WO2024219858A1 - Apparatus and method for determining optimal adaptive synchronization frame range from among multiple adaptive synchronization frame ranges - Google Patents
Apparatus and method for determining optimal adaptive synchronization frame range from among multiple adaptive synchronization frame ranges Download PDFInfo
- Publication number
- WO2024219858A1 WO2024219858A1 PCT/KR2024/005249 KR2024005249W WO2024219858A1 WO 2024219858 A1 WO2024219858 A1 WO 2024219858A1 KR 2024005249 W KR2024005249 W KR 2024005249W WO 2024219858 A1 WO2024219858 A1 WO 2024219858A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adaptive
- sync
- frame
- source device
- video timing
- Prior art date
Links
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 230000006835 compression Effects 0.000 claims description 11
- 238000007906 compression Methods 0.000 claims description 11
- 230000009471 action Effects 0.000 claims description 5
- 241000510009 Varanus griseus Species 0.000 description 34
- 230000005540 biological transmission Effects 0.000 description 27
- 238000005516 engineering process Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 17
- 230000007704 transition Effects 0.000 description 16
- 230000007423 decrease Effects 0.000 description 15
- 230000008569 process Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 230000000007 visual effect Effects 0.000 description 4
- 102100022298 Divergent paired-related homeobox Human genes 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 101000902412 Homo sapiens Divergent paired-related homeobox Proteins 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 208000003028 Stuttering Diseases 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
Images
Definitions
- the present disclosure relates to a device and method for performing an adaptive-sync operation. Specifically, the present disclosure relates to a device and method for determining an optimal adaptive-sync frame range among multiple adaptive-sync frame ranges.
- Adaptive-Sync Frame Range Since the DisplayPort standard has limitations on the transmission speed depending on the supported resolution and whether or not DSC (Display Stream Compression) is used, Adaptive-Sync Frame Range also operates differently. Therefore, Multi Frame Adaptive-Sync Range must be indicated in EDID, and in this case, appropriate rules are required for proper operation. However, appropriate rules for Multi Frame Adaptive-Sync to operate have not been defined up to now.
- Adaptive-Sync Frame Range When the Adaptive-Sync Frame Range is set from 60Hz to 240Hz, in Adaptive-Sync mode, it does not operate at the Max Frame Range of 240Hz, but at 120Hz. Therefore, if OverDrive is tuned to 240Hz, excessive Over/Undershoot may occur when operating at the untuned 120Hz.
- a Sink e.g. monitor
- OverDrive tuning according to the Frame Range when OverDrive tuning according to the Frame Range is performed, it is tuned based on the Max Frame Range, and because tuning is not performed at frequencies lower than that (tuning only at Max), excessive Over/Undershoot occurs, which causes problems.
- the present disclosure provides a device and method for performing an operation of adaptive synchronization.
- the present disclosure provides a device and method for determining an optimal adaptive synchronization frame range among multiple adaptive synchronization frame ranges.
- a method of operating a source device comprising: receiving a hot plug detection (HPD) signal from a sink device; receiving first information related to an Extended Display Identification (EDID) or a DisplayID (DPID) from the sink device; determining a specific video timing frame rate based on a plurality of Video Timing Frame Rates included in the first information of the sink device; when an Adaptive-Sync Data Block included in the first information is related to a plurality of Adaptive-Sync Frame Ranges, determining a specific adaptive-sync frame range whose maximum frame rate among the plurality of Adaptive-Sync Frame Ranges corresponds to the specific video timing frame rate; and transmitting processed information based on the specific adaptive-sync frame range to the sink device.
- HPD hot plug detection
- EDID Extended Display Identification
- DPID DisplayID
- a source device comprises: a processor; a memory; and a transceiver, wherein the memory stores instructions for performing operations based on being executed by the processor, the operations comprising: receiving a hot plug detection (HPD) signal from a sink device; receiving first information related to an Extended Display Identification (EDID) or a DisplayID (DPID) from the sink device; determining a specific video timing frame rate based on a plurality of Video Timing Frame Rates included in the first information of the sink device; when an Adaptive-Sync Data Block included in the first information is related to a plurality of Adaptive-Sync Frame Ranges, determining a specific adaptive-sync frame range whose maximum frame rate among the plurality of Adaptive-Sync Frame Ranges corresponds to the specific video timing frame rate;
- a source device is provided, comprising a step of transmitting processed information based on the specific adaptive synchronization frame range to the sink device.
- one or more non-transitory computer-readable media storing one or more instructions, wherein the one or more instructions, when executed by one or more processors, perform operations, the operations comprising: receiving a hot plug detection (HPD) signal from a sink device; receiving first information related to an Extended Display Identification (EDID) or a DisplayID (DPID) from the sink device; determining a specific video timing frame rate based on a plurality of Video Timing Frame Rates included in the first information of the sink device; when an Adaptive-Sync Data Block included in the first information is related to a plurality of Adaptive-Sync Frame Ranges, determining a specific adaptive-sync frame range whose maximum frame rate among the plurality of Adaptive-Sync Frame Ranges corresponds to the specific video timing frame rate;
- a computer-readable medium is provided, comprising a step of transmitting processed information based on the specific adaptive synchronization frame range to the sink device.
- the present disclosure can provide a device and method for performing an operation of adaptive synchronization.
- the present disclosure can provide a device and method for determining an optimal adaptive synchronization frame range among multiple adaptive synchronization frame ranges.
- FIG. 1 is a block diagram illustrating a system according to various embodiments of the present disclosure.
- FIG. 2 is a diagram illustrating an example of Adaptive-Sync SDP transmission timing according to various embodiments of the present disclosure.
- FIG. 3 is a diagram illustrating an example of an AUX flow diagram related to Adaptive-Sync operation according to various embodiments of the present disclosure.
- FIG. 4 is a diagram illustrating an example of the structure of an Adaptive-Sync Data Block in DisplayID 2.0 according to various embodiments of the present disclosure.
- Figure 5 is a diagram illustrating an example of a process for determining a Frame Range when a Source device performs an Adaptive-Sync operation.
- FIG. 6 is a diagram illustrating an example of a process for determining a Frame Range when a Source device performs an Adaptive-Sync operation according to various embodiments of the present disclosure.
- FIG. 7 is a diagram illustrating an example of an operation method of a source device according to various embodiments of the present disclosure.
- a or B can mean “only A,” “only B,” or “both A and B.” In other words, in various embodiments of the present disclosure, “A or B” can be interpreted as “A and/or B.” For example, in various embodiments of the present disclosure, “A, B or C” can mean “only A,” “only B,” “only C,” or “any combination of A, B and C.”
- a slash (/) or a comma may mean “and/or”.
- A/B may mean “A and/or B”.
- A/B may mean “only A”, “only B”, or “both A and B”.
- A, B, C may mean “A, B, or C”.
- “at least one of A and B” can mean “only A,” “only B,” or “both A and B.” Furthermore, in various embodiments of the present disclosure, the expressions “at least one of A or B” or “at least one of A and/or B” can be interpreted as equivalent to “at least one of A and B.”
- “at least one of A, B and C” can mean “only A,” “only B,” “only C,” or “any combination of A, B and C.” Additionally, “at least one of A, B or C” or “at least one of A, B and/or C” can mean “at least one of A, B and C.”
- FIG. 1 is a block diagram illustrating a system according to various embodiments of the present disclosure.
- AV audio/video
- Examples of AV systems include HDMI and DisplayPort.
- an AV system may include a source device (100) and a sink device (200).
- a device transmitting audio/video data in the AV system may correspond to a source device (100)
- a device receiving video/audio data may correspond to a sink device (200).
- cables and connectors may be provided as physical devices that connect the two devices to support data transmission and reception.
- Cables and connectors can perform four-channel pairings that provide Transition Minimized Differential Signaling (TMDS) data channels and a TMDS clock channel.
- TMDS data channels can be used to carry video data, audio data, and auxiliary data.
- the AV system provides the VESA (Video Electronics Standards Association) Display Data Channel (DDC).
- DDC is used to exchange configuration and status information between source and sink devices.
- the CEC protocol can provide high-level control functions between various audiovisual products in the user environment and can be used optionally.
- the optional HEAC HDMI Ethernet and Audio Return Channel
- ARC Anaudio Return Channel
- Ethernet-compatible data networking between connected devices in the opposite direction from TMDS.
- Video data, audio data and additional data can be transmitted/received over three TMDS data channels.
- the TMDS clock which typically runs the video pixel rate, is transmitted over the TMDS clock channel.
- the TMDS clock can be used as a frequency reference for data recovery on the three TMDS data channels at the receiver.
- 8 bits of data per TMDS data channel can be converted into a 10-bit DC balanced, transition-minimized sequence that can be transmitted serially at a rate of 10 bits per TMDS clock period.
- AV systems To transmit audio data and additional data over TMDS channels, AV systems use a packet structure. To achieve high reliability for audio data and control data, data can be transmitted as 10-bit words generated using BCH error correction code and error reduction coding.
- a source device can read the Enhanced Extended Display Identification Data (E-EDID) of a DDC (Display Data Channel) sink device to find out the configuration information and possible functions of the sink device.
- E-EDID may also be referred to as EDID information hereinafter.
- the utility line can be used for optional extensions such as HEAC.
- the source device (100) can receive EDID (Extended Display Identification Data) information from the sink device (200) through a DDC channel.
- EDID Extended Display Identification Data
- the source device (100) can recognize configuration information and supported functions of the sink device (200) by parsing the received EDID information.
- the EDID information can include at least one block including various information about the sink device (200).
- EDID information may include information on the function and power supply capability of the sink device (200) in power transmission and reception.
- the source device (100) may recognize the power transmission/reception capability of the sink device (200) through this EDID information, and may transmit power to the sink device (200) or receive power from the sink device (200) accordingly.
- the source device (100) includes at least one of a display unit (110), a user input interface unit (120), a control unit (180), a transmitter (Tx), a memory unit (140), a storage unit (150), a multimedia unit (160), a power control unit (130), and a power supply unit (170).
- the sink device (200) includes at least one of an EDID EEPROM (210), a power control unit (220), a display unit (230), a user input interface unit (240), a receiver (Rx), a control unit (280), a power supply unit (250), a memory unit (260), and a multimedia unit (270).
- an EDID EEPROM 210
- a power control unit 220
- a display unit 230
- a user input interface unit 240
- a receiver (Rx) a control unit
- 280 control unit
- a power supply unit 250
- memory unit 260
- a multimedia unit 270
- the source device (100) represents a physical device that transmits or streams content stored in the storage unit (150) to the sink device (200).
- the source device (100) can send a request message to the sink device (200) or receive and process a request message received from the sink device (200).
- the source device (100) can provide a UI that processes and transmits a response message transmitted by the sink device (200) in response to the transmitted request message to the user, and when the source device (100) includes a display unit (110), this UI can be provided as a display.
- the source device (100) can request the sink device (200) for power to be supplied.
- the sink device (200) receives content from the source device (100) and can transmit a request message to the source device (100) or process a message received from the source device (100) and transmit a response message.
- the sink device (200) can also provide a UI (User Interface) that processes a response message received from the source device (100) and transmits it to a user, and when the sink device (200) includes a display unit, this UI can be provided as a display.
- the sink device (200) can supply power requested by the source device (100) to the source device (100).
- the user input interface unit (120, 240) can receive a user's action or input, and as an example, the user input interface (120, 240) can correspond to a remote controller, a voice receiving/recognition device, a touch input sensing/receiving device, etc.
- the control unit (180, 280) can control the overall operation of each device.
- the control unit (180, 280) performs communication between units included in each device and can control the operation of each unit.
- the memory unit (140, 260) represents a volatile physical device in which various types of data are temporarily stored.
- the storage unit (150) represents a non-volatile physical device capable of storing various types of data.
- EDID EEPROM (210) represents an EEPROM that stores EDID information.
- the above-described memory unit (140, 260), storage unit (150), and EDID EEPROM (210) all serve to store data, and they may all be collectively referred to as memory units.
- the display unit (110, 230) can display received data or content, data stored in the memory unit, UI, etc. under the control of the control unit (180, 280).
- the multimedia unit (160, 270) can play various types of multimedia.
- the multimedia unit (160, 270) may be implemented separately from the control unit (180, 280), or may be implemented as a single physical configuration with the control unit (180, 280).
- the power supply unit (170, 250) can supply power required for the operation of the source device (100), the sink device (200), and units included therein.
- the transmitter (Tx) is a unit equipped in the source device (100) that transmits and receives data, and performs data transmission and reception including not only audio/video data but also messages such as commands, requests, actions, and responses between devices.
- the receiver (Rx) is a unit equipped in the sink device (200) that transmits and receives data, and performs data transmission and reception including not only audio/video data but also messages such as commands, requests, actions, and responses between devices.
- the power control unit (130, 220) can manage and control power transmission and reception between devices via a transceiver.
- units other than the transmitter (Rx), receiver (Tx), and control unit (180, 280) may be optionally included in the source device (100) or the sink device (200) depending on the embodiment, and may not be essential component units.
- this specification proposes a method to ensure optimal operation of the AV system without a separate external device by enabling the wired interface in the AV system to support the power transfer function.
- a device that supplies (or transmits) power is referred to as a P-source device, and a device that supplies (or receives) power is referred to as a P-sync device.
- a device that simultaneously supports the functions of a P-source device and a P-sync device is referred to as a dual device.
- Adaptive-Sync is a technology used in the field of computer graphics that eliminates screen flicker and tearing by synchronizing between a source device (e.g. GPU) and a sink device (e.g. monitor).
- Adaptive-Sync was standardized by VESA (Video Electronics Standards Association) with DisplayPort Adaptive-Sync technology and HDMI VRR (Variable Refresh Rate) technology.
- Adaptive-Sync technology includes a communication protocol for communication between a Source device (e.g. GPU) and a Sink device (e.g. monitor) and a time-splitting technology for synchronization between a Source device (e.g. GPU) and a Sink device (e.g. monitor). Therefore, Adaptive-Sync technology includes the following technology fields:
- Source device e.g. GPU
- VTR Variable Refresh Rate
- AMD provides FreeSync
- NVIDIA provides G-Sync, each of their own VRR technologies.
- DisplayPort 1.2a or higher and HDMI 2.1 or higher are required as connection interfaces for Sink devices (e.g. monitors) that support Adaptive-Sync.
- Sink devices e.g. monitors
- the Source device e.g. GPU
- Sink device e.g. monitor
- a Sink device e.g. monitor
- a Sink device e.g. monitor
- Adaptive-Sync must support the VRR technology of the Source device (e.g. GPU).
- a Sink device e.g. monitor
- Adaptive-Sync must support a protocol for communicating with the Source device (e.g. GPU).
- Adaptive-Sync uses time-slicing technique to synchronize between a Sink device (e.g. monitor) and a Source device (e.g. GPU). This requires that the Source device (e.g. GPU) and the Sink device (e.g. monitor) use the same time-slicing technique.
- Adaptive-Sync technology encompasses a number of technologies, including graphics cards, communication protocols, sink devices (e.g. monitors), and time-slicing technology, all of which work together to make Adaptive-Sync possible.
- the source device may transmit on or before the lines specified above during the VBlank period.
- the Source device may transmit at the line specified above -or- earlier during the VBlank period.
- FIG. 2 is a diagram illustrating an example of Adaptive-Sync SDP transmission timing according to various embodiments of the present disclosure.
- the Source device can do one of the following:
- the Source device may perform either of the following:
- FIG. 3 is a diagram illustrating an example of an AUX flow diagram related to Adaptive-Sync operation according to various embodiments of the present disclosure.
- the Source device receives a hot plug detection (HPD) signal from the Sink device.
- HPD hot plug detection
- the Source device reads the EDID/DisplayID of the Sink device (EDID/DisplayID Read). That is, the Source device receives the EDID/DisplayID of the Sink device from the Sink device.
- the Source device reads the DPCD (DisplayPort Configuration Data) of the Sink device.
- DPCD DisplayPort Configuration Data
- the Source device can determine whether the Sink device supports Adaptive-Sync through DPCD.
- the Source device enables the Adaptive-Sync feature.
- the Sink device ignores the MSA Timing parameter value.
- the Source device transmits video stream data and Adaptive-Sync SDP to the Sink device. Synchronize the Adaptive Sync SDP and Vsync Pulse.
- DPCD DisplayPort Configuration Data Channel
- DPCD DisplayPort Configuration Data Channel
- a Sink device e.g. a monitor
- a Source device e.g. a GPU
- DP DPCD is used by a Source device (e.g. a GPU) to recognize a Sink device (e.g. a monitor), configure the functions of the Sink device (e.g. a monitor), and share the DP connection status with the Sink device (e.g. a monitor).
- the configurations related to Adaptive-Sync DPCD operation are as follows.
- the source device Before working on setting the video mode, the source device must check the following:
- the DPRX of the connected sink device complies with the VESA AdaptiveSync specification.
- a Source device Before video mode set operation, a Source device shall verify the following:
- VESA AdaptiveSync sink devices must meet the following:
- (2-8) Arm for Adaptive-Sync operation when the source device writes DPCD 00107h[7] 1 while video mode is set.
- the VESA AdaptiveSync Sink device must parse the Adaptive-Sync SDP payload data bytes and present the image within the latency constraints while meeting the Adaptive-Sync display CTS visual performance requirements (e.g., flicker performance greater than -50 dB, panel overdrive compensation, and responsive gray-to-gray transitions that do
- the source device follows the frame period increase and decrease limits of the sink device listed in the Adaptive-Sync data block (bytes 1 and 5, respectively).
- Adaptive-Sync SDP payload content is true.
- VESA AdaptiveSync sink devices must also meet the minimum visual performance requirements (e.g., -45 dB flicker performance) as long as the source device adheres to the min-max refresh range. This is true even if the Adaptive-Sync SDP payload content is false for one frame during the Adaptive-Sync operating mode transition.
- a VESA AdaptiveSync Sink device shall:
- a VESA AdaptiveSync Sink device shall parse Adaptive-Sync SDP payload data bytes and display an image within a latency limit while meeting Adaptive-Sync Display CTS visual performance mandates (e.g., flicker performance of -50 dB or better, a responsive gray-to-gray transition without causing panel overdrive compensation ghosting), as long as both of the following conditions are met:
- the VESA AdaptiveSync Sink device shall also meet the minimum visual performance mandates (e.g., a flicker performance of -45 dB) as long as the Source device honors the minimum-to-maximum refresh range even when the Adaptive-Sync SDP payload content is false for one frame during an Adaptive-Sync operation mode transition.
- the minimum visual performance mandates e.g., a flicker performance of -45 dB
- Table 1 below shows Table 2-220: DPCD Registers Used for Adaptive-Sync.
- FIG. 4 is a diagram illustrating an example of a structure of an EDID in which an EDID block, a CTA block, and a DisplayID block are mixed according to various embodiments of the present disclosure.
- EDID Extended Display Identification Data
- a source device e.g. GPU
- the source device e.g. GPU
- the optimal resolution, refresh rate, and other basic settings of the sink device e.g. monitor.
- EDID contains information about how the Sink device (e.g. monitor) was manufactured, including the manufacturer, model name, manufacturing date, resolution, and supported refresh rate.
- the Source device e.g. GPU
- the Source device can automatically set the optimal resolution and refresh rate of the Sink device (e.g. monitor), or the user can set them manually.
- the structure of EDID can be a mixture of EDID block, CTA block, and DisplayID block, and can be configured as an example as in Fig. 4.
- Sink since the Adaptive-Sync operation parameters are different for each block, Sink also displays two or more Adaptive-Sync operation parameters for compatibility with Legacy Source.
- the EDID is transmitted via the Data Display Channel (DDC).
- the DDC uses an I2C interface to enable communication between a source device (e.g. a GPU) and a sink device (e.g. a monitor).
- the source device e.g. a GPU
- requests EDID information from a sink device e.g. a monitor
- the sink device e.g. a monitor
- parameters related to Adaptive-Sync operation refer to the information about the Adaptive-Sync Data Block of DisplayID2.0/2.1 in EDID.
- Adaptive-Sync operation parameters for each Block can be expressed in a total of three types of Blocks as described below.
- FIG. 4 is a diagram illustrating an example of the structure of an Adaptive-Sync Data Block in DisplayID 2.0 according to various embodiments of the present disclosure.
- Table 2 below shows Table 4.51: Adaptive-Sync Data Block.
- N represents the number of Detailed Timing Descriptors in the data block.
- M represents the value of Offset 01h[6:4].
- Source device implementation shall accommodate varying fields for future extensibility.
- Table 3 below shows Table 4.52: Adaptive-Sync Operation Mode and Range Descriptor.
- Adaptive-Sync Second data packet is used for communication between a Source device (e.g. GPU) and a Sink device (e.g. monitor).
- the Source device e.g. GPU
- the Source device e.g. GPU
- the Sink device e.g. monitor
- the Source device e.g. GPU
- the Sink device e.g. monitor
- the Sink device e.g. monitor
- the Sink device e.g. monitor
- the information and size of Adaptive-Sync SDP may vary.
- the Adaptive-Sync SDP operation and the information on Header and Payload Data Bytes are as follows.
- An Adaptive-Sync-capable DP source device can enable Adaptive-Sync video transmission to a connected DP protocol converter only after verifying the following:
- a stream sink connected to a DP protocol converter indicates support for an Adaptive-Sync refresh rate range in its DisplayID or legacy EDID.
- the DP source device When transmitting Adaptive-Sync SDP, the DP source device must:
- Adaptive-Sync SDP must be transmitted in every video field.
- HW HW
- VStart[15:0] VSyncPolarity[0](VSP)
- VSyncWidth[14:0](VSW) are valid HWidth[15:0] and VHeight[15:0] while transmitting Adaptive-Sync SDP. That is, an Adaptive-Sync capable DP protocol converter MUST ignore only VTotal[15:0] while receiving Adaptive-Sync SDP.
- An Adaptive-Sync-capable DP Source device may enable an Adaptive-Sync video transmission to a plugged DP protocol converter only after verifying the following:
- DPCD 02214h[0] 1
- a DP Source device shall transmit an Adaptive-Sync SDP before enabling an Adaptive-Sync video transmission.
- a DP Source device When transmitting an Adaptive-Sync SDP, a DP Source device shall do the following:
- the Adaptive-Sync SDP shall be transmitted on every video field.
- HW HW
- VStart[15:0] VSyncPolarity[0]
- VSP VSyncPolarity[0]
- VSyncWidth[14:0] VSW
- an Adaptive-Sync-capable DP protocol converter shall ignore only VTotal[15:0] while receiving an Adaptive-Sync SDP.
- Table 4 shows Table 2-126: Adaptive-Sync SDP Header Bytes.
- Table 5 shows Table 2-127: Adaptive-Sync SDP Version 2 Payload Data Bytes.
- RFB Remote Frame Buffer
- FAVT mode Source device shall program DB4[1:0] and DB3 and DV4[5] to match the average video frame rate.
- the Source device sets DV4[6] 1, the Source device shall program DB5 to the value that the Source device is using for the maximum duration increase. The value does not indicate the instantaneous video frame-to-frame duration delta.
- a 0.00 value indicates that the Source device may invoke a maximum-to-minimum refresh rate transition across a single video frame boundary.
- the Source device shall keep the DB5 value less than or equal to the limit value reported by the Sink device in the Max Single Frame Duration Increase Allowed for Attaining the Low Flicker Performance byte (Byte 1) of the DisplayID Adaptive-Sync data block's Operation Mode and Range descriptor.
- DB7 7:0 Coasting VTotal7:0 in PR Active StateShall be programmed to the Coasting Vtotal LSB value that the Sink device shall use to maintain the refresh rate when the DPTX has suspended transmission of the Adaptive-Sync SDP in a PR Active state.
- DB7 00h when the Sink device does not support PR.
- DB8 7:0 Coasting VTotall15:8 in PR Active StateShall be programmed to the Coasting VTotal MSB value that the Sink device shall use to maintain the refresh rate when the DPTX has suspended transmission of the Adpative-Sync SDP in a PR Active state.
- DB8 00h when the Sink device does not support PR.
- OverDrive is a technology used in Sink devices (e.g. monitors) that minimizes motion blur by increasing the switching speed of pixels and reduces screen flicker by increasing the response speed.
- OverDrive in Sink devices e.g. monitors
- OverDrive is often used in Sink devices (e.g. monitors).
- Sink devices e.g. monitors
- have a fixed response time so when high-speed moving objects appear on the screen, motion blur can occur.
- OverDrive minimizes motion blur by increasing the rate at which pixels are switched, and reduces screen flicker by increasing the response time.
- OverDrive is set too high, high-speed moving objects can appear to shake when passing on the screen, and an appropriate OverDrive setting is necessary to solve this problem.
- the Overdrive Table is one of the functions provided by the manufacturer of the sink device (e.g. monitor), and is a table for reference when adjusting the Overdrive function of the sink device (e.g. monitor).
- the Overdrive Table can usually be downloaded from the manufacturer's website, and through this, the user can appropriately adjust the Overdrive function of the sink device (e.g. monitor) to achieve optimal screen performance.
- the Overdrive Table is provided with the model name of the Sink device (e.g. monitor), and various Overdrive options are provided for each model. Users can change the Overdrive settings of the Sink device (e.g. monitor) by referring to the Overdrive Table, and through this, problems such as screen shaking and motion blur can be minimized and optimal screen performance can be achieved.
- Adaptive-Sync Frame Range Since the DisplayPort standard has limitations on the transmission speed depending on the supported resolution and whether or not DSC (Display Stream Compression) is used, Adaptive-Sync Frame Range also operates differently. (See Example 1 below.) Therefore, Multi Frame Adaptive-Sync Range must be indicated in EDID, and in this case, appropriate rules are required for proper operation. However, appropriate rules for Multi Frame Adaptive-Sync to operate have not been defined up to now.
- Example 1-1 e.g. Max Frame rate support according to resolution when UHBR20 is supported in DisplayPort 2.1
- Example 1-2 e.g. Max Frame rate support according to DSC usage when UHBR20 is supported in DisplayPort 2.1
- the Source device will only operate within that range, as in Example 2 below.
- the user gets Adaptive-Sync operation from 60hz - 240hz.
- 120hz is suitable for both D1 and D2, so there are two choices for the source.
- the highest refresh rate is always 120hz for T1, but the lowest refresh rate changes depending on the descriptor source selected.
- the user gets Adaptive-Sync operation from 40hz - 120hz.
- the user gets Adaptive-Sync operation from 60hz - 120hz.
- the user gets Adaptive-Sync operation from 40hz - 100hz.
- the user gets Adaptive-Sync operation from 60hz - 100hz.
- the user gets Adaptive-Sync operation from 24hz - 100hz.
- the source will be 50hz away from the D2, so there are two choices.
- the highest refresh rate will always be 50hz for the T3, but the lowest refresh rate will vary depending on the descriptor source chosen.
- the user gets Adaptive-Sync operation at 40hz - 50hz.
- the user gets Adaptive-Sync operation from 24hz - 50hz.
- source When user uses T1, source has 2 choices as 120hz fits into both D1 & D2. The highest refresh rate is always T1's 120hz, but lowest refresh rate is changing base on the descriptor source choose.
- source has 3 choices as 100hz fits all 3 range descriptors.
- the highest refresh rate is always T2's 100hz, but lowest refresh rate is changing base on the descriptor source choose.
- source has 2 choices as 50hz is out of D2.
- the highest refresh rate is always T3's 50hz, but lowest refresh rate is changing base on the descriptor source choose.
- the purpose of various embodiments of the present disclosure is to provide a method and device for indicating Sink EDID Multi Frame Range and a method and device for setting Adaptive-Sync Frame Range of Source to ensure compatibility between devices supporting Multi Adaptive-Sync (multiple Frame ranges).
- the purpose of various embodiments of the present disclosure is to provide a method and device for optimizing the picture quality and performance of Sink (e.g. monitor) and supporting a user to enjoy a comfortable game and video playback experience by establishing requirements for proper operation of Adaptive-Sync operation.
- Adaptive-Sync When using the Adaptive-Sync feature, it operates using the frame rate of the selected Video Timing and the frame range that matches the maximum frame among the frame ranges defined in the Adaptive-Sync data block.
- Video Timing When Video Timing is selected as 4k@240hz in OS, it operates at 60hz - 240hz using Adaptive-Sync Frame Range2.
- Video Timing When Video Timing is selected as 4k@120hz in OS, it operates at 40hz - 120hz using Adaptive-Sync Frame Range1.
- Video Timing When Video Timing is selected as 4k@100hz in OS, it operates at 24hz - 100hz using Adaptive-Sync Frame Range3.
- the Sink device uses Multi Frame Rate
- the maximum value of the Frame Rate and Adaptive-Sync frame range of the Video timing must be entered in EDID.
- Overdrive tuning must be performed for each Frame Range. In this case, by tuning the optimal Overdrive value for each Frame Range, excessive Over/Undershoot can be prevented and the screen quality can be improved.
- Figure 5 is a diagram illustrating an example of a process for determining a Frame Range when a Source device performs an Adaptive-Sync operation.
- Figure 5 is an example embodiment where only a single Adaptive-Sync Data Block Range is supported.
- the Source device receives HPD (hot plug detection) from the Sink device.
- the Source device identifies itself by receiving the EDID (extended display identification data)/DPID (DisplayID) from the Sink device. That is, the Source device reads the EDID (extended display identification data)/DPID (DisplayID) of the Sink device.
- the Source device identifies the adaptive-sync range supported by the Sink device from the received EDID/DPID. That is, the Source device reads the adaptive-sync range from the EDID/DPID.
- the Source device operates with an adaptive sync range. That is, the Source device processes the audio/video signals and transmits them to the Sink device based on the adaptive sync range.
- FIG. 6 is a diagram illustrating an example of a process for determining a Frame Range when a Source device performs an Adaptive-Sync operation according to various embodiments of the present disclosure.
- Figure 6 is an example of a case where multiple Adaptive-Sync Data Block Ranges are supported.
- the Source device receives and identifies the EDID (extended display identification data)/DPID (DisplayID) from the Sink device. That is, the Source device reads the EDID (extended display identification data)/DPID (DisplayID) of the Sink device.
- the source device determines whether the received EDID/DPID contains an Adaptive-Sync Data Block.
- the Source device determines whether there are multiple Adaptive-Sync Data Block Ranges in the Adaptive-Sync Data Block.
- the Source device selects a frame range based on the environment in which the video timing frame rate matches the maximum frame rate of the multiple frame ranges.
- the Source device Based on the selected frame range, the Source device operates with an adaptive sync range (1 frame range). That is, the Source device processes the audio/video signals based on the selected adaptive sync range and transmits them to the Sink device.
- an adaptive sync range (1 frame range). That is, the Source device processes the audio/video signals based on the selected adaptive sync range and transmits them to the Sink device.
- the Source device If there is no Adaptive-Sync Data Block in EDID/DPID, or if there are no multiple Adaptive-Sync Data Block Ranges in the Adaptive-Sync Data Block (i.e., there is only one Adaptive-Sync Data Block Range in the Adaptive-Sync Data Block), the Source device operates with one adaptive-sync range. That is, the Source device processes the audio/video signal based on one adaptive-sync range and transmits it to the Sink device.
- Sink supports Multi Adaptive-Sync Range and displays the EDID according to the maximum value of Video Timing and Adaptive-Sync Range. Also, Overdrive tuning is performed for each Adaptive-Sync Frame Range to prevent excessive over/undershoot from occurring regardless of which Adaptive-Sync Frame Range area the Source selects.
- [Frame Range] must be set to the Max value of Adaptive-Sync Range by referring to Video Timing and displayed in EDID as shown below.
- the Sink manufacturer tunes OverDrive for each '40hz - 120hz', '60hz - 240hz', and '24hz - 100hz' Frame Range, and brings the OD Table differently for each Frame Range.
- FIG. 7 is a diagram illustrating an example of an operation process of a source device according to various embodiments of the present disclosure.
- a method performed by a source device is provided.
- a source device includes a processor; a memory; and a transceiver.
- the memory stores instructions for performing operations based on what is executed by the processor.
- the Source device receives a hot plug detection (HPD) signal from the Sink device.
- HPD hot plug detection
- the source device receives first information related to EDID (Extended Display Identification) or DPID (DisplayID) from the sink device.
- EDID Extended Display Identification
- DPID DisplayID
- the Source device determines a specific video timing frame rate based on a plurality of Video Timing Frame Rates included in the first information of the Sink device.
- step S704 if the Adaptive-Sync Data Block included in the first information is related to a plurality of Adaptive-Sync Frame Ranges, the Source device determines a specific Adaptive-Sync Frame Range among the plurality of Adaptive-Sync Frame Ranges, the maximum frame rate of which corresponds to the specific video timing frame rate.
- the source device transmits processed information based on the specific adaptive synchronization frame range to the sink device.
- the specific adaptive synchronization frame range can be determined as one adaptive synchronization frame range to which the adaptive synchronization data block relates.
- the specific video timing frame rate can be determined from among the plurality of video timing frame rates or multiple Video Timing Frame Rates.
- the plurality of video timing frame rates can be generated by applying DSC to the plurality of video timing frame rates.
- the maximum frame rate of the particular adaptive synchronization frame range can be equal to the particular video timing frame rate.
- the specific video timing rate may be determined by input information to the source device or by an arbitrary selection by the source device.
- the specific adaptive synchronization frame range can be determined based on the specific video timing.
- the processed information may be based on tuning of an overdrive value for the particular adaptive synchronization frame range.
- a Source device includes a processor; a memory; and a transceiver, wherein the processor can be configured to perform a method of operating the Source device according to FIG. 7.
- a device for controlling a Source device includes at least one processor and at least one memory operably connected to the at least one processor.
- the at least one memory may be configured to store instructions for performing a method of operating the Source device according to FIG. 7 based on being executed by the at least one processor.
- one or more non-transitory computer readable media storing one or more instructions.
- the one or more instructions when executed by one or more processors, perform operations, the operations may include a method of operating a Source device according to FIG. 7.
- the claims described in the various embodiments of the present disclosure may be combined in various ways.
- the technical features of the method claims of the various embodiments of the present disclosure may be combined and implemented as a device, and the technical features of the device claims of the various embodiments of the present disclosure may be combined and implemented as a method.
- the technical features of the method claims and the technical features of the device claims of the various embodiments of the present disclosure may be combined and implemented as a device, and the technical features of the method claims and the technical features of the device claims of the various embodiments of the present disclosure may be combined and implemented as a method.
Landscapes
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
According to various embodiments of the present disclosure, provided is an operation method of a source device, the method comprising the steps of: receiving a hot plug detection (HPD) signal from a sink device; receiving extended display identification (EDID) and a DisplayID from the sink device; determining an adaptive sync data block and a frame rate on the basis of the EDID and the DisplayID of the sink device; and transmitting, to the sink device, information regarding the determined frame rate, and a session description protocol (SDP) generated on the basis of the determined adaptive sync data block.
Description
본 개시(disclosure)는 적응형 동기화(Adaptive-Sync)의 동작을 수행하기 위한 장치 및 방법에 관한 것이다. 구체적으로, 본 개시는 다중 적응형 동기화 프레임 범위 중 최적의 적응형 동기화 프레임 범위를 결정하기 위한 장치 및 방법에 관한 것이다.The present disclosure relates to a device and method for performing an adaptive-sync operation. Specifically, the present disclosure relates to a device and method for determining an optimal adaptive-sync frame range among multiple adaptive-sync frame ranges.
DisplayPort 표준에서는 지원되는 해상도와 DSC(Display Stream Compression) 사용 여부에 따라 전송 속도에 제한이 있기 때문에 Adaptive-Sync Frame Range도 이에 따라 다르게 동작 된다. 그래서 EDID에 Multi Frame Adaptive-Sync Range를 표기해야 하며, 이 경우 올바르게 작동하기 위해서 적절한 규칙이 필요하다. 그러나 현재까지는 Multi Frame Adaptive-Sync가 작동하기 위한 적절한 규칙이 정의되어 있지 않았다. Since the DisplayPort standard has limitations on the transmission speed depending on the supported resolution and whether or not DSC (Display Stream Compression) is used, Adaptive-Sync Frame Range also operates differently. Therefore, Multi Frame Adaptive-Sync Range must be indicated in EDID, and in this case, appropriate rules are required for proper operation. However, appropriate rules for Multi Frame Adaptive-Sync to operate have not been defined up to now.
Adaptive-Sync Frame Range가 60Hz에서 240Hz로 설정되어 있을 때, Adaptive-Sync 모드에서는 Max Frame Range인 240Hz에서 동작하지 않고 120Hz에서 동작하게 되어, OverDrive가 240Hz로 튜닝이 되어 있는 경우 튜닝되지 않은 120Hz에서 동작시에는 과도한 Over/Undershoot이 발생할 수 있다. Adaptive-Sync 기술이 적용된 Sink(e.g. 모니터)에서는 Frame Range에 따른 OverDrive 튜닝을 진행할 때, Max Frame Range를 기준으로 튜닝하다 그보다 낮은 주파수에서는 튜닝이 되지 않았기 때문에(Max에서만 튜닝) 과도한 Over/Undershoot이 발생하여 문제가 된다. When the Adaptive-Sync Frame Range is set from 60Hz to 240Hz, in Adaptive-Sync mode, it does not operate at the Max Frame Range of 240Hz, but at 120Hz. Therefore, if OverDrive is tuned to 240Hz, excessive Over/Undershoot may occur when operating at the untuned 120Hz. In a Sink (e.g. monitor) with Adaptive-Sync technology applied, when OverDrive tuning according to the Frame Range is performed, it is tuned based on the Max Frame Range, and because tuning is not performed at frequencies lower than that (tuning only at Max), excessive Over/Undershoot occurs, which causes problems.
그러므로 Multi Frame Adaptive-Sync가 올바르게 작동하기 위해서는 Frame Range의 Max값만 참조하는 Source와 Sink간의 표준화된 규약이 필요하다. 이러한 표준화가 이루어진다면 Adative-Sync 지원 기기는 Multi Frame Adaptive-Sync를 자동으로 설정하고 최적의 성능을 얻을 수 있다.Therefore, in order for Multi Frame Adaptive-Sync to work properly, a standardized convention between Source and Sink is needed that only refers to the Max value of the Frame Range. If this standardization is achieved, devices that support Adaptive-Sync can automatically set up Multi Frame Adaptive-Sync and achieve optimal performance.
상술한 문제점을 해결하기 위해, 본 개시는 적응형 동기화(Adaptive-Sync)의 동작을 수행하기 위한 장치 및 방법을 제공한다.To solve the above-described problems, the present disclosure provides a device and method for performing an operation of adaptive synchronization.
본 개시는 다중 적응형 동기화 프레임 범위 중 최적의 적응형 동기화 프레임 범위를 결정하기 위한 장치 및 방법을 제공한다.The present disclosure provides a device and method for determining an optimal adaptive synchronization frame range among multiple adaptive synchronization frame ranges.
본 개시에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present disclosure are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by a person having ordinary skill in the technical field to which the present disclosure belongs from the description below.
본 개시의 다양한 실시 예들에 따르면, 소스(Source) 장치의 동작 방법에 있어서, 싱크(Sink) 장치로부터 HPD(hot plug detection) 신호를 수신하는 단계; 상기 싱크 장치로부터 EDID(Extended Display Identification) 또는 DPID(DisplayID)와 관련된 제1 정보를 수신하는 단계; 상기 싱크 장치의 상기 제1 정보에 포함되는 복수의 비디오 타이밍 프레임 레이트들(a plurality of Video Timing Frame Rates)에 기반하여 특정 비디오 타이밍 프레임 레이트를 결정하는 단계; 상기 제1 정보에 포함되는 적응형 동기화 데이터 블록(Adaptive-Sync Data Block)이 복수의 적응형 동기화 프레임 레인지들(a plurality of Adaptive-Sync Frame Ranges)와 관련되는 경우, 상기 복수의 적응형 동기화 프레임 레인지들 중 최대 프레임 레이트가 상기 특정 비디오 타이밍 프레임 레이트에 대응하는 특정 적응형 동기화 프레임 레인지를 결정하는 단계; 상기 특정 적응형 동기화 프레임 레인지에 기반하여 처리된 정보를 상기 싱크 장치에게 전송하는 단계를 포함하는 방법이 제공된다.According to various embodiments of the present disclosure, a method of operating a source device is provided, comprising: receiving a hot plug detection (HPD) signal from a sink device; receiving first information related to an Extended Display Identification (EDID) or a DisplayID (DPID) from the sink device; determining a specific video timing frame rate based on a plurality of Video Timing Frame Rates included in the first information of the sink device; when an Adaptive-Sync Data Block included in the first information is related to a plurality of Adaptive-Sync Frame Ranges, determining a specific adaptive-sync frame range whose maximum frame rate among the plurality of Adaptive-Sync Frame Ranges corresponds to the specific video timing frame rate; and transmitting processed information based on the specific adaptive-sync frame range to the sink device.
본 개시의 다양한 실시 예들에 따르면, 소스(Source) 장치에 있어서, 프로세서; 메모리; 및 송수신기(transceiver)를 포함하고, 상기 메모리는, 상기 프로세서에 의해 실행되는 것에 기반하여, 동작들을 수행하는 지시(instruction)들을 저장하며, 상기 동작들은, 싱크(Sink) 장치로부터 HPD(hot plug detection) 신호를 수신하는 단계; 상기 싱크 장치로부터 EDID(Extended Display Identification) 또는 DPID(DisplayID)와 관련된 제1 정보를 수신하는 단계; 상기 싱크 장치의 상기 제1 정보에 포함되는 복수의 비디오 타이밍 프레임 레이트들(a plurality of Video Timing Frame Rates)에 기반하여 특정 비디오 타이밍 프레임 레이트를 결정하는 단계; 상기 제1 정보에 포함되는 적응형 동기화 데이터 블록(Adaptive-Sync Data Block)이 복수의 적응형 동기화 프레임 레인지들(a plurality of Adaptive-Sync Frame Ranges)와 관련되는 경우, 상기 복수의 적응형 동기화 프레임 레인지들 중 최대 프레임 레이트가 상기 특정 비디오 타이밍 프레임 레이트에 대응하는 특정 적응형 동기화 프레임 레인지를 결정하는 단계; 상기 특정 적응형 동기화 프레임 레인지에 기반하여 처리된 정보를 상기 싱크 장치에게 전송하는 단계를 포함하는 소스 장치가 제공된다.According to various embodiments of the present disclosure, a source device comprises: a processor; a memory; and a transceiver, wherein the memory stores instructions for performing operations based on being executed by the processor, the operations comprising: receiving a hot plug detection (HPD) signal from a sink device; receiving first information related to an Extended Display Identification (EDID) or a DisplayID (DPID) from the sink device; determining a specific video timing frame rate based on a plurality of Video Timing Frame Rates included in the first information of the sink device; when an Adaptive-Sync Data Block included in the first information is related to a plurality of Adaptive-Sync Frame Ranges, determining a specific adaptive-sync frame range whose maximum frame rate among the plurality of Adaptive-Sync Frame Ranges corresponds to the specific video timing frame rate; A source device is provided, comprising a step of transmitting processed information based on the specific adaptive synchronization frame range to the sink device.
본 개시의 다양한 실시 예들에 따르면, 하나 이상의 명령어를 저장하는 하나 이상의 비일시적인(non-transitory) 컴퓨터 판독 가능 매체에 있어서, 상기 하나 이상의 명령어는, 하나 이상의 프로세서에 의해 실행되는 것에 기반하여, 동작들을 수행하고, 상기 동작들은, 싱크(Sink) 장치로부터 HPD(hot plug detection) 신호를 수신하는 단계; 상기 싱크 장치로부터 EDID(Extended Display Identification) 또는 DPID(DisplayID)와 관련된 제1 정보를 수신하는 단계; 상기 싱크 장치의 상기 제1 정보에 포함되는 복수의 비디오 타이밍 프레임 레이트들(a plurality of Video Timing Frame Rates)에 기반하여 특정 비디오 타이밍 프레임 레이트를 결정하는 단계; 상기 제1 정보에 포함되는 적응형 동기화 데이터 블록(Adaptive-Sync Data Block)이 복수의 적응형 동기화 프레임 레인지들(a plurality of Adaptive-Sync Frame Ranges)와 관련되는 경우, 상기 복수의 적응형 동기화 프레임 레인지들 중 최대 프레임 레이트가 상기 특정 비디오 타이밍 프레임 레이트에 대응하는 특정 적응형 동기화 프레임 레인지를 결정하는 단계; 상기 특정 적응형 동기화 프레임 레인지에 기반하여 처리된 정보를 상기 싱크 장치에게 전송하는 단계를 포함하는 컴퓨터 판독 가능 매체가 제공된다.According to various embodiments of the present disclosure, one or more non-transitory computer-readable media storing one or more instructions, wherein the one or more instructions, when executed by one or more processors, perform operations, the operations comprising: receiving a hot plug detection (HPD) signal from a sink device; receiving first information related to an Extended Display Identification (EDID) or a DisplayID (DPID) from the sink device; determining a specific video timing frame rate based on a plurality of Video Timing Frame Rates included in the first information of the sink device; when an Adaptive-Sync Data Block included in the first information is related to a plurality of Adaptive-Sync Frame Ranges, determining a specific adaptive-sync frame range whose maximum frame rate among the plurality of Adaptive-Sync Frame Ranges corresponds to the specific video timing frame rate; A computer-readable medium is provided, comprising a step of transmitting processed information based on the specific adaptive synchronization frame range to the sink device.
상술한 문제점을 해결하기 위해, 본 개시는 적응형 동기화(Adaptive-Sync)의 동작을 수행하기 위한 장치 및 방법을 제공할 수 있다.To solve the above-described problems, the present disclosure can provide a device and method for performing an operation of adaptive synchronization.
본 개시는 다중 적응형 동기화 프레임 범위 중 최적의 적응형 동기화 프레임 범위를 결정하기 위한 장치 및 방법을 제공할 수 있다.The present disclosure can provide a device and method for determining an optimal adaptive synchronization frame range among multiple adaptive synchronization frame ranges.
이하에 첨부되는 도면들은 본 개시에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 개시에 대한 실시 예들을 제공할 수 있다. 다만, 본 개시의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미할 수 있다.The drawings attached below are intended to aid in understanding the present disclosure and may provide embodiments of the present disclosure together with detailed descriptions. However, the technical features of the present disclosure are not limited to specific drawings, and the features disclosed in each drawing may be combined with each other to form a new embodiment. Reference numerals in each drawing may mean structural elements.
도 1은 본 개시의 다양한 실시 예들에 따른 시스템을 나타낸 블록도이다. FIG. 1 is a block diagram illustrating a system according to various embodiments of the present disclosure.
도 2는 본 개시의 다양한 실시 예들에 따른 Adaptive-Sync SDP 전송 타이밍의 일례를 도시한 도면이다.FIG. 2 is a diagram illustrating an example of Adaptive-Sync SDP transmission timing according to various embodiments of the present disclosure.
도 3은 본 개시의 다양한 실시 예들에 따른 Adaptive-Sync 동작과 관련된 AUX 흐름도의 일례를 도시한 도면이다.FIG. 3 is a diagram illustrating an example of an AUX flow diagram related to Adaptive-Sync operation according to various embodiments of the present disclosure.
도 4은 본 개시의 다양한 실시 예들에 따른 DisplayID 2.0에서의 Adaptive-Sync Data Block의 구조의 일례를 도시한 도면이다.FIG. 4 is a diagram illustrating an example of the structure of an Adaptive-Sync Data Block in DisplayID 2.0 according to various embodiments of the present disclosure.
도 5은 Source 장치가 Adaptive-Sync 동작을 수행할 경우 Frame Range를 결정하는 과정의 일례를 도시한 도면이다.Figure 5 is a diagram illustrating an example of a process for determining a Frame Range when a Source device performs an Adaptive-Sync operation.
도 6은 본 개시의 다양한 실시 예들에 따른 Source 장치가 Adaptive-Sync 동작을 수행할 경우 Frame Range를 결정하는 과정의 일례를 도시한 도면이다.FIG. 6 is a diagram illustrating an example of a process for determining a Frame Range when a Source device performs an Adaptive-Sync operation according to various embodiments of the present disclosure.
도 7은 본 개시의 다양한 실시 예들에 따른 Source 장치의 동작 방법의 일례를 도시한 도면이다.FIG. 7 is a diagram illustrating an example of an operation method of a source device according to various embodiments of the present disclosure.
본 개시의 다양한 실시 예들에서 "A 또는 B(A or B)"는 "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 달리 표현하면, 본 개시의 다양한 실시 예들에서 "A 또는 B(A or B)"는 "A 및/또는 B(A and/or B)"으로 해석될 수 있다. 예를 들어, 본 개시의 다양한 실시 예들에서 "A, B 또는 C(A, B or C)"는 "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다.In various embodiments of the present disclosure, “A or B” can mean “only A,” “only B,” or “both A and B.” In other words, in various embodiments of the present disclosure, “A or B” can be interpreted as “A and/or B.” For example, in various embodiments of the present disclosure, “A, B or C” can mean “only A,” “only B,” “only C,” or “any combination of A, B and C.”
본 개시의 다양한 실시 예들에서 사용되는 슬래쉬(/)나 쉼표(comma)는 "및/또는(and/or)"을 의미할 수 있다. 예를 들어, "A/B"는 "A 및/또는 B"를 의미할 수 있다. 이에 따라 "A/B"는 "오직 A", "오직 B", 또는 "A와 B 모두"를 의미할 수 있다. 예를 들어, "A, B, C"는 "A, B 또는 C"를 의미할 수 있다.In various embodiments of the present disclosure, a slash (/) or a comma may mean "and/or". For example, "A/B" may mean "A and/or B". Accordingly, "A/B" may mean "only A", "only B", or "both A and B". For example, "A, B, C" may mean "A, B, or C".
본 개시의 다양한 실시 예들에서 "적어도 하나의 A 및 B(at least one of A and B)"는, "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 또한, 본 개시의 다양한 실시 예들에서 "적어도 하나의 A 또는 B(at least one of A or B)"나 "적어도 하나의 A 및/또는 B(at least one of A and/or B)"라는 표현은 "적어도 하나의 A 및 B(at least one of A and B)"와 동일하게 해석될 수 있다.In various embodiments of the present disclosure, “at least one of A and B” can mean “only A,” “only B,” or “both A and B.” Furthermore, in various embodiments of the present disclosure, the expressions “at least one of A or B” or “at least one of A and/or B” can be interpreted as equivalent to “at least one of A and B.”
또한, 본 개시의 다양한 실시 예들에서 "적어도 하나의 A, B 및 C(at least one of A, B and C)"는, "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다. 또한, "적어도 하나의 A, B 또는 C(at least one of A, B or C)"나 "적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)"는 "적어도 하나의 A, B 및 C(at least one of A, B and C)"를 의미할 수 있다.Additionally, in various embodiments of the present disclosure, “at least one of A, B and C” can mean “only A,” “only B,” “only C,” or “any combination of A, B and C.” Additionally, “at least one of A, B or C” or “at least one of A, B and/or C” can mean “at least one of A, B and C.”
도 1은 본 개시의 다양한 실시 예들에 따른 시스템을 나타낸 블록도이다. FIG. 1 is a block diagram illustrating a system according to various embodiments of the present disclosure.
이하에서는, 비디오/오디오/컨트롤 데이터를 송수신하는 기기들을 통칭하여 AV(audio/video) 시스템이라 지칭하기로 한다. AV 시스템의 예시로는 HDMI, DisplayPort 등이 있다.Hereinafter, devices that transmit and receive video/audio/control data are collectively referred to as AV (audio/video) systems. Examples of AV systems include HDMI and DisplayPort.
도 1을 참조하면, AV 시스템은 소스 기기(100) 및 싱크 기기(200)를 포함할 수 있다. 특히, AV 시스템에서 디오/오디오 데이터를 전송하는 기기는 소스 기기(100)에 해당하며, 비디오/오디오 데이터를 수신하는 기기는 싱크 기기(200)에 해당할 수 있다. 이때, 두 기기를 연결하여 데이터 송수신을 지원하는 물리적 장치로서 케이블 및 커넥터들이 제공될 수 있다.Referring to FIG. 1, an AV system may include a source device (100) and a sink device (200). In particular, a device transmitting audio/video data in the AV system may correspond to a source device (100), and a device receiving video/audio data may correspond to a sink device (200). At this time, cables and connectors may be provided as physical devices that connect the two devices to support data transmission and reception.
케이블 및 커넥터들은 TMDS(Transition Minimized Differential Signaling) 데이터 채널 및 TMDS 클럭 채널을 제공하는 4개 채널의 페어링을 수행할 수 있다. TMDS 데이터 채널들은 비디오 데이터, 오디오 데이터 및 부가(auxiliary) 데이터를 전달하는데 사용될 수 있다. Cables and connectors can perform four-channel pairings that provide Transition Minimized Differential Signaling (TMDS) data channels and a TMDS clock channel. The TMDS data channels can be used to carry video data, audio data, and auxiliary data.
추가로, AV 시스템은 VESA(Video Electronics Standards Association) DDC(Display Data Channel)를 제공한다. DDC는 소스 기기와 싱크 기기간의 구성(Configuration) 및 상태(status) 정보 교환에 사용된다. CEC 프로토콜은 사용자 환경의 다양한 오디오 비주얼 제품들 간의 하이-레벨의 컨트롤 기능을 제공할 수 있으며, 옵셔널(optional)하게 사용될 수도 있다. 또한, 옵셔널 HEAC(HDMI Ethernet and Audio Return Channel)는 TMDS로부터 반대 방향에서 ARC(Audio Return Channel) 및 연결된 기기들 간의 이더넷(Ethernet) 호환 데이터 네트워킹을 제공할 수도 있다.Additionally, the AV system provides the VESA (Video Electronics Standards Association) Display Data Channel (DDC). DDC is used to exchange configuration and status information between source and sink devices. The CEC protocol can provide high-level control functions between various audiovisual products in the user environment and can be used optionally. In addition, the optional HEAC (HDMI Ethernet and Audio Return Channel) can provide ARC (Audio Return Channel) and Ethernet-compatible data networking between connected devices in the opposite direction from TMDS.
비디오 데이터, 오디오 데이터 및 부가 데이터는 3개의 TMDS 데이터 채널을 통해 전송/수신될 수 있다. TMDS 클록은, 통상적으로 비디오 픽셀 레이트를 운용(run)하며, TMDS 클럭 채널을 통해 전송된다. TMDS 클록은 수신기에서 3개의 TMDS 데이터 채널들에서의 데이터 리커버리(recovery)를 위한 기준 주파수(frequency reference)로서 사용될 수 있다. 소스 기기에서, TMDS 데이터 채널 당 8비트의 데이터는 10비트의 DC 밸런싱된, 트랜지션(transition)이 최소화된 시퀀스로 변환되어, TMDS 클럭 주기(period) 당 10 비트의 레이트(rate)로 시리얼하게 전송될 수 있다.Video data, audio data and additional data can be transmitted/received over three TMDS data channels. The TMDS clock, which typically runs the video pixel rate, is transmitted over the TMDS clock channel. The TMDS clock can be used as a frequency reference for data recovery on the three TMDS data channels at the receiver. At the source device, 8 bits of data per TMDS data channel can be converted into a 10-bit DC balanced, transition-minimized sequence that can be transmitted serially at a rate of 10 bits per TMDS clock period.
TMDS 채널을 통해 오디오 데이터 및 부가 데이터를 전송하기 위해, AV 시스템은 패킷 구조를 사용한다. 오디오 데이터 및 컨트롤 데이터를 위한 높은 신뢰도(reliability)를 달성하기 위해, 데이터는 BCH 에러 정정 코드 및 에러 감소 코딩을 사용하여 생성되는 10비트의 워드로서 전송될 수 있다.To transmit audio data and additional data over TMDS channels, AV systems use a packet structure. To achieve high reliability for audio data and control data, data can be transmitted as 10-bit words generated using BCH error correction code and error reduction coding.
소스 기기는 DDC(Display Data Channel) 싱크 기기의 E-EDID(Enhanced Extended Display Identification Data)를 판독하여 싱크 기기의 구성 정보 및 가능한 기능을 알아낼 수 있다. E-EDID는 이하에서 EDID 정보라고 지칭할 수도 있다.A source device can read the Enhanced Extended Display Identification Data (E-EDID) of a DDC (Display Data Channel) sink device to find out the configuration information and possible functions of the sink device. E-EDID may also be referred to as EDID information hereinafter.
유틸리티 라인은 HEAC와 같은 옵셔널한 확장 기능에 사용될 수 있다.The utility line can be used for optional extensions such as HEAC.
소스 기기(100)는 싱크 기기(200)로부터 DDC 채널을 통해 EDID(Extended Display Identification Data) 정보를 수신할 수 있다. 소스 기기(100)는 수신한 EDID 정보를 파싱하여 싱크 기기(200)의 구성 정보 및 지원 기능 등을 인식할 수 있다. EDID 정보는 싱크 기기(200)에 관한 다양한 정보를 포함하는 적어도 하나의 블록을 포함할 수 있다. The source device (100) can receive EDID (Extended Display Identification Data) information from the sink device (200) through a DDC channel. The source device (100) can recognize configuration information and supported functions of the sink device (200) by parsing the received EDID information. The EDID information can include at least one block including various information about the sink device (200).
특히, 본 발명의 일 실시예에 따른 EDID 정보는 전력 송수신에 있어 싱크 기기(200)의 기능 및 전력 공급 능력에 대한 정보를 포함할 수 있다. 소스 기기(100)는 이러한 EDID 정보를 통해 싱크 기기(200)의 전력 송/수신 능력을 인지하고, 이에 따라 싱크 기기(200)로 전력을 전송하거나 싱크 기기(200)로부터 전력을 수신할 수 있다. In particular, EDID information according to one embodiment of the present invention may include information on the function and power supply capability of the sink device (200) in power transmission and reception. The source device (100) may recognize the power transmission/reception capability of the sink device (200) through this EDID information, and may transmit power to the sink device (200) or receive power from the sink device (200) accordingly.
소스 기기(100)는 디스플레이 유닛(110), 사용자 입력 인터페이스 유닛(120), 컨트롤 유닛(180), 송신기(Tx), 메모리 유닛(140), 스토리지 유닛(150), 멀티미디어 유닛(160), 파워 제어 유닛(130), 및 파워 공급 유닛(170) 중 적어도 하나를 포함한다. The source device (100) includes at least one of a display unit (110), a user input interface unit (120), a control unit (180), a transmitter (Tx), a memory unit (140), a storage unit (150), a multimedia unit (160), a power control unit (130), and a power supply unit (170).
싱크 기기(200)는 EDID EEPROM(210), 파워 제어 유닛(220), 디스플레이 유닛(230), 사용자 입력 인터페이스 유닛(240), 수신기(Rx), 컨트롤 유닛(280), 파워 공급 유닛(250), 메모리 유닛(260) 및 멀티미디어 유닛(270) 중 적어도 하나를 포함한다. 이하에서, 동일한 동작을 수행하는 유닛에 대한 설명은 중복하지 않도록 한다.The sink device (200) includes at least one of an EDID EEPROM (210), a power control unit (220), a display unit (230), a user input interface unit (240), a receiver (Rx), a control unit (280), a power supply unit (250), a memory unit (260), and a multimedia unit (270). Hereinafter, descriptions of units performing the same operation will not be repeated.
소스 기기(100)는 스토리지 유닛(150)에 저장된 컨텐츠를 싱크 기기(200)로 전송하거나 스트리밍하는 물리적 장치를 나타낸다. 소스 기기(100)는 싱크 기기(200)에 요청(request) 메시지를 보내거나 싱크 기기(200)로부터 수신한 요청 메시지를 수신하여 처리할 수 있다. 소스 기기(100)는 전송한 요청 메시지에 대해 싱크 기기(200)가 전송하는 응답 메시지를 처리하여 사용자에게 전달하는 UI를 제공할 수 있으며, 소스 기기(100)가 디스플레이 유닛(110)을 포함하는 경우에는, 이 UI를 디스플레이로 제공할 수 있다. 또한, 소스 기기(100)는 공급받고자 하는 전력을 싱크 기기(200)에 요청할 수 있다.The source device (100) represents a physical device that transmits or streams content stored in the storage unit (150) to the sink device (200). The source device (100) can send a request message to the sink device (200) or receive and process a request message received from the sink device (200). The source device (100) can provide a UI that processes and transmits a response message transmitted by the sink device (200) in response to the transmitted request message to the user, and when the source device (100) includes a display unit (110), this UI can be provided as a display. In addition, the source device (100) can request the sink device (200) for power to be supplied.
싱크 기기(200)는 소스 기기(100)로부터 컨텐츠를 수신하며, 소스 기기(100)에 요청 메시지를 전송하거나 소스 기기(100)로부터 수신한 메시지를 처리하여 응답 메시지를 전송할 수 있다. 싱크 기기(200) 역시 소스 기기(100)로부터 수신하는 응답 메시지를 처리하여 사용자에게 전달하는 UI(User Interface)를 제공할 수 있으며, 싱크 기기(200)가 디스플레이 유닛을 포함하는 경우에는, 이 UI를 디스플레이로 제공할 수 있다. 또한, 싱크 기기(200)는 소스 기기(100)에서 요청한 전력을 소스 기기(100)로 공급할 수 있다. The sink device (200) receives content from the source device (100) and can transmit a request message to the source device (100) or process a message received from the source device (100) and transmit a response message. The sink device (200) can also provide a UI (User Interface) that processes a response message received from the source device (100) and transmits it to a user, and when the sink device (200) includes a display unit, this UI can be provided as a display. In addition, the sink device (200) can supply power requested by the source device (100) to the source device (100).
사용자 입력 인터페이스 유닛(120, 240)은 사용자의 액션 또는 입력을 수신할 수 있으며, 실시예로서 사용자 입력 인터페이스(120, 240)는 리모트 컨트롤러, 음성 수신/인식 장치, 터치 입력 센싱/수신 장치 등에 해당할 수 있다.The user input interface unit (120, 240) can receive a user's action or input, and as an example, the user input interface (120, 240) can correspond to a remote controller, a voice receiving/recognition device, a touch input sensing/receiving device, etc.
컨트롤 유닛(180, 280)은 각 기기의 전반적인 동작을 제어할 수 있다. 특히, 컨트롤 유닛(180, 280)은 각 기기에 포함된 유닛들 간의 통신을 수행하며, 각 유닛들의 동작을 제어할 수 있다.The control unit (180, 280) can control the overall operation of each device. In particular, the control unit (180, 280) performs communication between units included in each device and can control the operation of each unit.
메모리 유닛(140, 260)은 다양한 종류의 데이터가 임시적으로 저장되는 휘발성 물리 장치를 나타낸다.The memory unit (140, 260) represents a volatile physical device in which various types of data are temporarily stored.
스토리지 유닛(150)은 다양한 종류의 데이터를 저장할 수 있는 비휘발성 물리적 장치를 나타낸다.The storage unit (150) represents a non-volatile physical device capable of storing various types of data.
EDID EEPROM(210)은 EDID 정보를 저장하고 있는 EEPROM을 나타낸다.EDID EEPROM (210) represents an EEPROM that stores EDID information.
상술한 메모리 유닛(140, 260), 스토리지 유닛(150), EDID EEPROM(210)은 모두 데이터를 저장하는 역할을 하며, 이들을 모두 메모리 유닛으로 통칭할 수도 있다.The above-described memory unit (140, 260), storage unit (150), and EDID EEPROM (210) all serve to store data, and they may all be collectively referred to as memory units.
디스플레이 유닛(110, 230)은 수신된 데이터 또는 컨텐츠, 메모리 유닛에 저장된 데이터 및 UI 등을 컨트롤 유닛(180, 280)의 제어에 의해 디스플레이할 수 있다.The display unit (110, 230) can display received data or content, data stored in the memory unit, UI, etc. under the control of the control unit (180, 280).
멀티미디어 유닛(160, 270)은 다양한 종류의 멀티미디어 재생할 수 있다. 멀티 미디어 유닛(160, 270)은 컨트롤 유닛(180, 280)과 별도로 구현되거나, 컨트롤 유닛(180, 280)과 하나의 물리적 구성으로서 구현될 수도 있다.The multimedia unit (160, 270) can play various types of multimedia. The multimedia unit (160, 270) may be implemented separately from the control unit (180, 280), or may be implemented as a single physical configuration with the control unit (180, 280).
파워 공급 유닛(170, 250)은 소스 기기(100), 싱크 기기(200) 및 이들에 포함된 유닛들의 동작에 필요한 전력을 공급할 수 있다.The power supply unit (170, 250) can supply power required for the operation of the source device (100), the sink device (200), and units included therein.
송신기(Tx)는 소스 기기(100)에 구비되어 데이터를 송수신하는 유닛으로서, 오디오/비디오 데이터뿐 아니라 기기간의 커맨드, 요청, 액션, 응답 등의 메시지를 포함하는 데이터 송수신을 수행한다.The transmitter (Tx) is a unit equipped in the source device (100) that transmits and receives data, and performs data transmission and reception including not only audio/video data but also messages such as commands, requests, actions, and responses between devices.
수신기(Rx)는 싱크 기기(200)에 구비되어 데이터를 송수신하는 유닛으로서, 오디오/비디오 데이터뿐 아니라 기기간의 커맨드, 요청, 액션, 응답 등의 메시지를 포함하는 데이터 송수신을 수행한다.The receiver (Rx) is a unit equipped in the sink device (200) that transmits and receives data, and performs data transmission and reception including not only audio/video data but also messages such as commands, requests, actions, and responses between devices.
파워 제어 유닛(130, 220)은 송수신기를 통한 기기간의 전력 송수신을 관리 및 제어할 수 있다. The power control unit (130, 220) can manage and control power transmission and reception between devices via a transceiver.
상술한 각 유닛들 중 송신기(Rx), 수신기(Tx), 컨트롤 유닛(180, 280)을 제외한 유닛들은 실시예에 따라 선택적으로 소스 기기(100) 또는 싱크 기기(200)에 포함될 수 있으며, 필수적인 구성 유닛에 해당하지 않을 수 있다. Among the above-described units, units other than the transmitter (Rx), receiver (Tx), and control unit (180, 280) may be optionally included in the source device (100) or the sink device (200) depending on the embodiment, and may not be essential component units.
기존에는 AV 시스템에서 소스 기기 및 싱크 기기간의 전력 전송이 지원되지 않았다. 그 결과, 장시간 동안 휴대용 기기를 구동할 경우, 최적의 구동을 위해 항상 외부 전원 케이블을 연결해야 하는 불편함이 존재하였다. 이러한 불편함을 해소하기 위해, 본 명세서에서는 AV 시스템에서 유선 인터페이스가 전력 전달 기능을 지원하도록 하여 외부의 별도 장치 없이도 AV 시스템의 최적의 구동을 보장하는 방법을 제안하기로 한다. Previously, power transfer between source devices and sink devices was not supported in AV systems. As a result, when operating portable devices for long periods of time, there was an inconvenience of always having to connect an external power cable for optimal operation. To solve this inconvenience, this specification proposes a method to ensure optimal operation of the AV system without a separate external device by enabling the wired interface in the AV system to support the power transfer function.
이하에서는 설명의 편의를 위해, 전력을 공급(또는 전송)하는 기기를 P소스 기기, 전력을 공급(또는 수신)받는 기기를 P싱크 기기라 지칭하기로 한다. 또한, P소스 기기 및 P싱크 기기의 기능을 동시에 지원하는 기기를 듀얼 기기라 지칭하기로 한다.For convenience of explanation, in the following, a device that supplies (or transmits) power is referred to as a P-source device, and a device that supplies (or receives) power is referred to as a P-sync device. In addition, a device that simultaneously supports the functions of a P-source device and a P-sync device is referred to as a dual device.
본 개시의 다양한 실시 예들에 대한 배경기술Background on Various Embodiments of the Present Disclosure
Adaptive-Sync 동작Adaptive-Sync operation
Adaptive-Sync는 컴퓨터 그래픽스 분야에서 사용되는 기술로, Source 장치(e.g. GPU)와 Sink 장치(e.g. 모니터) 간의 동기화를 맞춰 화면 깜빡임(Flicker) 현상과 티어링(Tearing)을 제거하는 기술이다. Adaptive-Sync는 VESA(Video Electronics Standards Association)에서 DisplayPort Adaptive-Sync 기술과 HDMI VRR(Variable Refresh Rate) 기술을 표준화 했다.Adaptive-Sync is a technology used in the field of computer graphics that eliminates screen flicker and tearing by synchronizing between a source device (e.g. GPU) and a sink device (e.g. monitor). Adaptive-Sync was standardized by VESA (Video Electronics Standards Association) with DisplayPort Adaptive-Sync technology and HDMI VRR (Variable Refresh Rate) technology.
Adaptive-Sync 기술은 Source 장치(e.g. GPU)와 Sink 장치(e.g. 모니터) 간의 통신을 위한 통신 프로토콜과 Source 장치(e.g. GPU)와 Sink 장치(e.g. 모니터) 간의 동기화를 위한 시간 분할 기술 등을 포함한다. 따라서 Adaptive-Sync 기술은 다음과 같은 기술 분야를 포함한다.Adaptive-Sync technology includes a communication protocol for communication between a Source device (e.g. GPU) and a Sink device (e.g. monitor) and a time-splitting technology for synchronization between a Source device (e.g. GPU) and a Sink device (e.g. monitor). Therefore, Adaptive-Sync technology includes the following technology fields:
- Source 장치(e.g. GPU) 기술: Adaptive-Sync를 지원하기 위해서는 Source 장치(e.g. GPU)가 Variable Refresh Rate(VRR) 기술을 지원해야 합니다. AMD는 FreeSync, NVIDIA는 G-Sync로 각각의 VRR 기술을 제공하고 있다.- Source device (e.g. GPU) technology: To support Adaptive-Sync, the source device (e.g. GPU) must support Variable Refresh Rate (VRR) technology. AMD provides FreeSync, and NVIDIA provides G-Sync, each of their own VRR technologies.
- 통신 프로토콜 기술: Adaptive-Sync를 지원하는 Sink 장치(e.g. 모니터) 연결 인터페이스로는 DisplayPort 1.2a 이상과 HDMI 2.1 이상이 필요하다. 또한 Adaptive-Sync를 사용하기 위해서는 Source 장치(e.g. GPU)와 Sink 장치(e.g. 모니터)가 같은 통신 프로토콜을 사용해야 한다.- Communication protocol technology: DisplayPort 1.2a or higher and HDMI 2.1 or higher are required as connection interfaces for Sink devices (e.g. monitors) that support Adaptive-Sync. In addition, in order to use Adaptive-Sync, the Source device (e.g. GPU) and Sink device (e.g. monitor) must use the same communication protocol.
- Sink 장치(e.g. 모니터) 기술: Adaptive-Sync를 지원하는 Sink 장치(e.g. 모니터)는 Source 장치(e.g. GPU)의 VRR 기술을 지원해야 한다. 또한 Adaptive-Sync를 지원하는 Sink 장치(e.g. 모니터)는 Source 장치(e.g. GPU)와의 통신을 위한 프로토콜을 지원해야 한다.- Sink device (e.g. monitor) technology: A Sink device (e.g. monitor) that supports Adaptive-Sync must support the VRR technology of the Source device (e.g. GPU). In addition, a Sink device (e.g. monitor) that supports Adaptive-Sync must support a protocol for communicating with the Source device (e.g. GPU).
- 시간 분할 기술: Adaptive-Sync는 Sink 장치(e.g. 모니터)와 Source 장치(e.g. GPU) 간의 동기화를 위해 시간 분할 기술을 사용한다. 이를 위해서는 Source 장치(e.g. GPU)와 Sink 장치(e.g. 모니터)가 동일한 시간 분할 기술을 사용해야 한다.- Time-slicing technique: Adaptive-Sync uses time-slicing technique to synchronize between a Sink device (e.g. monitor) and a Source device (e.g. GPU). This requires that the Source device (e.g. GPU) and the Sink device (e.g. monitor) use the same time-slicing technique.
Adaptive-Sync 기술은 그래픽스 카드, 통신 프로토콜, Sink 장치(e.g. 모니터), 시간 분할 기술 등 다양한 기술 분야를 포함하고 있으며, 이들 기술이 함께 작동하여 Adaptive-Sync가 가능하다.Adaptive-Sync technology encompasses a number of technologies, including graphics cards, communication protocols, sink devices (e.g. monitors), and time-slicing technology, all of which work together to make Adaptive-Sync possible.
라이브 프레임 전송 중 소스 장치 작동Source device operation during live frame transmission
PANEL REPLAY ENABLE 레지스터(DPCD 001B0h[0] = 1)의 소스 장치가 싱크 장치의 패널 재생 모드를 활성화하고 RECEIVER_ALPM_CONFIGURATION 레지스터의 ALPM 활성화 비트(DPCD 00116h[0] = 1)를 모두 설정한 소스 장치는 다음과 같다. 다음 중 하나에 해당하는 VBlank 라인에서 Adaptive-Sync SDP를 전송한다.A source device that enables panel replay mode on the sink device in the PANEL REPLAY ENABLE register (DPCD 001B0h[0] = 1) and sets the ALPM enable bit in the RECEIVER_ALPM_CONFIGURATION register (DPCD 00116h[0] = 1) is: Transmits an Adaptive-Sync SDP on the VBlank line that corresponds to one of the following:
(1) VSync 펄스의 리딩 에지 -또는-(1) Leading edge of VSync pulse -or-
(2) 그림 2-155에 표시된 대로 첫 번째 비디오 프레임에서 시작하여 VSync 펄스의 리딩 에지 앞 한 라인(2) One line before the leading edge of the VSync pulse starting from the first video frame as shown in Figure 2-155.
소스 장치가 두 비트를 모두 설정하지 않은 경우(DPCD 001B0h[0] = 0 및/또는 DPCD 00116h[0] = 0) 소스 장치는 VBlank 기간 동안 위에 지정된 라인 또는 그 이전에 전송할 수 있다.If the source device does not set both bits (DPCD 001B0h[0] = 0 and/or DPCD 00116h[0] = 0), the source device may transmit on or before the lines specified above during the VBlank period.
Source Device Operation during Live Frame TransmissionSource Device Operation during Live Frame Transmission
A Source device that has set both the Source Device Enables Panel Replay Mode in Sink Device bit in the PANEL REPLAY ENABLE register (DPCD 001B0h[0] = 1) and ALPM Enable bit in theRECEIVER_ALPM_CONFIGURATION register (DPCD 00116h[0] = 1) shall transmit the Adaptive-Sync SDP at the VBlank line that corresponds to either of the following:A Source device that has set both the Source Device Enables Panel Replay Mode in Sink Device bit in the PANEL REPLAY ENABLE register (DPCD 001B0h[0] = 1) and ALPM Enable bit in the RECEIVER_ALPM_CONFIGURATION register (DPCD 00116h[0] = 1) shall transmit the Adaptive-Sync SDP at the VBlank line that corresponds to either of the following:
(1) The VSync pulse's leading edge, -or-(1) The VSync pulse's leading edge, -or-
(2) One line before the VSync pulse's leading edge, starting with the first video frame,as illustrated in Figure 2-155(2) One line before the VSync pulse's leading edge, starting with the first video frame, as illustrated in Figure 2-155
When a Source device has not set both bits (DPCD 001B0h[0] = 0 and/or DPCD 00116h[0] = 0), the Source device may transmit at the line specified above -or- earlier during the VBlank period. When a Source device has not set both bits (DPCD 001B0h[0] = 0 and/or DPCD 00116h[0] = 0), the Source device may transmit at the line specified above -or- earlier during the VBlank period.
도 2는 본 개시의 다양한 실시 예들에 따른 Adaptive-Sync SDP 전송 타이밍의 일례를 도시한 도면이다.FIG. 2 is a diagram illustrating an example of Adaptive-Sync SDP transmission timing according to various embodiments of the present disclosure.
VSync 펄스의 리딩 에지 또는 한 라인 이전에 Adaptive-Sync SDP를 전송할지 여부에 대해서는 소스 장치에 다음 요구 사항이 적용된다.The following requirements apply to the source device regarding whether to transmit the Adaptive-Sync SDP one line before or after the leading edge of the VSync pulse:
(1) 싱크 장치의 DPCD 02214h[1] = 0일 때 소스 장치는 DPCD 0011Bh[7] = 0을 유지하고 첫 번째 절반 라인 또는 처음 3,840픽셀 주기 중 어느 것이든 VSync 펄스의 리딩 에지에 해당하는 라인에서 먼저 오는 것에서 Adaptive-Sync SDP를 전송해야 한다.(1) When DPCD 02214h[1] of the sink device is 0, the source device shall maintain DPCD 0011Bh[7] = 0 and transmit Adaptive-Sync SDP on the line corresponding to the leading edge of the VSync pulse in the first half line or in the first 3,840 pixel period, whichever comes first.
(2) Sink 디바이스의 DPCD 02214h[1] = 1일 때 Source 디바이스는 다음 중 하나를 수행할 수 있다.(2) When DPCD 02214h[1] of the Sink device = 1, the Source device can do one of the following:
(3) 비디오 모드 설정 중에 DPCD 0011Bh[7] = 1로 설정한 다음 라인 중 언제든지 전체 Adaptive-Sync SDP를 한 라인 일찍 전송한다.(3) During video mode setup, set DPCD 0011Bh[7] = 1 and then transmit the entire Adaptive-Sync SDP one line early at any time during the line.
(4) 비디오 모드 설정 중에 DPCD 0011Bh[7] = 0을 지우고 VSync 펄스의 리딩 에지에 해당하는 라인의 전반부 라인 또는 처음 1,920픽셀 주기 중 먼저 오는 것에서 Adaptive-Sync SDP를 전송한다.(4) Clear DPCD 0011Bh[7] = 0 during video mode setting and transmit Adaptive-Sync SDP in the first half of the line corresponding to the leading edge of the VSync pulse or in the first 1,920 pixel cycle, whichever comes first.
As for whether to transmit the Adaptive-Sync SDP on the VSync pulse's leading edge or one line earlier, the following mandates apply for the Source device:As for whether to transmit the Adaptive-Sync SDP on the VSync pulse's leading edge or one line earlier, the following mandates apply for the Source device:
(1) When the Sink device's DPCD 02214h[1] = 0, the Source device shall keep DPCD 0011Bh[7] = 0 and transmit the Adaptive-Sync SDP in the first half line -or- the first 3,840 pixel cycles, whichever comes first, on the line that corresponds to the VSync pulse's leading edge(1) When the Sink device's DPCD 02214h[1] = 0, the Source device shall keep DPCD 0011Bh[7] = 0 and transmit the Adaptive-Sync SDP in the first half line -or- the first 3,840 pixel cycles, whichever comes first, on the line that corresponds to the VSync pulse's leading edge
(2) When the Sink device's DPCD 02214h[1] = 1, the Source device may perform either of the following:(2) When the Sink device's DPCD 02214h[1] = 1, the Source device may perform either of the following:
(3) Set DPCD 0011Bh[7] = 1 during video mode set, and then transmit the entire Adaptive-Sync SDP one line earlier, at any time during the line, -or-(3) Set DPCD 0011Bh[7] = 1 during video mode set, and then transmit the entire Adaptive-Sync SDP one line earlier, at any time during the line, -or-
(4) Clear DPCD 0011Bh[7] = 0 during video mode set, and then transmit the Adaptive-Sync SDP in the first half line -or- the first 1,920 pixel cycles, whichever comes first, on the line that corresponds to the VSync pulse's leading edge(4) Clear DPCD 0011Bh[7] = 0 during video mode set, and then transmit the Adaptive-Sync SDP in the first half line -or- the first 1,920 pixel cycles, whichever comes first, on the line that corresponds to the VSync pulse's leading edge
Adaptive-Sync 동작 AUX Flow chartAdaptive-Sync operation AUX Flow chart
도 3은 본 개시의 다양한 실시 예들에 따른 Adaptive-Sync 동작과 관련된 AUX 흐름도의 일례를 도시한 도면이다.FIG. 3 is a diagram illustrating an example of an AUX flow diagram related to Adaptive-Sync operation according to various embodiments of the present disclosure.
도 3을 참조하면, Source 장치는 Sink 장치로부터 HPD(hot plug detection) 신호를 수신한다.Referring to FIG. 3, the Source device receives a hot plug detection (HPD) signal from the Sink device.
Source 장치는 Sink 장치의 EDID/디스플레이ID를 읽는다 (EDID/DisplayID Read). 즉, Source 장치는 Sink 장치로부터 Sink 장치의 EDID/디스플레이ID를 수신한다.The Source device reads the EDID/DisplayID of the Sink device (EDID/DisplayID Read). That is, the Source device receives the EDID/DisplayID of the Sink device from the Sink device.
Source 장치는 Sink 장치의 DPCD(DisplayPort Configuration Data)를 읽는다. DPCD는 00000h ~ 000FFh 및 02200h ~ 022FFh에 해당한다. Source 장치는 DPCD를 통해 Sink 장치의 Adaptive-Sync에 대한 지원 여부를 결정할 수 있다.The Source device reads the DPCD (DisplayPort Configuration Data) of the Sink device. DPCD corresponds to 00000h to 000FFh and 02200h to 022FFh. The Source device can determine whether the Sink device supports Adaptive-Sync through DPCD.
Source 장치는 DPCD에 00107h = 1을 쓰고 DPCD를 Sink 장치에게 전송한다. DPCD에 00107 = 1을 씀으로써 Source 장치는 Adaptive-Sync 기능을 활성화한다. Sink 장치는 MSA Timing parameter 값을 무시한다.The Source device writes 00107h = 1 to DPCD and transmits DPCD to the Sink device. By writing 00107 = 1 to DPCD, the Source device enables the Adaptive-Sync feature. The Sink device ignores the MSA Timing parameter value.
Adaptive-Sync의 활성화를 전제로, Source 장치는 Sink 장치에게 비디오 스트림 데이터(Video stream data) 및 Adaptive-Sync SDP를 전송한다. Adaptive Sync SDP와 Vsync Pulse를 동기화한다.Assuming Adaptive-Sync is enabled, the Source device transmits video stream data and Adaptive-Sync SDP to the Sink device. Synchronize the Adaptive Sync SDP and Vsync Pulse.
Adaptive-Sync 동작 관련 DPCDDPCD related to Adaptive-Sync operation
DPCD(DisplayPort Configuration Data Channel)는 DisplayPort 연결 인터페이스의 일부로, Sink 장치(e.g. 모니터)와 Source 장치(e.g. GPU) 간의 통신을 위한 데이터 채널이다. DP DPCD는 Source 장치(e.g. GPU)가 Sink 장치(e.g. 모니터)를 인식하고, Sink 장치(e.g. 모니터)의 기능을 설정하며, DP 연결 상태를 Sink 장치(e.g. 모니터)와 공유하는 데 사용된다. Adaptive-Sync DPCD 동작과 관련된 구성은 다음과 같다.DPCD (DisplayPort Configuration Data Channel) is a part of the DisplayPort connection interface, and is a data channel for communication between a Sink device (e.g. a monitor) and a Source device (e.g. a GPU). DP DPCD is used by a Source device (e.g. a GPU) to recognize a Sink device (e.g. a monitor), configure the functions of the Sink device (e.g. a monitor), and share the DP connection status with the Sink device (e.g. a monitor). The configurations related to Adaptive-Sync DPCD operation are as follows.
(1) 소스 장치 적응형 동기화 작업 필수 사항(1) Source device adaptive synchronization operation requirements
이 섹션에서는 다음 Adaptive-Sync 정책에 대한 원본 장치 규정을 정의한다.This section defines the source device specifications for the following Adaptive-Sync policies:
(1-1) 영상모드 설정 전과 설정 중(1-1) Before and during setting the video mode
(1-2) 라이브 프레임 전송 중(1-2) Transmitting live frames
비디오 모드 설정 작업 전에 소스 장치는 다음을 확인해야 한다.Before working on setting the video mode, the source device must check the following:
(1-3) 연결된 Sink 장치의 Stream Sink는 다음 VESA AdaptiveSync 요구 사항을 충족한다.(1-3) The Stream Sink of the connected Sink device meets the following VESA AdaptiveSync requirements:
(1-3-1) DisplayID Adaptive-Sync 데이터 블록 지원(1-3-1) DisplayID Adaptive-Sync data block support
(1-3-2) CVT v2.0 RB v3 타이밍 또는 DisplayID에 노출된 350ppm 오프셋으로 세부 타이밍을 지원한다.(1-3-2) Supports detailed timing with CVT v2.0 RB v3 timing or 350ppm offset exposed in DisplayID.
(1-4) 연결된 싱크 장치의 DPRX는 VESA AdaptiveSync 규정을 충족한다.(1-4) The DPRX of the connected sink device complies with the VESA AdaptiveSync specification.
(1-4-1) DPCD 00007h[6] = 1 및 DPCD 02207h[6] = 1(1-4-1) DPCD 00007h[6] = 1 and DPCD 02207h[6] = 1
(1-4-2) DPCD 02214h[0] = 1(1-4-2) DPCD 02214h[0] = 1
(1) Source Device Adaptive-Sync Operation Mandates(1) Source Device Adaptive-Sync Operation Mandates
This section defines Source device mandates for the following Adaptive-Sync policies:This section defines Source device mandates for the following Adaptive-Sync policies:
(1-1) Before and during video mode set(1-1) Before and during video mode set
(1-2) During live frame transmission(1-2) During live frame transmission
Before video mode set operation, a Source device shall verify the following:Before video mode set operation, a Source device shall verify the following:
(1-3) Stream Sink in the connected Sink device meets the following VESA AdaptiveSync mandates:(1-3) Stream Sink in the connected Sink device meets the following VESA AdaptiveSync mandates:
(1-3-1) Supports the DisplayID Adaptive-Sync data block(1-3-1) Supports the DisplayID Adaptive-Sync data block
(1-3-2) Supports the CVT v2.0 RB v3 timing -or- detailed timing with 350-ppm offset exposed in the DisplayID(1-3-2) Supports the CVT v2.0 RB v3 timing -or- detailed timing with 350-ppm offset exposed in the DisplayID
(1-4) DPRX in the connected Sink device meets the VESA AdaptiveSync mandates:(1-4) DPRX in the connected Sink device meets the VESA AdaptiveSync mandates:
(1-4-1) DPCD 00007h[6] = 1 and DPCD 02207h[6] = 1(1-4-1) DPCD 00007h[6] = 1 and DPCD 02207h[6] = 1
(1-4-2) DPCD 02214h[0] = 1(1-4-2) DPCD 02214h[0] = 1
(2) 싱크 장치 적응형 동기화 동작 필수사항(2) Requirements for adaptive synchronization operation of sink devices
이 섹션에서는 다음 Adaptive-Sync 정책에 대한 싱크 장치 규정을 정의한다.This section defines the sink device rules for the following Adaptive-Sync policies:
(2-1) 영상모드 설정 전과 설정 중(2-1) Before and during setting the video mode
(2-2) 라이브 프레임 전송 중(2-2) Transmitting live frames
VESA AdaptiveSync 싱크 장치는 다음을 충족해야 한다.VESA AdaptiveSync sink devices must meet the following:
(2-3) DisplayID Adaptive-Sync 데이터 블록 지원(2-3) DisplayID Adaptive-Sync data block support
(2-4) CVT v2.0 RB v3 타이밍 지원 또는 DisplayID에 노출된 350ppm 오프셋으로 세부 타이밍 지원(2-4) CVT v2.0 RB v3 timing support or detailed timing support with 350ppm offset exposed in DisplayID
(2-5) Adaptive-Sync SDP v2 지원 (HB2[4:0] = 02h)(2-5) Adaptive-Sync SDP v2 support (HB2[4:0] = 02h)
(2-6) 다음 Adaptive-Sync DPCD 기능 레지스터 비트를 기본값으로 설정한다.(2-6) Set the following Adaptive-Sync DPCD function register bits to their default values.
(2-6-1) DPCD 00007h[6] = 1 및 DPCD 02207h[6] = 1(2-6-1) DPCD 00007h[6] = 1 and DPCD 02207h[6] = 1
(2-6-2) DPCD 02214h[0] = 1(2-6-2) DPCD 02214h[0] = 1
(2-7) 필요에 따라 DPCD 02214h[1] = 1로 설정(2-7) Set DPCD 02214h[1] = 1 as required
(2-8) 비디오 모드가 설정된 동안 소스 장치가 DPCD 00107h[7] = 1을 쓸 때 Adaptive-Sync 작동을 위한 Arm이다.(2-8) Arm for Adaptive-Sync operation when the source device writes DPCD 00107h[7] = 1 while video mode is set.
(2-9) 싱크 기기는 DPCD 00107h[7] = 1를 설정한 레거시 소스 기기에 연결될 수 있으므로 비디오 모드 설정 동작 이후에 비디오 스트림 수신을 시작하므로 Adaptive-Sync SDP가 있는지 확인해야 하지만, Adaptive-Sync SDP를 전송하지 않는다. 다음 조건이 모두 충족되는 한, VESA AdaptiveSync Sink 장치는 Adaptive-Sync SDP 페이로드 데이터 바이트를 구문 분석하고 Adaptive-Sync 디스플레이 CTS 시각적 성능 요구 사항을 충족하면서 대기 시간 제한 내에 이미지를 표시해야 한다. (예: -50dB 이상의 깜박임 성능, 패널 오버드라이브 보상 고스팅을 유발하지 않는 응답성 회색-회색 전환):(2-9) Since the sink device may be connected to a legacy source device that sets DPCD 00107h[7] = 1 and will start receiving the video stream after the video mode is set, it must check for an Adaptive-Sync SDP, but it does not transmit an Adaptive-Sync SDP. As long as all of the following conditions are met, the VESA AdaptiveSync Sink device must parse the Adaptive-Sync SDP payload data bytes and present the image within the latency constraints while meeting the Adaptive-Sync display CTS visual performance requirements (e.g., flicker performance greater than -50 dB, panel overdrive compensation, and responsive gray-to-gray transitions that do not cause ghosting):
(2-10) 소스 장치는 Adaptive-Sync 데이터 블록(각각 바이트 1과 5)에 열거된 싱크 장치의 프레임 기간 증가 및 감소 제한을 따른다.(2-10) The source device follows the frame period increase and decrease limits of the sink device listed in the Adaptive-Sync data block (bytes 1 and 5, respectively).
(2-11) Adaptive-Sync SDP 페이로드 내용이 참이다. VESA AdaptiveSync 싱크 장치는 소스 장치가 최소-최대 새로 고침 범위를 준수하는 한 최소 시각적 성능 요구 사항(예: -45dB의 깜박임 성능)도 충족해야 한다. Adaptive-Sync 작동 모드 전환 중 한 프레임에 대해 Adaptive-Sync SDP 페이로드 콘텐츠가 거짓인 경우에도 마찬가지이다.(2-11) The Adaptive-Sync SDP payload content is true. VESA AdaptiveSync sink devices must also meet the minimum visual performance requirements (e.g., -45 dB flicker performance) as long as the source device adheres to the min-max refresh range. This is true even if the Adaptive-Sync SDP payload content is false for one frame during the Adaptive-Sync operating mode transition.
(2) Sink Device Adaptive-Sync Operation Mandates(2) Sink Device Adaptive-Sync Operation Mandates
This section defines Sink device mandates for the following Adaptive-Sync policies:This section defines Sink device mandates for the following Adaptive-Sync policies:
(2-1) Before and during video mode set(2-1) Before and during video mode set
(2-2) During live frame transmission(2-2) During live frame transmission
A VESA AdaptiveSync Sink device shall:A VESA AdaptiveSync Sink device shall:
(2-3) Support the DisplayID Adaptive-Sync data block(2-3) Support the DisplayID Adaptive-Sync data block
(2-4) Support the CVT v2.0 RB v3 timing -or- detailed timing with 350-ppm offset exposed in the DisplayID(2-4) Support the CVT v2.0 RB v3 timing -or- detailed timing with 350-ppm offset exposed in the DisplayID
(2-5) Support Adaptive-Sync SDP v2 (HB2[4:0] = 02h)(2-5) Support Adaptive-Sync SDP v2 (HB2[4:0] = 02h)
(2-6) Set the following Adaptive-Sync DPCD capability register bits as default:(2-6) Set the following Adaptive-Sync DPCD capability register bits as default:
(2-6-1) DPCD 00007h[6] = 1 and DPCD 02207h[6] = 1(2-6-1) DPCD 00007h[6] = 1 and DPCD 02207h[6] = 1
(2-6-2) DPCD 02214h[0] = 1(2-6-2) DPCD 02214h[0] = 1
(2-7) Set DPCD 02214h[1] = 1, as needed(2-7) Set DPCD 02214h[1] = 1, as needed
(2-8) Arm for Adaptive-Sync operation when a Source device writes DPCD 00107h[7] = 1 during video mode set(2-8) Arm for Adaptive-Sync operation when a Source device writes DPCD 00107h[7] = 1 during video mode set
(2-9) Sink device shall check for the presence of an Adaptive-Sync SDP as the Sink device starts receiving a video stream after video mode set operation because the Sink device may be connected to a legacy Source device that sets DPCD 00107h[7] = 1 but does not transmit an Adaptive-Sync SDP A VESA AdaptiveSync Sink device shall parse Adaptive-Sync SDP payload data bytes and display an image within a latency limit while meeting Adaptive-Sync Display CTS visual performance mandates (e.g., flicker performance of -50 dB or better, a responsive gray-to-gray transition without causing panel overdrive compensation ghosting), as long as both of the following conditions are met:(2-9) Sink device shall check for the presence of an Adaptive-Sync SDP as the Sink device starts receiving a video stream after video mode set operation because the Sink device may be connected to a legacy Source device that sets DPCD 00107h[7 ] = 1 but does not transmit an Adaptive-Sync SDP A VESA AdaptiveSync Sink device shall parse Adaptive-Sync SDP payload data bytes and display an image within a latency limit while meeting Adaptive-Sync Display CTS visual performance mandates (e.g., flicker performance of -50 dB or better, a responsive gray-to-gray transition without causing panel overdrive compensation ghosting), as long as both of the following conditions are met:
(2-10) Source device honors the Sink device's Frame Duration Increase and Decrease Limits that are enumerated in the Adaptive-Sync data block (Bytes 1 and 5, respectively)(2-10) Source device honors the Sink device's Frame Duration Increase and Decrease Limits that are enumerated in the Adaptive-Sync data block (Bytes 1 and 5, respectively)
(2-11) Adaptive-Sync SDP payload content is true(2-11) Adaptive-Sync SDP payload content is true
The VESA AdaptiveSync Sink device shall also meet the minimum visual performance mandates (e.g., a flicker performance of -45 dB) as long as the Source device honors the minimum-to-maximum refresh range even when the Adaptive-Sync SDP payload content is false for one frame during an Adaptive-Sync operation mode transition.The VESA AdaptiveSync Sink device shall also meet the minimum visual performance mandates (e.g., a flicker performance of -45 dB) as long as the Source device honors the minimum-to-maximum refresh range even when the Adaptive-Sync SDP payload content is false for one frame during an Adaptive-Sync operation mode transition.
(3) Adaptive-Sync에 사용되는 DPCD 레지스터(3) DPCD register used for Adaptive-Sync
(3) DPCD Registers used for Adaptive-Sync(3) DPCD Registers used for Adaptive-Sync
다음의 표 1은 Table 2-220: DPCD Registers Used for Adaptive-Sync를 나타낸다.Table 1 below shows Table 2-220: DPCD Registers Used for Adaptive-Sync.
TypeType | DPCD Register AddressDPCD Register Address | NameName |
CapabilityCapability | 0007h[6]0007h[6] |
DOWN_STREAM_PORT_COUNT register, MSA_TIMING_PAR_IGNORED bitDOWN_STREAM_PORT_COUNT register, MSA_TIMING_PAR_IGNORED bit |
Extended CapabilityExtended Capability |
02207h [6]02207h [6] |
DOWN_STREAM_PORT_COUNT register, MSA_TIMING_PAR_IGNORED bitDOWN_STREAM_PORT_COUNT register, MSA_TIMING_PAR_IGNORED bit |
02215h [2,1,0]02215h [2,1,0] |
DPRX_FREATURE_ENUMERATION_LIST_CONT_1 register, FAVT_PAYLOAD_FIELDS_PARSING_SUPPORTED, AS_SDP_FIRST_HALF_LINE_OR_3840_PIXEL_CYCLE_WINDOW_NOT_SUPPORTED, and ADAPTIVE_SYNC_SDP_SUPPORTED bits, respectivelyDPRX_FREATURE_ENUMERATION_LIST_CONT_1 register, FAVT_PAYLOAD_FIELDS_PARSING_SUPPORTED, AS_SDP_FIRST_HALF_LINE_OR_3840_PIXEL_CYCLE_WINDOW_NOT_SUPPORTED, and ADAPTIVE_SYNC_SDP_SUPPORTED bits, respectively |
|
02218h[6]02218h[6] |
DPRX_FEATURE_ENUMERATION_LIST_CONT_2 register, ADAPTIVE SYNC SDP T2 SUPPORTED IN ALL PR ACTIVE STATES bitDPRX_FEATURE_ENUMERATION_LIST_CONT_2 register, ADAPTIVE SYNC SDP T2 SUPPORTED IN ALL PR ACTIVE STATES bit |
|
ConfigurationConfiguration |
00107h [7,6]00107h [7,6] |
DOWNSPREAD_CTRL register, MSA_TIMING_PAR_IGNORE_EN and FIXED_VTOTAL_AS_SDP_EN_IN_PR_ACTIVE bitsDOWNSPREAD_CTRL register, MSA_TIMING_PAR_IGNORE_EN and FIXED_VTOTAL_AS_SDP_EN_IN_PR_ACTIVE bits |
0011Ah [7:6]0011Ah [7:6] |
PANEL REPLAY CONFIGURATION 3 register, AS_SDP_SETUP_CONFIG_PR_ACTIVE field AS_SDP_SETUP_CONFIG_PR_ACTIVE field |
|
0011Bh[7]0011Bh[7] |
ADAPTIVE_SYNC_SDP_TRANSMISSION_TIMING_CONFIG register, AS_SDP_ONE_LINE_EARLIER_ENABLE bitADAPTIVE_SYNC_SDP_TRANSMISSION_TIMING_CONFIG register, AS_SDP_ONE_LINE_EARLIER_ENABLE bit |
Adaptive-Sync 동작 관련 EDID - DisplayID에서의 Adaptive-Sync Data BlockEDID related to Adaptive-Sync operation - Adaptive-Sync Data Block in DisplayID
도 4은 본 개시의 다양한 실시 예들에 따른 EDID block, CTA block 및 DisplayID block이 혼합된 EDID의 구조의 일례를 도시한 도면이다.FIG. 4 is a diagram illustrating an example of a structure of an EDID in which an EDID block, a CTA block, and a DisplayID block are mixed according to various embodiments of the present disclosure.
EDID(Extended Display Identification Data)는 Sink 장치(e.g. 모니터)에 내장된 정보를 Source 장치(e.g. GPU)가 읽는 데 사용되는 데이터 구조이다. Sink 장치(e.g. 모니터)에서 EDID 정보를 제공하면, Source 장치(e.g. GPU)는 Sink 장치(e.g. 모니터)의 최적 해상도, 주사율 등의 기본 설정을 자동으로 인식하여 설정할 수 있다. EDID (Extended Display Identification Data) is a data structure used by a source device (e.g. GPU) to read information embedded in a sink device (e.g. monitor). When a sink device (e.g. monitor) provides EDID information, the source device (e.g. GPU) can automatically recognize and set the optimal resolution, refresh rate, and other basic settings of the sink device (e.g. monitor).
EDID는 Sink 장치(e.g. 모니터)가 제조된 정보를 포함하며, 제조사, 모델명, 제조일자, 해상도, 지원하는 주사율 등을 포함한다. 이 정보를 읽어들인 Source 장치(e.g. GPU)는 자동으로 Sink 장치(e.g. 모니터)의 최적 해상도와 주사율을 설정할 수 있으며, 사용자가 수동으로 설정할 수도 있습니다.EDID contains information about how the Sink device (e.g. monitor) was manufactured, including the manufacturer, model name, manufacturing date, resolution, and supported refresh rate. The Source device (e.g. GPU) that reads this information can automatically set the optimal resolution and refresh rate of the Sink device (e.g. monitor), or the user can set them manually.
EDID의 구조로는 EDID block, CTA block 및 DisplayID block을 혼합하여 사용할 수 있으며, 도 4와 같은 예시로 구성될 수 있다. 또한 각 Block에 따른 Adaptive-Sync 동작 Parameter가 다르므로 Sink는 Legacy Source의 호환성을 위해 2개 이상의 Adaptive-Sync 동작 Parameter를 표시하기도 한다.The structure of EDID can be a mixture of EDID block, CTA block, and DisplayID block, and can be configured as an example as in Fig. 4. In addition, since the Adaptive-Sync operation parameters are different for each block, Sink also displays two or more Adaptive-Sync operation parameters for compatibility with Legacy Source.
EDID는 DDC(Data Display Channel)를 통해 전송된다. DDC는 I²C 인터페이스를 사용하여 Source 장치(e.g. GPU)와 Sink 장치(e.g. 모니터) 간의 통신을 가능하게 한다. Source 장치(e.g. GPU)는 DDC를 통해 Sink 장치(e.g. 모니터)에서 EDID 정보를 요청하고, Sink 장치(e.g. 모니터)는 이를 응답한다.EDID is transmitted via the Data Display Channel (DDC). The DDC uses an I²C interface to enable communication between a source device (e.g. a GPU) and a sink device (e.g. a monitor). The source device (e.g. a GPU) requests EDID information from a sink device (e.g. a monitor) via the DDC, and the sink device (e.g. a monitor) responds.
현재 DP2.1 에서는 Adaptive-Sync 동작 관련된 Parameter는 EDID안에 있는 DisplayID2.0/2.1의 Adaptive-Sync Data Block에 대한 정보를 참고한다.Currently, in DP2.1, parameters related to Adaptive-Sync operation refer to the information about the Adaptive-Sync Data Block of DisplayID2.0/2.1 in EDID.
각 Block에 따른 Adaptive-Sync 동작 Parameter 다음 설명과 같이 총 3가지 종류의 Block에 표기할 수 있다.Adaptive-Sync operation parameters for each Block can be expressed in a total of three types of Blocks as described below.
DisplayID 2.0에서의 Adaptive-Sync Data BlockAdaptive-Sync Data Block in DisplayID 2.0
도 4은 본 개시의 다양한 실시 예들에 따른 DisplayID 2.0에서의 Adaptive-Sync Data Block의 구조의 일례를 도시한 도면이다.FIG. 4 is a diagram illustrating an example of the structure of an Adaptive-Sync Data Block in DisplayID 2.0 according to various embodiments of the present disclosure.
다음의 표 2은 Table 4.51: Adaptive-Sync Data Block를 나타낸다.Table 2 below shows Table 4.51: Adaptive-Sync Data Block.
표 2에서, N은 데이터 블록의 세부 타이밍 설명자 수를 나타낸다. M은 오프셋 01h[6:4]의 값을 나타낸다. 소스 장치 구현은 향후 확장성을 위해 다양한 분야를 수용해야 한다. (N represents the number of Detailed Timing descriptors in the data block. M represents the value of Offset 01h[6:4]. Source device implementation shall accommodate varying field for future extensibility.)In Table 2, N represents the number of Detailed Timing Descriptors in the data block. M represents the value of Offset 01h[6:4]. Source device implementation shall accommodate varying fields for future extensibility.
OffsetOffset | Bit #Bit # | Definition/PriorityDefinition/Priority |
00h00h | 7:07:0 | Adaptive-Sync Data Block2BhAdaptive-Sync Data Block2Bh |
01h01h | Block Revision and Other DataBlock Revision and Other Data | |
2:02:0 |
Block Revision Revision ranges from 0 through 7 000b=Revision 0 All other values are RESERVEDBlock Revision Revision ranges from 0 through 7 000b=Revision 0 All other values are RESERVED |
|
33 | RESERVEDCleared to 0RESERVEDCleared to 0 | |
6:46:4 |
Number of Payload Bytes (M) in an Adaptive-Sync Operation ModeAnd Range Descriptor Where M (bytes) = 6 (initial descriptor size) + field value 000b = 6 + 0 bytes/descriptor (defined as part of Adaptive0Sync, Revision 0) All other values are RESERVEDNumber of Payload Bytes (M) in an Adaptive-Sync Operation ModeAnd Range Descriptor Where M (bytes) = 6 (initial descriptor size) + field value 000b = 6 + 0 bytes/descriptor (defined as part of Adaptive0Sync, Revision 0) All other values are RESERVED |
|
77 | RESERVEDCleared to 0RESERVEDCleared to 0 | |
02h02h | 7:07:0 |
Number of Payload Bytes in Block Number of payload bytes within the block is based on the number of descriptors (N) * size of each descriptor (M) bytes All other values are RESERVEDNumber of Payload Bytes in Block Number of payload bytes within the block is based on the number of descriptors (N) * size of each descriptor (M) bytes All other values are RESERVED |
03h through03h+M-103h through03h+M-1 | (M*8-1):0(M*8-1):0 |
First Adaptive-Sync Operation Mode and Range Descriptor M-byte descriptorFirst Adaptive-Sync Operation Mode and Range Descriptor M-byte descriptor |
03h+M through 03h + 2M - 103h+M through 03h + 2M - 1 | (M*8-1):0(M*8-1):0 | Second Adaptive-Sync Operation Mode and Range DescriptorM-byte descriptor, if presentSecond Adaptive-Sync Operation Mode and Range DescriptorM-byte descriptor, if present |
...... | ...... | |
03h +(N-1) * M through 03h+ (N*M) - 103h +(N-1) * M through 03h+ (N*M) - 1 |
(M*8-1):0(M*8-1):0 |
Nth Adaptive-Sync Operation Mode and Range Descriptor M-byte descriptor, if presentNth Adaptive-Sync Operation Mode and Range Descriptor M-byte descriptor, if present |
다음의 표 3은 Table 4.52: Adaptive-Sync Operation Mode and Range Descriptor를 나타낸다.Table 3 below shows Table 4.52: Adaptive-Sync Operation Mode and Range Descriptor.
Byte #Byte # | Bit #Bit # | DefinitionDefinition |
00 | Adaptive-Sync Operation and Range InformationAdaptive-Sync Operation and Range Information | |
00 |
Adaptive-Sync Range 0 = Non-native panel range. (The display implements buffering to support the declared Adaptive-Sync range, and may repeat frames as necessary.) 1 = Native panel range. (The display does not implement buffering to support the declared Adaptive-Sync range, and does not repeat frames.)Adaptive-Sync Range 0 = Non-native panel range. (The display implements buffering to support the declared Adaptive-Sync range, and may repeat frames as necessary.) 1 = Native panel range. (The display does not implement buffering to support the declared Adaptive-Sync range, and does not repeat frames.) |
|
11 |
Successive Frame Duration Increase Tolerance for Meeting VESA Adaptive Sync Flicker Performance0 = Flicker performance is met in any duration increase within the refresh rate range, but may cause up to a single base video frame period jitter impact. 1 = Flicker performance is met in any duration increase within Byte 1. Note: Flicker performance is met in any duration increase within the refresh rate range without jitter impact when either of the following conditions are met: (1) Byte 1 = 00h, -or- (2) Byte 1 >= the delta between the maximum frame duration ( = minimum refresh rate) and the minimum frame duration (= maximum refresh rate)Successive Frame Duration Increase Tolerance for Meeting VESA Adaptive Sync Flicker Performance0 = Flicker performance is met in any duration increase within the refresh rate range, but may cause up to a single base video frame period jitter impact. 1 = Flicker performance is met in any duration increase within Note: Flicker performance is met in any duration increase within the refresh rate range without jitter impact when either of the following conditions are met: (1) (2) |
|
3:23:2 |
Supported Adaptive-Sync Modes00b = Fixed-Average VTotal (FAVT) mode is supported 01b = Both Fixed-Average VTotal and Adaptive VTotal modes (FAVT and AVT, respectively) are supported All other values are RESERVEDSupported Adaptive-Sync Modes00b = Fixed-Average VTotal (FAVT) mode is supported 01b = Both Fixed-Average VTotal and Adaptive VTotal modes (FAVT and AVT, respectively) are supported All other values are RESERVED |
|
44 |
Seamless Transition of Adaptive-Sync Mode and Range Not Supportd0 = Seamless transition to and from current Adaptive-Sync mode and range is supported 1 = Seamless transition to and from current Adaptive-Sync mode and range is not supportedSeamless Transition of Adaptive-Sync Mode and Range Not Supportd0 = Seamless transition to and from current Adaptive-Sync mode and range is supported 1 = Seamless transition to and from current Adaptive-Sync mode and range is not supported |
|
55 |
Successive Frame Duration Decrease Tolerance for Meeting VESA Adaptive Sync Flicker Performance0 = Flicker performance is met in any duration decrease within the refresh rate range, but may cause up to a single base video frame period jitter impact 1 = Flicker performance is met in any duration decrease within Byte 5 Note: Flicker performance is met in any duration decrease within the refresh rate range without jitter impact when either of the following conditions are met: (1) Byte 5 = 00h, -or- (2) Byte 5 >= the delta between the maximum frame duration (= minimum refresh rate) and the minimum frame duration (= maximum refresh rate)Successive Frame Duration Decrease Tolerance for Meeting VESA Adaptive Sync Flicker Performance0 = Flicker performance is met in any duration decrease within the refresh rate range, but may cause up to a single base video frame period jitter impact 1 = Flicker performance is met in any duration decrease within Byte 5 Note: Flicker performance is met in any duration decrease within the refresh rate range without jitter impact when either of the following conditions are met: (1) Byte 5 = 00h, -or- (2) Byte 5 >= the delta between the maximum frame duration (= minimum refresh rate) and the minimum frame duration (= maximum refresh rate) |
|
7:67:6 |
RESERVEDCleared to all 0sRESERVEDCleared to all |
|
11 | 7:07:0 |
Maximum Single Frame Duration Increase Allowed for Meeting VESA Adaptive Sync Flicker Performance 6.2 format (six integer bits and two fractional bits) that results in a value range of 0.00 to 63.75 ms, inclusive 00h = Flicker performance is met in any duration increase within the refresh rate range without jitter impactMaximum Single Frame Duration Increase Allowed for Meeting VESA Adaptive Sync Flicker Performance 6.2 format (six integer bits and two fractional bits) that results in a value range of 0.00 to 63.75 ms, inclusive 00h = Flicker performance is met in any duration increase within the refresh rate range without |
22 | 7:07:0 |
Minimum Refresh RateMinimum refresh rate ranges from 0 through 255 Hz, divided by 1.001 00h = 0 Hz 01h = (1/1.001) Hz ... FFh = (255/1.001) HzMinimum Refresh RateMinimum refresh rate ranges from 0 through 255 Hz, divided by 1.001 00h = 0 Hz 01h = (1/1.001) Hz ... FFh = (255/1.001) Hz |
4:34:3 |
Maximum Refresh Rate Maximum refresh rate ranges from 1 through 1,024 Hz, plus 350 ppm. Note that the value stored in this field shall match that of at least one CVT v2.0 RB Timing v3 timing supported by the Sink device 000h = (1*1.00035) Hz ... 3FFh = (1,024 * 1.00035) HzMaximum Refresh Rate Maximum refresh rate ranges from 1 through 1,024 Hz, plus 350 ppm. Note that the value stored in this field shall match that of at least one CVT v2.0 RB Timing v3 timing supported by the Sink device 000h = (1*1.00035) Hz ... 3FFh = (1,024 * 1.00035) |
|
33 | 7:07:0 | Maximum Refresh Rate 7:0Maximum Refresh Rate 7:0 |
44 | 1:01:0 | Maximum Refresh Rate 9:8Maximum Refresh Rate 9:8 |
7:27:2 |
RESERVED Cleared to all 0sRESERVED Cleared to all 0s |
|
55 | 7:07:0 |
Maximum Single Frame Duration Decrease Allowed for Meeting VESA Adaptive Sync Flicker Performance 6.2 format (six integer bits and two fractional bits) that results in a value range of 0.00 to 63.75 ms, inclusive 00h = Flicker performance is met in any duration decrease within the refresh rate range without jitter impactMaximum Single Frame Duration Decrease Allowed for Meeting VESA Adaptive Sync Flicker Performance 6.2 format (six integer bits and two fractional bits) that results in a value range of 0.00 to 63.75 ms, inclusive 00h = Flicker performance is met in any decrease duration within the refresh rate range without jitter impact |
Adaptive-Sync SDPAdaptive-Sync SDP
Adaptive-Sync Second data packet은 Source 장치(e.g. GPU)와 Sink 장치(e.g. 모니터) 간의 통신을 위해 사용된다. Source 장치(e.g. GPU)는 Adaptive-Sync Second data packet을 Sink 장치(e.g. 모니터)로 보내고, Sink 장치(e.g. 모니터)는 이를 수신하여 지원되는 주사율 범위와 VRR 모드를 Source 장치(e.g. GPU)에 알려준다. 이 정보를 바탕으로 Source 장치(e.g. GPU)는 Sink 장치(e.g. 모니터)와 동기화하여 스크린 티어링, 스태터링 등을 방지하고 더 부드러운 화면 표시를 가능하게 한다. 각 EDID Block에 따른 Adaptive-Sync 동작 Parameter에 따라 Adaptive-Sync SDP의 정보와 크기가 달라질 수 있다.Adaptive-Sync Second data packet is used for communication between a Source device (e.g. GPU) and a Sink device (e.g. monitor). The Source device (e.g. GPU) sends an Adaptive-Sync Second data packet to the Sink device (e.g. monitor), and the Sink device (e.g. monitor) receives it and informs the Source device (e.g. GPU) of the supported refresh rate range and VRR mode. Based on this information, the Source device (e.g. GPU) synchronizes with the Sink device (e.g. monitor) to prevent screen tearing, stutter, etc. and enable smoother screen display. Depending on the Adaptive-Sync operation parameters for each EDID Block, the information and size of Adaptive-Sync SDP may vary.
Adaptive-Sync SDP 동작과 Header and Payload Data Bytes의 정보는 아래와 같다.The Adaptive-Sync SDP operation and the information on Header and Payload Data Bytes are as follows.
Adaptive-Sync 가능 DP 프로토콜 변환기는 DOWN_STREAM_PORT_COUNT 레지스터(DPCD)의 MSA_TIMING_PAR_IGNORED 비트를 설정하는 것 외에도 DPRX_FEATURE_ENUMERATION_LIST_CONT_1 레지스터(DPCD 02214h[0] = 1)의 ADAPTIVE_SYNC_SDP_SUPPORTED 비트를 설정하여 적응형 동기화 SDP 지원을 나타낸다. 00007h[6] = 1 및 DPCD 02207h[6] = 1). Adaptive-Sync 가능 DP 프로토콜 변환기는 SST 및 MST 모드에서 SDP 분할을 지원해야 하며 DPRX_FEATURE_ENUMERATION_LIST 레지스터(DPCD 02210h[1] = 1)에서 SST_SPLIT_SDP_CAP 비트를 설정하여 분할 기능을 나타낸다. Adaptive-Sync 지원 DP 소스 장치는 다음을 확인한 후에만 연결된 DP 프로토콜 변환기에 대한 Adaptive-Sync 비디오 전송을 활성화할 수 있다.An Adaptive-Sync capable DP protocol converter indicates Adaptive-Sync SDP support by setting the ADAPTIVE_SYNC_SDP_SUPPORTED bit in the DPRX_FEATURE_ENUMERATION_LIST_CONT_1 register (DPCD 02214h[0] = 1) in addition to setting the MSA_TIMING_PAR_IGNORED bit in the DOWN_STREAM_PORT_COUNT register (DPCD 02214h[0] = 1 and DPCD 02207h[6] = 1). An Adaptive-Sync capable DP protocol converter shall support SDP splitting in SST and MST modes and indicate the splitting capability by setting the SST_SPLIT_SDP_CAP bit in the DPRX_FEATURE_ENUMERATION_LIST register (DPCD 02210h[1] = 1). An Adaptive-Sync-capable DP source device can enable Adaptive-Sync video transmission to a connected DP protocol converter only after verifying the following:
(1) 연결된 DP 프로토콜 변환기에는 DPCD 00007h[6] = 1 및 DPCD 02214h[0] = 1이 있다.(1) The connected DP protocol converter has DPCD 00007h[6] = 1 and DPCD 02214h[0] = 1.
(2) DP 프로토콜 변환기에 연결된 스트림 싱크는 DisplayID 또는 레거시 EDID에서 Adaptive-Sync 새로 고침 빈도 범위에 대한 지원을 나타낸다. Adaptive-Sync 비디오 전송의 경우 항상 그렇듯이, Adaptive-Sync 가능 DP 소스 장치는 Adaptive-Sync 비디오 전송을 활성화하기 전에 AUX 쓰기 트랜잭션을 사용하여 DOWNSPREAD_CTRL 레지스터(DPCD 00107h[7] = 1)의 MSA_TIMING_PAR_IGNORE_EN 비트에 1을 기록해야 한다. 연결된 DP 장치에 DPCD 02214h[0] = 1이 있는 경우 DP 소스 장치는 Adaptive-Sync 비디오 전송을 활성화하기 전에 Adaptive-Sync SDP를 전송해야 한다.(2) A stream sink connected to a DP protocol converter indicates support for an Adaptive-Sync refresh rate range in its DisplayID or legacy EDID. As always for Adaptive-Sync video transmission, an Adaptive-Sync capable DP source device must use an AUX write transaction to write 1 to the MSA_TIMING_PAR_IGNORE_EN bit in the DOWNSPREAD_CTRL register (DPCD 00107h[7] = 1) before enabling Adaptive-Sync video transmission. If the connected DP device has DPCD 02214h[0] = 1, the DP source device must transmit an Adaptive-Sync SDP before enabling Adaptive-Sync video transmission.
Adaptive-Sync SDP를 전송할 때 DP 소스 장치는 다음을 수행해야 합니다.When transmitting Adaptive-Sync SDP, the DP source device must:
(3) 모든 비디오 프레임에서 Adaptive-Sync SDP를 전송합니다. 인터레이스 및 3D와 같은 다중 필드 비디오 모드의 경우 Adaptive-Sync SDP는 모든 비디오 필드에서 전송되어야 한다.(3) Transmit Adaptive-Sync SDP in every video frame. For multi-field video modes such as interlaced and 3D, Adaptive-Sync SDP must be transmitted in every video field.
(4) Adaptive-Sync SDP 전송의 시작과 끝이 VSync 펄스의 시작에 해당하는 라인(BS 기호 시퀀스로 표시됨)의 전반부 내에서 발생하는지 확인한다.(4) Verify that the start and end of an Adaptive-Sync SDP transmission occur within the first half of the line corresponding to the start of a VSync pulse (indicated by the BS symbol sequence).
(5) 유효한 HTotal[15:0], HStart[15:0], HSyncPolarity[0](HSP), HSyncWidth[14:0]을 전송한다.(5) Send valid HTotal[15:0], HStart[15:0], HSyncPolarity[0](HSP), HSyncWidth[14:0].
(HSW), VStart[15:0], VSyncPolarity[0](VSP) 및 VSyncWidth[14:0](VSW)는 Adaptive-Sync SDP를 전송하는 동안 유효한 HWidth[15:0] 및 VHeight[15:0]. 즉, Adaptive-Sync 가능 DP 프로토콜 변환기는 Adaptive-Sync SDP를 수신하는 동안 VTotal[15:0]만 무시해야 한다.(HSW), VStart[15:0], VSyncPolarity[0](VSP), and VSyncWidth[14:0](VSW) are valid HWidth[15:0] and VHeight[15:0] while transmitting Adaptive-Sync SDP. That is, an Adaptive-Sync capable DP protocol converter MUST ignore only VTotal[15:0] while receiving Adaptive-Sync SDP.
An Adaptive-Sync-capable DP protocol converter shall indicate Adaptive-Sync SDP support by setting the ADAPTIVE_SYNC_SDP_SUPPORTED bit in the DPRX_FEATURE_ENUMERATION_LIST_CONT_1 register (DPCD 02214h[0] = 1) in addition to setting the MSA_TIMING_PAR_IGNORED bit in the DOWN_STREAM_PORT_COUNT register(s) (DPCD 00007h[6] = 1 and DPCD 02207h[6] = 1). An Adaptive-Sync-capable DP protocol converter shall support SDP splitting in SST and MST modes, and indicates its splitting capability by setting the SST_SPLIT_SDP_CAP bit in the DPRX_FEATURE_ENUMERATION_LIST register (DPCD 02210h[1] = 1). An Adaptive-Sync-capable DP Source device may enable an Adaptive-Sync video transmission to a plugged DP protocol converter only after verifying the following:An Adaptive-Sync-capable DP protocol converter shall indicate Adaptive-Sync SDP support by setting the ADAPTIVE_SYNC_SDP_SUPPORTED bit in the DPRX_FEATURE_ENUMERATION_LIST_CONT_1 register (DPCD 02214h[0] = 1) in addition to setting the MSA_TIMING_PAR_IGNORED bit in the DOWN_STREAM_PORT_COUNT register(s) DPCD 00007h[6] = 1 and DPCD 02207h[6] = 1). An Adaptive-Sync-capable DP protocol converter shall support SDP splitting in SST and MST modes, and indicates its splitting capability by setting the SST_SPLIT_SDP_CAP bit in the DPRX_FEATURE_ENUMERATION_LIST register (DPCD 02210h[1] = 1). An Adaptive-Sync-capable DP Source device may enable an Adaptive-Sync video transmission to a plugged DP protocol converter only after verifying the following:
(1) Plugged DP protocol converter has DPCD 00007h[6] = 1 and DPCD 02214h[0] = 1(1) Plugged DP protocol converter has DPCD 00007h[6] = 1 and DPCD 02214h[0] = 1
(2) Stream sink plugged to the DP protocol converter indicates support for the Adaptive-Sync refresh rate range in the DisplayID or legacy EDID As is always the case with Adaptive-Sync video transmission, an Adaptive-Sync-capable DP Source device shall use an AUX write transaction to write 1 to the MSA_TIMING_PAR_IGNORE_EN bit in the DOWNSPREAD_CTRL register (DPCD 00107h[7] = 1) prior to enabling an Adaptive-Sync video transmission. When the plugged DP device has DPCD 02214h[0] = 1, a DP Source device shall transmit an Adaptive-Sync SDP before enabling an Adaptive-Sync video transmission.(2) Stream sink plugged to the DP protocol converter indicates support for the Adaptive-Sync refresh rate range in the DisplayID or legacy EDID As is always the case with Adaptive-Sync video transmission, an Adaptive-Sync-capable DP Source device shall use an AUX write transaction to write 1 to the MSA_TIMING_PAR_IGNORE_EN bit in the DOWNSPREAD_CTRL register (DPCD 00107h[7] = 1) prior to enabling an Adaptive-Sync video transmission. When the plugged DP device has DPCD 02214h[0] = 1, a DP Source device shall transmit an Adaptive-Sync SDP before enabling an Adaptive-Sync video transmission.
When transmitting an Adaptive-Sync SDP, a DP Source device shall do the following:When transmitting an Adaptive-Sync SDP, a DP Source device shall do the following:
(3) Transmit an Adaptive-Sync SDP on every video frame. For multi-field video modes such as Interlaced and 3D, the Adaptive-Sync SDP shall be transmitted on every video field.(3) Transmit an Adaptive-Sync SDP on every video frame. For multi-field video modes such as Interlaced and 3D, the Adaptive-Sync SDP shall be transmitted on every video field.
(4) Ensure that the start and end of the Adaptive-Sync SDP transmission occur within the 1st half of the line (marked by BS symbol sequences) that corresponds to the start of the VSync pulse.(4) Ensure that the start and end of the Adaptive-Sync SDP transmission occurs within the 1st half of the line (marked by BS symbol sequences) that corresponds to the start of the VSync pulse.
(5) Transmit valid HTotal[15:0], HStart[15:0], HSyncPolarity[0] (HSP), HSyncWidth[14:0](5) Transmit valid HTotal[15:0], HStart[15:0], HSyncPolarity[0] (HSP), HSyncWidth[14:0]
(HSW), VStart[15:0], VSyncPolarity[0] (VSP), and VSyncWidth[14:0] (VSW) while transmitting an Adaptive-Sync SDP, as well as valid HWidth[15:0] and VHeight[15:0]. That is, an Adaptive-Sync-capable DP protocol converter shall ignore only VTotal[15:0] while receiving an Adaptive-Sync SDP.(HSW), VStart[15:0], VSyncPolarity[0] (VSP), and VSyncWidth[14:0] (VSW) while transmitting an Adaptive-Sync SDP, as well as valid HWidth[15:0] and VHeight[ 15:0]. That is, an Adaptive-Sync-capable DP protocol converter shall ignore only VTotal[15:0] while receiving an Adaptive-Sync SDP.
표 4은 Table 2-126: Adaptive-Sync SDP Header Bytes를 나타낸다.Table 4 shows Table 2-126: Adaptive-Sync SDP Header Bytes.
Byte #Byte # | Bit #Bit # | ContentContent |
HB0HB0 | 7:07:0 | Secondary-data Packet IDSpecific to stream (usually 00h)Secondary-data Packet IDSpecific to stream (usually 00h) |
HB1HB1 | 7:07:0 | Secondary-data Packet Type22h = Adaptive-SyncSecondary-data Packet Type22h = Adaptive-Sync |
HB2HB2 | 4:04:0 |
Version Number 01h = Version 1. No payload data bytes (same as DP v2.0, as released in June 2019). 02h = Version 2. VESA AdaptiveSync shall support both the DisplayID Adaptive-Sync data block and Adaptive-Sync SDP data structure version 2. All other values are RESERVED for future versions.Version Number 01h = 02h = All other values are RESERVED for future versions. |
7:57:5 |
RESERVED Read all 0sRESERVED Read all 0s |
|
HB3HB3 | 5:05:0 |
Number of Valid Data Bytes Version 1 00h = No payload data bytes. Version 2 09h = Nine payload data bytes. The Adaptive-Sync SDP has 32 payload data bytes. Unused data bytes shall be zero-padded.Number of Valid Data Bytes 00h = No payload data bytes. 09h = Nine payload data bytes. The Adaptive-Sync SDP has 32 payload data bytes. Unused data bytes shall be zero-padded. |
7:67:6 |
RESERVED Read all 0s.RESERVED Read all 0s. |
표 5은 Table 2-127: Adaptive-Sync SDP Version 2 Payload Data Bytes를 나타낸다.Table 5 shows Table 2-127: Adaptive-Sync SDP Version 2 Payload Data Bytes.
Byte #Byte # | Bit #Bit # | ContentContent |
DB0DB0 | Timing OptionsTiming Options | |
0 10 1 |
VARIABLE_FRAME_RATE_DISABLE Adaptive Sync Operation Mode When a Source device sets the MSA_TIMING_PAR_IGNORE_EN and FIXED_VTOTAL_AS_SDP_EN_IN_PR_ACTIVE bits in the DOWNSPREAD_CTRL register (DPCD 00107h [7,6] = 11b, respectively): 00b = AVT mode, and video frame duration is bound to change from frame-to-frame. 01b = AVT mode; however, video frame duration is currently fixed. 10b = FAVT mode, and TRR is yet to be reached. 11b = FAVT mode, and TRR is reached. When a Source device programs DPCD 00107h[7,6] = 01b (see Section 2.18 for details): 01b = Adaptive-Sync operation is disabled and the VTotal line count is fixed. 00b, 10b, and 11b = RESERVED.VARIABLE_FRAME_RATE_DISABLE Adaptive Sync Operation Mode When a Source device sets the MSA_TIMING_PAR_IGNORE_EN and FIXED_VTOTAL_AS_SDP_EN_IN_PR_ACTIVE bits in the DOWNSPREAD_CTRL register (DPCD 00107h [7,6] = 11b, respectively): 00b = AVT mode, and video frame duration is bound to change from frame-to-frame. 01b = AVT mode; however, video frame duration is currently fixed. 10b = FAVT mode, and TRR is yet to be reached. 11b = FAVT mode, and TRR is reached. When a Source device programs DPCD 00107h[7,6] = 01b (see Section 2.18 for details): 01b = Adaptive-Sync operation is disabled and the VTotal line count is fixed. 00b, 10b, and 11b = RESERVED. |
|
22 |
Adaptive Sync SDP Transmission Disable in PR Active StateCleared to 0 when the Sink device does not support PR. 0 = Source-to-Sink device timing sync using the Adaptive-Sync SDP is enabled. 1 = Source-to-Sink device timing sync using the Adaptive-Sync SDP is disabled.Adaptive Sync SDP Transmission Disable in PR Active StateCleared to 0 when the Sink device does not support PR. 0 = Source-to-Sink device timing sync using the Adaptive-Sync SDP is enabled. 1 = Source-to-Sink device timing sync using the Adaptive-Sync SDP is disabled. |
|
33 |
Remote Frame Buffer (RFB) Update in PR Active StateValid only during a PR Active state. Shall be driven to 0 in PR_State 0_0 (Disabled) -or- PR_State 0_1 (Inactive). Cleared to 0 when the Sink device does not support PR. 0 = No RFB update in the current active video image time interval. 1 = Update the RFB - Capture the incoming video frame/Sus to the RFB.Remote Frame Buffer (RFB) Update in PR Active StateValid only during a PR Active state. Shall be driven to 0 in PR_State 0_0 (Disabled) -or- PR_State 0_1 (Inactive). Cleared to 0 when the Sink device does not support PR. 0 = No RFB update in the current active video image time interval. 1 = Update the RFB - Capture the incoming video frame/Sus to the RFB. |
|
7:47:4 | RESERVEDRead all 0s.RESERVEDRead all 0s. | |
DB1DB1 | 7:07:0 |
Minimum Vertical Total7:0 Minimum Vertical Total15:8 Source device shall program DB2:DB1 to the VTotal value that corresponds to the enabled base timing. The value is statically programmed and is valid in both FAVT mode and AVT mode.Minimum Vertical Total7:0 Minimum Vertical Total15:8 Source device shall program DB2:DB1 to the VTotal value that corresponds to the enabled base timing. The value is statically programmed and is valid in both FAVT mode and AVT mode. |
DB2DB2 | 7:07:0 | |
DB3DB3 | 7:07:0 |
Target Refresh Rate7:0 Target Refresh Rate9:8 AVT mode Source device shall clear DB4[1:0] = 00b and DB3 = 00h. FAVT mode Source device shall program DB4[1:0] and DB3 and DV4[5] to match the average video frame rate.Target Refresh Rate7:0 Target Refresh Rate9:8 AVT mode Source device shall clear DB4[1:0] = 00b and DB3 = 00h. FAVT mode Source device shall program DB4[1:0] and DB3 and DV4[5] to match the average video frame rate. |
DB4DB4 | 1:01:0 | |
4:24:2 |
RESERVED Read all 0s.RESERVED Read all 0s. |
|
55 |
Target Refresh Rate DividerValid only in FAVT mode. Sink device ignores the bit in AVT mode. 0 = 1.000. 1 = 1.001.Target Refresh Rate DividerValid only in FAVT mode. Sink device ignores the bit in AVT mode. 0 = 1.000. 1 = 1.001. |
|
66 |
Successive Frame Duration Increase ConfigurationIf the Source device engages in a bounded transition for low-flicker performance by using information in the DisplayID Adaptive-Sync data block and setting this bit to 1, the Source device shall: (1) Use the CVT v2.0 RB Timing v3 -or- detailed timing descriptor with 350-ppm offset exposed in the DisplayID, and (2) Constrain the duration increase to the value reported in the DisplayID Adaptive-Sync data block for a guarantee of low-flicker performance 0 = Video frame duration increase transitions are unbounded. 1 = Video frame duration increase transitions are bounded by the time specified in DB5.Successive Frame Duration Increase ConfigurationIf the Source device engages in a bounded transition for low-flicker performance by using information in the DisplayID Adaptive-Sync data block and setting this bit to 1, the Source device shall: (1) Use the CVT v2.0 RB Timing v3 -or- detailed timing descriptor with 350-ppm offset exposed in the DisplayID, and (2) Constrain the duration increase to the value reported in the DisplayID Adaptive-Sync data block for a guarantee of low-flicker performance 0 = Video frame duration increase transitions are unbounded. 1 = Video frame duration increase transitions are bounded by the time specified in DB5. |
|
77 |
Successive Frame Duration Decrease ConfigurationIf the Source device engages in a bounded transition for low-flicker performance by using the information in the DisplayID Adaptive-Sync data block and setting this bit to 1, the Source device shall: (1) Use the CVT v2.0 RB Timing v3 -or- detailed timing descriptor with 350-ppm offset exposed in the DisplayID, and (2) Constrain the duration decrease to the value reported in the DisplayID Adaptive-Sync data block for a guarantee of low-flicker performance 0 = Video frame duration decrease transitions are unbounded. 1 = Video frame duration decrease transitions are bounded by the time specified in DB6.Successive Frame Duration Decrease ConfigurationIf the Source device engages in a bounded transition for low-flicker performance by using the information in the DisplayID Adaptive-Sync data block and setting this bit to 1, the Source device shall: (1) Use the CVT v2.0 RB Timing v3 -or- detailed timing descriptor with 350-ppm offset exposed in the DisplayID, and (2) Constrain the decrease duration to the value reported in the DisplayID Adaptive-Sync data block for a guarantee of low-flicker performance 0 = Video frame duration decreases transitions are unbounded. 1 = Video frame duration decrease transitions are bounded by the time specified in DB6. |
|
DB5DB5 | 7:07:0 |
Duration Increase Constraint Value in ms Unit 6.2 format (six integer bits and two fractional bits) that results in a value range of 0.00 to 63.75 ms, inclusive. When the Source device clears DB4[6] = 0, the Source device shall clear DB5 = 00h. When the Source device sets DV4[6] = 1, the Source device shall program DB5 to the value that the Source device is using for the maximum duration increase. The value does not indicate the instantaneous video frame-to-frame duration delta. A 0.00 value indicates that the Source device may invoke a maximum-to-minimum refresh rate transition across a single video frame boundary. To attain optimum flicker performance without jitter impact, the Source device shall keep the DB5 value less than or equal to the limit value reported by the Sink device in the Max Single Frame Duration Increase Allowed for Attaining the Low Flicker Performance byte (Byte 1) of the DisplayID Adaptive-Sync data block's Operation Mode and Range descriptor.Duration Increase Constraint Value in ms Unit 6.2 format (six integer bits and two fractional bits) that results in a value range of 0.00 to 63.75 ms, inclusive. When the Source device clears DB4[6] = 0, the Source device shall clear DB5 = 00h. When the Source device sets DV4[6] = 1, the Source device shall program DB5 to the value that the Source device is using for the maximum duration increase. The value does not indicate the instantaneous video frame-to-frame duration delta. A 0.00 value indicates that the Source device may invoke a maximum-to-minimum refresh rate transition across a single video frame boundary. To attain optimum flicker performance without jitter impact, the Source device shall keep the DB5 value less than or equal to the limit value reported by the Sink device in the Max Single Frame Duration Increase Allowed for Attaining the Low Flicker Performance byte (Byte 1) of the DisplayID Adaptive-Sync data block's Operation Mode and Range descriptor. |
DB6DB6 | 7:07:0 |
Duration Decrease Constraint Value in ms Unit6.2 format (six integer bits and two fractional bits) that results in a value range of 0.00 to 63.75 ms, inclusive. When the Source device clears DB4[7] = 0, the Source device shall clear DB6 = 00h. When the Source device sets DB4[7] = 1, the Source device shall program DB6 to the value that the Source device is using for the maximum duration decrease. The value does not indicate the instantaneous video frame-to-frame duration delta. A 0.00 value indicates that the Source device may invoke a maximum-to-minimum refresh rate transition across a single video frame boundary. To attain optimum flicker performance without jitter impact, the Source device shall keep the DB6 value less than or equal to the limit value reported by the Sink device in the Max Single Frame Duration Decrease Allowed for Attaining the Low Flicker Performance byte (Byte 5) of the DisplayID Adaptive-Sync data block's Operation Mode and Range descriptor.Duration Decrease Constraint Value in ms Unit6.2 format (six integer bits and two fractional bits) that results in a value range of 0.00 to 63.75 ms, inclusive. When the Source device clears DB4[7] = 0, the Source device shall clear DB6 = 00h. When the Source device sets DB4[7] = 1, the Source device shall program DB6 to the value that the Source device is using for the maximum duration decrease. The value does not indicate the instantaneous video frame-to-frame duration delta. A 0.00 value indicates that the Source device may invoke a maximum-to-minimum refresh rate transition across a single video frame boundary. To attain optimum flicker performance without jitter impact, the Source device shall keep the DB6 value less than or equal to the limit value reported by the Sink device in the Max Single Frame Duration Decrease Allowed for Attaining the Low Flicker Performance byte (Byte 5) of the DisplayID Adaptive-Sync data block's Operation Mode and Range descriptor. |
DB7DB7 | 7:07:0 |
Coasting VTotal7:0 in PR Active StateShall be programmed to the Coasting Vtotal LSB value that the Sink device shall use to maintain the refresh rate when the DPTX has suspended transmission of the Adaptive-Sync SDP in a PR Active state. DB7 = 00h when the Sink device does not support PR.Coasting VTotal7:0 in PR Active StateShall be programmed to the Coasting Vtotal LSB value that the Sink device shall use to maintain the refresh rate when the DPTX has suspended transmission of the Adaptive-Sync SDP in a PR Active state. DB7 = 00h when the Sink device does not support PR. |
DB8DB8 | 7:07:0 |
Coasting VTotall15:8 in PR Active StateShall be programmed to the Coasting VTotal MSB value that the Sink device shall use to maintain the refresh rate when the DPTX has suspended transmission of the Adpative-Sync SDP in a PR Active state. DB8 = 00h when the Sink device does not support PR.Coasting VTotall15:8 in PR Active StateShall be programmed to the Coasting VTotal MSB value that the Sink device shall use to maintain the refresh rate when the DPTX has suspended transmission of the Adpative-Sync SDP in a PR Active state. DB8 = 00h when the Sink device does not support PR. |
DB9through DB31DB9through DB31 |
191:0191:0 |
RESERVED Read all 0s.RESERVED Read all 0s. |
OverDrive/Overdrive TableOverDrive/Overdrive Table
OverDriveOverDrive
OverDrive는 Sink 장치(e.g. 모니터)에서 사용되는 기술 중 하나로, 픽셀의 전환 속도를 높여서 모션 블러를 최소화하고 응답 속도를 높여서 화면의 깜빡임을 줄이는 기술이다. Sink 장치(e.g. 모니터)의 OverDrive는 일반적으로 내장된 컨트롤러에 의해 조절되며, 사용자는 Sink 장치(e.g. 모니터)의 설정 메뉴에서 이를 조정할 수 있다.OverDrive is a technology used in Sink devices (e.g. monitors) that minimizes motion blur by increasing the switching speed of pixels and reduces screen flicker by increasing the response speed. OverDrive in Sink devices (e.g. monitors) is usually controlled by a built-in controller, and the user can adjust it in the settings menu of the Sink device (e.g. monitor).
OverDrive는 Sink 장치(e.g. 모니터)에서 자주 사용된다. Sink 장치(e.g. 모니터)는 고정된 응답 속도를 가지고 있어서 높은 속도로 움직이는 물체가 화면에 나타날 때 모션 블러가 발생할 수 있다. 이러한 문제를 해결하기 위해 OverDrive는 픽셀의 전환 속도를 높여서 모션 블러를 최소화하고 응답 속도를 높여서 화면의 깜빡임을 줄인다. 하지만, OverDrive를 과도하게 설정하면 고속으로 움직이는 물체가 화면에서 지나갈 때 흔들림이 발생할 수 있으며, 이러한 문제를 해결하기 위해서는 적절한 OverDrive 설정이 필요하다.OverDrive is often used in Sink devices (e.g. monitors). Sink devices (e.g. monitors) have a fixed response time, so when high-speed moving objects appear on the screen, motion blur can occur. To solve this problem, OverDrive minimizes motion blur by increasing the rate at which pixels are switched, and reduces screen flicker by increasing the response time. However, if OverDrive is set too high, high-speed moving objects can appear to shake when passing on the screen, and an appropriate OverDrive setting is necessary to solve this problem.
Overdrive TableOverdrive Table
Overdrive Table은 Sink 장치(e.g. 모니터) 제조업체가 제공하는 기능 중 하나로, Sink 장치(e.g. 모니터)의 Overdrive 기능을 조정할 때 참고하는 표이다. Overdrive Table은 일반적으로 제조업체의 웹사이트에서 다운로드할 수 있으며, 이를 통해 사용자는 Sink 장치(e.g. 모니터)의 Overdrive 기능을 적절히 조정하여 최적의 화면 성능을 달성할 수 있다.The Overdrive Table is one of the functions provided by the manufacturer of the sink device (e.g. monitor), and is a table for reference when adjusting the Overdrive function of the sink device (e.g. monitor). The Overdrive Table can usually be downloaded from the manufacturer's website, and through this, the user can appropriately adjust the Overdrive function of the sink device (e.g. monitor) to achieve optimal screen performance.
Overdrive Table은 Sink 장치(e.g. 모니터)의 모델명과 함께 제공되며, 각 모델마다 다양한 Overdrive 옵션이 제공된다. 사용자는 Overdrive Table을 참고하여 Sink 장치(e.g. 모니터)의 Overdrive 설정을 변경할 수 있으며, 이를 통해 화면의 흔들림, 모션 블러 등의 문제를 최소화하고 최적의 화면 성능을 달성할 수 있다.The Overdrive Table is provided with the model name of the Sink device (e.g. monitor), and various Overdrive options are provided for each model. Users can change the Overdrive settings of the Sink device (e.g. monitor) by referring to the Overdrive Table, and through this, problems such as screen shaking and motion blur can be minimized and optimal screen performance can be achieved.
하지만, Overdrive Table을 사용할 때에는 주의해야 할 점이 있다. 모든 Sink 장치(e.g. 모니터)의 Overdrive Table이 동일하게 작동하지는 않기 때문에, 사용자는 모델별로 Overdrive Table을 참고하여 적절한 설정을 선택해야 한다.However, there is a point to be careful about when using the Overdrive Table. Since the Overdrive Table of all Sink devices (e.g. monitors) does not operate in the same way, users must refer to the Overdrive Table for each model and select the appropriate setting.
종래 기술의 문제점Problems with prior art
DisplayPort 표준에서는 지원되는 해상도와 DSC(Display Stream Compression) 사용 여부에 따라 전송 속도에 제한이 있기 때문에 Adaptive-Sync Frame Range도 이에 따라 다르게 동작 된다. (아래의 예시1 참조) 그래서 EDID에 Multi Frame Adaptive-Sync Range를 표기해야 하며, 이 경우 올바르게 작동하기 위해서 적절한 규칙이 필요하다. 그러나 현재까지는 Multi Frame Adaptive-Sync가 작동하기 위한 적절한 규칙이 정의되어 있지 않았다. Since the DisplayPort standard has limitations on the transmission speed depending on the supported resolution and whether or not DSC (Display Stream Compression) is used, Adaptive-Sync Frame Range also operates differently. (See Example 1 below.) Therefore, Multi Frame Adaptive-Sync Range must be indicated in EDID, and in this case, appropriate rules are required for proper operation. However, appropriate rules for Multi Frame Adaptive-Sync to operate have not been defined up to now.
이는 아래의 예시 2에서와 같이 Adaptive-Sync Frame Range가 60Hz에서 240Hz로 설정되어 있을 때, 예시 2와 같이 Adaptive-Sync 모드에서는 Max Frame Range인 240Hz에서 동작하지 않고 120Hz에서 동작하게 되어, OverDrive가 240Hz로 튜닝이 되어 있는 경우 튜닝되지 않은 120Hz에서 동작시에는 과도한 Over/Undershoot이 발생할 수 있다. Adaptive-Sync 기술이 적용된 Sink(e.g. 모니터)에서는 Frame Range에 따른 OverDrive 튜닝을 진행할 때, Max Frame Range를 기준으로 튜닝하다 그보다 낮은 주파수에서는 튜닝이 되지 않았기 때문에(Max에서만 튜닝) 과도한 Over/Undershoot이 발생하여 문제가 된다. This is because when the Adaptive-Sync Frame Range is set from 60Hz to 240Hz, as in Example 2 below, in Adaptive-Sync mode, it does not operate at the Max Frame Range of 240Hz, but at 120Hz, as in Example 2. Therefore, if OverDrive is tuned to 240Hz, excessive Over/Undershoot may occur when operating at the untuned 120Hz. In a Sink (e.g. monitor) with Adaptive-Sync technology applied, when OverDrive tuning according to the Frame Range is performed, it is tuned based on the Max Frame Range and tuning is not performed at frequencies lower than that (tuning only at Max), so excessive Over/Undershoot occurs and this becomes a problem.
그러므로 Multi Frame Adaptive-Sync가 올바르게 작동하기 위해서는 Frame Range의 Max값만 참조하는 Source와 Sink간의 표준화된 규약이 필요하다. 이러한 표준화가 이루어진다면 Adative-Sync 지원 기기는 Multi Frame Adaptive-Sync를 자동으로 설정하고 최적의 성능을 얻을 수 있다.Therefore, in order for Multi Frame Adaptive-Sync to work properly, a standardized convention between Source and Sink is needed that only refers to the Max value of the Frame Range. If this standardization is achieved, devices that support Adaptive-Sync can automatically set up Multi Frame Adaptive-Sync and achieve optimal performance.
(예시 1)(Example 1)
(예시 1-1) e.g. DisplayPort 2.1에서 UHBR20을 지원할 경우 해상도에 따른 Max Frame rate 지원(Example 1-1) e.g. Max Frame rate support according to resolution when UHBR20 is supported in DisplayPort 2.1
= 10K (10240x4320) @ 60Hz and 24 bpp 4:4:4 (no compression) → 11000x4500x60x1.03x24 = 73.418Gbps= 10K (10240x4320) @ 60Hz and 24 bpp 4:4:4 (no compression) → 11000x4500x60x1.03x24 = 73.418Gbps
= 8K (7680x4320) @ 80Hz and 24 bpp 4:4:4 (no compression) → 8800x4500x80x1.03x24 = 78,312Gbps = 8K (7680x4320) @ 80Hz and 24 bpp 4:4:4 (no compression) → 8800x4500x80x1.03x24 = 78,312Gbps
= 5K (5120x2160) @ 260Hz and 24 bpp 4:4:4 (no compression) → 5500x2250x260x1.03x24 = 79.536Gbps = 5K (5120x2160) @ 260Hz and 24 bpp 4:4:4 (no compression) → 5500x2250x260x1.03x24 = 79.536Gbps
(예시 1-2) e.g. DisplayPort 2.1에서 UHBR20을 지원할 경우 DSC 사용에 따른 Max Frame rate 지원(Example 1-2) e.g. Max Frame rate support according to DSC usage when UHBR20 is supported in DisplayPort 2.1
= [10K (10240x4320) @ 60Hz (no compression) / 10K (10240x4320) @ 180Hz (DSC 1.2a)] and 24 bpp 4:4:4 = [10K (10240x4320) @ 60Hz (no compression) / 10K (10240x4320) @ 180Hz (DSC 1.2a)] and 24 bpp 4:4:4
= [8K (7680x4320) @ 80Hz (no compression) / 8K (7680x4320) @ 240Hz (DSC 1.2a)] and 24 bpp 4:4:4 = [8K (7680x4320) @ 80Hz (no compression) / 8K (7680x4320) @ 240Hz (DSC 1.2a)] and 24 bpp 4:4:4
= [5K (5120x2880) @ 260Hz (no compression) / 5K (5120x2880) @ 780Hz (DSC 1.2a)] and 24 bpp 4:4:4 = [5K (5120x2880) @ 260Hz (no compression) / 5K (5120x2880) @ 780Hz (DSC 1.2a)] and 24 bpp 4:4:4
현재 Sink가 지원하는 Frame Range들을 EDID에 표기하면 Source 장치는 아래의 예시 2와 같이 그 범위 안에서만 동작 하고 있다.If the Frame Ranges currently supported by the Sink are indicated in EDID, the Source device will only operate within that range, as in Example 2 below.
(예시2)(Example 2)
[비디오 타이밍][Video Timing]
- 비디오 타이밍1 : 4k@240hz- Video Timing 1: 4k@240hz
- 비디오 타이밍2 : 4k@120hz- Video Timing 2: 4k@120hz
- 비디오 타이밍3 : 4k@100hz- Video Timing 3: 4k@100hz
[프레임 범위][frame range]
- 적응형 동기화 프레임 범위1 : 40hz - 120hz- Adaptive sync frame range1: 40hz - 120hz
- 적응형 동기화 프레임 범위2: 60hz - 240hz- Adaptive sync frame range 2: 60hz - 240hz
- 적응형 동기화 프레임 범위3: 24hz - 100hz- Adaptive sync frame range 3: 24hz - 100hz
[사용 사례][Use Case]
사용자가 T0을 사용하는 경우 소스에는 1개의 선택만 있다. 사용자는 60hz - 240hz에서 Adaptive-Sync 작동을 얻는다.When the user uses T0, there is only one choice for the source. The user gets Adaptive-Sync operation from 60hz - 240hz.
사용자가 T1을 사용하는 경우 120hz는 D1과 D2 모두에 적합하므로 소스에는 2가지 선택이 있다. 가장 높은 새로 고침 빈도는 항상 T1의 120hz이지만 가장 낮은 새로 고침 빈도는 선택한 설명자 소스에 따라 변경된다.If the user uses T1, 120hz is suitable for both D1 and D2, so there are two choices for the source. The highest refresh rate is always 120hz for T1, but the lowest refresh rate changes depending on the descriptor source selected.
- 소스가 D1을 사용하는 경우 사용자는 40hz - 120hz에서 Adaptive-Sync 작동을 얻는다.- If the source uses D1, the user gets Adaptive-Sync operation from 40hz - 120hz.
- 소스가 D2를 사용하는 경우 사용자는 60hz - 120hz에서 Adaptive-Sync 작동을 얻는다.- If the source uses D2, the user gets Adaptive-Sync operation from 60hz - 120hz.
사용자가 T2를 사용하는 경우 100hz는 3가지 범위 설명자 모두에 적합하므로 소스에는 3가지 선택이 있다. 가장 높은 새로 고침 빈도는 항상 T2의 100hz이지만 가장 낮은 새로 고침 빈도는 선택한 설명자 소스에 따라 변경된다.If the user uses T2, 100hz is suitable for all 3 range descriptors, so there are 3 choices for the source. The highest refresh rate is always 100hz for T2, but the lowest refresh rate changes depending on the descriptor source selected.
- 소스가 D1을 사용하는 경우 사용자는 40hz - 100hz에서 Adaptive-Sync 작동을 얻는다.- If the source uses D1, the user gets Adaptive-Sync operation from 40hz - 100hz.
- 소스가 D2를 사용하는 경우 사용자는 60hz - 100hz에서 Adaptive-Sync 작동을 얻는다.- If the source uses D2, the user gets Adaptive-Sync operation from 60hz - 100hz.
- 소스가 D3를 사용하는 경우 사용자는 24hz - 100hz에서 Adaptive-Sync 작동을 얻는다.- If the source uses D3, the user gets Adaptive-Sync operation from 24hz - 100hz.
사용자가 T3를 사용하는 경우 소스는 D2에서 50hz를 벗어나므로 2가지 선택이 있습니다. 가장 높은 새로 고침 빈도는 항상 T3의 50hz이지만 가장 낮은 새로 고침 빈도는 선택한 설명자 소스에 따라 변경된다.If the user is using a T3, the source will be 50hz away from the D2, so there are two choices. The highest refresh rate will always be 50hz for the T3, but the lowest refresh rate will vary depending on the descriptor source chosen.
- 소스가 D1을 사용하는 경우 사용자는 40hz - 50hz에서 Adaptive-Sync 작동을 얻는다.- If the source uses D1, the user gets Adaptive-Sync operation at 40hz - 50hz.
- 소스가 D3를 사용하는 경우 사용자는 24hz - 50hz에서 Adaptive-Sync 작동을 얻는다.- If the source uses D3, the user gets Adaptive-Sync operation from 24hz - 50hz.
[Video Timing][Video Timing]
- Video Timing1 : 4k@240hz- Video Timing1: 4k@240hz
- Video Timing2 : 4k@120hz- Video Timing2 : 4k@120hz
- Video Timing3 : 4k@100hz- Video Timing3 : 4k@100hz
[Frame Range][Frame Range]
- Adaptive-Sync Frame Range1 : 40hz - 120hz- Adaptive-Sync Frame Range1: 40hz - 120hz
- Adaptive-Sync Frame Range2 : 60hz - 240hz- Adaptive-Sync Frame Range2: 60hz - 240hz
- Adaptive-Sync Frame Range3 : 24hz - 100hz- Adaptive-Sync Frame Range3: 24hz - 100hz
[Use Case][Use Case]
When user uses T0, source only has 1 choice. user gets Adaptive-Sync operation from 60hz - 240hz.When user uses T0, source only has 1 choice. user gets Adaptive-Sync operation from 60hz - 240hz.
When user uses T1, source has 2 choices as 120hz fits into both D1 & D2. The highest refresh rate is always T1's 120hz, but lowest refresh rate is changing base on the descriptor source choose.When user uses T1, source has 2 choices as 120hz fits into both D1 & D2. The highest refresh rate is always T1's 120hz, but lowest refresh rate is changing base on the descriptor source choose.
- When source use D1, user gets Adaptive-Sync operation from 40hz - 120hz. - When source use D1, user gets Adaptive-Sync operation from 40hz - 120hz.
- When source uses D2, user gets Adaptive-Sync operation from 60hz - 120hz- When source uses D2, user gets Adaptive-Sync operation from 60hz - 120hz
When user uses T2, source has 3 choices as 100hz fits all 3 range descriptors. The highest refresh rate is always T2's 100hz, but lowest refresh rate is changing base on the descriptor source choose.When user uses T2, source has 3 choices as 100hz fits all 3 range descriptors. The highest refresh rate is always T2's 100hz, but lowest refresh rate is changing base on the descriptor source choose.
- When source use D1, user gets Adaptive-Sync operation from 40hz - 100hz. - When source use D1, user gets Adaptive-Sync operation from 40hz - 100hz.
- When source uses D2, user gets Adaptive-Sync operation from 60hz - 100hz- When source uses D2, user gets Adaptive-Sync operation from 60hz - 100hz
- When source uses D3, user gets Adaptive-Sync operation from 24hz - 100hz- When source uses D3, user gets Adaptive-Sync operation from 24hz - 100hz
When user uses T3, source has 2 choices as 50hz is out of D2. The highest refresh rate is always T3's 50hz, but lowest refresh rate is changing base on the descriptor source choose.When user uses T3, source has 2 choices as 50hz is out of D2. The highest refresh rate is always T3's 50hz, but lowest refresh rate is changing base on the descriptor source choose.
- When source use D1, user gets Adaptive-Sync operation from 40hz - 50hz. - When source use D1, user gets Adaptive-Sync operation from 40hz - 50hz.
- When source uses D3, user gets Adaptive-Sync operation from 24hz - 50hz- When source uses D3, user gets Adaptive-Sync operation from 24hz - 50hz
발명의 구성 및 작용Composition and operation of the invention
본 개시의 다양한 실시 예들의 목적은 Multi Adaptive-Sync를(다수의 Frame range) 지원하는 기기 간 호환성을 보장하기 위하여 Sink EDID Multi Frame Range 표기하는 방법 및 장치와 Source의 Adaptive-Sync Frame Range를 설정하는 방법 및 장치를 제공하는 것이다. 본 개시의 다양한 실시 예들의 목적은 Adaptive-Sync 동작이 올바로 작동하기 위한 요구사항을 제정함으로써 Sink(e.g. 모니터)의 화질과 성능을 최적화하고, 사용자가 쾌적한 게임 및 비디오 재생 경험을 누릴 수 있도록 지원하는 방법 및 장치를 제공하는 것이다.The purpose of various embodiments of the present disclosure is to provide a method and device for indicating Sink EDID Multi Frame Range and a method and device for setting Adaptive-Sync Frame Range of Source to ensure compatibility between devices supporting Multi Adaptive-Sync (multiple Frame ranges). The purpose of various embodiments of the present disclosure is to provide a method and device for optimizing the picture quality and performance of Sink (e.g. monitor) and supporting a user to enjoy a comfortable game and video playback experience by establishing requirements for proper operation of Adaptive-Sync operation.
Source 장치의 동작Behavior of the source device
Adaptive-Sync 기능을 사용할 때, 선택된 Video Timing의 Frame rate과 Adaptive-Sync 데이터 블록에서 정의된 프레임 범위 중 최대 프레임과 일치하는 프레임 범위를 사용하여 작동합니다.When using the Adaptive-Sync feature, it operates using the frame rate of the selected Video Timing and the frame range that matches the maximum frame among the frame ranges defined in the Adaptive-Sync data block.
(예시3)(Example 3)
[Video Timing][Video Timing]
- Video Timing1 : 4k@240hz- Video Timing1: 4k@240hz
- Video Timing2 : 4k@120hz- Video Timing2 : 4k@120hz
- Video Timing3 : 4k@100hz- Video Timing3 : 4k@100hz
[Frame Range][Frame Range]
- Adaptive-Sync Frame Range1 : 40hz - 120hz- Adaptive-Sync Frame Range1: 40hz - 120hz
- Adaptive-Sync Frame Range2 : 60hz - 240hz- Adaptive-Sync Frame Range2: 60hz - 240hz
- Adaptive-Sync Frame Range3 : 24hz - 100hz- Adaptive-Sync Frame Range3: 24hz - 100hz
[Use Case][Use Case]
1. OS에서 4k@240hz로 Video Timing이 선택되는 경우 Adaptive-Sync Frame Range2를 사용하여 60hz - 240hz로 동작1. When Video Timing is selected as 4k@240hz in OS, it operates at 60hz - 240hz using Adaptive-Sync Frame Range2.
2. OS에서 4k@120hz로 Video Timing이 선택되는 경우 Adaptive-Sync Frame Range1를 사용하여 40hz - 120hz로 동작2. When Video Timing is selected as 4k@120hz in OS, it operates at 40hz - 120hz using Adaptive-Sync Frame Range1.
3. OS에서 4k@100hz로 Video Timing이 선택되는 경우 Adaptive-Sync Frame Range3를 사용하여 24hz - 100hz로 동작3. When Video Timing is selected as 4k@100hz in OS, it operates at 24hz - 100hz using Adaptive-Sync Frame Range3.
Sink 장치의 동작Operation of the sink device
Sink 장치가 Multi Frame rate를 사용하는 경우, EDID에 Video timing의 Frame Rate와 Adaptive-Sync 프레임 범위의 최대 값이 일치하게 기입해야 한다. 또한, 각각의 Frame Range마다 Overdrive 튜닝을 진행해야 한다. 이런 경우 각각의 Frame Range에서 최적의 Overdrive 값을 튜닝하여, 과도한 Over/Undershoot을 방지하고 화면 품질을 향상시킬 수 있다.If the Sink device uses Multi Frame Rate, the maximum value of the Frame Rate and Adaptive-Sync frame range of the Video timing must be entered in EDID. In addition, Overdrive tuning must be performed for each Frame Range. In this case, by tuning the optimal Overdrive value for each Frame Range, excessive Over/Undershoot can be prevented and the screen quality can be improved.
도 5은 Source 장치가 Adaptive-Sync 동작을 수행할 경우 Frame Range를 결정하는 과정의 일례를 도시한 도면이다.Figure 5 is a diagram illustrating an example of a process for determining a Frame Range when a Source device performs an Adaptive-Sync operation.
도 5는 단일의 Adaptive-Sync Data Block Range만이 지원되는 경우에 관한 실시 예이다.Figure 5 is an example embodiment where only a single Adaptive-Sync Data Block Range is supported.
도 5를 참조하면, Source 장치는 Sink 장치로부터 HPD(hot plug detection)을 수신한다.Referring to Figure 5, the Source device receives HPD (hot plug detection) from the Sink device.
Source 장치는 Sink 장치로부터 EDID(extended display identification data)/DPID(DisplayID)를 수신하여 식별한다. 즉, Source 장치는 Sink 장치의 EDID(extended display identification data)/DPID(DisplayID)를 읽는다.The Source device identifies itself by receiving the EDID (extended display identification data)/DPID (DisplayID) from the Sink device. That is, the Source device reads the EDID (extended display identification data)/DPID (DisplayID) of the Sink device.
Source 장치는 수신한 EDID/DPID로부터 Sink 장치에 의하여 지원되는 적응형 동기화 범위(adaptive-sync range)를 식별한다. 즉, Source 장치는 EDID/DPID에서 적응형 동기화 범위(adaptive-sync range)를 읽는다.The Source device identifies the adaptive-sync range supported by the Sink device from the received EDID/DPID. That is, the Source device reads the adaptive-sync range from the EDID/DPID.
Source 장치는 적응형 동기화 범위(adaptive-sync range)로 작동한다. 즉, Source 장치는 적응형 동기화 범위(adaptive-sync range)에 기반하여 오디오/비디오 신호를 처리하고 Sink 장치에게 전송한다.The Source device operates with an adaptive sync range. That is, the Source device processes the audio/video signals and transmits them to the Sink device based on the adaptive sync range.
도 6은 본 개시의 다양한 실시 예들에 따른 Source 장치가 Adaptive-Sync 동작을 수행할 경우 Frame Range를 결정하는 과정의 일례를 도시한 도면이다.FIG. 6 is a diagram illustrating an example of a process for determining a Frame Range when a Source device performs an Adaptive-Sync operation according to various embodiments of the present disclosure.
도 6는 복수의 Adaptive-Sync Data Block Ranges가 지원되는 경우에 관한 실시 예이다.Figure 6 is an example of a case where multiple Adaptive-Sync Data Block Ranges are supported.
도 6를 참조하면, Source 장치는 Sink 장치로부터 EDID(extended display identification data)/DPID(DisplayID)를 수신하여 식별한다. 즉, Source 장치는 Sink 장치의 EDID(extended display identification data)/DPID(DisplayID)를 읽는다.Referring to FIG. 6, the Source device receives and identifies the EDID (extended display identification data)/DPID (DisplayID) from the Sink device. That is, the Source device reads the EDID (extended display identification data)/DPID (DisplayID) of the Sink device.
Source 장치는 수신한 EDID/DPID에 Adaptive-Sync Data Block이 존재하는지 결정한다.The source device determines whether the received EDID/DPID contains an Adaptive-Sync Data Block.
EDID/DPID에 Adaptive-Sync Data Block이 존재하는 경우, Source 장치는 Adaptive-Sync Data Block에 다중의(즉, 복수의) 적응형 동기화 범위들(Adaptive-Sync Data Block Ranges)가 존재하는지 결정한다.When an Adaptive-Sync Data Block is present in the EDID/DPID, the Source device determines whether there are multiple Adaptive-Sync Data Block Ranges in the Adaptive-Sync Data Block.
Adaptive-Sync Data Block에 다중의(즉, 복수의) 적응형 동기화 범위들(Adaptive-Sync Data Block Ranges)가 존재하는 경우, Source 장치는 비디오 타이밍 프레임 속도가 다중 프레임 범위의 최대 프레임 속도와 일치하는 환경에 따라 프레임 범위를 선택한다.When there are multiple Adaptive-Sync Data Block Ranges in an Adaptive-Sync Data Block, the Source device selects a frame range based on the environment in which the video timing frame rate matches the maximum frame rate of the multiple frame ranges.
선택된 프레임 범위에 기반하여, Source 장치는 적응형 동기화 범위(1 프레임 범위)로 작동한다. 즉, Source 장치는 선택된 적응형 동기화 범위(adaptive-sync range)에 기반하여 오디오/비디오 신호를 처리하고 Sink 장치에게 전송한다.Based on the selected frame range, the Source device operates with an adaptive sync range (1 frame range). That is, the Source device processes the audio/video signals based on the selected adaptive sync range and transmits them to the Sink device.
EDID/DPID에 Adaptive-Sync Data Block이 존재하지 않는 경우, 또는, Adaptive-Sync Data Block에 다중의(즉, 복수의) 적응형 동기화 범위들(Adaptive-Sync Data Block Ranges)가 존재하지 않는 경우 (즉, Adaptive-Sync Data Block에 하나의 적응형 동기화 범위(Adaptive-Sync Data Block Range)만 존재하는 경우), Source 장치는 하나의 적응형 동기화 범위(adaptive-sync range)로 작동한다. 즉, Source 장치는 하나의 적응형 동기화 범위(adaptive-sync range)에 기반하여 오디오/비디오 신호를 처리하고 Sink 장치에게 전송한다.If there is no Adaptive-Sync Data Block in EDID/DPID, or if there are no multiple Adaptive-Sync Data Block Ranges in the Adaptive-Sync Data Block (i.e., there is only one Adaptive-Sync Data Block Range in the Adaptive-Sync Data Block), the Source device operates with one adaptive-sync range. That is, the Source device processes the audio/video signal based on one adaptive-sync range and transmits it to the Sink device.
본 개시의 Sink 장치가 다수의 Adaptive-Sync Ranges를 지원할 경우, EDID에 Frame Range를 표기하는 방법Method of indicating Frame Range in EDID when the Sink device of the present disclosure supports multiple Adaptive-Sync Ranges
Multi Adaptive-Sync Range 지원 Sink는 Video Timing과 Adaptive-Sync Range의 Max값과 일치시켜 EDID에 각각 표기한다. 또한 각 Adaptive-Sync Frame Range에 대해 Overdrive 튜닝을 진행하여 Source가 어느 Adaptive-Sync Frame Range영역을 선택할 지라도 과도한 Over/Undershoot가 생기지 않도록 한다.Sink supports Multi Adaptive-Sync Range and displays the EDID according to the maximum value of Video Timing and Adaptive-Sync Range. Also, Overdrive tuning is performed for each Adaptive-Sync Frame Range to prevent excessive over/undershoot from occurring regardless of which Adaptive-Sync Frame Range area the Source selects.
(예시4)(Example 4)
[Video Timing]이 EDID에 아래와 같은 표기한 경우[Video Timing] If EDID is indicated as follows:
- Video Timing1 : 4k@240hz- Video Timing1: 4k@240hz
- Video Timing2 : 4k@120hz- Video Timing2 : 4k@120hz
- Video Timing3 : 4k@100hz- Video Timing3 : 4k@100hz
[Frame Range]를 Video Timing을 참조하여 Adaptive-Sync Range를 Max값과 일치 시켜서 EDID에 아래와 같이 표기 해야 한다.[Frame Range] must be set to the Max value of Adaptive-Sync Range by referring to Video Timing and displayed in EDID as shown below.
- Adaptive-Sync Frame Range1 : 40hz - 240hz- Adaptive-Sync Frame Range1: 40hz - 240hz
- Adaptive-Sync Frame Range2 : 60hz - 120hz- Adaptive-Sync Frame Range2: 60hz - 120hz
- Adaptive-Sync Frame Range3 : 24hz - 100hz- Adaptive-Sync Frame Range3: 24hz - 100hz
Sink제조사에서는 위와 같이 EDID에 표기되어 있는 경우에 각각의 '40hz - 120hz' , '60hz - 240hz', '24hz - 100hz' Frame Range에서 OverDrive를 튜닝하여 OD Table을 각각 Frame range에서 다르게 가져간다.As indicated in the EDID above, the Sink manufacturer tunes OverDrive for each '40hz - 120hz', '60hz - 240hz', and '24hz - 100hz' Frame Range, and brings the OD Table differently for each Frame Range.
[Source 장치 claim 관련 설명][Source device claim related description]
이하 상술한 실시 예들을 단말의 동작 측면에서 도 7를 참조하여 구체적으로 설명한다. 이하 설명되는 방법들은 설명의 편의를 위하여 구분된 것일 뿐, 상호 배척되지 않는 한 어느 한 방법의 일부 구성이 다른 방법의 일부 구성과 치환되거나, 상호 간에 결합되어 적용될 수 있음은 물론이다.The embodiments described below are specifically described with reference to FIG. 7 in terms of terminal operation. The methods described below are distinguished only for convenience of explanation, and it goes without saying that some components of one method may be substituted for some components of another method, or may be applied in combination with each other, as long as they are not mutually exclusive.
도 7는 본 개시의 다양한 실시 예들에 따른 Source 장치의 동작 과정의 일례를 도시한 도면이다.FIG. 7 is a diagram illustrating an example of an operation process of a source device according to various embodiments of the present disclosure.
본 개시의 다양한 실시 예들에 따르면, Source 장치에 의하여 수행되는 방법이 제공된다.According to various embodiments of the present disclosure, a method performed by a source device is provided.
Source 장치는 프로세서; 메모리; 및 송수신기(transceiver)를 포함한다. 상기 메모리는, 상기 프로세서에 의해 실행되는 것에 기반하여, 동작들을 수행하는 지시(instruction)들을 저장한다.A source device includes a processor; a memory; and a transceiver. The memory stores instructions for performing operations based on what is executed by the processor.
S701 단계에서, Source 장치는 싱크(Sink) 장치로부터 HPD(hot plug detection) 신호를 수신한다.At step S701, the Source device receives a hot plug detection (HPD) signal from the Sink device.
S702 단계에서, Source 장치는 상기 싱크 장치로부터 EDID(Extended Display Identification) 또는 DPID(DisplayID)와 관련된 제1 정보를 수신한다.At step S702, the source device receives first information related to EDID (Extended Display Identification) or DPID (DisplayID) from the sink device.
S703 단계에서, Source 장치는 상기 싱크 장치의 상기 제1 정보에 포함되는 복수의 비디오 타이밍 프레임 레이트들(a plurality of Video Timing Frame Rates)에 기반하여 특정 비디오 타이밍 프레임 레이트를 결정한다.At step S703, the Source device determines a specific video timing frame rate based on a plurality of Video Timing Frame Rates included in the first information of the Sink device.
S704 단계에서, 상기 제1 정보에 포함되는 적응형 동기화 데이터 블록(Adaptive-Sync Data Block)이 복수의 적응형 동기화 프레임 레인지들(a plurality of Adaptive-Sync Frame Ranges)와 관련되는 경우, Source 장치는 상기 복수의 적응형 동기화 프레임 레인지들 중 최대 프레임 레이트가 상기 특정 비디오 타이밍 프레임 레이트에 대응하는 특정 적응형 동기화 프레임 레인지를 결정한다.In step S704, if the Adaptive-Sync Data Block included in the first information is related to a plurality of Adaptive-Sync Frame Ranges, the Source device determines a specific Adaptive-Sync Frame Range among the plurality of Adaptive-Sync Frame Ranges, the maximum frame rate of which corresponds to the specific video timing frame rate.
S705 단계에서, Source 장치는 상기 특정 적응형 동기화 프레임 레인지에 기반하여 처리된 정보를 상기 싱크 장치에게 전송한다.At step S705, the source device transmits processed information based on the specific adaptive synchronization frame range to the sink device.
본 개시의 다양한 실시 예들에 따르면, 상기 적응형 동기화 데이터 블록이 관련되는 적응형 동기화 프레임 레인지의 수가 1인 경우, 상기 특정 적응형 동기화 프레임 레인지는 상기 적응형 동기화 데이터 블록이 관련되는 하나의 적응형 동기화 프레임 레인지로서 결정될 수 있다.According to various embodiments of the present disclosure, when the number of adaptive synchronization frame ranges to which the adaptive synchronization data block relates is 1, the specific adaptive synchronization frame range can be determined as one adaptive synchronization frame range to which the adaptive synchronization data block relates.
본 개시의 다양한 실시 예들에 따르면, 상기 제1 정보에 DSC(Display Stream Compression) 정보가 포함되는 경우, 상기 특정 비디오 타이밍 프레임 레이트는 상기 복수의 비디오 타이밍 프레임 레이트들 또는 다수의 비디오 타이밍 프레임 레이트들(multiple Video Timing Frame Rates) 중에서 결정될 수 있다.According to various embodiments of the present disclosure, when the first information includes Display Stream Compression (DSC) information, the specific video timing frame rate can be determined from among the plurality of video timing frame rates or multiple Video Timing Frame Rates.
본 개시의 다양한 실시 예들에 따르면, 상기 다수의 비디오 타이밍 프레임 레이트들은 상기 복수의 비디오 타이밍 프레임 레이트들에 DSC가 적용되어 생성될 수 있다.According to various embodiments of the present disclosure, the plurality of video timing frame rates can be generated by applying DSC to the plurality of video timing frame rates.
본 개시의 다양한 실시 예들에 따르면, 상기 특정 적응형 동기화 프레임 레인지의 상기 최대 프레임 레이트는 상기 특정 비디오 타이밍 프레임 레이트와 동일할 수 있다.According to various embodiments of the present disclosure, the maximum frame rate of the particular adaptive synchronization frame range can be equal to the particular video timing frame rate.
본 개시의 다양한 실시 예들에 따르면, 상기 특정 비디오 타이밍 레이트는 상기 소스 장치에 대한 입력 정보 또는 상기 소스 장치에 의한 임의의 선택으로 결정될 수 있다.According to various embodiments of the present disclosure, the specific video timing rate may be determined by input information to the source device or by an arbitrary selection by the source device.
본 개시의 다양한 실시 예들에 따르면, 상기 특정 적응형 동기화 프레임 레인지는 상기 특정 비디오 타이밍에 기반하여 결정될 수 있다.According to various embodiments of the present disclosure, the specific adaptive synchronization frame range can be determined based on the specific video timing.
본 개시의 다양한 실시 예들에 따르면, 상기 처리된 정보는 상기 특정 적응형 동기화 프레임 레인지에 대한 오버드라이브(Overdrive) 값의 튜닝에 기반할 수 있다.According to various embodiments of the present disclosure, the processed information may be based on tuning of an overdrive value for the particular adaptive synchronization frame range.
본 개시의 다양한 실시 예들에 따르면 Source 장치가 제공된다. Source 장치는 프로세서; 메모리; 및 송수신기(transceiver)를 포함하고, 상기 프로세서는, 도 7에 따른 Source 장치의 동작 방법을 수행하도록 구성될 수 있다.According to various embodiments of the present disclosure, a Source device is provided. The Source device includes a processor; a memory; and a transceiver, wherein the processor can be configured to perform a method of operating the Source device according to FIG. 7.
본 개시의 다양한 실시 예들에 따르면, Source 장치를 제어하는 장치가 제공된다. 상기 장치는 적어도 하나의 프로세서 및 상기 적어도 하나의 프로세서들에 동작 가능하게 접속된 적어도 하나의 메모리를 포함한다. 상기 적어도 하나의 메모리들은, 상기 적어도 하나의 프로세서에 의해 실행되는 것에 기반하여, 도 7에 따른 Source 장치의 동작 방법을 수행하는 지시(instruction)들을 저장하도록 구성될 수 있다.According to various embodiments of the present disclosure, a device for controlling a Source device is provided. The device includes at least one processor and at least one memory operably connected to the at least one processor. The at least one memory may be configured to store instructions for performing a method of operating the Source device according to FIG. 7 based on being executed by the at least one processor.
본 개시의 다양한 실시 예들에 따르면, 하나 이상의 명령어를 저장하는 하나 이상의 비일시적인(non-transitory) 컴퓨터 판독 가능 매체(computer readable medium, CRM)가 제공된다. 상기 하나 이상의 명령어는, 하나 이상의 프로세서에 의해 실행되는 것에 기반하여, 동작들을 수행하고, 상기 동작들은, 도 7에 따른 Source 장치의 동작 방법을 포함할 수 있다.According to various embodiments of the present disclosure, one or more non-transitory computer readable media (CRM) storing one or more instructions are provided. The one or more instructions, when executed by one or more processors, perform operations, the operations may include a method of operating a Source device according to FIG. 7.
본 개시의 다양한 실시 예들에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 개시의 다양한 실시 예들의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 개시의 다양한 실시 예들의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 개시의 다양한 실시 예들의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 개시의 다양한 실시 예들의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.The claims described in the various embodiments of the present disclosure may be combined in various ways. For example, the technical features of the method claims of the various embodiments of the present disclosure may be combined and implemented as a device, and the technical features of the device claims of the various embodiments of the present disclosure may be combined and implemented as a method. In addition, the technical features of the method claims and the technical features of the device claims of the various embodiments of the present disclosure may be combined and implemented as a device, and the technical features of the method claims and the technical features of the device claims of the various embodiments of the present disclosure may be combined and implemented as a method.
Claims (15)
- 소스(Source) 장치의 동작 방법에 있어서,In the method of operating the source device,싱크(Sink) 장치로부터 HPD(hot plug detection) 신호를 수신하는 단계;A step of receiving a hot plug detection (HPD) signal from a sink device;상기 싱크 장치로부터 EDID(Extended Display Identification) 또는 DPID(DisplayID)와 관련된 제1 정보를 수신하는 단계;A step of receiving first information related to EDID (Extended Display Identification) or DPID (DisplayID) from the sink device;상기 싱크 장치의 상기 제1 정보에 포함되는 복수의 비디오 타이밍 프레임 레이트들(a plurality of Video Timing Frame Rates)에 기반하여 특정 비디오 타이밍 프레임 레이트를 결정하는 단계;A step of determining a specific video timing frame rate based on a plurality of Video Timing Frame Rates included in the first information of the sink device;상기 제1 정보에 포함되는 적응형 동기화 데이터 블록(Adaptive-Sync Data Block)이 복수의 적응형 동기화 프레임 레인지들(a plurality of Adaptive-Sync Frame Ranges)와 관련되는 경우, 상기 복수의 적응형 동기화 프레임 레인지들 중 최대 프레임 레이트가 상기 특정 비디오 타이밍 프레임 레이트에 대응하는 특정 적응형 동기화 프레임 레인지를 결정하는 단계;When an Adaptive-Sync Data Block included in the first information is related to a plurality of Adaptive-Sync Frame Ranges, a step of determining a specific Adaptive-Sync Frame Range among the plurality of Adaptive-Sync Frame Ranges, the maximum frame rate of which corresponds to the specific video timing frame rate;상기 특정 적응형 동기화 프레임 레인지에 기반하여 처리된 정보를 상기 싱크 장치에게 전송하는 단계를 포함하는,Comprising a step of transmitting processed information based on the specific adaptive synchronization frame range to the sink device,방법.method.
- 제1 항에 있어서,In the first paragraph,상기 적응형 동기화 데이터 블록이 관련되는 적응형 동기화 프레임 레인지의 수가 1인 경우, 상기 특정 적응형 동기화 프레임 레인지는 상기 적응형 동기화 데이터 블록이 관련되는 하나의 적응형 동기화 프레임 레인지로서 결정되는,If the number of adaptive synchronization frame ranges to which the above adaptive synchronization data block relates is 1, the specific adaptive synchronization frame range is determined as one adaptive synchronization frame range to which the above adaptive synchronization data block relates.방법.method.
- 제1 항에 있어서,In the first paragraph,상기 제1 정보에 DSC(Display Stream Compression) 정보가 포함되는 경우, 상기 특정 비디오 타이밍 프레임 레이트는 상기 복수의 비디오 타이밍 프레임 레이트들 또는 다수의 비디오 타이밍 프레임 레이트들(multiple Video Timing Frame Rates) 중에서 결정되고,If the first information includes DSC (Display Stream Compression) information, the specific video timing frame rate is determined from among the plurality of video timing frame rates or multiple Video Timing Frame Rates,상기 다수의 비디오 타이밍 프레임 레이트들은 상기 복수의 비디오 타이밍 프레임 레이트들에 DSC가 적용되어 생성되는,The above plurality of video timing frame rates are generated by applying DSC to the above plurality of video timing frame rates.방법.method.
- 제1 항에 있어서,In the first paragraph,상기 특정 적응형 동기화 프레임 레인지의 상기 최대 프레임 레이트는 상기 특정 비디오 타이밍 프레임 레이트와 동일한,The maximum frame rate of the above specific adaptive synchronization frame range is equal to the above specific video timing frame rate.방법.method.
- 제1 항에 있어서,In the first paragraph,상기 특정 비디오 타이밍 레이트는 상기 소스 장치에 대한 입력 정보 또는 상기 소스 장치에 의한 임의의 선택으로 결정되는,The above specific video timing rate is determined by input information to the source device or by arbitrary selection by the source device.방법.method.
- 제1 항에 있어서,In the first paragraph,상기 특정 적응형 동기화 프레임 레인지는 상기 특정 비디오 타이밍에 기반하여 결정되는, The above specific adaptive synchronization frame range is determined based on the above specific video timing.방법.method.
- 제1 항에 있어서,In the first paragraph,상기 처리된 정보는 상기 특정 적응형 동기화 프레임 레인지에 대한 오버드라이브(Overdrive) 값의 튜닝에 기반하는, The above processed information is based on tuning the overdrive value for the specific adaptive synchronization frame range.방법.method.
- 소스(Source) 장치에 있어서,In the source device,프로세서; 메모리; 및 송수신기(transceiver)를 포함하고,comprising a processor; memory; and a transceiver;상기 메모리는, 상기 프로세서에 의해 실행되는 것에 기반하여, 동작들을 수행하는 지시(instruction)들을 저장하며,The above memory stores instructions for performing operations based on what is executed by the processor,상기 동작들은,The above actions are,싱크(Sink) 장치로부터 HPD(hot plug detection) 신호를 수신하는 단계;A step of receiving a hot plug detection (HPD) signal from a sink device;상기 싱크 장치로부터 EDID(Extended Display Identification) 또는 DPID(DisplayID)와 관련된 제1 정보를 수신하는 단계;A step of receiving first information related to EDID (Extended Display Identification) or DPID (DisplayID) from the sink device;상기 싱크 장치의 상기 제1 정보에 포함되는 복수의 비디오 타이밍 프레임 레이트들(a plurality of Video Timing Frame Rates)에 기반하여 특정 비디오 타이밍 프레임 레이트를 결정하는 단계;A step of determining a specific video timing frame rate based on a plurality of Video Timing Frame Rates included in the first information of the sink device;상기 제1 정보에 포함되는 적응형 동기화 데이터 블록(Adaptive-Sync Data Block)이 복수의 적응형 동기화 프레임 레인지들(a plurality of Adaptive-Sync Frame Ranges)와 관련되는 경우, 상기 복수의 적응형 동기화 프레임 레인지들 중 최대 프레임 레이트가 상기 특정 비디오 타이밍 프레임 레이트에 대응하는 특정 적응형 동기화 프레임 레인지를 결정하는 단계;When an Adaptive-Sync Data Block included in the first information is related to a plurality of Adaptive-Sync Frame Ranges, a step of determining a specific Adaptive-Sync Frame Range among the plurality of Adaptive-Sync Frame Ranges, the maximum frame rate of which corresponds to the specific video timing frame rate;상기 특정 적응형 동기화 프레임 레인지에 기반하여 처리된 정보를 상기 싱크 장치에게 전송하는 단계를 포함하는,Comprising a step of transmitting processed information based on the specific adaptive synchronization frame range to the sink device,소스 장치.Source device.
- 제8 항에 있어서,In Article 8,상기 적응형 동기화 데이터 블록이 관련되는 적응형 동기화 프레임 레인지의 수가 1인 경우, 상기 특정 적응형 동기화 프레임 레인지는 상기 적응형 동기화 데이터 블록이 관련되는 하나의 적응형 동기화 프레임 레인지로서 결정되는, If the number of adaptive synchronization frame ranges to which the above adaptive synchronization data block relates is 1, the specific adaptive synchronization frame range is determined as one adaptive synchronization frame range to which the above adaptive synchronization data block relates.소스 장치.Source device.
- 제8 항에 있어서,In Article 8,상기 제1 정보에 DSC(Display Stream Compression) 정보가 포함되는 경우, 상기 특정 비디오 타이밍 프레임 레이트는 상기 복수의 비디오 타이밍 프레임 레이트들 또는 다수의 비디오 타이밍 프레임 레이트들(multiple Video Timing Frame Rates) 중에서 결정되고,If the first information includes DSC (Display Stream Compression) information, the specific video timing frame rate is determined from among the plurality of video timing frame rates or multiple Video Timing Frame Rates,상기 다수의 비디오 타이밍 프레임 레이트들은 상기 복수의 비디오 타이밍 프레임 레이트들에 DSC가 적용되어 생성되는, The above plurality of video timing frame rates are generated by applying DSC to the above plurality of video timing frame rates.소스 장치.Source device.
- 제8 항에 있어서,In Article 8,상기 특정 적응형 동기화 프레임 레인지의 상기 최대 프레임 레이트는 상기 특정 비디오 타이밍 프레임 레이트와 동일한, The maximum frame rate of the above specific adaptive synchronization frame range is equal to the above specific video timing frame rate.소스 장치.Source device.
- 제8 항에 있어서,In Article 8,상기 특정 비디오 타이밍 레이트는 상기 소스 장치에 대한 입력 정보 또는 상기 소스 장치에 의한 임의의 선택으로 결정되는, The above specific video timing rate is determined by input information to the source device or by arbitrary selection by the source device.소스 장치.Source device.
- 제8 항에 있어서,In Article 8,상기 특정 적응형 동기화 프레임 레인지는 상기 특정 비디오 타이밍에 기반하여 결정되는, The above specific adaptive synchronization frame range is determined based on the above specific video timing.소스 장치.Source device.
- 제8 항에 있어서,In Article 8,상기 처리된 정보는 상기 특정 적응형 동기화 프레임 레인지에 대한 오버드라이브(Overdrive) 값의 튜닝에 기반하는, The above processed information is based on tuning the overdrive value for the specific adaptive synchronization frame range.소스 장치.Source device.
- 하나 이상의 명령어를 저장하는 하나 이상의 비일시적인(non-transitory) 컴퓨터 판독 가능 매체에 있어서,In one or more non-transitory computer-readable media storing one or more instructions,상기 하나 이상의 명령어는, 하나 이상의 프로세서에 의해 실행되는 것에 기반하여, 동작들을 수행하고,The one or more instructions perform operations based on being executed by one or more processors,상기 동작들은,The above actions are,싱크(Sink) 장치로부터 HPD(hot plug detection) 신호를 수신하는 단계;A step of receiving a hot plug detection (HPD) signal from a sink device;상기 싱크 장치로부터 EDID(Extended Display Identification) 또는 DPID(DisplayID)와 관련된 제1 정보를 수신하는 단계;A step of receiving first information related to EDID (Extended Display Identification) or DPID (DisplayID) from the sink device;상기 싱크 장치의 상기 제1 정보에 포함되는 복수의 비디오 타이밍 프레임 레이트들(a plurality of Video Timing Frame Rates)에 기반하여 특정 비디오 타이밍 프레임 레이트를 결정하는 단계;A step of determining a specific video timing frame rate based on a plurality of Video Timing Frame Rates included in the first information of the sink device;상기 제1 정보에 포함되는 적응형 동기화 데이터 블록(Adaptive-Sync Data Block)이 복수의 적응형 동기화 프레임 레인지들(a plurality of Adaptive-Sync Frame Ranges)와 관련되는 경우, 상기 복수의 적응형 동기화 프레임 레인지들 중 최대 프레임 레이트가 상기 특정 비디오 타이밍 프레임 레이트에 대응하는 특정 적응형 동기화 프레임 레인지를 결정하는 단계;When an Adaptive-Sync Data Block included in the first information is related to a plurality of Adaptive-Sync Frame Ranges, a step of determining a specific Adaptive-Sync Frame Range among the plurality of Adaptive-Sync Frame Ranges, the maximum frame rate of which corresponds to the specific video timing frame rate;상기 특정 적응형 동기화 프레임 레인지에 기반하여 처리된 정보를 상기 싱크 장치에게 전송하는 단계를 포함하는,Comprising a step of transmitting processed information based on the specific adaptive synchronization frame range to the sink device,컴퓨터 판독 가능 매체.Computer readable medium.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20230050609 | 2023-04-18 | ||
KR10-2023-0050609 | 2023-04-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024219858A1 true WO2024219858A1 (en) | 2024-10-24 |
Family
ID=93153104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2024/005249 WO2024219858A1 (en) | 2023-04-18 | 2024-04-18 | Apparatus and method for determining optimal adaptive synchronization frame range from among multiple adaptive synchronization frame ranges |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024219858A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160131673A (en) * | 2015-05-08 | 2016-11-16 | 삼성전자주식회사 | Display apparatus consisting a multi display system and control method thereof |
US20190387168A1 (en) * | 2018-06-18 | 2019-12-19 | Magic Leap, Inc. | Augmented reality display with frame modulation functionality |
US20200366960A1 (en) * | 2019-05-15 | 2020-11-19 | Niamul QUADER | Adaptive action recognizer for video |
KR20210049786A (en) * | 2018-08-30 | 2021-05-06 | 소니 주식회사 | Transmitting device, transmitting method, receiving device and receiving method |
US20210141450A1 (en) * | 2019-11-07 | 2021-05-13 | Varjo Technologies Oy | System and method for producing images based on gaze direction and field of view |
-
2024
- 2024-04-18 WO PCT/KR2024/005249 patent/WO2024219858A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160131673A (en) * | 2015-05-08 | 2016-11-16 | 삼성전자주식회사 | Display apparatus consisting a multi display system and control method thereof |
US20190387168A1 (en) * | 2018-06-18 | 2019-12-19 | Magic Leap, Inc. | Augmented reality display with frame modulation functionality |
KR20210049786A (en) * | 2018-08-30 | 2021-05-06 | 소니 주식회사 | Transmitting device, transmitting method, receiving device and receiving method |
US20200366960A1 (en) * | 2019-05-15 | 2020-11-19 | Niamul QUADER | Adaptive action recognizer for video |
US20210141450A1 (en) * | 2019-11-07 | 2021-05-13 | Varjo Technologies Oy | System and method for producing images based on gaze direction and field of view |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016021809A1 (en) | Video data processing method and device for reproducing display-adaptive image | |
WO2015190877A1 (en) | Method and device for transmitting/receiving data using hdmi | |
WO2022177043A1 (en) | Display device | |
WO2013100372A1 (en) | Display apparatus and signal processing module for receiving broadcasting and device and method for receiving broadcasting | |
WO2016175467A1 (en) | Source device and control method thereof, and sink device and image quality improvement processing method thereof | |
WO2013122385A1 (en) | Data transmitting apparatus, data receiving apparatus, data transreceiving system, data transmitting method, data receiving method and data transreceiving method | |
WO2016056737A1 (en) | Display device and method for controlling the same | |
WO2015190880A1 (en) | Method and apparatus for transmitting and receiving data using hdmi | |
WO2016195429A1 (en) | Method for transmitting and receiving power using hdmi and apparatus therefor | |
WO2013122386A1 (en) | Data transmitting apparatus, data receiving apparatus, data transreceiving system, data transmitting method, data receiving method and data transreceiving method | |
WO2016089161A1 (en) | Method for controlling ip-based hdmi device | |
WO2019078542A1 (en) | Image display apparatus | |
WO2021040369A1 (en) | Electronic apparatus, display apparatus and method of controlling the same | |
WO2021085951A1 (en) | Display apparatus and method of controlling the same | |
WO2024219858A1 (en) | Apparatus and method for determining optimal adaptive synchronization frame range from among multiple adaptive synchronization frame ranges | |
WO2017119571A1 (en) | Digital device, and system and method for controlling color using same | |
WO2024191262A2 (en) | Device and method for configuring operating range of adaptive synchronization | |
WO2022025343A1 (en) | Organic light-emitting diode display device and operating method thereof | |
WO2020226202A1 (en) | Method for tracking channel in wireless av system and wireless device using same | |
WO2023008605A1 (en) | Image display device | |
WO2021235829A1 (en) | Image content transmitting method and device using edge computing service | |
WO2023008606A1 (en) | Image display device | |
WO2021230711A1 (en) | Video data transmission and reception method using high-speed interface, and apparatus therefor | |
WO2024215107A1 (en) | Device and method for distinguishing supported dsc information between source and sink | |
WO2024232630A1 (en) | Gateway apparatus, control method for gateway apparatus, and handshaking system |