WO2021246271A1 - Acoustic defect detection device and method for detecting defect - Google Patents
Acoustic defect detection device and method for detecting defect Download PDFInfo
- Publication number
- WO2021246271A1 WO2021246271A1 PCT/JP2021/020120 JP2021020120W WO2021246271A1 WO 2021246271 A1 WO2021246271 A1 WO 2021246271A1 JP 2021020120 W JP2021020120 W JP 2021020120W WO 2021246271 A1 WO2021246271 A1 WO 2021246271A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultrasonic
- acoustic
- defect detection
- vibration
- detection device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/72—Investigating presence of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
Definitions
- the present invention relates to a structure of an acoustic defect detection device that detects defects of an inspection object using ultrasonic waves and a defect detection method that detects defects using ultrasonic waves.
- Patent Document 1 has a problem that the device becomes complicated because the ultrasonic vibrator is connected to the inspection object and the entire inspection object is ultrasonically vibrated. ..
- an object of the present invention is to detect defects in an inspection object with a simple configuration.
- the acoustic defect detection device of the present invention is an acoustic defect detection device that detects defects of an inspection object, and is an acoustic head that ultrasonically vibrates the inspection object and an ultrasonic excitation head that is attached to the acoustic head.
- the acoustic head is oriented with an infrared thermography that outputs the temperature distribution of the surface of the inspection object inside as a temperature distribution image and a detection unit that detects defects based on the temperature distribution image input from the infrared thermography.
- It has a plurality of ultrasonic generators having a property and a casing in which a plurality of ultrasonic generators are mounted so that a plurality of ultrasonic waves generated from the plurality of ultrasonic generators are concentrated on an object to be inspected. It is characterized in that a plurality of ultrasonic waves generated from the ultrasonic generator of the above are concentrated on the inspection target and the inspection target is ultrasonically vibrated.
- ultrasonic waves are concentrated on the inspection target and the inspection target is indirectly ultrasonically vibrated to detect defects such as cracks. It is possible to detect defects such as cracks with a simple structure as compared with the case where ultrasonic vibration is directly incident on the object to be inspected. Further, since the inspection object is indirectly ultrasonically vibrated, it is possible to detect the defect of the inspection object in a non-contact manner.
- the detection unit may detect a high temperature portion having a temperature higher than the surroundings in the temperature distribution image input from the infrared thermography as a defect region.
- the infrared thermography outputs the temperature distribution of the surface of the inspection object before ultrasonic vibration as a temperature distribution image before vibration, and during ultrasonic vibration or ultrasonic vibration.
- the temperature distribution on the surface of the object to be inspected later is output as a post-vibration temperature distribution image, and the detection unit is based on the pre-vibration temperature distribution image and the post-vibration temperature distribution image input from the infrared thermography.
- the temperature difference between the temperature before the vibration and the temperature after the vibration may be calculated for each region, and the region where the temperature difference is equal to or larger than a predetermined threshold may be detected as a defective region.
- the temperature difference between the temperature before vibration and the temperature after vibration is calculated for each surface region, and the region where the temperature difference is equal to or greater than a predetermined threshold value is detected as the defective region. Even when the shaking time is short and the temperature rise of the defective portion is not so large as compared with the other portions, defects such as cracks can be reliably detected. As a result, the defect detection time can be shortened.
- the holding surface includes a stage for holding an inspection object, the acoustic head is arranged on the holding surface side of the stage away from the stage, and the casing of the acoustic head is annular.
- the multiple ultrasonic generators are multiple ultrasonic speakers, each axis attached to the casing so that it concentrates on the object to be inspected held on the holding surface of the stage. May be good.
- the ultrasonic waves generated by the ultrasonic speaker can be effectively concentrated on the inspection target object, and the inspection target object can be effectively ultrasonically vibrated.
- the acoustic defect detection device of the present invention includes a moving mechanism that moves the acoustic head relative to the stage, and the moving mechanism is an inspection in which a plurality of ultrasonic waves generated from a plurality of ultrasonic generators are concentrated on an inspection object.
- the acoustic head may be moved relative to scan the area along the surface of the object to be inspected.
- the acoustic defect detection device of the present invention may include a drive circuit for driving a plurality of ultrasonic generators, and the drive circuit may be capable of adjusting each phase of the ultrasonic waves generated from each ultrasonic generator. Further, the drive circuit may include a plurality of drive units for driving one ultrasonic generator, and the drive unit may be capable of adjusting the phase of the ultrasonic wave generated from the ultrasonic generator.
- the size of the inspection target and the size of defects such as cracks to be detected can be adjusted to the surface of the ultrasonic inspection target.
- the degree of concentration can be adjusted.
- the defect detection method of the present invention is a defect detection method for detecting defects in an inspection object, which includes an acoustic head having a plurality of directional ultrasonic generators and ultrasonically vibrating the inspection object.
- the preparatory step of preparing an acoustic defect detection device equipped with infrared thermography attached to the acoustic head, and multiple ultrasonic waves generated by multiple ultrasonic generators of the acoustic head are concentrated and inspected on the inspection object.
- the defect detection method of the present invention is a defect detection method for detecting defects in an inspection object, and is an acoustic head having a plurality of directional ultrasonic generators and ultrasonically vibrating the inspection object. And the preparatory step of preparing an acoustic defect detection device equipped with infrared thermography attached to the acoustic head, and multiple ultrasonic waves generated by multiple ultrasonic generators of the acoustic head are concentrated on the inspection object.
- the temperature distribution of the surface of the inspection target before ultrasonic vibration is acquired as a pre-vibration temperature distribution image by the ultrasonic vibration step of ultrasonically vibrating the inspection target and the infrared thermography, and the ultrasonic vibration is applied.
- Pre- and post-vibration image acquisition process to acquire the temperature distribution of the surface of the inspection object during shaking or after ultrasonic vibration as a post-vibration temperature distribution image, and the acquired pre-vibration temperature distribution image and post-vibration temperature distribution image.
- the defective region detection step of calculating the temperature difference between the temperature before the vibration and the temperature after the vibration for each surface region and detecting the region where the temperature difference is equal to or higher than a predetermined threshold as the defective region. , It is characterized by having.
- the present invention can detect defects such as cracks in the inspection target with a simple configuration.
- the acoustic defect detection device 100 of the embodiment includes a stage 10, an acoustic head 20, a moving mechanism 30, a control unit 50, and a detection unit 55.
- the direction perpendicular to the paper surface of FIG. 1 will be described as the X direction
- the direction orthogonal to the X direction on the horizontal plane will be described as the Y direction
- the vertical direction will be described as the Z direction. Note that FIG.
- each ultrasonic speaker 21 is not distinguished, it is referred to as an ultrasonic speaker 21 and each is referred to as an ultrasonic speaker 21.
- each ultrasonic speaker 21 is referred to as an ultrasonic speaker 21 and each is referred to as an ultrasonic speaker 21.
- ultrasonic speakers 211 to 216 When distinguishing the ultrasonic speakers 21, they are referred to as ultrasonic speakers 211 to 216.
- the stage 10 is attached to a base (not shown).
- the stage 10 attracts and holds the electronic component 13 which is an inspection target on the upper holding surface 10a.
- the electronic component 13 may be, for example, a semiconductor chip 11 mounted on the substrate 12.
- the semiconductor chip 11 contains a defective crack 90.
- the stage 10 can convey the electronic component 13 in the X direction.
- the acoustic head 20 is arranged above the holding surface 10a of the stage 10 so as to be separated from the stage 10.
- the acoustic head 20 is composed of a casing 22 and a plurality of ultrasonic speakers 21 attached to the casing 22.
- the casing 22 of the acoustic head 20 is connected to a moving mechanism 30 that moves the acoustic head 20 relative to the electronic component 13 that is attracted and held on the holding surface 10a of the stage 10.
- the moving mechanism 30 includes a guide rail 31 movably attached to a base (not shown) so as to be movable in the X direction, and a slider 33 that moves in the Y direction along the guide rail 31.
- the guide rail 31 is configured to be movable in the X direction by the X direction moving mechanism 32.
- the slider 33 is provided with a Y-direction moving mechanism 34 inside, and is configured to be movable in the Y-direction by being guided by a guide rail 31.
- the casing 22 of the acoustic head 20 is connected to the slider 33 by an arm 36 extending in the Z direction.
- the slider 33 is internally provided with a Z-direction moving mechanism 35 that drives the arm 36 in the Z direction, and is configured to be able to move the acoustic head 20 in the Z direction. Therefore, the moving mechanism 30 is configured to be relatively movable in the XYZ direction with respect to the electronic component 13 in which the acoustic head 20 is attracted and held on the stage 10.
- the casing 22 of the acoustic head 20 has a spherical dome shape, and the lower stage side is open.
- the spherical center 26 constituting the casing 22 is located on the surface 15 of the electronic component 13 held on the holding surface 10a of the stage 10.
- the ultrasonic speaker 21 is a directivity ultrasonic generator, and generates the ultrasonic wave 24 so that the ultrasonic wave 24 propagates in the range of the directivity angle ⁇ about the axis 21a in the direction of the axis 21a.
- the plurality of ultrasonic speakers 21 are attached to the casing 22 so that the axes 21a intersect with each other at the spherical center 26 of the casing 22.
- each ultrasonic wave 24 generated from the plurality of ultrasonic speakers 21 is concentrated on the surface 15 of the electronic component 13 held on the holding surface 10a where the sphere center 26 is located.
- the area where the ultrasonic waves 24 on the surface 15 of the electronic component 13 are concentrated is the inspection area 40 for detecting the crack 90.
- a drive unit 23 for driving the ultrasonic speaker 21 is connected to each ultrasonic speaker 21.
- Each drive unit 23 can adjust the phase of the ultrasonic wave 24 generated by the connected ultrasonic speaker 21.
- the plurality of drive units 23 form a drive circuit for driving the ultrasonic speaker group composed of the plurality of ultrasonic speakers 21.
- the X-direction moving mechanism 32, the Y-direction moving mechanism 34, the Z-direction moving mechanism 35, and the drive unit 23 for driving each ultrasonic speaker 21 of the moving mechanism 30 are connected to the control unit 50 and are connected to the control unit 50. Driven by command.
- the control unit 50 is a computer including a CPU 51, which is a processor that processes information internally, and a storage unit 52 that stores a control program and control data.
- An infrared thermography 27 is attached to the center of the acoustic head 20.
- the infrared thermography 27 measures infrared radiation from the surface 15 of the electronic component 13 and outputs the temperature distribution of the surface 15 as a temperature distribution image.
- the infrared thermography 27 is attached to the casing 22 so that the optical axis 28 is perpendicular to the stage 10 and passes through the center 26 of the sphere. Therefore, the infrared thermography 27 is attached to the casing 22 so as to image the inspection region 40 of the surface 15 of the electronic component 13 from directly above.
- the infrared thermography 27 is connected to the detection unit 55.
- the detection unit 55 detects the crack 90 based on the temperature distribution image input from the infrared thermography 27.
- the detection unit 55 is a computer including a CPU 56 which is a processor that processes information internally, a storage unit 57 that stores a control program and control data, and a display 58 that displays a temperature distribution image input from the infrared thermography 27. be. Further, the detection unit 55 is connected to the control unit 50 to exchange data.
- the first control unit 50 operates the Z-direction moving mechanism 35 to adjust the Z-direction position of the acoustic head 20 so that the height of the sphere center 26 coincides with the surface 15 of the electronic component 13.
- the control unit 50 drives each ultrasonic speaker 21 by each drive unit 23 to generate an ultrasonic wave 24 having a predetermined frequency from each ultrasonic speaker 21.
- Each ultrasonic speaker 21 has directivity and propagates in the direction of each axis 21a within a range of a directivity angle ⁇ centered on the axis 21a. Since each ultrasonic speaker 21 is attached to the casing 22 so that each axis 21a intersects with the spherical center 26 of the casing 22, the ultrasonic wave 24 generated from each ultrasonic speaker 21 is the spherical center 26 of the casing 22. It intersects in the vicinity of and is concentrated and overlapped.
- the control unit 50 adjusts each phase of each ultrasonic speaker 21 so that the amplitude of the ultrasonic vibration becomes large in the vicinity of the center of the sphere 26 by superimposing the ultrasonic waves 24.
- the phase of the ultrasonic wave 24 generated by the ultrasonic speakers 211 and 216 located symmetrically with respect to the center 26 of the sphere is shifted by 180 degrees.
- the phases of the ultrasonic speakers 212 and 215 and the phases of the ultrasonic speakers 213 and 214 which are positioned symmetrically with respect to the center 26 of the sphere, may be shifted by 180 degrees, respectively.
- the phase of each ultrasonic wave 24 generated by each ultrasonic speaker 211 to 216 may be adjusted to be dispersed. As a result, the amplitude of the ultrasonic vibration in the inspection region 40, which is the range where the ultrasonic waves 24 in the vicinity of the center of the sphere 26 are concentrated, can be increased.
- the control unit 50 continues ultrasonic vibration of the inspection region 40 for a predetermined time ⁇ t1.
- the detection unit 55 When the inspection region 40 is ultrasonically vibrated for a predetermined time ⁇ t1, the detection unit 55 causes an infrared thermography 27 attached to the acoustic head 20 to image the infrared radiation of the inspection region 40 to measure the temperature distribution of the inspection region 40. Output as a distribution image. As shown in FIG. 3, the detection unit 55 detects a high temperature portion having a temperature higher than the surroundings in the temperature distribution image input from the infrared thermography 27 as a crack region 91 in which the crack 90 exists inside. The crack region 91 is a defective region in which a defective crack 90 exists.
- a region having a temperature higher than the ambient temperature is extracted from the temperature distribution image as a high temperature portion, and the high temperature portion and the ambient temperature are the highest.
- the temperature difference ⁇ T1 (see FIG. 2) with the low temperature portion having a low temperature becomes equal to or higher than a predetermined threshold value, the high temperature portion may be detected as the crack region 91.
- the inspector looks at the image displayed on the display 58 and detects the high temperature portion as the crack region 91 based on the color of the image. You may do it.
- the crack region 91 may be detected by the temperature difference between the temperature before ultrasonic vibration and the temperature during or after ultrasonic vibration.
- the detection unit 55 acquires the temperature distribution of the inspection region 40 of the electronic component 13 before ultrasonic vibration as a pre-vibration temperature distribution image by infrared thermography 27. Then, as shown in FIG. 2, after the control unit 50 drives the ultrasonic speaker 21 to ultrasonically vibrate the inspection region 40 for a predetermined time ⁇ t2, the temperature distribution of the inspection region 40 of the electronic component 13 is vibrated. Obtained as a temperature distribution image. Then, the detection unit 55 detects the temperature before vibration and the temperature after vibration in a predetermined region 45 (see FIG.
- this detection method can detect the same temperature difference with a shorter ultrasonic vibration time than the method for detecting the high temperature portion of the temperature distribution image described above, so that the crack region 91 can be detected. Detection time can be shortened.
- the temperature distribution image after the vibration is acquired after the ultrasonic vibration, but the temperature distribution image after the vibration may be acquired during the ultrasonic vibration.
- the control unit 50 moves the acoustic head 20 in the XY direction by the moving mechanism 30. In this way, the inspection region 40 is scanned along the surface 15 of the electronic component 13 by the moving mechanism 30 to detect the crack region 91 of the entire electronic component 13.
- the crack region 91 of the electronic component 13 may be detected without scanning.
- the ultrasonic wave 24 is concentrated on the surface 15 of the electronic component 13 by using the acoustic head 20 to which a plurality of ultrasonic speakers 21 are attached to form the electronic component 13. Indirectly ultrasonically vibrate. Therefore, it is possible to detect the crack region 91 in which the crack 90 exists inside with a simple structure as compared with the case where the ultrasonic vibration is directly incident on the electronic component 13. Further, since the electronic component 13 is indirectly ultrasonically vibrated, the crack region 91 of the electronic component 13 can be detected without contact.
- each drive unit 23 of the acoustic defect detection device 100 can adjust the phase of the ultrasonic wave 24 generated by the connected ultrasonic speaker 21, and is formed by adjusting each phase.
- the shape, size, and position of the inspection area 40 can be freely adjusted according to the size of the inspection object.
- the casing 22 has a spherical dome shape, and each ultrasonic speaker 21 is attached so that each axis 21a intersects at the center 26 of the sphere.
- the inspection region 40 having a large amplitude of ultrasonic vibration can be stably formed. Therefore, the position of the inspection region 40 does not fluctuate, and the surface 15 of the electronic component 13 can be reliably ultrasonically vibrated.
- the height of the center 26 of the sphere is set to match the surface 15 of the electronic component 13, but the present invention is not limited to this, and the electronic component 13 is not limited to this and is within the thickness range of the electronic component 13. It may be below the surface 15 of. As a result, the entire electronic component 13 can be ultrasonically vibrated. Further, the center 26 of the sphere may be slightly above the surface 15.
- each ultrasonic speaker 21 is arranged so that the range of each direction angle ⁇ centered on each axis 21a of each ultrasonic speaker 21 intersects even if each axis 21a does not intersect at the center of the sphere 26. You just have to.
- the drive unit 23 for driving the ultrasonic speaker 21 has been described as being connected to each ultrasonic speaker 21, the present invention is not limited to this, and some ultrasonic speakers 21 are combined with one drive unit 23. It may be configured to be driven.
- the moving mechanism 30 has been described as being composed of a guide rail 31 moving in the X direction, a slider 33 moving in the Y direction, and a Z direction moving mechanism 35 attached to the slider 33, but the present invention is limited to this.
- the acoustic head 20 may be attached to the tip of a robot arm that can freely move in the XYZ direction.
- the robot arm constitutes the moving mechanism 30.
- the stage 10 may be configured to move in the XYZ direction, or the electronic component 13 mounted on the stage 10 may be configured to move in the XY direction.
- the acoustic defect detection device 200 of another embodiment will be described with reference to FIG.
- the same parts as those of the acoustic defect detection device 100 described above with reference to FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
- a plurality of ultrasonic speakers 21 are attached to an annular casing 62.
- the casing 62 is a sphere-shaped annular member having an open surface 64 having a small diameter on the upper side and an open surface 65 having a large diameter on the lower side, and a plurality of ultrasonic speakers 21 are attached to the ball band surface 63.
- the ball center 66 of the ball band surface 63 is located on the surface 15 of the electronic component 13 held on the holding surface 10a of the stage 10.
- the plurality of ultrasonic speakers 21 are attached to the casing 62 so that the axes 21a intersect at the spherical center 66 of the casing 62. Similar to the acoustic defect detection device 100 described above with reference to FIG.
- the ultrasonic waves 24 generated from each ultrasonic speaker 21 intersect at the center of the sphere 66 and are concentrated and superposed.
- an inspection region 40 having a large amplitude of ultrasonic vibration is formed in the vicinity of the center 66 of the sphere.
- a stay 67 is attached to the open surface 64 on the upper side of the casing 62, and an arm 36 is connected to the stay 67. Similar to the acoustic head 20 of the acoustic defect detection device 100 described above with reference to FIG. 1, the acoustic head 60 is attracted and held on the stage 10 by the moving mechanism 30 in the XYZ direction with respect to the electronic component 13. It is relatively mobile.
- Infrared thermography 27 is attached to the stay 67.
- the infrared thermography 27 is attached to the stay 67 so that the optical axis 28 is perpendicular to the stage 10 and passes through the center of the sphere 66.
- the operation of the acoustic defect detection device 200 is the same as the operation of the acoustic defect detection device 100 described above with reference to FIG.
- the casing 62 of the acoustic defect detection device 200 is composed of a spherical segment-shaped annular member, the thickness in the Z direction can be reduced, and the casing 62 can be incorporated into a small bonding device or the like.
- the casing 62 of the acoustic head 60 has been described as a sphere-shaped annular member having an open surface 64 having a small diameter on the upper side and an open surface 65 having a large diameter on the lower side.
- a lid may be attached to the.
- the ultrasonic wave 24 generated from the ultrasonic speaker 21 is less likely to be affected by the outside air, so that the position and size of the inspection region 40 can be further stabilized.
- the ultrasonic speaker 21 may be attached to the lid.
- the amplitude of the ultrasonic vibration in the inspection region 40 can be made larger, and the surface 15 of the electronic component 13 can be effectively ultrasonically vibrated to efficiently detect the crack region 91, which is a defective region.
- the acoustic defect detection devices 100 and 200 have been described as detecting the crack 90 inside the electronic component 13 as the crack region 91, but it exists not only on the crack 90 inside but also on the surface 15. It is also possible to detect cracks 90.
- the electrons connecting the semiconductor chip 11 and the substrate 12 with a wire 16 by using the acoustic defect detection device 100 described above with reference to FIG. 1 A case of detecting a non-attachment region 94 between the semiconductor chip 11 and the wire 16 of the component 13 or a non-attachment region 94 between the substrate 12 and the wire 16 will be described.
- the non-attached region 94 is a defective region in which the non-attached portions 92 and 93, which will be described later, are defective.
- the electronic component 13 includes a semiconductor chip 11, a substrate 12, and a metal wire 16 connecting between the pad 11a (see FIG. 6) of the semiconductor chip 11 and the island 12a (see FIG. 7) of the substrate 12. It is composed of.
- the wire 16 presses a free air ball formed at the tip onto the pad 11a and is bonded onto the pad 11a as a hemispherical crimping ball 17.
- Such bonding is called ball bonding.
- a non-bonded portion 92 that is not crimped may be formed between the crimping ball 17 and the pad 11a.
- the other end of the wire 16 is crimped by pressing the side surface of the wire 16 onto the island 12a.
- a non-bonded portion 93 that has not been crimped may be formed between the crimped portion 18 and the island 12a.
- non-delivery detection a method is used in which a current is passed between the wire 16 and the semiconductor chip 11 to detect non-delivery.
- a current is passed between the wire 16 and the semiconductor chip 11 to detect non-delivery.
- FIGS. 6 and 7 when a part of the non-delivery is detected, the non-delivery is detected. It was difficult to detect non-delivery by the method of passing an electric current.
- the pad 11a shown by shading whose temperature is higher than the surroundings is detected as the non-attachment region 94 in which the non-attachment portion 92 exists.
- the island 12a having a temperature higher than that of the surroundings is detected as the non-attachment region 94 in which the non-attachment portion 93 exists.
- the specific method for detecting the non-arrival region 94 is the same as the method for detecting the crack region 91 of the electronic component 13 described above.
- the detection unit 55 detects the acquired pre-vibration temperature.
- a predetermined region 45 in the inspection region 40 of the distribution image and the temperature distribution image after vibration may be set to a range including one pad 11a.
- the acoustic defect detecting device 100 detects the non-attached portions 92 and 93 of the wire 16 of the electronic component 13 has been described above.
- the acoustic defect detecting device 100 is not limited to the electronic component 13, but the turbine blade, the shaft, and the like. It can also be applied to the detection of cracks 90 in metal parts.
- the operation of the acoustic defect detection devices 100 and 200 described above can be described as follows as a defect detection method.
- the temperature distribution of the surface 15 of the electronic component 13 before ultrasonic vibration is acquired as a pre-vibration temperature distribution image by infrared thermography 27.
- the temperature difference between the temperature before vibration and the temperature after vibration is calculated for each region 45 of the surface 15 based on the temperature distribution image after vibration, and the region where the temperature difference is equal to or more than a predetermined threshold is defective.
- 10 stage 10a holding surface, 11 semiconductor chip, 11a pad, 12 substrate, 12a island, 13 electronic component, 15 surface, 16 wire, 17 crimping ball, 18 crimping part, 20 acoustic head, 21,211-216 ultrasonic waves Speaker, 21a axis, 22 casing, 23 drive unit, 24 ultrasonic wave, 26 sphere center, 27 infrared thermography, 28 optical axis, 30 movement mechanism, 31 guide rail, 32 X direction movement mechanism, 33 slider, 34 Y direction movement mechanism , 35 Z direction movement mechanism, 36 arm, 40 inspection area, 45 area, 50 control unit, 51, 56 CPU, 52, 57 storage unit, 55 detection unit, 58 display, 60 acoustic head, 62 casing, 63 ball band surface , 64, 65 open surface, 66 ball center, 67 stay, 90 crack, 91 crack area, 92, 93 non-attached part, 94 non-attached area, 100, 200 acoustic defect detection device.
Landscapes
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
The present invention comprises an acoustic head (20) that ultrasonically excites an electronic component (13), an infrared thermograph (27) that outputs the temperature distribution of a surface (15) of the electronic component (13) during ultrasonic excitation as a temperature distribution image, and a detection unit (55) that detects cracks (90) on the basis of the temperature distribution image inputted from the infrared thermograph (27). The acoustic head (20) has a plurality of ultrasonic speakers (21) having directionality, and a casing (22) to which the plurality of ultrasonic speakers (21) are attached such that a plurality of ultrasonic waves (24) generated by the plurality of ultrasonic speakers (21) are concentrated in the electronic component (13). The plurality of ultrasonic waves (24) generated from the plurality of ultrasonic speakers (21) are concentrated in the electronic component (13) to ultrasonically excite the electronic component (13).
Description
本発明は、超音波を用いて検査対象物の不良の検出を行う音響式不良検出装置の構造及び超音波を用いて不良の検出を行う不良検出方法に関する。
The present invention relates to a structure of an acoustic defect detection device that detects defects of an inspection object using ultrasonic waves and a defect detection method that detects defects using ultrasonic waves.
クラック等の不良を内在する検査対象物に超音波振動を入射するとクラック等の不良の存在する部分の温度が他の部分よりも高くなることが知られている。この原理に基づいて、超音波振動子から発生させた超音波振動を検査対象物に入射させ、赤外線サーモグラフィで検査対象物の表面の温度分布画像を取得し、温度の高い部分を不良として検出する非破壊検査装置が用いられている(例えば、特許文献1参照)。
It is known that when ultrasonic vibration is incident on an inspection object that has defects such as cracks, the temperature of the part where the defects such as cracks are present becomes higher than that of other parts. Based on this principle, the ultrasonic vibration generated from the ultrasonic vibrator is incident on the inspection object, the temperature distribution image of the surface of the inspection object is acquired by infrared thermography, and the high temperature part is detected as a defect. A non-destructive inspection device is used (see, for example, Patent Document 1).
しかし、特許文献1に記載された従来技術の装置は、超音波振動子を検査対象物に接続し、検査対象物全体を超音波加振するため装置が複雑になってしまうという問題があった。
However, the device of the prior art described in Patent Document 1 has a problem that the device becomes complicated because the ultrasonic vibrator is connected to the inspection object and the entire inspection object is ultrasonically vibrated. ..
そこで、本発明は、簡便な構成で検査対象物の不良の検出を行うことを目的とする。
Therefore, an object of the present invention is to detect defects in an inspection object with a simple configuration.
本発明の音響式不良検出装置は、検査対象物の不良を検出する音響式不良検出装置であって、検査対象物を超音波加振する音響ヘッドと、音響ヘッドに取付けられて超音波加振中の検査対象物の表面の温度分布を温度分布画像として出力する赤外線サーモグラフィと、赤外線サーモグラフィから入力された温度分布画像に基づいて不良の検出を行う検出部と、を備え、音響ヘッドは、指向性を有する複数の超音波発生器と、複数の超音波発生器から発生した複数の超音波が検査対象物に集中するように複数の超音波発生器が取付けられるケーシングと、を有し、複数の超音波発生器から発生した複数の超音波を検査対象物に集中させて検査対象物を超音波加振すること、を特徴とする。
The acoustic defect detection device of the present invention is an acoustic defect detection device that detects defects of an inspection object, and is an acoustic head that ultrasonically vibrates the inspection object and an ultrasonic excitation head that is attached to the acoustic head. The acoustic head is oriented with an infrared thermography that outputs the temperature distribution of the surface of the inspection object inside as a temperature distribution image and a detection unit that detects defects based on the temperature distribution image input from the infrared thermography. It has a plurality of ultrasonic generators having a property and a casing in which a plurality of ultrasonic generators are mounted so that a plurality of ultrasonic waves generated from the plurality of ultrasonic generators are concentrated on an object to be inspected. It is characterized in that a plurality of ultrasonic waves generated from the ultrasonic generator of the above are concentrated on the inspection target and the inspection target is ultrasonically vibrated.
このように、複数の超音波発生器を取付けた音響ヘッドを用いて検査対象物に超音波を集中させて検査対象物を間接的に超音波加振してクラック等の不良の検出を行うので、検査対象物に直接的に超音波振動を入射させる場合に比べて簡便な構造でクラック等の不良の検出を行うことができる。また、検査対象物を間接的に超音波加振するので、非接触で検査対象物の不良の検出を行うことができる。
In this way, using an acoustic head equipped with multiple ultrasonic generators, ultrasonic waves are concentrated on the inspection target and the inspection target is indirectly ultrasonically vibrated to detect defects such as cracks. It is possible to detect defects such as cracks with a simple structure as compared with the case where ultrasonic vibration is directly incident on the object to be inspected. Further, since the inspection object is indirectly ultrasonically vibrated, it is possible to detect the defect of the inspection object in a non-contact manner.
本発明の音響式不良検出装置において、検出部は、赤外線サーモグラフィから入力された温度分布画像の中で周囲よりも温度が高い高温部を不良領域として検出してもよい。
In the acoustic defect detection device of the present invention, the detection unit may detect a high temperature portion having a temperature higher than the surroundings in the temperature distribution image input from the infrared thermography as a defect region.
これにより、簡便な構成でクラック等の不良の検出を行うことができる。
This makes it possible to detect defects such as cracks with a simple configuration.
本発明の音響式不良検出装置において、赤外線サーモグラフィは、超音波加振前の検査対象物の表面の温度分布を加振前温度分布画像として出力すると共に、超音波加振中又は超音波加振後の検査対象物の表面の温度分布を加振後温度分布画像として出力し、検出部は、赤外線サーモグラフィから入力された加振前温度分布画像と加振後温度分布画像とに基づいて、表面の領域毎に加振前の温度と加振後の温度との温度差を算出し、温度差が所定の閾値以上となる領域を不良領域として検出してもよい。
In the acoustic defect detection device of the present invention, the infrared thermography outputs the temperature distribution of the surface of the inspection object before ultrasonic vibration as a temperature distribution image before vibration, and during ultrasonic vibration or ultrasonic vibration. The temperature distribution on the surface of the object to be inspected later is output as a post-vibration temperature distribution image, and the detection unit is based on the pre-vibration temperature distribution image and the post-vibration temperature distribution image input from the infrared thermography. The temperature difference between the temperature before the vibration and the temperature after the vibration may be calculated for each region, and the region where the temperature difference is equal to or larger than a predetermined threshold may be detected as a defective region.
このように、表面の領域毎に加振前の温度と加振後の温度との温度差を算出し、温度差が所定の閾値以上となる領域を不良存在領域として検出するので、超音波加振時間が短く、不良部分の温度上昇が他の部分に比べてあまり大きくない場合でも、確実にクラック等の不良を検出することができる。これにより、不良検出時間を短縮することができる。
In this way, the temperature difference between the temperature before vibration and the temperature after vibration is calculated for each surface region, and the region where the temperature difference is equal to or greater than a predetermined threshold value is detected as the defective region. Even when the shaking time is short and the temperature rise of the defective portion is not so large as compared with the other portions, defects such as cracks can be reliably detected. As a result, the defect detection time can be shortened.
本発明の音響式不良検出装置において、保持面に検査対象物を保持するステージを含み、音響ヘッドは、ステージの保持面の側にステージと離間して配置され、音響ヘッドのケーシングは、円環状又はステージの側が開放されたドーム状で、複数の超音波発生器は複数の超音波スピーカーであり、各軸がステージの保持面に保持された検査対象物に集中するようにケーシングに取付けられてもよい。
In the acoustic defect detection device of the present invention, the holding surface includes a stage for holding an inspection object, the acoustic head is arranged on the holding surface side of the stage away from the stage, and the casing of the acoustic head is annular. Or, in a dome shape with the side of the stage open, the multiple ultrasonic generators are multiple ultrasonic speakers, each axis attached to the casing so that it concentrates on the object to be inspected held on the holding surface of the stage. May be good.
この構成により、効果的に超音波スピーカーが発生した超音波を検査対象物に集中させて検査対象物を効果的に超音波加振することができる。
With this configuration, the ultrasonic waves generated by the ultrasonic speaker can be effectively concentrated on the inspection target object, and the inspection target object can be effectively ultrasonically vibrated.
本発明の音響式不良検出装置において、音響ヘッドをステージに対して相対移動させる移動機構を含み、移動機構は、複数の超音波発生器から発生した複数の超音波が検査対象物に集中する検査領域を検査対象物の表面に沿ってスキャンする様に音響ヘッドを相対移動させてもよい。
The acoustic defect detection device of the present invention includes a moving mechanism that moves the acoustic head relative to the stage, and the moving mechanism is an inspection in which a plurality of ultrasonic waves generated from a plurality of ultrasonic generators are concentrated on an inspection object. The acoustic head may be moved relative to scan the area along the surface of the object to be inspected.
これにより、検査対象物が大きい場合で表面全体を一度に超音波加振できない場合でも、音響ヘッドをスキャンさせることにより、検査対象物全体のクラック等の不良の検出を行うことができる。
This makes it possible to detect defects such as cracks in the entire inspection object by scanning the acoustic head even when the entire surface cannot be ultrasonically oscillated at once when the inspection object is large.
本発明の音響式不良検出装置において、複数の超音波発生器を駆動する駆動回路を備え、駆動回路は、各超音波発生器から発生する超音波の各位相をそれぞれ調整可能としてもよい。また、駆動回路は、1つの超音波発生器を駆動する駆動ユニットを複数含み、駆動ユニットは、超音波発生器から発生する超音波の位相を調整可能してもよい。
The acoustic defect detection device of the present invention may include a drive circuit for driving a plurality of ultrasonic generators, and the drive circuit may be capable of adjusting each phase of the ultrasonic waves generated from each ultrasonic generator. Further, the drive circuit may include a plurality of drive units for driving one ultrasonic generator, and the drive unit may be capable of adjusting the phase of the ultrasonic wave generated from the ultrasonic generator.
このように、複数の超音波発生器の超音波の各位相を調整することによって、検査対象物の大きさや検出しようとしているクラック等の不良の大きさ等により超音波の検査対象物の表面への集中の度合いを調整することができる。
In this way, by adjusting each phase of the ultrasonic waves of the plurality of ultrasonic generators, the size of the inspection target and the size of defects such as cracks to be detected can be adjusted to the surface of the ultrasonic inspection target. The degree of concentration can be adjusted.
本発明の不良検出方法は、検査対象物の不良を検出する不良検出方法であって、指向性を有する複数の超音波発生器を有し、検査対象物を超音波加振する音響ヘッドと、音響ヘッドに取付けられた赤外線サーモグラフィと、を備える音響式不良検出装置を準備する準備工程と、音響ヘッドの複数の超音波発生器で発生させた複数の超音波を検査対象物に集中させて検査対象物を超音波加振する超音波加振工程と、赤外線サーモグラフィで超音波加振中の検査対象物の表面の温度分布を温度分布画像として取得する画像取得工程と、取得した温度分布画像の中で周囲よりも温度が高い高温部を不良領域として検出する検出工程と、を備えることを特徴とする。
The defect detection method of the present invention is a defect detection method for detecting defects in an inspection object, which includes an acoustic head having a plurality of directional ultrasonic generators and ultrasonically vibrating the inspection object. The preparatory step of preparing an acoustic defect detection device equipped with infrared thermography attached to the acoustic head, and multiple ultrasonic waves generated by multiple ultrasonic generators of the acoustic head are concentrated and inspected on the inspection object. An ultrasonic vibration step of ultrasonically vibrating an object, an image acquisition step of acquiring the temperature distribution of the surface of the inspection object being ultrasonically vibrated by infrared thermography as a temperature distribution image, and an acquired temperature distribution image. It is characterized by comprising a detection step of detecting a high temperature portion having a higher temperature than the surroundings as a defective region.
また、本発明の不良検出方法は、検査対象物の不良を検出する不良検出方法であって、指向性を有する複数の超音波発生器を有し、検査対象物を超音波加振する音響ヘッドと、音響ヘッドに取付けられた赤外線サーモグラフィと、を備える音響式不良検出装置を準備する準備工程と、音響ヘッドの複数の超音波発生器で発生させた複数の超音波を検査対象物に集中させて検査対象物を超音波加振する超音波加振工程と、赤外線サーモグラフィで、超音波加振前の検査対象物の表面の温度分布を加振前温度分布画像として取得すると共に、超音波加振中又は超音波加振後の検査対象物の表面の温度分布を加振後温度分布画像として取得する加振前後画像取得工程と、取得した加振前温度分布画像と加振後温度分布画像とに基づいて、表面の領域毎に加振前の温度と加振後の温度との温度差を算出し、温度差が所定の閾値以上となる領域を不良領域として検出する不良領域検出工程と、を備えることを特徴とする。
Further, the defect detection method of the present invention is a defect detection method for detecting defects in an inspection object, and is an acoustic head having a plurality of directional ultrasonic generators and ultrasonically vibrating the inspection object. And the preparatory step of preparing an acoustic defect detection device equipped with infrared thermography attached to the acoustic head, and multiple ultrasonic waves generated by multiple ultrasonic generators of the acoustic head are concentrated on the inspection object. The temperature distribution of the surface of the inspection target before ultrasonic vibration is acquired as a pre-vibration temperature distribution image by the ultrasonic vibration step of ultrasonically vibrating the inspection target and the infrared thermography, and the ultrasonic vibration is applied. Pre- and post-vibration image acquisition process to acquire the temperature distribution of the surface of the inspection object during shaking or after ultrasonic vibration as a post-vibration temperature distribution image, and the acquired pre-vibration temperature distribution image and post-vibration temperature distribution image. Based on the above, the defective region detection step of calculating the temperature difference between the temperature before the vibration and the temperature after the vibration for each surface region and detecting the region where the temperature difference is equal to or higher than a predetermined threshold as the defective region. , It is characterized by having.
これにより、簡便な方法でクラック等の不良の検出を行うことができる。
This makes it possible to detect defects such as cracks by a simple method.
本発明は、簡便な構成で検査対象物のクラック等の不良の検出を行うことができる。
The present invention can detect defects such as cracks in the inspection target with a simple configuration.
以下、図面を参照しながら実施形態の音響式不良検出装置100について説明する。図1に示す様に、音響式不良検出装置100は、ステージ10と、音響ヘッド20と、移動機構30と、制御部50と、検出部55とを備えている。図1の紙面に対して垂直方向をX方向、水平面でX方向と直交する方向をY方向、上下方向をZ方向として説明する。なお、図1には、音響ヘッド20のケーシング22に取付けられている6つの超音波スピーカー21を図示しているが、各超音波スピーカー21を区別しない場合は、超音波スピーカー21といい、各超音波スピーカー21を区別する場合には、超音波スピーカー211~216という。
Hereinafter, the acoustic defect detection device 100 of the embodiment will be described with reference to the drawings. As shown in FIG. 1, the acoustic defect detection device 100 includes a stage 10, an acoustic head 20, a moving mechanism 30, a control unit 50, and a detection unit 55. The direction perpendicular to the paper surface of FIG. 1 will be described as the X direction, the direction orthogonal to the X direction on the horizontal plane will be described as the Y direction, and the vertical direction will be described as the Z direction. Note that FIG. 1 shows six ultrasonic speakers 21 attached to the casing 22 of the acoustic head 20, but when each ultrasonic speaker 21 is not distinguished, it is referred to as an ultrasonic speaker 21 and each is referred to as an ultrasonic speaker 21. When distinguishing the ultrasonic speakers 21, they are referred to as ultrasonic speakers 211 to 216.
ステージ10は、図示しないベースに取付けられている。ステージ10は、上側の保持面10aに検査対象物である電子部品13を吸着保持する。電子部品13は、例えば、サブストレート12の上に取付けられた半導体チップ11であってもよい。半導体チップ11は、不良であるクラック90が内在している。ステージ10は、電子部品13をX方向に搬送可能である。
The stage 10 is attached to a base (not shown). The stage 10 attracts and holds the electronic component 13 which is an inspection target on the upper holding surface 10a. The electronic component 13 may be, for example, a semiconductor chip 11 mounted on the substrate 12. The semiconductor chip 11 contains a defective crack 90. The stage 10 can convey the electronic component 13 in the X direction.
ステージ10の保持面10aの側の上方には、ステージ10と離間して音響ヘッド20が配置されている。音響ヘッド20は、ケーシング22と、ケーシング22に取付けられた複数の超音波スピーカー21とで構成されている。音響ヘッド20のケーシング22は、音響ヘッド20をステージ10の保持面10aの上に吸着保持された電子部品13に対して相対的に移動させる移動機構30に接続されている。
The acoustic head 20 is arranged above the holding surface 10a of the stage 10 so as to be separated from the stage 10. The acoustic head 20 is composed of a casing 22 and a plurality of ultrasonic speakers 21 attached to the casing 22. The casing 22 of the acoustic head 20 is connected to a moving mechanism 30 that moves the acoustic head 20 relative to the electronic component 13 that is attracted and held on the holding surface 10a of the stage 10.
移動機構30は、図示しないベースにX方向に移動可能に取付けられたガイドレール31と、ガイドレール31に沿ってY方向に移動するスライダ33とで構成されている。ガイドレール31は、X方向移動機構32によってX方向に移動可能に構成されている。スライダ33は、内部にY方向移動機構34を備えておりガイドレール31にガイドされてY方向に移動可能に構成されている。音響ヘッド20のケーシング22はZ方向に延びるアーム36でスライダ33に接続されている。スライダ33は、内部にアーム36をZ方向に駆動するZ方向移動機構35を備えており、音響ヘッド20をZ方向に移動可能に構成されている。従って、移動機構30は、音響ヘッド20をステージ10の上に吸着保持された電子部品13に対してXYZ方向に相対的に移動可能に構成されている。
The moving mechanism 30 includes a guide rail 31 movably attached to a base (not shown) so as to be movable in the X direction, and a slider 33 that moves in the Y direction along the guide rail 31. The guide rail 31 is configured to be movable in the X direction by the X direction moving mechanism 32. The slider 33 is provided with a Y-direction moving mechanism 34 inside, and is configured to be movable in the Y-direction by being guided by a guide rail 31. The casing 22 of the acoustic head 20 is connected to the slider 33 by an arm 36 extending in the Z direction. The slider 33 is internally provided with a Z-direction moving mechanism 35 that drives the arm 36 in the Z direction, and is configured to be able to move the acoustic head 20 in the Z direction. Therefore, the moving mechanism 30 is configured to be relatively movable in the XYZ direction with respect to the electronic component 13 in which the acoustic head 20 is attracted and held on the stage 10.
音響ヘッド20のケーシング22は、球形のドーム状で下方のステージ側が開放されている。ケーシング22を構成する球面の球中心26は、ステージ10の保持面10aの上に保持される電子部品13の表面15の上に位置している。超音波スピーカー21は、指向性を有する超音波発生器であり、軸21aの方向で軸21aを中心とした指向角度θの範囲に超音波24が伝播するように超音波24を発生させる。複数の超音波スピーカー21は、各軸21aがケーシング22の球面の球中心26で交差するようにケーシング22に取付けられている。このため、複数の超音波スピーカー21から発生された各超音波24は、球中心26の位置する保持面10aの上に保持された電子部品13の表面15に集中する。電子部品13の表面15の超音波24が集中する範囲がクラック90の検出を行う検査領域40である。
The casing 22 of the acoustic head 20 has a spherical dome shape, and the lower stage side is open. The spherical center 26 constituting the casing 22 is located on the surface 15 of the electronic component 13 held on the holding surface 10a of the stage 10. The ultrasonic speaker 21 is a directivity ultrasonic generator, and generates the ultrasonic wave 24 so that the ultrasonic wave 24 propagates in the range of the directivity angle θ about the axis 21a in the direction of the axis 21a. The plurality of ultrasonic speakers 21 are attached to the casing 22 so that the axes 21a intersect with each other at the spherical center 26 of the casing 22. Therefore, each ultrasonic wave 24 generated from the plurality of ultrasonic speakers 21 is concentrated on the surface 15 of the electronic component 13 held on the holding surface 10a where the sphere center 26 is located. The area where the ultrasonic waves 24 on the surface 15 of the electronic component 13 are concentrated is the inspection area 40 for detecting the crack 90.
各超音波スピーカー21には、それぞれ超音波スピーカー21を駆動する駆動ユニット23が接続されている。各駆動ユニット23は、接続されている超音波スピーカー21が発生する超音波24の位相を調整可能となっている。また、複数の駆動ユニット23は、複数の超音波スピーカー21で構成される超音波スピーカー群を駆動する駆動回路を構成する。
A drive unit 23 for driving the ultrasonic speaker 21 is connected to each ultrasonic speaker 21. Each drive unit 23 can adjust the phase of the ultrasonic wave 24 generated by the connected ultrasonic speaker 21. Further, the plurality of drive units 23 form a drive circuit for driving the ultrasonic speaker group composed of the plurality of ultrasonic speakers 21.
移動機構30のX方向移動機構32と、Y方向移動機構34と、Z方向移動機構35と、各超音波スピーカー21を駆動する駆動ユニット23とは、制御部50に接続されて制御部50の指令によって駆動する。制御部50は、内部に情報処理を行うプロセッサであるCPU51と制御プログラムや制御用データを格納する記憶部52とを備えるコンピュータである。
The X-direction moving mechanism 32, the Y-direction moving mechanism 34, the Z-direction moving mechanism 35, and the drive unit 23 for driving each ultrasonic speaker 21 of the moving mechanism 30 are connected to the control unit 50 and are connected to the control unit 50. Driven by command. The control unit 50 is a computer including a CPU 51, which is a processor that processes information internally, and a storage unit 52 that stores a control program and control data.
音響ヘッド20の中心には、赤外線サーモグラフィ27が取付けられている。赤外線サーモグラフィ27は、電子部品13の表面15からの赤外線放射を測定して表面15の温度分布を温度分布画像として出力する。赤外線サーモグラフィ27は、光軸28がステージ10に対して垂直で球中心26を通るようにケーシング22に取付けられている。従って、赤外線サーモグラフィ27は、電子部品13の表面15の検査領域40を真上から撮像するようにケーシング22に取付けられている。
An infrared thermography 27 is attached to the center of the acoustic head 20. The infrared thermography 27 measures infrared radiation from the surface 15 of the electronic component 13 and outputs the temperature distribution of the surface 15 as a temperature distribution image. The infrared thermography 27 is attached to the casing 22 so that the optical axis 28 is perpendicular to the stage 10 and passes through the center 26 of the sphere. Therefore, the infrared thermography 27 is attached to the casing 22 so as to image the inspection region 40 of the surface 15 of the electronic component 13 from directly above.
赤外線サーモグラフィ27は検出部55に接続されている。検出部55は、赤外線サーモグラフィ27から入力された温度分布画像に基づいてクラック90の検出を行う。検出部55は、内部に情報処理を行うプロセッサであるCPU56と制御プログラムや制御用データを格納する記憶部57と、赤外線サーモグラフィ27から入力された温度分布画像を表示するディスプレイ58とを備えるコンピュータである。また、検出部55は、制御部50と接続されてデータの授受を行う。
The infrared thermography 27 is connected to the detection unit 55. The detection unit 55 detects the crack 90 based on the temperature distribution image input from the infrared thermography 27. The detection unit 55 is a computer including a CPU 56 which is a processor that processes information internally, a storage unit 57 that stores a control program and control data, and a display 58 that displays a temperature distribution image input from the infrared thermography 27. be. Further, the detection unit 55 is connected to the control unit 50 to exchange data.
以上のように構成された音響式不良検出装置100の動作について説明する。最初の制御部50は、Z方向移動機構35を動作させて球中心26の高さが電子部品13の表面15に一致するように音響ヘッド20のZ方向位置を調整する。
The operation of the acoustic defect detection device 100 configured as described above will be described. The first control unit 50 operates the Z-direction moving mechanism 35 to adjust the Z-direction position of the acoustic head 20 so that the height of the sphere center 26 coincides with the surface 15 of the electronic component 13.
次に、制御部50は、各駆動ユニット23によって各超音波スピーカー21を駆動して各超音波スピーカー21から所定の周波数の超音波24を発生させる。各超音波スピーカー21は、指向性が有り、各軸21aの方向で軸21aを中心とした指向角度θの範囲に伝播していく。各超音波スピーカー21は、各軸21aがケーシング22の球中心26で交差するようにケーシング22に取付けられているので、各超音波スピーカー21から発生した超音波24は、ケーシング22の球中心26の近傍で交差、集中して重ね合わされる。
Next, the control unit 50 drives each ultrasonic speaker 21 by each drive unit 23 to generate an ultrasonic wave 24 having a predetermined frequency from each ultrasonic speaker 21. Each ultrasonic speaker 21 has directivity and propagates in the direction of each axis 21a within a range of a directivity angle θ centered on the axis 21a. Since each ultrasonic speaker 21 is attached to the casing 22 so that each axis 21a intersects with the spherical center 26 of the casing 22, the ultrasonic wave 24 generated from each ultrasonic speaker 21 is the spherical center 26 of the casing 22. It intersects in the vicinity of and is concentrated and overlapped.
制御部50は、この超音波24の重ね合わせにより、球中心26の近傍に超音波振動の振幅が大きくなるように、各超音波スピーカー21の各位相を調整する。一例を示すと、球中心26に対して対称の位置にある超音波スピーカー211,216の発生する超音波24の位相を180度ずらす様にする。同様に、球中心26に対して対称の位置にある超音波スピーカー212,215の位相、超音波スピーカー213,214の位相をそれぞれ180度ずらすようにしてもよい。また、他の例としては、各超音波スピーカー211~216が発生する各超音波24の位相を分散するように調整してもよい。これにより、球中心26の近傍の超音波24が集中する範囲である検査領域40の超音波振動の振幅を大きくすることができる。
The control unit 50 adjusts each phase of each ultrasonic speaker 21 so that the amplitude of the ultrasonic vibration becomes large in the vicinity of the center of the sphere 26 by superimposing the ultrasonic waves 24. As an example, the phase of the ultrasonic wave 24 generated by the ultrasonic speakers 211 and 216 located symmetrically with respect to the center 26 of the sphere is shifted by 180 degrees. Similarly, the phases of the ultrasonic speakers 212 and 215 and the phases of the ultrasonic speakers 213 and 214, which are positioned symmetrically with respect to the center 26 of the sphere, may be shifted by 180 degrees, respectively. Further, as another example, the phase of each ultrasonic wave 24 generated by each ultrasonic speaker 211 to 216 may be adjusted to be dispersed. As a result, the amplitude of the ultrasonic vibration in the inspection region 40, which is the range where the ultrasonic waves 24 in the vicinity of the center of the sphere 26 are concentrated, can be increased.
超音波スピーカー21の発生する超音波振動が検査領域40に集中すると、検査領域40の温度は、図2に示す様に上昇してくる。この際、電子部品13の内部に不良であるクラック90が存在する部分の表面15の温度は、図2の実線aに示す様に、図2の破線bに示す内部にクラック90の無い部分よりも高くなってくる。制御部50は、所定時間Δt1の間、検査領域40の超音波加振を続ける。
When the ultrasonic vibration generated by the ultrasonic speaker 21 is concentrated in the inspection area 40, the temperature of the inspection area 40 rises as shown in FIG. At this time, the temperature of the surface 15 of the portion where the defective crack 90 exists inside the electronic component 13 is higher than the portion without the crack 90 inside as shown by the broken line b in FIG. 2, as shown by the solid line a in FIG. Is getting higher. The control unit 50 continues ultrasonic vibration of the inspection region 40 for a predetermined time Δt1.
検出部55は、所定時間Δt1だけ検査領域40が超音波加振されたら、音響ヘッド20に取付けられた赤外線サーモグラフィ27に、検査領域40の赤外線放射を撮像させて検査領域40の温度分布を温度分布画像として出力させる。検出部55は、図3に示す様に、赤外線サーモグラフィ27から入力された温度分布画像の中で周囲よりも温度が高い高温部を内部にクラック90が存在するクラック領域91として検出する。クラック領域91は、内部に不良であるクラック90が存在する不良領域である。
When the inspection region 40 is ultrasonically vibrated for a predetermined time Δt1, the detection unit 55 causes an infrared thermography 27 attached to the acoustic head 20 to image the infrared radiation of the inspection region 40 to measure the temperature distribution of the inspection region 40. Output as a distribution image. As shown in FIG. 3, the detection unit 55 detects a high temperature portion having a temperature higher than the surroundings in the temperature distribution image input from the infrared thermography 27 as a crack region 91 in which the crack 90 exists inside. The crack region 91 is a defective region in which a defective crack 90 exists.
クラック領域91の検出は、いろいろな方法を用いてよいが、例えば、温度分布画像の中から周囲の温度よりも温度が高くなっている領域を高温部として抽出し、高温部と周囲の最も温度が低い低温部との温度差ΔT1(図2参照)が所定の閾値以上となった場合に高温部をクラック領域91として検出するようにしてもよい。
Various methods may be used to detect the crack region 91. For example, a region having a temperature higher than the ambient temperature is extracted from the temperature distribution image as a high temperature portion, and the high temperature portion and the ambient temperature are the highest. When the temperature difference ΔT1 (see FIG. 2) with the low temperature portion having a low temperature becomes equal to or higher than a predetermined threshold value, the high temperature portion may be detected as the crack region 91.
また、赤外線サーモグラフィ27の温度分布画像は、温度によって色分けされているので、検査員がディスプレイ58に表示された画像を見て画像の色に基づいて温度の高い部分をクラック領域91として検出するようにしてもよい。
Further, since the temperature distribution image of the infrared thermography 27 is color-coded according to the temperature, the inspector looks at the image displayed on the display 58 and detects the high temperature portion as the crack region 91 based on the color of the image. You may do it.
また、他の方法として、超音波加振前の温度と超音波加振中又は超音波加振後の温度との温度差によってクラック領域91を検出するようにしてもよい。検出部55は、超音波加振前に、赤外線サーモグラフィ27で、超音波加振前の電子部品13の検査領域40の温度分布を加振前温度分布画像として取得する。そして、図2に示す様に、制御部50が超音波スピーカー21を駆動して所定の時間Δt2だけ検査領域40を超音波加振した後に電子部品13の検査領域40の温度分布を加振後温度分布画像として取得する。そして、検出部55は、取得した加振前温度分布画像と加振後温度分布画像の検査領域40の中の所定の領域45(図3参照)の加振前の温度と加振後の温度との温度差ΔT2(図2参照)を算出する。そして、温度差ΔT2が所定の閾値以上となる領域をクラック領域91として検出してもよい。
Alternatively, as another method, the crack region 91 may be detected by the temperature difference between the temperature before ultrasonic vibration and the temperature during or after ultrasonic vibration. Before ultrasonic vibration, the detection unit 55 acquires the temperature distribution of the inspection region 40 of the electronic component 13 before ultrasonic vibration as a pre-vibration temperature distribution image by infrared thermography 27. Then, as shown in FIG. 2, after the control unit 50 drives the ultrasonic speaker 21 to ultrasonically vibrate the inspection region 40 for a predetermined time Δt2, the temperature distribution of the inspection region 40 of the electronic component 13 is vibrated. Obtained as a temperature distribution image. Then, the detection unit 55 detects the temperature before vibration and the temperature after vibration in a predetermined region 45 (see FIG. 3) in the inspection region 40 of the acquired pre-vibration temperature distribution image and post-vibration temperature distribution image. The temperature difference ΔT2 with and from (see FIG. 2) is calculated. Then, a region where the temperature difference ΔT2 is equal to or greater than a predetermined threshold value may be detected as the crack region 91.
この検出方法は、図2に示す様に、先に説明した温度分布画像の高温部を検出する方法よりも短い超音波加振時間で同様の温度差を検出することができるので、クラック領域91の検出時間を短くすることができる。
As shown in FIG. 2, this detection method can detect the same temperature difference with a shorter ultrasonic vibration time than the method for detecting the high temperature portion of the temperature distribution image described above, so that the crack region 91 can be detected. Detection time can be shortened.
なお、上記の説明では、超音波加振後に加振後温度分布画像を取得することとして説明したが、超音波加振中に加振後温度分布画像を取得するようにしてもよい。
In the above description, the temperature distribution image after the vibration is acquired after the ultrasonic vibration, but the temperature distribution image after the vibration may be acquired during the ultrasonic vibration.
制御部50は、一つの検査領域40におけるクラック検出動作が終了したら、移動機構30によって音響ヘッド20をXY方向に移動させる。このように、移動機構30によって検査領域40を電子部品13の表面15に沿ってスキャンさせて電子部品13全体のクラック領域91の検出を行う。
When the crack detection operation in one inspection area 40 is completed, the control unit 50 moves the acoustic head 20 in the XY direction by the moving mechanism 30. In this way, the inspection region 40 is scanned along the surface 15 of the electronic component 13 by the moving mechanism 30 to detect the crack region 91 of the entire electronic component 13.
なお、検査対象物である電子部品13が検査領域40よりも小さい場合には、スキャンせずに電子部品13のクラック領域91の検出を行うようにしてもよい。
If the electronic component 13 to be inspected is smaller than the inspection area 40, the crack region 91 of the electronic component 13 may be detected without scanning.
以上説明したように、実施形態の音響式不良検出装置100は、複数の超音波スピーカー21を取付けた音響ヘッド20を用いて電子部品13の表面15に超音波24を集中させて電子部品13を間接的に超音波加振する。このため、電子部品13に直接的に超音波振動を入射させる場合に比べて簡便な構造で内部にクラック90が存在するクラック領域91の検出を行うことができる。また、電子部品13を間接的に超音波加振するので、非接触で電子部品13のクラック領域91の検出を行うことができる。
As described above, in the acoustic defect detection device 100 of the embodiment, the ultrasonic wave 24 is concentrated on the surface 15 of the electronic component 13 by using the acoustic head 20 to which a plurality of ultrasonic speakers 21 are attached to form the electronic component 13. Indirectly ultrasonically vibrate. Therefore, it is possible to detect the crack region 91 in which the crack 90 exists inside with a simple structure as compared with the case where the ultrasonic vibration is directly incident on the electronic component 13. Further, since the electronic component 13 is indirectly ultrasonically vibrated, the crack region 91 of the electronic component 13 can be detected without contact.
また、音響式不良検出装置100の各駆動ユニット23は、接続されている超音波スピーカー21が発生する超音波24の位相を調整可能となっており、各位相を調整することによって、形成される検査領域40の形状、大きさ、位置を検査対象物の大きさに合わせて自由に調整できる。
Further, each drive unit 23 of the acoustic defect detection device 100 can adjust the phase of the ultrasonic wave 24 generated by the connected ultrasonic speaker 21, and is formed by adjusting each phase. The shape, size, and position of the inspection area 40 can be freely adjusted according to the size of the inspection object.
また、音響式不良検出装置100では、ケーシング22は球形のドーム状で、各超音波スピーカー21は、各軸21aが球中心26で交差するように取り付けられている。このように、各超音波24を一点で重ね合わせることにより、超音波振動の振幅が大きい検査領域40を安定して形成できる。このため、検査領域40の位置がふらつかず、確実に電子部品13の表面15を超音波加振することができる。
Further, in the acoustic defect detection device 100, the casing 22 has a spherical dome shape, and each ultrasonic speaker 21 is attached so that each axis 21a intersects at the center 26 of the sphere. By superimposing the ultrasonic waves 24 at one point in this way, the inspection region 40 having a large amplitude of ultrasonic vibration can be stably formed. Therefore, the position of the inspection region 40 does not fluctuate, and the surface 15 of the electronic component 13 can be reliably ultrasonically vibrated.
なお、以上の説明では、球中心26の高さを、電子部品13の表面15に一致させることとして説明したが、これに限らず、電子部品13の厚さの範囲であれば、電子部品13の表面15よりも下側でもよい。これにより、電子部品13全体を超音波加振することができる。また、球中心26が表面15より僅かに上側であってもよい。
In the above description, the height of the center 26 of the sphere is set to match the surface 15 of the electronic component 13, but the present invention is not limited to this, and the electronic component 13 is not limited to this and is within the thickness range of the electronic component 13. It may be below the surface 15 of. As a result, the entire electronic component 13 can be ultrasonically vibrated. Further, the center 26 of the sphere may be slightly above the surface 15.
また、ケーシング22の形状はこのような球形に限らない。例えば、ケーシング22は楕円球形のドーム形状であってもよい。また、各超音波スピーカー21は、各軸21aが球中心26で交差してなくても、各超音波スピーカー21の各軸21aを中心とした各指向角度θの範囲が交差するように配置されていればよい。
Further, the shape of the casing 22 is not limited to such a spherical shape. For example, the casing 22 may have an elliptical spherical dome shape. Further, each ultrasonic speaker 21 is arranged so that the range of each direction angle θ centered on each axis 21a of each ultrasonic speaker 21 intersects even if each axis 21a does not intersect at the center of the sphere 26. You just have to.
また、超音波スピーカー21を駆動する駆動ユニット23は、各超音波スピーカー21にそれぞれ接続されていることとして説明したが、これに限らず、いくつかの超音波スピーカー21を一つの駆動ユニット23で駆動するように構成してもよい。
Further, although the drive unit 23 for driving the ultrasonic speaker 21 has been described as being connected to each ultrasonic speaker 21, the present invention is not limited to this, and some ultrasonic speakers 21 are combined with one drive unit 23. It may be configured to be driven.
また、移動機構30は、X方向に移動するガイドレール31とY方向に移動するスライダ33と、スライダ33に取付けられたZ方向移動機構35とで構成されることとして説明したが、これに限らない。例えば、XYZ方向に自在に移動可能なロボットアームの先端に音響ヘッド20を取付けてもよい。この場合、ロボットアームが移動機構30を構成する。また、ステージ10をXYZ方向に移動させるように構成してもよいし、ステージ10上に載置されている電子部品13をXY方向に移動させるように構成してもよい。
Further, the moving mechanism 30 has been described as being composed of a guide rail 31 moving in the X direction, a slider 33 moving in the Y direction, and a Z direction moving mechanism 35 attached to the slider 33, but the present invention is limited to this. No. For example, the acoustic head 20 may be attached to the tip of a robot arm that can freely move in the XYZ direction. In this case, the robot arm constitutes the moving mechanism 30. Further, the stage 10 may be configured to move in the XYZ direction, or the electronic component 13 mounted on the stage 10 may be configured to move in the XY direction.
次に図4を参照しながら他の実施形態の音響式不良検出装置200について説明する。先に図1を参照して説明した音響式不良検出装置100と同様の部分には、同様の符号を付して説明は省略する。図4に示すように、音響式不良検出装置200の音響ヘッド60は、円環状のケーシング62に複数の超音波スピーカー21が取付けられている。
Next, the acoustic defect detection device 200 of another embodiment will be described with reference to FIG. The same parts as those of the acoustic defect detection device 100 described above with reference to FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. As shown in FIG. 4, in the acoustic head 60 of the acoustic defect detection device 200, a plurality of ultrasonic speakers 21 are attached to an annular casing 62.
図4に示すように、ケーシング62は、上側が小径の開放面64で下側が大径の開放面65の球台型の環状部材であり、球帯面63に複数の超音波スピーカー21が取付けられている。球帯面63の球中心66は、ステージ10の保持面10aの上に保持される電子部品13の表面15の上に位置している。複数の超音波スピーカー21は、各軸21aがケーシング62の球面の球中心66で交差するようにケーシング62に取付けられている。先に図1を参照して説明した音響式不良検出装置100と同様、各超音波スピーカー21から発生した超音波24は、球中心66で交差し、集中して重ね合わされる。この超音波24の重ね合わせにより、球中心66の近傍には超音波振動の振幅が大きい検査領域40が形成される。
As shown in FIG. 4, the casing 62 is a sphere-shaped annular member having an open surface 64 having a small diameter on the upper side and an open surface 65 having a large diameter on the lower side, and a plurality of ultrasonic speakers 21 are attached to the ball band surface 63. ing. The ball center 66 of the ball band surface 63 is located on the surface 15 of the electronic component 13 held on the holding surface 10a of the stage 10. The plurality of ultrasonic speakers 21 are attached to the casing 62 so that the axes 21a intersect at the spherical center 66 of the casing 62. Similar to the acoustic defect detection device 100 described above with reference to FIG. 1, the ultrasonic waves 24 generated from each ultrasonic speaker 21 intersect at the center of the sphere 66 and are concentrated and superposed. By superimposing the ultrasonic waves 24, an inspection region 40 having a large amplitude of ultrasonic vibration is formed in the vicinity of the center 66 of the sphere.
ケーシング62の上側の開放面64には、ステー67が取付けられており、ステー67には、アーム36が接続されている。音響ヘッド60は、先に図1を参照して説明した音響式不良検出装置100の音響ヘッド20と同様、移動機構30によりステージ10の上に吸着保持された電子部品13に対してXYZ方向に相対的に移動可能となっている。
A stay 67 is attached to the open surface 64 on the upper side of the casing 62, and an arm 36 is connected to the stay 67. Similar to the acoustic head 20 of the acoustic defect detection device 100 described above with reference to FIG. 1, the acoustic head 60 is attracted and held on the stage 10 by the moving mechanism 30 in the XYZ direction with respect to the electronic component 13. It is relatively mobile.
また、ステー67には、赤外線サーモグラフィ27が取付けられている。赤外線サーモグラフィ27は、光軸28がステージ10に対して垂直で球中心66を通るようにステー67に取付けられている。
Infrared thermography 27 is attached to the stay 67. The infrared thermography 27 is attached to the stay 67 so that the optical axis 28 is perpendicular to the stage 10 and passes through the center of the sphere 66.
音響式不良検出装置200の動作は、先に図1を参照して説明した音響式不良検出装置100の動作と同様である。
The operation of the acoustic defect detection device 200 is the same as the operation of the acoustic defect detection device 100 described above with reference to FIG.
音響式不良検出装置200は、ケーシング62が球台型の環状部材で構成されているので、Z方向の厚さを薄くすることができ、小型のボンディング装置等に組み込むことが可能となる。
Since the casing 62 of the acoustic defect detection device 200 is composed of a spherical segment-shaped annular member, the thickness in the Z direction can be reduced, and the casing 62 can be incorporated into a small bonding device or the like.
以上の説明では、音響ヘッド60のケーシング62は、上側が小径の開放面64で下側が大径の開放面65の球台型の環状部材として説明したが、これに限らず、上側の開放面64に蓋を取付けるようにしてもよい。この場合、超音波スピーカー21から発生する超音波24が外気の影響を受けにくくなるので、検査領域40の位置、大きさをより安定させることができる。また、蓋に超音波スピーカー21を取付けてもよい。これにより、検査領域40の超音波振動の振幅をより大きくして電子部品13の表面15を効果的に超音波加振して効率的に不良領域であるクラック領域91を検出することができる。
In the above description, the casing 62 of the acoustic head 60 has been described as a sphere-shaped annular member having an open surface 64 having a small diameter on the upper side and an open surface 65 having a large diameter on the lower side. A lid may be attached to the. In this case, the ultrasonic wave 24 generated from the ultrasonic speaker 21 is less likely to be affected by the outside air, so that the position and size of the inspection region 40 can be further stabilized. Further, the ultrasonic speaker 21 may be attached to the lid. As a result, the amplitude of the ultrasonic vibration in the inspection region 40 can be made larger, and the surface 15 of the electronic component 13 can be effectively ultrasonically vibrated to efficiently detect the crack region 91, which is a defective region.
なお、以上の説明では、音響式不良検出装置100,200は、電子部品13の内部のクラック90をクラック領域91として検出することとして説明したが、内部のクラック90のみでなく、表面15に存在するクラック90の検出も行うことができる。
In the above description, the acoustic defect detection devices 100 and 200 have been described as detecting the crack 90 inside the electronic component 13 as the crack region 91, but it exists not only on the crack 90 inside but also on the surface 15. It is also possible to detect cracks 90.
次に図5から図8を参照しながら、先に図1を参照して説明した音響式不良検出装置100を用いて半導体チップ11とサブストレート12との間をワイヤ16で接続している電子部品13の半導体チップ11とワイヤ16との不着領域94、或いは、サブストレート12とワイヤ16との不着領域94を検出する場合について説明する。不着領域94は、後で説明する不良である不着部92,93が存在する不良領域である。
Next, with reference to FIGS. 5 to 8, the electrons connecting the semiconductor chip 11 and the substrate 12 with a wire 16 by using the acoustic defect detection device 100 described above with reference to FIG. 1 A case of detecting a non-attachment region 94 between the semiconductor chip 11 and the wire 16 of the component 13 or a non-attachment region 94 between the substrate 12 and the wire 16 will be described. The non-attached region 94 is a defective region in which the non-attached portions 92 and 93, which will be described later, are defective.
電子部品13は、半導体チップ11と、サブストレート12と、半導体チップ11のパッド11a(図6参照)とサブストレート12のアイランド12a(図7参照)との間を接続する金属製のワイヤ16とで構成されている。
The electronic component 13 includes a semiconductor chip 11, a substrate 12, and a metal wire 16 connecting between the pad 11a (see FIG. 6) of the semiconductor chip 11 and the island 12a (see FIG. 7) of the substrate 12. It is composed of.
図6に示す様に、ワイヤ16は先端に形成したフリーエアボールをパッド11aの上に押圧して半球状の圧着ボール17としてパッド11aの上にボンディングされている。このようなボンディングをボールボンディングという。ボールボンディング場合、圧着ボール17とパッド11aとの間に圧着していない不着部92ができる場合がある。また、図7に示す様に、ワイヤ16の他端は、ワイヤ16の側面をアイランド12aの上に押し付けて圧着される。この場合も、圧着部18とアイランド12aとの間に圧着していない不着部93ができる場合がある。これらの不着部92,93は、ワイヤ16の接続部の不良であり、電子部品13が動作しなかったり、動作不良となったりする場合がある。このため、不良である不着部92,93を検出する技術が求められている。
As shown in FIG. 6, the wire 16 presses a free air ball formed at the tip onto the pad 11a and is bonded onto the pad 11a as a hemispherical crimping ball 17. Such bonding is called ball bonding. In the case of ball bonding, a non-bonded portion 92 that is not crimped may be formed between the crimping ball 17 and the pad 11a. Further, as shown in FIG. 7, the other end of the wire 16 is crimped by pressing the side surface of the wire 16 onto the island 12a. In this case as well, a non-bonded portion 93 that has not been crimped may be formed between the crimped portion 18 and the island 12a. These non-attached portions 92 and 93 are defective in the connection portion of the wire 16, and the electronic component 13 may not operate or may malfunction. Therefore, there is a demand for a technique for detecting defective non-attached portions 92 and 93.
不着検出としてはワイヤ16と半導体チップ11との間に電流を流して不着検出を行う方法が用いられているが、図6、図7に示す様に一部分が不着となっている場合には、電流を流す方法では不着検出が難しかった。
As non-delivery detection, a method is used in which a current is passed between the wire 16 and the semiconductor chip 11 to detect non-delivery. However, as shown in FIGS. 6 and 7, when a part of the non-delivery is detected, the non-delivery is detected. It was difficult to detect non-delivery by the method of passing an electric current.
図6、図7に示す様な不着部92,93が存在する場合、図5に示す様に音響ヘッド20によって電子部品13を超音波加振すると、不着部92,93を含むパッド11a、或いはアイランド12aは、不着部92,93が存在しないパッド11a、アイランド12aよりも温度が大きく上昇する。
When the non-attached portions 92 and 93 as shown in FIGS. 6 and 7 are present, when the electronic component 13 is ultrasonically vibrated by the acoustic head 20 as shown in FIG. 5, the pad 11a including the non-attached portions 92 and 93 or the pad 11a or The temperature of the island 12a rises significantly more than that of the pad 11a and the island 12a in which the non-attached portions 92 and 93 do not exist.
このため、図8に示す様に、赤外線サーモグラフィ27から入力された温度分布画像の中で周囲よりも温度が高い網掛けで示すパッド11aを不着部92が存在する不着領域94として検出する。同様に、周囲よりも温度が高いアイランド12aを不着部93が存在する不着領域94として検出する。不着領域94の検出の具体的な方法は、先に説明した電子部品13のクラック領域91の検出方法と同様である。
Therefore, as shown in FIG. 8, in the temperature distribution image input from the infrared thermography 27, the pad 11a shown by shading whose temperature is higher than the surroundings is detected as the non-attachment region 94 in which the non-attachment portion 92 exists. Similarly, the island 12a having a temperature higher than that of the surroundings is detected as the non-attachment region 94 in which the non-attachment portion 93 exists. The specific method for detecting the non-arrival region 94 is the same as the method for detecting the crack region 91 of the electronic component 13 described above.
なお、超音波加振前の温度と超音波加振中又は超音波加振後の温度との温度差によって不着領域94の検出を行う場合には、検出部55は、取得した加振前温度分布画像と加振後温度分布画像の検査領域40の中の所定の領域45を図8に示す様に、一つのパッド11aを含む範囲に設定してもよい。
When the non-adhesive region 94 is detected by the temperature difference between the temperature before ultrasonic vibration and the temperature during or after ultrasonic vibration, the detection unit 55 detects the acquired pre-vibration temperature. As shown in FIG. 8, a predetermined region 45 in the inspection region 40 of the distribution image and the temperature distribution image after vibration may be set to a range including one pad 11a.
以上、音響式不良検出装置100で電子部品13のワイヤ16の不着部92,93を検出する場合について説明したが、音響式不良検出装置100は電子部品13に限らず、タービン翼やシャフト等の金属部品のクラック90の検出にも適用することができる。
The case where the acoustic defect detecting device 100 detects the non-attached portions 92 and 93 of the wire 16 of the electronic component 13 has been described above. However, the acoustic defect detecting device 100 is not limited to the electronic component 13, but the turbine blade, the shaft, and the like. It can also be applied to the detection of cracks 90 in metal parts.
尚、以上説明した、音響式不良検出装置100,200の動作は、不良検出方法として以下のように記載することができる。
The operation of the acoustic defect detection devices 100 and 200 described above can be described as follows as a defect detection method.
超音波スピーカー21を有し、電子部品13を超音波加振する音響ヘッド20と、音響ヘッド20に取付けられた赤外線サーモグラフィ27と、を備える音響式不良検出装置100,200を準備する準備工程と、音響ヘッド20の複数の超音波スピーカー21で発生させた複数の超音波24を電子部品13に集中させて電子部品13を超音波加振する超音波加振工程と、赤外線サーモグラフィ27で超音波加振中の電子部品13の表面15の温度分布を温度分布画像として取得する画像取得工程と、取得した温度分布画像の中で周囲よりも温度が高い高温部を不良領域として検出する検出工程と、を備える不良検出方法。
A preparatory step for preparing acoustic defect detection devices 100 and 200 having an ultrasonic speaker 21 and an acoustic head 20 that ultrasonically vibrates an electronic component 13 and an infrared thermography 27 attached to the acoustic head 20. , The ultrasonic vibration step of concentrating the plurality of ultrasonic waves 24 generated by the plurality of ultrasonic speakers 21 of the acoustic head 20 on the electronic component 13 and ultrasonically vibrating the electronic component 13, and the ultrasonic wave by the infrared thermography 27. An image acquisition step of acquiring the temperature distribution of the surface 15 of the surface 15 of the electronic component 13 being vibrated as a temperature distribution image, and a detection step of detecting a high temperature portion having a higher temperature than the surroundings in the acquired temperature distribution image as a defective region. , A defect detection method.
また、他の不良検出方法は、上記の画像取得工程と検出工程に代えて、赤外線サーモグラフィ27で、超音波加振前の電子部品13の表面15の温度分布を加振前温度分布画像として取得すると共に、超音波加振中又は超音波加振後の電子部品13の表面15の温度分布を加振後温度分布画像として取得する加振前後画像取得工程と、取得した加振前温度分布画像と加振後温度分布画像とに基づいて、表面15の領域45毎に加振前の温度と加振後の温度との温度差を算出し、温度差が所定の閾値以上となる領域を不良領域として検出する不良領域検出工程を含む。
Further, as another defect detection method, instead of the above image acquisition step and detection step, the temperature distribution of the surface 15 of the electronic component 13 before ultrasonic vibration is acquired as a pre-vibration temperature distribution image by infrared thermography 27. In addition, the pre-vibration image acquisition step of acquiring the temperature distribution of the surface 15 of the electronic component 13 during or after ultrasonic vibration as a post-vibration temperature distribution image, and the acquired pre-vibration temperature distribution image. The temperature difference between the temperature before vibration and the temperature after vibration is calculated for each region 45 of the surface 15 based on the temperature distribution image after vibration, and the region where the temperature difference is equal to or more than a predetermined threshold is defective. Includes a defective area detection step to detect as an area.
10 ステージ、10a 保持面、11 半導体チップ、11a パッド、12 サブストレート、12a アイランド、13 電子部品、15 表面、16 ワイヤ、17 圧着ボール、18 圧着部、20 音響ヘッド、21,211~216 超音波スピーカー、21a 軸、22 ケーシング、23 駆動ユニット、24 超音波、26 球中心、27 赤外線サーモグラフィ、28 光軸、30 移動機構、31 ガイドレール、32 X方向移動機構、33 スライダ、34 Y方向移動機構、35 Z方向移動機構、36 アーム、40 検査領域、45 領域、50 制御部、51,56 CPU、52,57 記憶部、55 検出部、58 ディスプレイ、60 音響ヘッド、62 ケーシング、63 球帯面、64,65 開放面、66 球中心、67 ステー、90 クラック、91 クラック領域、92,93 不着部、94 不着領域、100,200 音響式不良検出装置。
10 stage, 10a holding surface, 11 semiconductor chip, 11a pad, 12 substrate, 12a island, 13 electronic component, 15 surface, 16 wire, 17 crimping ball, 18 crimping part, 20 acoustic head, 21,211-216 ultrasonic waves Speaker, 21a axis, 22 casing, 23 drive unit, 24 ultrasonic wave, 26 sphere center, 27 infrared thermography, 28 optical axis, 30 movement mechanism, 31 guide rail, 32 X direction movement mechanism, 33 slider, 34 Y direction movement mechanism , 35 Z direction movement mechanism, 36 arm, 40 inspection area, 45 area, 50 control unit, 51, 56 CPU, 52, 57 storage unit, 55 detection unit, 58 display, 60 acoustic head, 62 casing, 63 ball band surface , 64, 65 open surface, 66 ball center, 67 stay, 90 crack, 91 crack area, 92, 93 non-attached part, 94 non-attached area, 100, 200 acoustic defect detection device.
Claims (12)
- 検査対象物の不良を検出する音響式不良検出装置であって、
前記検査対象物を超音波加振する音響ヘッドと、
前記音響ヘッドに取付けられて超音波加振中の前記検査対象物の表面の温度分布を温度分布画像として出力する赤外線サーモグラフィと、
前記赤外線サーモグラフィから入力された前記温度分布画像に基づいて不良の検出を行う検出部と、を備え、
前記音響ヘッドは、指向性を有する複数の超音波発生器と、複数の前記超音波発生器から発生した複数の超音波が前記検査対象物に集中するように複数の前記超音波発生器が取付けられるケーシングと、を有し、複数の前記超音波発生器から発生した複数の超音波を前記検査対象物に集中させて前記検査対象物を超音波加振すること、
を特徴とする音響式不良検出装置。 It is an acoustic defect detection device that detects defects in the inspection object.
An acoustic head that ultrasonically vibrates the inspection object,
Infrared thermography attached to the acoustic head and outputting the temperature distribution on the surface of the inspection object during ultrasonic vibration as a temperature distribution image, and
A detection unit that detects defects based on the temperature distribution image input from the infrared thermography is provided.
The acoustic head is equipped with a plurality of directional ultrasonic generators and the plurality of ultrasonic generators so that the plurality of ultrasonic waves generated from the plurality of ultrasonic generators are concentrated on the inspection object. A plurality of ultrasonic waves generated from the plurality of the ultrasonic generators are concentrated on the inspection object, and the inspection object is ultrasonically vibrated.
An acoustic defect detection device characterized by. - 請求項1に記載の音響式不良検出装置であって、
前記検出部は、前記赤外線サーモグラフィから入力された前記温度分布画像の中で周囲よりも温度が高い高温部を不良領域として検出すること、
を特徴とする音響式不良検出装置。 The acoustic defect detection device according to claim 1.
The detection unit detects a high temperature portion having a higher temperature than the surroundings in the temperature distribution image input from the infrared thermography as a defective region.
An acoustic defect detection device characterized by. - 請求項1に記載の音響式不良検出装置であって、
前記赤外線サーモグラフィは、
超音波加振前の前記検査対象物の前記表面の温度分布を加振前温度分布画像として出力すると共に、超音波加振中又は超音波加振後の前記検査対象物の前記表面の温度分布を加振後温度分布画像として出力し、
前記検出部は、前記赤外線サーモグラフィから入力された前記加振前温度分布画像と前記加振後温度分布画像とに基づいて、前記表面の領域毎に加振前の温度と加振後の温度との温度差を算出し、前記温度差が所定の閾値以上となる領域を不良領域として検出すること、
を特徴とする音響式不良検出装置。 The acoustic defect detection device according to claim 1.
The infrared thermography is
The temperature distribution of the surface of the inspection object before ultrasonic vibration is output as a temperature distribution image before vibration, and the temperature distribution of the surface of the inspection object during ultrasonic vibration or after ultrasonic vibration is performed. Is output as a temperature distribution image after vibration,
The detection unit determines the temperature before vibration and the temperature after vibration for each region of the surface based on the temperature distribution image before vibration and the temperature distribution image after vibration input from the infrared thermography. The temperature difference is calculated, and the region where the temperature difference is equal to or greater than a predetermined threshold is detected as a defective region.
An acoustic defect detection device characterized by. - 請求項1から3のいずれか1項に記載の音響式不良検出装置であって、
保持面に前記検査対象物を保持するステージを含み、
前記音響ヘッドは、前記ステージの前記保持面の側に前記ステージと離間して配置され、
前記音響ヘッドの前記ケーシングは、円環状又は前記ステージの側が開放されたドーム状で、
複数の前記超音波発生器は複数の超音波スピーカーであり、各軸が前記ステージの前記保持面に保持された前記検査対象物に集中するように前記ケーシングに取付けられていること、
を特徴とする音響式不良検出装置。 The acoustic defect detection device according to any one of claims 1 to 3.
The holding surface includes a stage for holding the inspection object.
The acoustic head is arranged on the side of the holding surface of the stage so as to be separated from the stage.
The casing of the acoustic head is annular or dome-shaped with the side of the stage open.
The plurality of the ultrasonic generators are a plurality of ultrasonic speakers, and each axis is attached to the casing so as to concentrate on the inspection object held on the holding surface of the stage.
An acoustic defect detection device characterized by. - 請求項4に記載の音響式不良検出装置であって、
前記音響ヘッドを前記ステージに対して相対移動させる移動機構を含み、
前記移動機構は、複数の前記超音波発生器から発生した複数の超音波が前記検査対象物に集中する検査領域を前記検査対象物の表面に沿ってスキャンする様に前記音響ヘッドを相対移動させること、
を特徴とする音響式不良検出装置。 The acoustic defect detection device according to claim 4.
A moving mechanism for moving the acoustic head relative to the stage is included.
The moving mechanism relatively moves the acoustic head so that a plurality of ultrasonic waves generated from the plurality of ultrasonic generators scan an inspection area where the inspection object is concentrated along the surface of the inspection object. matter,
An acoustic defect detection device characterized by. - 請求項1から3のいずれか1項に記載の音響式不良検出装置であって、
複数の前記超音波発生器を駆動する駆動回路を備え、
前記駆動回路は、各超音波発生器から発生する前記超音波の各位相をそれぞれ調整可能であること、
を特徴とする音響式不良検出装置。 The acoustic defect detection device according to any one of claims 1 to 3.
A drive circuit for driving the plurality of the ultrasonic generators is provided.
The drive circuit is capable of adjusting each phase of the ultrasonic wave generated from each ultrasonic wave generator.
An acoustic defect detection device characterized by. - 請求項4に記載の音響式不良検出装置であって、
複数の前記超音波発生器を駆動する駆動回路を備え、
前記駆動回路は、各超音波発生器から発生する前記超音波の各位相をそれぞれ調整可能であること、
を特徴とする音響式不良検出装置。 The acoustic defect detection device according to claim 4.
A drive circuit for driving the plurality of the ultrasonic generators is provided.
The drive circuit is capable of adjusting each phase of the ultrasonic wave generated from each ultrasonic wave generator.
An acoustic defect detection device characterized by. - 請求項5に記載の音響式不良検出装置であって、
複数の前記超音波発生器を駆動する駆動回路を備え、
前記駆動回路は、各超音波発生器から発生する前記超音波の各位相をそれぞれ調整可能であること、
を特徴とする音響式不良検出装置。 The acoustic defect detection device according to claim 5.
A drive circuit for driving the plurality of the ultrasonic generators is provided.
The drive circuit is capable of adjusting each phase of the ultrasonic wave generated from each ultrasonic wave generator.
An acoustic defect detection device characterized by. - 請求項6に記載の音響式不良検出装置であって、
前記駆動回路は、1つの前記超音波発生器を駆動する駆動ユニットを複数含み、
前記駆動ユニットは、前記超音波発生器から発生する前記超音波の位相を調整可能であること、
を特徴とする音響式不良検出装置。 The acoustic defect detection device according to claim 6.
The drive circuit includes a plurality of drive units for driving one ultrasonic generator.
The drive unit is capable of adjusting the phase of the ultrasonic wave generated from the ultrasonic wave generator.
An acoustic defect detection device characterized by. - 請求項7または8に記載の音響式不良検出装置であって、
前記駆動回路は、1つの前記超音波発生器を駆動する駆動ユニットを複数含み、
前記駆動ユニットは、前記超音波発生器から発生する前記超音波の位相を調整可能であること、
を特徴とする音響式不良検出装置。 The acoustic defect detection device according to claim 7 or 8.
The drive circuit includes a plurality of drive units for driving one ultrasonic generator.
The drive unit is capable of adjusting the phase of the ultrasonic wave generated from the ultrasonic wave generator.
An acoustic defect detection device characterized by. - 検査対象物の不良を検出する不良検出方法であって、
指向性を有する複数の超音波発生器を有し、前記検査対象物を超音波加振する音響ヘッドと、
前記音響ヘッドに取付けられた赤外線サーモグラフィと、を備える音響式不良検出装置を準備する準備工程と、
前記音響ヘッドの複数の前記超音波発生器で発生させた複数の超音波を前記検査対象物に集中させて前記検査対象物を超音波加振する超音波加振工程と、
前記赤外線サーモグラフィで超音波加振中の前記検査対象物の表面の温度分布を温度分布画像として取得する画像取得工程と、
取得した前記温度分布画像の中で周囲よりも温度が高い高温部を不良領域として検出する検出工程と、
を備えることを特徴とする不良検出方法。 It is a defect detection method that detects defects in the inspection object.
An acoustic head having a plurality of directional ultrasonic generators and ultrasonically vibrating the inspection object,
A preparatory step for preparing an acoustic defect detection device including infrared thermography attached to the acoustic head, and
An ultrasonic vibration step of concentrating a plurality of ultrasonic waves generated by the plurality of ultrasonic generators of the acoustic head on the inspection object and ultrasonically vibrating the inspection object.
An image acquisition step of acquiring the temperature distribution of the surface of the inspection object during ultrasonic vibration by the infrared thermography as a temperature distribution image, and
A detection step of detecting a high temperature portion having a higher temperature than the surroundings as a defective region in the acquired temperature distribution image, and
A defect detection method characterized by comprising. - 検査対象物の不良を検出する不良検出方法であって、
指向性を有する複数の超音波発生器を有し、前記検査対象物を超音波加振する音響ヘッドと、
前記音響ヘッドに取付けられた赤外線サーモグラフィと、を備える音響式不良検出装置を準備する準備工程と、
前記音響ヘッドの複数の前記超音波発生器で発生させた複数の超音波を前記検査対象物に集中させて前記検査対象物を超音波加振する超音波加振工程と、
前記赤外線サーモグラフィで、超音波加振前の前記検査対象物の表面の温度分布を加振前温度分布画像として取得すると共に、超音波加振中又は超音波加振後の前記検査対象物の前記表面の温度分布を加振後温度分布画像として取得する加振前後画像取得工程と、
取得した前記加振前温度分布画像と前記加振後温度分布画像とに基づいて、前記表面の領域毎に加振前の温度と加振後の温度との温度差を算出し、前記温度差が所定の閾値以上となる領域を不良領域として検出する不良領域検出工程と、
を備えることを特徴とする不良検出方法。 It is a defect detection method that detects defects in the inspection object.
An acoustic head having a plurality of directional ultrasonic generators and ultrasonically vibrating the inspection object,
A preparatory step for preparing an acoustic defect detection device including infrared thermography attached to the acoustic head, and
An ultrasonic vibration step of concentrating a plurality of ultrasonic waves generated by the plurality of ultrasonic generators of the acoustic head on the inspection object and ultrasonically vibrating the inspection object.
In the infrared thermography, the temperature distribution on the surface of the inspection target before ultrasonic vibration is acquired as a temperature distribution image before vibration, and the inspection target during or after ultrasonic vibration is described. The image acquisition process before and after the vibration to acquire the surface temperature distribution as the temperature distribution image after the vibration, and
Based on the acquired temperature distribution image before vibration and the temperature distribution image after vibration, the temperature difference between the temperature before vibration and the temperature after vibration is calculated for each region of the surface, and the temperature difference is obtained. A defective area detection step of detecting an area where is equal to or higher than a predetermined threshold value as a defective area,
A defect detection method characterized by comprising.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022528775A JP7308577B2 (en) | 2020-06-01 | 2021-05-27 | Acoustic defect detection device and defect detection method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020095265 | 2020-06-01 | ||
JP2020-095265 | 2020-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021246271A1 true WO2021246271A1 (en) | 2021-12-09 |
Family
ID=78831082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/020120 WO2021246271A1 (en) | 2020-06-01 | 2021-05-27 | Acoustic defect detection device and method for detecting defect |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7308577B2 (en) |
TW (1) | TWI803878B (en) |
WO (1) | WO2021246271A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0862166A (en) * | 1994-08-26 | 1996-03-08 | Hitachi Ltd | Method and apparatus for diagnosing stripping on outer wall of building |
JPH1096705A (en) * | 1996-09-24 | 1998-04-14 | Tokai Carbon Co Ltd | Non-destructive examination method for carbon fiber reinforced carbon composite material |
US20040051035A1 (en) * | 2002-09-13 | 2004-03-18 | Siemens Westinghouse Power Corporation | Reference standard systems for thermosonic flaw detection |
US20100019153A1 (en) * | 2008-07-23 | 2010-01-28 | Usa As Represented By The Administrator Of The National Aeronautics And Space Administration | Air-Coupled Acoustic Thermography for In-Situ Evaluation |
JP2010512509A (en) * | 2006-12-06 | 2010-04-22 | ロッキード マーティン コーポレイション | Improved laser and ultrasonic inspection using infrared thermography |
CN101713756A (en) * | 2009-12-24 | 2010-05-26 | 首都师范大学 | Non-contact ultrasonic thermal-excitation infrared imaging nondestructive detection method and system |
JP2017129560A (en) * | 2016-01-22 | 2017-07-27 | ザ・ボーイング・カンパニーThe Boeing Company | Infrared thermography method for wrinkle characterization in composite structure |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04175649A (en) * | 1990-11-09 | 1992-06-23 | Hitachi Ltd | Method and device for inspecting soldering |
US6367968B1 (en) * | 1999-07-21 | 2002-04-09 | General Electric Company | Thermal resonance imaging method |
US6516084B2 (en) * | 1999-12-02 | 2003-02-04 | Thermal Wave Imaging, Inc. | Temporal noise reduction, compression and analysis of thermographic image data sequences |
US9066028B1 (en) * | 2010-01-08 | 2015-06-23 | The United States Of America As Represented By The Administator Of The National Aeronautics And Space Administration | Methods and systems for measurement and estimation of normalized contrast in infrared thermography |
JP6539139B2 (en) * | 2015-07-21 | 2019-07-03 | Jfeテクノリサーチ株式会社 | Image processing method for infrared image data and infrared image processing apparatus |
-
2021
- 2021-05-27 WO PCT/JP2021/020120 patent/WO2021246271A1/en active Application Filing
- 2021-05-27 JP JP2022528775A patent/JP7308577B2/en active Active
- 2021-05-31 TW TW110119722A patent/TWI803878B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0862166A (en) * | 1994-08-26 | 1996-03-08 | Hitachi Ltd | Method and apparatus for diagnosing stripping on outer wall of building |
JPH1096705A (en) * | 1996-09-24 | 1998-04-14 | Tokai Carbon Co Ltd | Non-destructive examination method for carbon fiber reinforced carbon composite material |
US20040051035A1 (en) * | 2002-09-13 | 2004-03-18 | Siemens Westinghouse Power Corporation | Reference standard systems for thermosonic flaw detection |
JP2010512509A (en) * | 2006-12-06 | 2010-04-22 | ロッキード マーティン コーポレイション | Improved laser and ultrasonic inspection using infrared thermography |
US20100019153A1 (en) * | 2008-07-23 | 2010-01-28 | Usa As Represented By The Administrator Of The National Aeronautics And Space Administration | Air-Coupled Acoustic Thermography for In-Situ Evaluation |
CN101713756A (en) * | 2009-12-24 | 2010-05-26 | 首都师范大学 | Non-contact ultrasonic thermal-excitation infrared imaging nondestructive detection method and system |
JP2017129560A (en) * | 2016-01-22 | 2017-07-27 | ザ・ボーイング・カンパニーThe Boeing Company | Infrared thermography method for wrinkle characterization in composite structure |
Also Published As
Publication number | Publication date |
---|---|
TW202204887A (en) | 2022-02-01 |
JPWO2021246271A1 (en) | 2021-12-09 |
JP7308577B2 (en) | 2023-07-14 |
TWI803878B (en) | 2023-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8196803B2 (en) | Method of manufacturing semiconductor device and wire bonding apparatus | |
JP2010067999A (en) | Bump joining determining device and method, and semiconductor component production device and method | |
JP2008045965A (en) | Inspection method of wafer, and crack inspection device of wafer | |
JPH1144513A (en) | Visual examination device for semiconductor device and method therefor | |
WO2021246271A1 (en) | Acoustic defect detection device and method for detecting defect | |
JP2012083246A (en) | Joint inspection method | |
US20210272927A1 (en) | Wire bonding apparatus | |
JP4644294B2 (en) | Bonding apparatus and bonding method | |
JP7340302B2 (en) | Defect detection device and method | |
TWI603410B (en) | Testing system for re-constructed wafer and the method thereof | |
JP7019231B2 (en) | Wire non-delivery inspection system, wire non-delivery detection device, and wire non-delivery detection method | |
US11460447B2 (en) | Inspection apparatus | |
WO2022157870A1 (en) | Defect detection device and defect detection method | |
JP3323152B2 (en) | Solder ball joint inspection method and inspection device | |
JPS63257238A (en) | Wire bonding device | |
JP2005223244A (en) | Displacement position detecting method of chip | |
WO2022091247A1 (en) | Ultrasound vibrating-type defect detection apparatus and wire defect detection system | |
JP2002005957A (en) | Contact pin | |
JP7373848B2 (en) | Acoustic foreign object removal device | |
JP2011112361A (en) | Device and method for inspecting bump | |
TW202312296A (en) | Ultrasound vibrating-type defect detection apparatus and wire defect detection system including an ultrasound vibrator, a high-frequency power supply, a camera, and a control unit | |
JP2006156978A (en) | Manufacturing system of semiconductor device, and its manufacturing method | |
JPH11297747A (en) | Wire bonding apparatus and visual inspection using the same | |
JP2006156795A (en) | Method of joining semiconductor device | |
JP2009231763A (en) | Semiconductor device inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21817771 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2022528775 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21817771 Country of ref document: EP Kind code of ref document: A1 |