:20 | Nike-Nike-T40-T55 | Wallops Island | NACA | ||||
NACA | Suborbital | Hypersonic research | 14 October | Successful | |||
Apogee: 352 kilometres (219 mi), maiden flight of the Nike-Nike-T40-T55 [25] | |||||||
16 October | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 16 October | Successful [15] | |||
17 October | Véronique-NA [12] | Hammaguir Bechar | LRBA | ||||
LRBA | Suborbital | Ionospheric | 17 October | Launch failure | |||
Apogee: 39 kilometres (24 mi) [13] | |||||||
19 October | R-5 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 19 October | Successful | |||
End of range test series [22] | |||||||
29 October | Véronique-NA [12] | Hammaguir Bechar | LRBA | ||||
LRBA | Suborbital | Test flight | 29 October | Successful | |||
Apogee: 90 kilometres (56 mi); [13] final flight of the Véronique-NA | |||||||
30 October | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 30 October | Successful [14] |
Date and time (UTC) | Rocket | Flight number | Launch site | LSP | |||
---|---|---|---|---|---|---|---|
Payload | Operator | Orbit | Function | Decay (UTC) | Outcome | ||
Remarks | |||||||
27 November | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 27 November | Successful [15] | |||
30 November | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 30 November | Successful [14] |
Date and time (UTC) | Rocket | Flight number | Launch site | LSP | |||
---|---|---|---|---|---|---|---|
Payload | Operator | Orbit | Function | Decay (UTC) | Outcome | ||
Remarks | |||||||
1 December | R-1 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 1 December | Successful [14] | |||
1 December | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 1 December | Successful [15] | |||
6 December | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 6 December | Successful [15] | |||
9 December | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 9 December | Successful [15] | |||
23 December | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 23 December | Successful [15] | |||
25 December | R-2 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 25 December | Successful [15] | |||
30 December | R-5 | Kapustin Yar | OKB-1 | ||||
OKB-1 | Suborbital | Missile test | 30 December | Successful | |||
Start of validity test series [22] |
Country | Launches | Successes | Failures | Partial failures | |
---|---|---|---|---|---|
United States | 32 | 23 | 9 | 0 | |
Soviet Union | 59 | 56 | 2 | 1 | |
France | 4 | 2 | 2 | 0 |
Rocket | Country | Launches | Successes | Failures | Partial failures | Remarks |
---|---|---|---|---|---|---|
Viking (second model) | United States | 2 | 2 | 0 | 0 | |
Aerobee RTV-N-10 | United States | 3 | 2 | 1 | 0 | |
Aerobee RTV-N-10b | United States | 1 | 1 | 0 | 0 | Maiden flight, retired |
Aerobee RTV-A-1a | United States | 5 | 5 | 0 | 0 | |
Deacon rockoon (SUI) | United States | 14 | 7 | 7 | 0 | |
Deacon rockoon (NRL) | United States | 6 | 5 | 1 | 0 | |
Nike-Nike-T40-T55 | United States | 1 | 1 | 0 | 0 | Maiden flight |
R-1 | Soviet Union | 22 | 22 | 0 | 0 | |
A-1 | Soviet Union | 1 | 1 | 0 | 0 | Maiden flight |
R-1D | Soviet Union | 3 | 3 | 0 | 0 | Maiden flight, retired |
R-2 | Soviet Union | 23 | 21 | 2 | 0 | |
R-5 | Soviet Union | 10 | 9 | 0 | 1 | |
Véronique-NA | France | 4 | 2 | 2 | 0 | Maiden flight, first French Spaceflight, retired |
Project Vanguard was a program managed by the United States Navy Naval Research Laboratory (NRL), which intended to launch the first artificial satellite into low Earth orbit using a Vanguard rocket as the launch vehicle from Cape Canaveral Missile Annex, Florida.
The Aerobee rocket was one of the United States' most produced and productive sounding rockets. Developed by the Aerojet Corporation, the Aerobee was designed to combine the altitude and launching capability of the V-2 with the cost effectiveness and mass production of the WAC Corporal. More than 1000 Aerobees were launched between 1947 and 1985, returning vast amounts of astronomical, physical, aeronomical, and biomedical data.
James Alfred Van Allen was an American space physicist at the University of Iowa. He was instrumental in establishing the field of magnetospheric research in space.
A sounding rocket or rocketsonde, sometimes called a research rocket or a suborbital rocket, is an instrument-carrying rocket designed to take measurements and perform scientific experiments during its sub-orbital flight. The rockets are used to launch instruments from 48 to 145 km above the surface of the Earth, the altitude generally between weather balloons and satellites; the maximum altitude for balloons is about 40 km and the minimum for satellites is approximately 121 km. Certain sounding rockets have an apogee between 1,000 and 1,500 km, such as the Black Brant X and XII, which is the maximum apogee of their class. For certain purposes Sounding Rockets may be flown to altitudes as high as 3,000 kilometers to allow observing times of around 40 minutes to provide geophysical observations of the magnetosphere, ionosphere, thermosphere and mesosphere. Sounding rockets have been used for the examination of atmospheric nuclear tests by revealing the passage of the shock wave through the atmosphere. In more recent times Sounding Rockets have been used for other nuclear weapons research. Sounding rockets often use military surplus rocket motors. NASA routinely flies the Terrier Mk 70 boosted Improved Orion, lifting 270–450-kg (600–1,000-pound) payloads into the exoatmospheric region between 97 and 201 km.
A sub-orbital spaceflight is a spaceflight in which the spacecraft reaches outer space, but its trajectory intersects the surface of the gravitating body from which it was launched. Hence, it will not complete one orbital revolution, will not become an artificial satellite nor will it reach escape velocity.
The Vanguard rocket was intended to be the first launch vehicle the United States would use to place a satellite into orbit. Instead, the Sputnik crisis caused by the surprise launch of Sputnik 1 led the U.S., after the failure of Vanguard TV-3, to quickly orbit the Explorer 1 satellite using a Juno I rocket, making Vanguard 1 the second successful U.S. orbital launch.
Lockheed Martin Space is one of the four major business divisions of Lockheed Martin. It has its headquarters in Littleton, Colorado, with additional sites in Valley Forge, Pennsylvania; Sunnyvale, California; Santa Cruz, California; Huntsville, Alabama; and elsewhere in the United States and United Kingdom. The division currently employs about 20,000 people, and its most notable products are commercial and military satellites, space probes, missile defense systems, NASA's Orion spacecraft, and the Space Shuttle external tank.
A rockoon is a sounding rocket that, rather than being lit immediately while still on the ground, is first carried into the upper atmosphere by a gas-filled balloon, then separated from the balloon and ignited. This allows the rocket to achieve a higher altitude, as the rocket does not have to move under power through the lower and thicker layers of the atmosphere. A 2016 study by Acta Astronautica concluded that low-mass and high altitude launches give the best results.
The first orbital flight of an artificial satellite, Sputnik 1, was launched in October 1957, by the Soviet Union. In November, the second orbital flight took place. The Soviet Union launched the first animal to orbit the Earth, a dog, Laika, who died in orbit a few hours after launch.
Spaceflight as a practical endeavor began during World War II with the development of operational liquid-fueled rockets. Beginning life as a weapon, the V-2 was pressed into peaceful service after the war at the United States' White Sands Missile Range as well as the Soviet Union's Kapustin Yar. This led to a flourishing of missile designs setting the stage for the exploration of space. The small American WAC Corporal rocket was evolved into the Aerobee, a much more powerful sounding rocket. Exploration of space began in earnest in 1947 with the flight of the first Aerobee, 46 of which had flown by the end of 1950. These and other rockets, both Soviet and American, returned the first direct data on air density, temperature, charged particles and magnetic fields in the Earth's upper atmosphere.
Atlas is a family of US missiles and space launch vehicles that originated with the SM-65 Atlas. The Atlas intercontinental ballistic missile (ICBM) program was initiated in the late 1950s under the Convair Division of General Dynamics. Atlas was a liquid propellant rocket burning RP-1 kerosene fuel with liquid oxygen in three engines configured in an unusual "stage-and-a-half" or "parallel staging" design: two outboard booster engines were jettisoned along with supporting structures during ascent, while the center sustainer engine, propellant tanks and other structural elements remained connected through propellant depletion and engine shutdown.
Space Systems Command (SSC) is the United States Space Force's space development, acquisition, launch, and logistics field command. It is headquartered at Los Angeles Air Force Base, California, and manages the United States' space launch ranges.
The Missile Defense Alarm System, or MIDAS, was a United States Air Force Air Defense Command system of 12 early-warning satellites that provided limited notice of Soviet intercontinental ballistic missile launches between 1960 and 1966. Originally intended to serve as a complete early-warning system working in conjunction with the Ballistic Missile Early Warning System, cost and reliability concerns limited the project to a research and development role. Three of the system's 12 launches ended in failure, and the remaining nine satellites provided crude infrared early-warning coverage of the Soviet Union until the project was replaced by the Defense Support Program. MiDAS represented one element of the United States's first generation of reconnaissance satellites that also included the Corona and SAMOS series. Though MIDAS failed in its primary role as a system of infrared early-warning satellites, it pioneered the technologies needed in successor systems.
This is a list of spaceflight related events which occurred in 1956.
In 1955, both the United States and the Soviet Union (USSR) announced plans for launching the world's first satellites during the International Geophysical Year (IGY) of 1957–58. Project Vanguard, proposed by the US Navy, won out over the US Army's Project Orbiter as the satellite and rocket design to be flown in the IGY. Development of Intercontinental Ballistic Missiles, the Atlas by the US and the R-7 by the USSR, accelerated, entering the design and construction phase.
In 1952, several branches of the United States' military, often in partnership with civilian organizations, continued their programs of sounding rocket research beyond the 100 kilometres (62 mi) boundary of space using the Aerobee rocket. The University of Iowa launched its first series of rockoon flights, demonstrating the validity of the balloon-launched rocket, a comparatively inexpensive way to explore the upper atmosphere. The launch of Viking 9 at the end of the year to an altitude of 135 mi (217 km), by the Naval Research Laboratory team under the management of Milton Rosen, represented the pinnacle of contemporary operational rocket design.
The year 1951 saw extensive exploration of space by the United States and the Soviet Union (USSR) using suborbital rockets. The Soviets launched their first series of biomedical tests to the 100-kilometre (62 mi) boundary of space. Several American agencies launched more than a dozen scientific sounding rocket flights between them. The US Navy launched its Viking sounding rocket for the seventh time since 1949, this time to a record-breaking 136 miles (219 km) in August 1951.
Milton William Rosen was a United States Navy engineer and project manager in the US space program between the end of World War II and the early days of the Apollo Program. He led development of the Viking and Vanguard rockets, and was influential in the critical decisions early in NASA's history that led to the definition of the Saturn rockets, which were central to the eventual success of the American Moon landing program. He died of prostate cancer in 2014.
The year 1953 saw the rockoon join the stable of sounding rockets capable of reaching beyond the 100 kilometres (62 mi) boundary of space. Employed by both the University of Iowa and the Naval Research Laboratory, 22 total were launched from the decks of the USS Staten Island and the USCGC Eastwind this year. All branches of the United States military continued their program of Aerobee sounding rocket launches, a total of 23 were launched throughout 1953. The Soviet Union launched no sounding rockets in 1953; however, the Soviet Union did conduct several series of missile test launches.