WO2017002815A1 - Zinc air battery cell pack and battery pack using same - Google Patents
Zinc air battery cell pack and battery pack using same Download PDFInfo
- Publication number
- WO2017002815A1 WO2017002815A1 PCT/JP2016/069161 JP2016069161W WO2017002815A1 WO 2017002815 A1 WO2017002815 A1 WO 2017002815A1 JP 2016069161 W JP2016069161 W JP 2016069161W WO 2017002815 A1 WO2017002815 A1 WO 2017002815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc
- separator
- air
- battery cell
- cell pack
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/463—Separators, membranes or diaphragms characterised by their shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/497—Ionic conductivity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a zinc-air battery cell pack and an assembled battery using the same.
- One of the innovative battery candidates is a metal-air battery.
- metal-air batteries the oxygen involved in the battery reaction is supplied from the air, so the space in the battery container can be used to fill the negative electrode active material to the maximum, thereby realizing a high energy density in principle. can do.
- lithium air batteries Many of the metal-air batteries currently proposed are lithium air batteries. However, there are many technical problems with lithium-air batteries, such as deposition of undesirable reaction products on the air electrode, carbon dioxide contamination, and short circuit between positive and negative electrodes due to the formation of lithium dendrite (dendritic crystals). ing.
- a zinc-air battery using zinc as a negative electrode active material has also been conventionally known.
- zinc-air primary batteries have already been mass-produced and are widely used as power supplies for hearing aids and the like.
- an alkaline aqueous solution such as potassium hydroxide is used as an electrolytic solution, and a separator (partition) is used to prevent a short circuit between positive and negative electrodes.
- O 2 is reduced on the air electrode (positive electrode) side to generate OH ⁇
- zinc is oxidized on the negative electrode to generate ZnO.
- zinc-air batteries do not have much of a problem with reaction, so if the problems with short circuit between positive and negative electrodes due to zinc dendrite and carbon dioxide contamination are solved, it can be realized as a high-capacity secondary battery. It is said to have a high quality. Therefore, in a zinc-air secondary battery, a technique for preventing both short-circuiting by zinc dendrite and mixing of carbon dioxide is strongly desired.
- Patent Document 1 International Publication No. 2013/073292
- Patent Document 1 uses a hydroxide ion conductive inorganic solid electrolyte as a separator, and an inorganic solid electrolyte is used as a separator.
- this document inorganic solid electrolyte body has the general formula: M 2+ 1-x M 3+ x (OH) 2 A n- x / n ⁇ mH 2 O (wherein, M 2+ is a divalent cation in and, M 3+ is a trivalent cation, a n-is the n-valent anion, n represents an integer of 1 or more, x is has a basic composition of a is) 0.1 to 0.4 It is also described that what consists of a layered double hydroxide is preferable.
- the assembled battery has a configuration in which a stacked body in which a plurality of cells are connected in series or in parallel is housed in one battery container.
- the present applicant has succeeded in developing a ceramic separator (inorganic solid electrolyte separator) that has hydroxide ion conductivity but is highly densified to such an extent that it does not have water permeability and air permeability. Moreover, it has succeeded also in forming such a ceramic separator on a porous base material (for example, alumina porous base material).
- a porous base material for example, alumina porous base material.
- the intrusion of carbon dioxide in the air can be prevented to prevent the precipitation of alkali carbonate (caused by carbon dioxide) in the electrolyte.
- an assembled battery can be efficiently assembled by combining a plurality of single cells in order to obtain a high voltage and a large current while securing such a configuration.
- the present inventors have recently used a zinc-air battery in which the air electrode and the negative electrode are reliably separated by a hydroxide ion conductive separator by using a flexible film instead of a hard material as a constituent material of a battery container or the like. It has been found that the single cell (cell) can be provided in the form of a cell pack that is excellent in handling and extremely advantageous for assembling the assembled battery.
- an object of the present invention is to provide a zinc-air battery cell (cell) in which the air electrode and the negative electrode are reliably separated by a hydroxide ion conductive separator, and is excellent in handleability and for assembling an assembled battery. It is to be provided in the form of a very advantageous cell pack.
- a flexible bag formed of a flexible film and provided with an opening
- a separator structure including a separator having hydroxide ion conductivity but not having water permeability and air permeability, wherein the opening is hermetically and liquid-tightly closed to form a sealed space together with the flexible bag;
- An air electrode provided on the side opposite to the sealed space of the separator;
- a negative electrode containing zinc, a zinc alloy and / or a zinc compound, contained in the sealed space;
- An electrolytic solution containing an aqueous alkali metal hydroxide solution that is housed in the sealed space and in which the negative electrode is immersed;
- a zinc-air battery cell pack is provided.
- an assembled battery in which a plurality of zinc-air battery cell packs according to the above aspect are packed in a battery container.
- FIG. 1 is a SEM image of the surface of an alumina porous substrate produced in Example 1.
- FIG. 3 is an XRD profile obtained for the crystal phase of the sample in Example 1.
- 2 is an SEM image showing a surface microstructure of a film sample observed in Example 1.
- FIG. 2 is an SEM image of a polished cross-sectional microstructure of a composite material sample observed in Example 1.
- FIG. 2 is an exploded perspective view of a denseness discrimination measurement system used in Example 1.
- FIG. 2 is a schematic cross-sectional view of a denseness discrimination measurement system used in Example 1.
- FIG. 3 is an exploded perspective view of a measurement sealed container used in the denseness determination test II of Example 1.
- 3 is a schematic cross-sectional view of a measurement system used in the denseness determination test II of Example 1.
- FIG. It is a top view which shows typically the positional relationship of each structural member of a partition sheet for manufacture of the nickel zinc battery cell pack in Example 3 (reference example). It is process drawing which shows the preparation procedures of the partition sheet in Example 3 (reference example).
- Example 3 It is a photograph of the partition sheet produced in Example 3 (reference example). It is process drawing which shows the assembly procedure of the nickel zinc battery cell pack in Example 3 (reference example). It is the photograph which image
- Example 3 It is the photograph which image
- Zinc air battery cell pack present invention relates to zinc-air battery cell pack.
- the “zinc-air battery cell pack” is a package including a single battery (cell) of a zinc-air battery (preferably a zinc-air secondary battery), and the packaging material constituting the package has flexibility. (Ie flexible).
- FIG. 1A schematically shows an example of a zinc-air battery cell pack according to the present invention.
- a zinc-air battery cell pack 10 shown in FIG. 1A includes a flexible bag 12, a separator structure 14, an air electrode 16, a negative electrode 18, and an electrolytic solution 20.
- the flexible bag 12 is formed of flexible films 12a and 12b and includes an opening 12c.
- the separator structure 14 is a structure including a separator 28 that has hydroxide ion conductivity but does not have water permeability and air permeability.
- the separator 12 is closed in an airtight and liquid tight manner to form the flexible bag 12.
- a sealed space 22 is formed.
- the air electrode 16 is provided on the side of the separator 28 opposite to the sealed space 22.
- the negative electrode 18 includes zinc, a zinc alloy, and / or a zinc compound, and is accommodated in the sealed space 22.
- the electrolytic solution 20 is a solution containing an alkali metal hydroxide aqueous solution, and is accommodated in the sealed space 22 in which the negative electrode 18 is immersed.
- a current collector air electrode current collector 17 and negative electrode current collector 19 in FIG. 1A
- wiring and / or terminals are connected to the air electrode 16 and the negative electrode 18, respectively, and electricity is supplied to the outside of the cell pack 10. Needless to say, it is configured to be removable.
- a single cell (cell) of an air battery can be provided in the form of a cell pack that is excellent in handleability and extremely advantageous for assembling an assembled battery. That is, the zinc-air battery cell pack 10 contains the air electrode 16, the negative electrode 18, and the electrolytic solution 20 in a compact manner in the flexible bag 12 in which the opening 12 c is airtight and liquid tightly closed by the separator structure 14. Because it can, it does not leak and is easy to carry, so it is easy to handle.
- the zinc-air battery cell pack 10 contains the electrolytic solution 20 in the flexible bag 12 formed of the flexible films 12a and 12b, the cell pack 10 as a whole is highly flexible. have. That is, although the air electrode 16, the negative electrode 18, and the separator structure 14 are not flexible or inferior, the flexibility of the flexible films 12a and 12b is combined with the fluidity of the electrolyte solution, so that the cell pack 10 as a whole is an assembled battery. Flexibility that is convenient for assembly can be provided. In particular, when the assembled battery is configured, if the unit cell is made of a hard material, a dimensional tolerance tends to be a problem with the battery case for the assembled battery that houses a plurality of unit cells.
- the zinc-air battery cell pack 10 since the zinc-air battery cell pack 10 according to the present invention is highly flexible as a whole, a plurality of cell packs 10 are accommodated in the battery container 102 for the assembled battery 100 as schematically shown in FIG. 1B. In doing so, a plurality (preferably as many) of cell packs 10 can be easily packed into the battery container without much concern for design requirements such as dimensional tolerances.
- the assembly A battery pack having a desired performance can be easily obtained simply by packing a plurality of cell packs 10 in a battery container for batteries relatively roughly and connecting them in series or in parallel. Even if the packing is relatively rough, the stress is easily dispersed by the flexibility in the cell pack 10 (and the fluidity of the electrolyte therein), and the structural stability and performance stability of the assembled battery and the single cells therein This is because the sex is secured.
- the air electrode 16 and the negative electrode 18 are reliably isolated by the separator structure 14 including the separator 28 having hydroxide ion conductivity but not water permeability and air permeability.
- Zinc dendrite that grows from the negative electrode 18 toward the air electrode 16 as a result of discharge is blocked by the separator 28, thereby effectively preventing a short circuit between the positive and negative electrodes due to the zinc dendrite.
- the infiltration of carbon dioxide in the air can be prevented and precipitation of alkali carbonate (caused by carbon dioxide) in the electrolyte can be effectively prevented.
- the flexible bag body 12 is a bag-like flexible package formed of a flexible film, and includes an opening 12c.
- the flexible film constituting the flexible bag body 12 preferably includes a resin film. It is preferable that the resin film has resistance to alkali metal hydroxides such as potassium hydroxide and can be joined by thermal fusion, for example, PP (polypropylene) film, PET (polyethylene terephthalate) film. And PVC (polyvinyl chloride) film.
- a flexible film including a resin film a commercially available laminate film can be used.
- a base film for example, a PET film or a PP film
- a thermoplastic resin layer having two or more layers are provided.
- a heat laminate film is mentioned.
- a preferred thickness of the flexible film is 20 to 500 ⁇ m, more preferably 30 to 300 ⁇ m, and still more preferably 50 to 150 ⁇ m.
- the flexible bag 12 is composed of a pair of flexible films 12a and 12b, and the outer peripheral edges of the pair of flexible films 12a and 12b are sealed by heat sealing. Is preferred.
- the electrolyte solution 20 does not leak and there is no intrusion of outside air (for example, carbon dioxide in the air). It can hold
- FIG. Bonding or sealing by thermal fusion may be performed using a commercially available heat sealing machine or the like.
- the separator structure separator structure 14 is a structure that closes the opening 12 c in an airtight and liquid-tight manner to form a sealed space 22 together with the flexible bag body 12.
- the separator structure 14 includes a separator having hydroxide ion conductivity but not water permeability and air permeability, thereby allowing hydroxide ions to be conducted between the air electrode 16 and the sealed space 22. However, it is configured not to allow liquid communication and gas communication.
- the separator structure 14 preferably includes a frame 32 along the outer peripheral edge of the separator 28, and the flexible film 12 b and the separator structure 14 are preferably bonded in a liquid-tight and air-tight manner via the frame 32. .
- the frame 32 is preferably a resin frame, and more preferably, the flexible film 12b and the resin frame 32 are bonded by an adhesive and / or heat fusion.
- An adhesive is preferable in that an epoxy resin adhesive is particularly excellent in alkali resistance.
- a hot melt adhesive may be used. In any case, it is desirable that liquid-tightness is secured at the joint between the flexible film 12b and the frame 32.
- the resin constituting the frame 32 is preferably a resin having resistance to an alkali metal hydroxide such as potassium hydroxide, more preferably a polyolefin resin, an ABS resin, a PP resin, a PE resin, or a modified polyphenylene ether. More preferred are ABS resin, PP resin, PE resin, or modified polyphenylene ether.
- the separator 28 is a member having hydroxide ion conductivity but not water permeability and air permeability, and typically has a plate shape, a film shape, or a layer shape.
- “not having water permeability” means “measurement object (when the water permeability is evaluated by a“ denseness determination test I ”employed in Example 1 described later) or a technique or configuration according to the“ denseness determination test I ”. For example, it means that water that contacts one side of the LDH membrane and / or porous substrate does not permeate the other side.
- the separator 28 does not have water permeability and air permeability means that the separator 28 has a high degree of denseness that allows neither water nor gas to pass through, and a porous film having water permeability and air permeability. It means that it is not other porous material. For this reason, it has a very effective configuration for physically preventing penetration of the separator by zinc dendrite generated during charging and preventing a short circuit between the positive and negative electrodes.
- the porous substrate 30 may be attached to the separator 28 as shown in FIG. 1A.
- the separator 28 since the separator 28 has hydroxide ion conductivity, it is possible to efficiently move the necessary hydroxide ions between the air electrode 16 and the electrolytic solution 20, so that in the air electrode 16 and the negative electrode 18. A charge / discharge reaction can be realized.
- the separator 28 is preferably made of an inorganic solid electrolyte.
- an inorganic solid electrolyte By using a hydroxide ion conductive inorganic solid electrolyte as the separator 28, the electrolyte solution between the positive and negative electrodes is isolated and the hydroxide ion conductivity is ensured.
- the inorganic solid electrolyte which comprises the separator 28 is a dense and hard inorganic solid typically, the penetration of the separator by the zinc dendrite produced
- the inorganic solid electrolyte body is densified to such an extent that it does not have water permeability and air permeability.
- the inorganic solid electrolyte body preferably has a relative density of 90% or more, more preferably 92% or more, and even more preferably 95% or more, calculated by the Archimedes method, but prevents penetration of zinc dendrite. It is not limited to this as long as it is as dense and hard as possible.
- Such a dense and hard inorganic solid electrolyte body can be produced through a hydrothermal treatment.
- a simple green compact that has not been subjected to hydrothermal treatment is not preferable as the inorganic solid electrolyte body of the present invention because it is not dense and is brittle in solution.
- any manufacturing method can be used as long as a dense and hard inorganic solid electrolyte body can be obtained, even if it has not undergone hydrothermal treatment.
- the separator 28 or the inorganic solid electrolyte body may be a composite of a particle group including an inorganic solid electrolyte having hydroxide ion conductivity and an auxiliary component that assists densification and hardening of the particle group.
- the separator 28 includes an open-pore porous body as a base material and an inorganic solid electrolyte (for example, a layered double hydroxide) deposited and grown in the pores so as to fill the pores of the porous body. It may be a complex.
- the substance constituting the porous body include ceramics such as alumina and zirconia, and insulating substances such as a porous sheet made of a foamed resin or a fibrous substance.
- the inorganic solid electrolyte body preferably contains a layered double hydroxide (LDH), more preferably LDH.
- LDH is represented by the general formula: M 2+ 1-x M 3+ x (OH) 2 A n ⁇ x / n ⁇ mH 2 O (where M 2+ is a divalent cation and M 3+ is a trivalent cation, a n-is the n-valent anion, n is an integer of 1 or more, x is 0.1 ⁇ 0.4, m is 0 or more)
- M 2+ is a divalent cation and M 3+ is a trivalent cation
- n is an integer of 1 or more
- x is 0.1 ⁇ 0.4
- m is 0 or more
- M 2+ may be any divalent cation, and preferred examples include Mg 2+ , Ca 2+ and Zn 2+ , and more preferably Mg 2+ .
- M 3+ may be any trivalent cation, but preferred examples include Al 3+ or Cr 3+ , and more preferred is Al 3+ .
- a n- can be any anion, but preferred examples include OH - and CO 3 2- . Therefore, in the general formula, M 2+ comprises Mg 2+, M 3+ comprises Al 3+, A n-is OH - and / or CO preferably contains 3 2-.
- n is an integer of 1 or more, preferably 1 or 2.
- x is 0.1 to 0.4, preferably 0.2 to 0.35.
- m is an arbitrary number which means the number of moles of water, and is a real number or an integer of 0 or more, typically more than 0 or 1 or more.
- the inorganic solid electrolyte body is densified by hydrothermal treatment.
- Hydrothermal treatment is extremely effective for the densification of layered double hydroxides, especially Mg—Al type layered double hydroxides.
- Densification by hydrothermal treatment is performed, for example, as described in Patent Document 1 (International Publication No. 2013/073292), in which pure water and a plate-shaped green compact are placed in a pressure vessel, and 120 to 250 ° C., preferably The reaction can be carried out at a temperature of 180 to 250 ° C., 2 to 24 hours, preferably 3 to 10 hours.
- Patent Document 1 International Publication No. 2013/073292
- the reaction can be carried out at a temperature of 180 to 250 ° C., 2 to 24 hours, preferably 3 to 10 hours.
- a more preferable production method using hydrothermal treatment will be described later.
- the inorganic solid electrolyte body may be in the form of a plate, a film, or a layer.
- the film or layer of the inorganic solid electrolyte is on the porous substrate or its It is preferably formed in the inside.
- the plate-like form is used, sufficient hardness can be secured and penetration of zinc dendrites can be more effectively prevented.
- the film or layer form is thinner than the plate, there is an advantage that the resistance of the separator can be significantly reduced while ensuring the minimum necessary hardness to prevent the penetration of zinc dendrite. is there.
- the preferred thickness of the plate-like inorganic solid electrolyte body is 0.01 to 0.5 mm, more preferably 0.02 to 0.2 mm, and still more preferably 0.05 to 0.1 mm. Further, the higher the hydroxide ion conductivity of the inorganic solid electrolyte body is, the higher is desirable, but typically it has a conductivity of 10 ⁇ 4 to 10 ⁇ 1 S / m. On the other hand, in the case of a film-like or layered form, the thickness is preferably 100 ⁇ m or less, more preferably 75 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably 25 ⁇ m or less, and most preferably 5 ⁇ m or less. Thus, the resistance of the separator 28 can be reduced.
- the lower limit of the thickness is not particularly limited because it varies depending on the application, but in order to ensure a certain degree of rigidity desired as a separator film or layer, the thickness is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more. is there.
- the porous substrate 30 may be provided on at least one side of the separator 28.
- the porous substrate 30 is provided on the negative electrode 18 side (sealed space 22 side) of the separator 28, but the reverse may be used as described later.
- the porous base material 30 has water permeability, and therefore the electrolytic solution 20 can reach the separator 28, but the presence of the porous base material 30 makes the hydroxylation more stable on the separator 28. It is also possible to retain product ions. Further, since the strength can be imparted by the porous base material 30, the separator 28 can be thinned to reduce the resistance.
- a dense film or a dense layer of an inorganic solid electrolyte can be formed on or in the porous substrate 30.
- an inorganic solid electrolyte preferably LDH
- a method of preparing a porous substrate and depositing an inorganic solid electrolyte on the porous substrate can be considered (this method will be described later).
- the porous base material 30 is provided over the entire surface of one side of the separator 28.
- the porous base material 30 may be provided only on a part of one side of the separator 28 (for example, a region involved in the charge / discharge reaction).
- the porous substrate 30 is provided over the entire surface of one side of the separator 28 due to the manufacturing method. It is typical to become.
- the porous base material 30 is formed only on a part of one side of the separator 28 (for example, a region involved in charge / discharge reaction). May be retrofitted, or the porous substrate 30 may be retrofitted over the entire surface of one side.
- the separator 28 is provided on either the air electrode 16 side or the negative electrode 18 side (sealed space 22 side) of the porous substrate 30. Also good. For example, when the separator 28 is provided on the negative electrode 18 side (sealed space 22 side) of the porous base material 30, the separation of the separator 28 (for example, LDH dense film) from the porous base material 30 is more effectively suppressed. Can do. That is, when zinc dendrite grows from the negative electrode 18 and reaches the separator 28, the stress that can be generated as the zinc dendrite grows acts in a direction to press the separator 28 against the porous substrate 30.
- the separator 28 is difficult to peel off from the porous substrate 30.
- a part or all of the separator 28 is incorporated in the porous substrate 30 and / or the porous substrate 30. It is preferred that a hydroxide ion conductive material is incorporated therein.
- the separator structure 14 preferably includes the frame 32 along the outer peripheral edge of the separator 28, and the frame 32 is more preferably a resin frame.
- FIG. 17 shows a separator structure provided with a frame 32 when the separator 28 is provided on the negative electrode 18 side of the porous substrate 30 (that is, when the porous substrate 30 is provided on the air electrode 16 side of the separator 28). Fourteen preferred embodiments are shown.
- the frame 32 in the embodiment shown in FIG. 17 includes an outer frame portion 32a having an opening that can accommodate the separator 28 and the porous substrate 30, and an end of the outer frame portion 32a on the air electrode 16 side and / or the vicinity thereof. And an inner frame portion 32b extending toward the opening.
- the inner frame portion 32 b engages with the air electrode 16 side of the porous substrate 30. And between the porous substrate 30 and the frame 32 (that is, the outer frame portion 32a and the inner frame portion 32b), or both the porous substrate 30 and the separator 28 and the frame 32 (that is, the outer frame portion 32a and the inner frame portion). 32b) is preferably liquid-tightly sealed with an adhesive 31. According to this configuration, when zinc dendrite grows from the negative electrode 18 and reaches the separator 28, stress that can be generated as the zinc dendrite grows presses the porous substrate 30 against the inner frame portion 32 b.
- the adhesive 31 is compressed between the porous base material 30 and the inner frame portion 32b, and the liquid-tight sealing effect and the adhesive effect by the adhesive 31 can be improved. That is, since the stress can be applied in the compressing direction rather than the direction in which the adhesive 31 is pulled, even if the stress due to the zinc dendrite is applied, the peeling of the frame 32 due to the pulling of the adhesive 31 is effectively avoided. can do. However, it goes without saying that the frame 32 having the inner frame portion 32a and the outer frame portion 32b can be employed even when the separator 28 is provided on the air electrode 16 side of the porous substrate 30.
- a second separator made of a water-absorbing resin such as a nonwoven fabric or a liquid-retaining resin is disposed between the negative electrode 18 and the separator 28, so that the electrolytic solution can be used even when the electrolytic solution is reduced. It is good also as a structure which can hold
- the water absorbent resin or the liquid retaining resin include polyolefin resins.
- the air electrode 16 may be a known air electrode used in metal-air batteries such as zinc-air batteries, and is not particularly limited.
- the air electrode 16 typically comprises an air electrode catalyst, an electronically conductive material, and optionally a hydroxide ion conductive material.
- the air electrode 16 includes such an electron conductive material / air electrode catalyst and, optionally, a hydroxide ion conductive material. It may be a thing.
- the air electrode catalyst is not particularly limited as long as it functions as a positive electrode in a metal-air battery, and various air electrode catalysts that can use oxygen as a positive electrode active material can be used.
- Preferred examples of the air electrode catalyst include carbon-based materials having a redox catalyst function such as graphite, metals having a redox catalyst function such as platinum and nickel, perovskite oxides, manganese dioxide, nickel oxide, cobalt oxide, spinel. Examples thereof include inorganic oxides having a redox catalyst function such as oxides.
- the shape of the air electrode catalyst is not particularly limited, but is preferably a particle shape.
- the content of the air electrode catalyst in the air electrode 16 is not particularly limited, but is preferably 5 to 70% by volume, more preferably 5 to 60% by volume, and still more preferably 5 to 50% by volume with respect to the total amount of the air electrode 16. %.
- the electron conductive material is not particularly limited as long as it has conductivity and enables electron conduction between the air electrode catalyst and the separator 28 (or an intermediate layer to be described later if applicable).
- Preferred examples of the electron conductive material include carbon blacks such as ketjen black, acetylene black, channel black, furnace black, lamp black, and thermal black, natural graphite such as flake graphite, artificial graphite, and expanded graphite.
- Examples thereof include conductive fibers such as graphites, carbon fibers, and metal fibers, metal powders such as copper, silver, nickel, and aluminum, organic electron conductive materials such as polyphenylene derivatives, and any mixture thereof.
- the shape of the electron conductive material may be a particle shape or any other shape, but is used in a form that provides a continuous phase (that is, an electron conductive phase) in the thickness direction in the air electrode 16.
- the electron conductive material may be a porous material.
- the electron conductive material may be in the form of a mixture or complex with an air electrode catalyst (for example, platinum-supported carbon).
- an air electrode catalyst for example, a transition metal
- Perovskite-type compounds may be used in a form that provides a continuous phase (that is, an electron conductive phase) in the thickness direction in the air electrode 16.
- an air electrode catalyst for example, platinum-supported carbon
- an air electrode catalyst for example, a transition metal
- the content of the electron conductive material in the air electrode 16 is not particularly limited, but is preferably 10 to 80% by volume, more preferably 15 to 80% by volume, and still more preferably 20 to 80% with respect to the total amount of the air electrode 16. % By volume.
- the air electrode 16 may further include a hydroxide ion conductive material as an optional component.
- a hydroxide ion conductive material as an optional component.
- the separator 28 is made of a hydroxide ion conductive inorganic solid electrolyte, which is a dense ceramic, on the separator 28 (with an intermediate layer having hydroxide ion conductivity if desired), conventionally.
- the air electrode 16 containing not only the air electrode catalyst and the electron conductive material to be used but also the hydroxide ion conductive material, desired characteristics by the separator 28 made of dense ceramics can be secured. However, it is possible to reduce the reaction resistance of the air electrode in the metal-air battery.
- the air electrode catalyst and the electron conductive material is contained in the air electrode 16 so that the electron conductive phase (electron conductive material), the gas phase (air),
- the three-phase interface consisting of is present not only in the interface between the separator 28 (or the intermediate layer, if applicable) and the air electrode 16 but also in the air electrode 16, and exchanges hydroxide ions that contribute to the battery reaction.
- the reaction resistance of the air electrode is considered to be reduced in the metal-air battery.
- the hydroxide ion conductive material is not particularly limited as long as it is a material that can transmit hydroxide ions, and various materials and forms of materials can be used regardless of whether the material is an inorganic material or an organic material. It may be a layered double hydroxide having a basic composition.
- the hydroxide ion conductive material is not limited to the particle form, but may be in the form of a coating film that partially or substantially entirely covers the air electrode catalyst and the electron conductive material. However, also in the form of this coating film, the ion conductive material is not dense and has open pores, and the interface from the outer surface of the air electrode 16 to the separator 28 (or intermediate layer if applicable). It is desirable that O 2 or H 2 O can be diffused in the pores.
- the content of the hydroxide ion conductive material in the air electrode 16 is not particularly limited, but is preferably 0 to 95% by volume, more preferably 5 to 85% by volume, and still more preferably based on the total amount of the air electrode 16. 10 to 80% by volume.
- the formation of the air electrode 16 may be performed by any method and is not particularly limited.
- an air electrode catalyst, an electron conductive material, and optionally a hydroxide ion conductive material are wet-mixed using a solvent such as ethanol, dried and crushed, and then mixed with a binder to obtain a fibril.
- the fibrillar mixture is pressure-bonded to the current collector to form the air electrode 16, and the air electrode 16 side of the air electrode 16 / current collector laminated sheet is pressure-bonded to the separator 28 (or an intermediate layer if applicable). May be.
- an air electrode catalyst, an electron conductive material, and, if desired, a hydroxide ion conductive material are wet mixed with a solvent such as ethanol to form a slurry, and this slurry is applied to an intermediate layer and dried to form the air electrode 16. It may be formed. Therefore, the air electrode 16 may contain a binder.
- the binder may be a thermoplastic resin or a thermosetting resin and is not particularly limited.
- the air electrode 16 is preferably in the form of a layer having a thickness of 5 to 200 ⁇ m, more preferably 5 to 100 ⁇ m, still more preferably 5 to 50 ⁇ m, and particularly preferably 5 to 30 ⁇ m.
- a hydroxide ion conductive material is included, if the thickness is within the above range, a relatively large area of the three-phase interface can be secured while suppressing an increase in gas diffusion resistance, and the reaction of the air electrode Reduction of resistance can be realized more preferably.
- An intermediate layer may be provided between the separator 28 and the air electrode 16.
- the intermediate layer is not particularly limited as long as it improves the adhesion between the separator 28 and the air electrode 16 and has hydroxide ion conductivity, regardless of whether it is an organic material or an inorganic material.
- the intermediate layer preferably includes a polymer material and / or a ceramic material. In this case, at least one of the polymer material and the ceramic material included in the intermediate layer may have hydroxide ion conductivity. That's fine.
- a plurality of intermediate layers may be provided, and the plurality of intermediate layers may be the same type and / or different layers. That is, the intermediate layer may have a single layer structure or a structure having two or more layers.
- the intermediate layer preferably has a thickness of 1 to 200 ⁇ m, more preferably 1 to 100 ⁇ m, still more preferably 1 to 50 ⁇ m, and particularly preferably 1 to 30 ⁇ m. With such a thickness, the adhesion between the separator 28 and the air electrode 16 can be easily improved, and the battery resistance (particularly, the interface resistance between the air electrode and the separator) can be more effectively reduced in the zinc-air secondary battery. Can do.
- the negative electrode negative electrode 18 includes zinc, a zinc alloy, and / or a zinc compound that functions as a negative electrode active material.
- the negative electrode 18 may have any shape or form such as a particle shape, a plate shape, or a gel shape, but it is preferable that the negative electrode 18 has a particle shape or a gel shape from the viewpoint of reaction rate.
- the particulate negative electrode those having a particle diameter of 30 to 350 ⁇ m can be preferably used.
- As the gelled negative electrode a gelled negative electrode alloy powder having a particle diameter of 100 to 300 ⁇ m, an alkaline electrolyte, and a thickener (gelling agent) mixed and stirred can be preferably used. .
- the zinc alloy can be a hatched or non-hatched alloy such as magnesium, aluminum, lithium, bismuth, indium, lead, etc., and its content is not particularly limited as long as desired performance can be secured as a negative electrode active material.
- Preferred zinc alloys are anhydrous silver and lead-free zinc-free zinc alloys, more preferably those containing aluminum, bismuth, indium or combinations thereof. More preferably, a zinc-free zinc alloy containing 50 to 1000 ppm of bismuth, 100 to 1000 ppm of indium and 10 to 100 ppm of aluminum and / or calcium, particularly preferably 100 to 500 ppm of bismuth, 300 to 700 ppm of indium, Contains 20 to 50 ppm of aluminum and / or calcium. Examples of preferred zinc compounds include zinc oxide.
- the current collector zinc-air battery cell pack 10 further includes an air electrode current collector 17 provided on the opposite side of the air electrode 16 from the separator 28 and a negative electrode current collector 19 provided in contact with the negative electrode 18.
- the negative electrode current collector 19 preferably extends from the outer peripheral edge of the flexible bag body 12.
- the air electrode current collector 17 also preferably extends from a position corresponding to the outer peripheral edge of the flexible bag body 12.
- the air electrode 16 and the negative electrode 18 may be connected to the separately provided air electrode terminal and negative electrode terminal inside or outside the flexible bag body 12, respectively.
- the air electrode current collector 17 preferably has air permeability so that air is supplied to the air electrode 16.
- the air electrode current collector 17 include metal plates or metal meshes such as stainless steel, copper, and nickel, carbon paper, carbon cloth, and electron conductive oxides, and the like in terms of corrosion resistance and air permeability.
- Stainless steel wire mesh is particularly preferred.
- the negative electrode current collector 19 include a metal plate or metal mesh such as stainless steel, copper (for example, copper punching metal), nickel, carbon paper, and an oxide conductor.
- a negative electrode comprising a negative electrode / negative electrode current collector by applying a mixture containing zinc oxide powder and / or zinc powder and optionally a binder (for example, polytetrafluoroethylene particles) on copper punching metal.
- a plate can be preferably produced. At that time, it is also preferable to press the dried negative electrode plate (that is, negative electrode 18 / negative electrode current collector 19) to prevent the electrode active material from falling off and to improve the electrode density.
- the zinc-air battery cell pack 10 may include a third electrode (not shown) provided so as to be in contact with the electrolytic solution 20 but not to be in contact with the negative electrode 18.
- the third electrode Is connected to the air electrode 16 via an external circuit.
- the third electrode is not particularly limited as long as it is an electrode capable of converting hydrogen gas (H 2 ) into water (H 2 O) by the reaction as described above by being connected to the air electrode 16 through an external circuit. It is desirable that the oxygen overvoltage is larger than that of the air electrode 16. It is also desirable that the third electrode does not participate in normal charge / discharge reactions.
- the third electrode preferably comprises platinum and / or a carbon material, and more preferably comprises a carbon material.
- Preferable examples of the carbon material include natural graphite, artificial graphite, hard carbon, soft carbon, carbon fiber, carbon nanotube, graphene, activated carbon, and any combination thereof.
- the shape of a 3rd electrode is not specifically limited, It is preferable to set it as the shape (for example, mesh shape or particle shape) that a specific surface area becomes large. More preferably, the third electrode (preferably the third electrode having a large specific surface area) is applied and / or disposed on the current collector.
- the current collector for the third electrode may have any shape, but preferable examples include a wire (for example, a wire), a punching metal, a mesh, a foam metal, and any combination thereof.
- the material for the current collector for the third electrode may be the same material as the material for the third electrode, or may be a metal (for example, nickel), an alloy, or other conductive material.
- the third electrode is in contact with the electrolytic solution 20, but it is desirable that the third electrode be disposed at a place not directly related to the normal charge / discharge reaction.
- a water retaining member made of a water absorbent resin such as a nonwoven fabric or a liquid retaining resin is disposed in the negative electrode side sealed space so as to be in contact with the third electrode. It is preferable that the third electrode is held so as to be always contactable.
- a commercially available battery separator can also be used as the water retaining member.
- Preferable examples of the water absorbent resin or the liquid retaining resin include polyolefin resins.
- the third electrode does not necessarily need to be impregnated with a large amount of the electrolytic solution 20 and can exhibit a desired function even when it is wet with a small amount or a small amount of the electrolytic solution 20.
- the water retention member should just have.
- Electrolytic solution 20 comprises an aqueous alkali metal hydroxide solution.
- the alkali metal hydroxide include potassium hydroxide and sodium hydroxide, and potassium hydroxide is more preferable.
- a zinc compound such as zinc oxide or zinc hydroxide may be added to the electrolytic solution.
- the electrolytic solution 20 may be mixed with the air electrode 16 and / or the negative electrode 18 to be present in the form of an air electrode mixture and / or a negative electrode mixture.
- the electrolytic solution may be gelled in order to prevent leakage of the electrolytic solution.
- the gelling agent it is desirable to use a polymer that swells by absorbing the solvent of the electrolytic solution, and polymers such as polyethylene oxide, polyvinyl alcohol, and polyacrylamide, and starch are used.
- the zinc-air battery cell pack 10 preferably includes in the sealed space 22 an excess space having a volume that allows a decrease in the amount of water accompanying the negative electrode reaction during charging and discharging.
- an excess space having a volume that allows a decrease in the amount of water accompanying the negative electrode reaction during charging and discharging.
- the separator 28 used in the present invention has a highly dense structure that does not have water permeability, water cannot freely pass through the separator 28, and the amount of electrolytic solution in the sealed space 22 is increased due to charge / discharge. It may increase unilaterally and cause problems such as liquid leakage.
- the sealed space 22 can function as a buffer that can cope with an increase in the electrolyte 20 during discharging. .
- moisture content in the sealed space 22 can be calculated based on the reaction formula mentioned above.
- the surplus space 22a When the zinc-air battery cell pack 10 is constructed in a discharged state, the surplus space 22a has a volume exceeding the amount of moisture expected to decrease with the negative electrode reaction during charging, and the surplus space 22a It is preferable that the amount of the electrolyte solution 20 that is expected to decrease is filled in advance. On the other hand, when the zinc-air battery cell pack 10 is constructed in a fully charged state, the surplus space 22a has a volume exceeding the amount of water expected to increase with the negative electrode reaction during discharge, and the surplus space 22a. It is preferable that the electrolyte solution 20 is not filled in advance.
- the flexible bag 12, the separator structure 14, the air electrode 16, and the negative electrode 18 are preferably provided vertically.
- the sealed space 22 preferably has a surplus space 22a above it.
- the electrolyte solution can be held in the charge / discharge reaction portion of the sealed space 22 in spite of a decrease in the electrolyte solution. It is also possible to provide the surplus space 22a in the side portion and the lower portion), and the degree of freedom in design increases.
- the battery pack described above since the rich in flexibility as a whole zinc-air battery cell pack 10 according to the present invention, a plurality of cell pack in the battery container 102 for the battery pack 100 as shown schematically in Figure 1B As long as the air supply path to the air electrode 16 is secured with a spacer or the like, a plurality of (preferably as many) as possible can be obtained without worrying about design requirements such as dimensional tolerances.
- the cell pack 10 can be easily packed in the battery container. That is, according to a preferred aspect of the present invention, there is provided an assembled battery 100 in which a plurality of zinc-air battery cell packs 10 of the present invention are packed in a battery container 102. Note that a current collector (air electrode current collector 17 and negative electrode current collector 19 in FIG.
- the battery container 102 is configured so that electricity can be taken out. Further, it is preferable to provide an air supply path to the air electrode 16 and the air electrode current collector 17 by interposing a spacer (not shown) between the cell packs 10.
- the plurality of zinc-air battery cell packs 10 may be connected in series with each other or may be connected in parallel with each other. Further, as shown in FIG. 1B, the zinc-air battery cell pack 10 is preferably accommodated vertically in the battery container 102, but may be accommodated horizontally as long as no particular problem occurs.
- the separator with a porous base material preferably used for the zinc-air battery cell pack of the present invention includes a separator composed of an inorganic solid electrolyte having hydroxide ion conductivity, And a porous substrate provided on at least one surface.
- the inorganic solid electrolyte body is in the form of a film or a layer that is so dense that it does not have water permeability and air permeability.
- a particularly preferable separator with a porous substrate includes a porous substrate and a separator layer formed on and / or in the porous substrate, and the separator layer is in the form of a layer as described above. It comprises double hydroxide (LDH).
- the separator layer preferably does not have water permeability and air permeability. That is, the porous material can have water permeability and air permeability due to the presence of pores, but the separator layer is preferably densified with LDH to such an extent that it does not have water permeability and air permeability.
- the separator layer is preferably formed on a porous substrate.
- the separator layer 28 is preferably formed on the porous substrate 30 as an LDH dense film.
- LDH may be formed on the surface of the porous substrate 30 and in the pores in the vicinity thereof as shown in FIG. 2 due to the nature of the porous substrate 30.
- FIG. 1 may be formed on the surface of the porous substrate 30 and in the pores in the vicinity thereof as shown in FIG. 2 due to the nature of the porous substrate 30.
- LDH is densely formed in the porous substrate 30 (for example, the surface of the porous substrate 30 and the pores in the vicinity thereof), whereby at least one of the porous substrates 30 is formed.
- the part may constitute separator layer 28 '.
- the embodiment shown in FIG. 3 has a configuration in which the film equivalent portion in the separator layer 28 of the embodiment shown in FIG. 2 is removed, but is not limited to this, and is parallel to the surface of the porous substrate 30.
- a separator layer only needs to be present.
- the separator layer is densified with LDH to such an extent that it does not have water permeability and air permeability, it has hydroxide ion conductivity but does not have water permeability and air permeability (ie basically It can have a unique function of passing only hydroxide ions).
- the porous substrate is preferably one that can form an LDH-containing separator layer on and / or in the porous substrate, and the material and porous structure are not particularly limited.
- an LDH-containing separator layer is formed on and / or in a porous substrate, but an LDH-containing separator layer is formed on a non-porous substrate and then non-porous by various known techniques.
- the porous substrate may be made porous.
- the porous base material has a porous structure having water permeability in that the electrolyte solution can reach the separator layer when incorporated into the battery as a battery separator.
- the porous substrate is preferably composed of at least one selected from the group consisting of ceramic materials, metal materials, and polymer materials. More preferably, the porous substrate is made of a ceramic material.
- the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable. Is alumina, zirconia, titania, and any combination thereof, particularly preferably alumina and zirconia, most preferably alumina. When these porous ceramics are used, it is easy to form an LDH-containing separator layer having excellent denseness.
- Preferable examples of the metal material include aluminum and zinc.
- Preferable examples of the polymer material include polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, hydrofluorinated fluororesin (tetrafluorinated resin: PTFE, etc.), and any combination thereof. It is more preferable to appropriately select a material excellent in alkali resistance as the resistance to the battery electrolyte from the various preferable materials described above.
- the porous substrate preferably has an average pore diameter of 0.001 to 1.5 ⁇ m, more preferably 0.001 to 1.25 ⁇ m, still more preferably 0.001 to 1.0 ⁇ m, and particularly preferably 0.001. 0.75 ⁇ m, most preferably 0.001 to 0.5 ⁇ m.
- the average pore diameter can be measured by measuring the longest distance of the pores based on an electron microscope (SEM) image of the surface of the porous substrate.
- the magnification of the electron microscope (SEM) image used for this measurement is 20000 times, and all obtained pore diameters are arranged in order of size, and the top 15 points and the bottom 15 points from the average value, with 30 points per field of view in total.
- the average pore diameter can be obtained by calculating an average value for two visual fields.
- a length measurement function of SEM software, image analysis software (for example, Photoshop, manufactured by Adobe) or the like can be used.
- the surface of the porous substrate preferably has a porosity of 10 to 60%, more preferably 15 to 55%, still more preferably 20 to 50%. By setting it within these ranges, it is possible to form an LDH-containing separator layer that is so dense that it does not have water permeability while ensuring desired water permeability in the porous substrate.
- the porosity of the surface of the porous substrate is adopted because it is easy to measure the porosity using the image processing described below, and the porosity of the surface of the porous substrate. This is because it can be said that it generally represents the porosity inside the porous substrate. That is, if the surface of the porous substrate is dense, the inside of the porous substrate can be said to be dense as well.
- the porosity of the surface of the porous substrate can be measured as follows by a technique using image processing. That is, 1) An electron microscope (SEM) image of the surface of the porous substrate (acquisition of 10,000 times or more) is obtained, and 2) a grayscale SEM image is read using image analysis software such as Photoshop (manufactured by Adobe). 3) Create a black-and-white binary image by the procedure of [Image] ⁇ [Tonal Correction] ⁇ [Turn Tone], and 4) The value obtained by dividing the number of pixels occupied by the black part by the total number of pixels in the image Rate (%).
- the porosity measurement by this image processing is preferably performed for a 6 ⁇ m ⁇ 6 ⁇ m region on the surface of the porous substrate. In order to obtain a more objective index, three arbitrarily selected regions are used. It is more preferable to employ the average value of the obtained porosity.
- the separator layer is formed on the porous substrate and / or in the porous substrate, preferably on the porous substrate.
- the separator layer 28 is in the form of an LDH dense film, typically from the LDH.
- the separator layer 28 ' is formed in the porous substrate 30, the surface of the porous substrate 30 (typically the surface of the porous substrate 30 and the vicinity thereof). Since the LDH is densely formed in the pores), the separator layer 28 'is typically composed of at least a part of the porous substrate 30 and LDH.
- the separator layer 28 ′ shown in FIG. 3 can be obtained by removing a portion corresponding to the film in the separator layer 28 shown in FIG. 2 by a known method such as polishing or cutting.
- the separator layer preferably has no water permeability and air permeability.
- the separator layer does not allow permeation of water even if one side of the separator layer is brought into contact with water at 25 ° C. for 1 week, and does not allow permeation of helium gas even if helium gas is pressurized on the one side with a pressure difference of 0.5 atm. . That is, the separator layer is preferably densified with LDH to such an extent that it does not have water permeability and air permeability.
- the surface of the separator layer (typically the LDH dense film) preferably has a porosity of 20% or less, more preferably 15% or less, still more preferably 10% or less, and particularly preferably 7%. It is as follows. It means that the lower the porosity of the surface of the separator layer, the higher the density of the separator layer (typically the LDH dense film), which is preferable.
- the porosity of the surface of the separator layer is adopted because it is easy to measure the porosity using the image processing described below, and the porosity of the surface of the separator layer is determined inside the separator layer. It is because it can be said that the porosity of is generally expressed. That is, if the surface of the separator layer is dense, it can be said that the inside of the separator layer is also dense.
- the porosity of the surface of the separator layer can be measured as follows by a technique using image processing. That is, 1) An electron microscope (SEM) image (10,000 times or more magnification) of the surface of the separator layer is acquired, and 2) a gray-scale SEM image is read using image analysis software such as Photoshop (manufactured by Adobe).
- the layered double hydroxide is composed of an aggregate of a plurality of plate-like particles (that is, LDH plate-like particles), and the plurality of plate-like particles have their plate surfaces perpendicular to the surface of the porous substrate (substrate surface). It is preferably oriented in such a direction as to cross each other at an angle.
- this embodiment is a particularly preferable and feasible embodiment when the separator layer 28 is formed as an LDH dense film on the porous substrate 30, but as shown in FIG. 3, LDH is densely formed in the porous substrate 30 (typically in the surface of the porous substrate 30 and in the pores in the vicinity thereof), whereby at least a part of the porous substrate 30 forms the separator layer 28 ′. This can be realized even in the case of configuration.
- the LDH crystal is known to have the form of a plate-like particle having a layered structure as shown in FIG. 4, but the vertical or oblique orientation is determined by the LDH-containing separator layer (for example, an LDH dense film).
- the LDH-containing separator layer for example, an LDH dense film
- the hydroxide ion conductivity in the direction in which the LDH plate-like particles are oriented is perpendicular to this. This is because there is a conductivity anisotropy that is much higher than the conductivity in the direction.
- the present applicant has obtained knowledge that the conductivity (S / cm) in the alignment direction is one order of magnitude higher than the conductivity (S / cm) in the direction perpendicular to the alignment direction in the LDH oriented bulk body.
- the vertical or oblique orientation in the LDH-containing separator layer of the present embodiment indicates the conductivity anisotropy that the LDH oriented body can have in the layer thickness direction (that is, the direction perpendicular to the surface of the separator layer or the porous substrate).
- the conductivity in the layer thickness direction can be maximized or significantly increased.
- the LDH-containing separator layer has a layer form, lower resistance can be realized than a bulk form LDH.
- An LDH-containing separator layer having such an orientation is easy to conduct hydroxide ions in the layer thickness direction.
- it since it is densified, it is extremely suitable for a separator that requires high conductivity and denseness in the layer thickness direction.
- the LDH plate-like particles are highly oriented in the vertical direction in the LDH-containing separator layer (typically the LDH dense film). This high degree of orientation is confirmed by the fact that when the surface of the separator layer is measured by an X-ray diffraction method, the peak of the (003) plane is not substantially detected or smaller than the peak of the (012) plane. (However, when a porous substrate in which a diffraction peak is observed at the same position as the peak due to the (012) plane is used, the peak of the (012) plane due to the LDH plate-like particle is used. This is not the case).
- This characteristic peak characteristic indicates that the LDH plate-like particles constituting the separator layer are oriented in a direction perpendicular to the separator layer.
- the “vertical direction” in this specification includes not only a strict vertical direction but also a substantially vertical direction similar thereto. That is, the (003) plane peak is known as the strongest peak observed when X-ray diffraction is performed on non-oriented LDH powder.
- the LDH plate-like particles are separated from the separator. Due to the orientation in the direction perpendicular to the layer, the peak of the (003) plane is not substantially detected or is smaller than the peak of the (012) plane.
- the c-axis direction (00l) plane (l is 3 and 6) to which the (003) plane belongs is a plane parallel to the layered structure of the LDH plate-like particles.
- the LDH layered structure also faces the vertical direction.
- the separator layer surface is measured by the X-ray diffraction method, the (00l) plane (l is 3 and 6).
- the peak does not appear or becomes difficult to appear.
- the (003) plane peak tends to be stronger than the (006) plane peak when it exists, so it can be said that it is easier to evaluate the presence of vertical orientation than the (006) plane peak. . Therefore, in the oriented LDH-containing separator layer, the (003) plane peak is substantially not detected or smaller than the (012) plane peak, suggesting a high degree of vertical orientation. It can be said that it is preferable.
- the separator layer preferably has a thickness of 100 ⁇ m or less, more preferably 75 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably 25 ⁇ m or less, and most preferably 5 ⁇ m or less.
- the separator layer is preferably formed as an LDH dense film on the porous substrate.
- the thickness of the separator layer corresponds to the thickness of the LDH dense film.
- the thickness of the separator layer corresponds to the thickness of the composite layer composed of at least part of the porous substrate and LDH, and the separator layer is porous.
- the thickness of the LDH alignment film is not particularly limited because it varies depending on the application, but in order to ensure a certain degree of hardness desired as a functional film such as a separator, the thickness is preferably 1 ⁇ m or more. Preferably it is 2 micrometers or more.
- the LDH separator with a porous substrate described above is (1) a porous substrate is prepared, and (2) a total of 0.20 to 0.40 mol / L of magnesium ions (Mg 2+ ) and aluminum ions (Al 3+ ).
- a separator comprising a layered double hydroxide by immersing the porous substrate in a raw material aqueous solution containing urea at a concentration and (3) hydrothermally treating the porous substrate in the raw material aqueous solution It can be produced by forming a layer on and / or in a porous substrate.
- the porous substrate is as described above, and is preferably composed of at least one selected from the group consisting of ceramic materials, metal materials, and polymer materials. More preferably, the porous substrate is made of a ceramic material.
- the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable. Is alumina, zirconia, titania, and any combination thereof, particularly preferably alumina and zirconia, most preferably alumina.
- the density of the LDH-containing separator layer tends to be improved.
- the porous substrate is immersed in the raw material aqueous solution in a desired direction (for example, horizontally or vertically).
- a desired direction for example, horizontally or vertically.
- the porous substrate may be suspended, floated, or disposed so as to be in contact with the bottom of the container.
- the porous substrate is suspended from the bottom of the container in the raw material aqueous solution.
- the material may be fixed.
- a jig that can set the porous substrate vertically on the bottom of the container may be placed.
- the LDH is perpendicular to or close to the porous substrate (that is, the LDH plate-like particles are such that their plate surfaces intersect the surface (substrate surface) of the porous substrate perpendicularly or obliquely. It is preferable to adopt a configuration or arrangement in which the growth is performed in any direction.
- the raw material aqueous solution contains magnesium ions (Mg 2+ ) and aluminum ions (Al 3+ ) at a predetermined total concentration, and contains urea. By the presence of urea, ammonia is generated in the solution by utilizing hydrolysis of urea, so that the pH value increases, and the coexisting metal ions form hydroxides to obtain LDH.
- the total concentration (Mg 2+ + Al 3+ ) of magnesium ions and aluminum ions contained in the raw material aqueous solution is preferably 0.20 to 0.40 mol / L, more preferably 0.22 to 0.38 mol / L, still more preferably The amount is 0.24 to 0.36 mol / L, particularly preferably 0.26 to 0.34 mol / L.
- concentration is within such a range, nucleation and crystal growth can proceed in a well-balanced manner, and an LDH-containing separator layer that is excellent not only in orientation but also in denseness can be obtained. That is, when the total concentration of magnesium ions and aluminum ions is low, crystal growth becomes dominant compared to nucleation, and the number of particles decreases and particle size increases. It is considered that the generation becomes dominant, the number of particles increases, and the particle size decreases.
- magnesium nitrate and aluminum nitrate are dissolved in the raw material aqueous solution, so that the raw material aqueous solution contains nitrate ions in addition to magnesium ions and aluminum ions.
- the molar ratio of urea to nitrate ions (NO 3 ⁇ ) (urea / NO 3 ⁇ ) in the raw material aqueous solution is preferably 2 to 6, and more preferably 4 to 5.
- the porous substrate is hydrothermally treated in the raw material aqueous solution, and the separator layer containing LDH is placed on the porous substrate and / or in the porous substrate. Let it form.
- This hydrothermal treatment is preferably carried out in a closed container at 60 to 150 ° C., more preferably 65 to 120 ° C., further preferably 65 to 100 ° C., and particularly preferably 70 to 90 ° C.
- the upper limit temperature of the hydrothermal treatment may be selected so that the porous substrate (for example, the polymer substrate) is not deformed by heat.
- the rate of temperature increase during the hydrothermal treatment is not particularly limited, and may be, for example, 10 to 200 ° C./h, preferably 100 to 200 ° C./h, more preferably 100 to 150 ° C./h.
- the hydrothermal treatment time may be appropriately determined according to the target density and thickness of the LDH-containing separator layer.
- the porous substrate After the hydrothermal treatment, it is preferable to take out the porous substrate from the sealed container and wash it with ion-exchanged water.
- the LDH-containing separator layer in the LDH-containing composite material produced as described above is one in which LDH plate-like particles are highly densified and are oriented in the vertical direction advantageous for conduction. Therefore, it can be said that it is extremely suitable for a zinc-air secondary battery in which the progress of zinc dendrite has become a major barrier to practical use.
- the LDH containing separator layer obtained by the said manufacturing method can be formed in both surfaces of a porous base material. For this reason, in order to make the LDH-containing composite material suitable for use as a separator, the LDH-containing separator layer on one side of the porous substrate is mechanically scraped after film formation, or on one side during film formation. It is desirable to take measures so that the LDH-containing separator layer cannot be formed.
- Example 1 Production and evaluation of LDH separator with porous substrate (1) Production of porous substrate Boehmite (manufactured by Sasol, DISPAL 18N4-80), methylcellulose, and ion-exchanged water (boehmite): (methylcellulose) : (Ion-exchanged water) mass ratio was 10: 1: 5, and then kneaded. The obtained kneaded product was subjected to extrusion molding using a hand press and molded into a plate shape having a size sufficiently exceeding 5 cm ⁇ 8 cm and a thickness of 0.5 cm. The obtained molded body was dried at 80 ° C. for 12 hours and then calcined at 1150 ° C. for 3 hours to obtain an alumina porous substrate. The porous substrate thus obtained was cut into a size of 5 cm ⁇ 8 cm.
- Boehmite manufactured by Sasol, DISPAL 18N4-80
- methylcellulose methylcellulose
- the porosity of the surface of the porous substrate was measured by a technique using image processing, and it was 24.6%.
- the porosity is measured by 1) observing the surface microstructure with an accelerating voltage of 10 to 20 kV using a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL Co., Ltd.). SEM) image (magnification of 10,000 times or more) is obtained, 2) a grayscale SEM image is read using image analysis software such as Photoshop (manufactured by Adobe), etc.
- the average pore diameter of the porous substrate was measured, it was about 0.1 ⁇ m.
- the average pore diameter was measured by measuring the longest distance of the pores based on an electron microscope (SEM) image of the surface of the porous substrate.
- the magnification of the electron microscope (SEM) image used for this measurement is 20000 times, and all the obtained pore diameters are arranged in order of size, and the top 15 points and the bottom 15 points from the average value, and 30 points per visual field in total.
- the average value for two visual fields was calculated to obtain the average pore diameter.
- the length measurement function of SEM software was used.
- magnesium nitrate hexahydrate (Mg (NO 3) 2 ⁇ 6H 2 O, manufactured by Kanto Chemical Co., Inc.), aluminum nitrate nonahydrate (Al (NO 3) 3 ⁇ 9H 2 O, manufactured by Kanto Chemical Co., Ltd.) and urea ((NH 2 ) 2 CO, manufactured by Sigma-Aldrich) were prepared.
- Mg (NO 3) 2 ⁇ 6H 2 O manufactured by Kanto Chemical Co., Inc.
- Al (NO 3) 3 ⁇ 9H 2 O manufactured by Kanto Chemical Co., Ltd.
- urea ((NH 2 ) 2 CO, manufactured by Sigma-Aldrich)
- ion exchange water was added to make a total volume of 600 ml.
- the substrate is taken out from the sealed container, washed with ion-exchanged water, dried at 70 ° C. for 10 hours, and a dense layer of layered double hydroxide (hereinafter referred to as LDH) (hereinafter referred to as a membrane sample). ) was obtained on a substrate.
- LDH layered double hydroxide
- the thickness of the obtained film sample was about 1.5 ⁇ m.
- a composite material sample was obtained.
- the LDH film was formed on both surfaces of the porous substrate, the LDH film on one surface of the porous substrate was mechanically scraped to give the composite material a form as a separator.
- FIG. 7 shows an SEM image (secondary electron image) of the surface microstructure of the obtained film sample.
- the cross section of the composite material sample was polished by CP polishing to form a polished cross section, and the microstructure of the polished cross section was observed with a scanning electron microscope (SEM) at an acceleration voltage of 10 to 20 kV.
- SEM scanning electron microscope
- the porosity of the surface of the membrane was measured for the membrane sample by a technique using image processing.
- the porosity is measured by 1) observing the surface microstructure with a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL) at an acceleration voltage of 10 to 20 kV, and observing an electron microscope (SEM) on the surface of the film.
- SEM scanning electron microscope
- the porosity of the polished cross section of the film sample was also measured.
- the measurement of the porosity of the polished cross section is the same as that described above except that an electron microscope (SEM) image (magnification of 10,000 times or more) of the cross-section polished surface in the thickness direction of the film was obtained according to the procedure shown in (5b) above. It carried out similarly to the porosity of the film
- the measurement of the porosity was performed on the film portion of the alignment film cross section.
- the porosity calculated from the cross-sectional polished surface of the film sample is 3.5% on average (average value of the three cross-sectional polished surfaces), and a very high-density film is formed on the porous substrate. It was confirmed that
- Denseness determination test I In order to confirm that the membrane sample has a denseness that does not have water permeability, a denseness determination test was performed as follows. First, as shown in FIG. 9A, the composite material sample 220 obtained in (1) above (cut to 1 cm ⁇ 1 cm square) has a center of 0.5 cm ⁇ 0.5 cm square on the film sample side. The silicon rubber 222 provided with the opening 222a was bonded, and the obtained laminate was bonded between two acrylic containers 224 and 226. The bottom of the acrylic container 224 disposed on the silicon rubber 222 side is removed, and thereby the silicon rubber 222 is bonded to the acrylic container 224 with the opening 222a opened.
- the acrylic container 226 disposed on the porous substrate side of the composite material sample 220 has a bottom, and ion-exchanged water 228 is contained in the container 226.
- Al and / or Mg may be dissolved in the ion exchange water. That is, the constituent members are arranged so that the ion-exchanged water 228 is in contact with the porous substrate side of the composite material sample 220 by turning upside down after assembly. After assembling these components, the total weight was measured. After assembling these components, the total weight was measured. Needless to say, the container 226 has a closed vent hole (not shown) and is opened after being turned upside down. As shown in FIG. 9B, the assembly was placed upside down and held at 25 ° C.
- the membrane sample (that is, the functional membrane) has high density so as not to have water permeability.
- An epoxy adhesive 234 was applied to the depression 232b of the alumina jig 232, and the film sample 236b side of the composite material sample 236 was placed in the depression 232b to adhere to the alumina jig 232 in an airtight and liquid-tight manner. Then, the alumina jig 232 to which the composite material sample 236 is bonded is adhered to the upper end of the acrylic container 230 in a gas-tight and liquid-tight manner using a silicone adhesive 238 so as to completely close the opening of the acrylic container 230. A measurement sealed container 240 was obtained.
- the measurement sealed container 240 was placed in a water tank 242, and the gas supply port 230 a of the acrylic container 230 was connected to the pressure gauge 244 and the flow meter 246 so that helium gas could be supplied into the acrylic container 230.
- Water 243 was put into the water tank 242 and the measurement sealed container 240 was completely submerged. At this time, the inside of the measurement sealed container 240 is sufficiently airtight and liquid-tight, and the membrane sample 236b side of the composite material sample 236 is exposed to the internal space of the measurement sealed container 240, while the composite material sample The porous base material 236 a side of 236 is in contact with the water in the water tank 242.
- helium gas was introduced into the measurement sealed container 240 into the acrylic container 230 via the gas supply port 230a.
- the pressure gauge 244 and the flow meter 246 are controlled so that the differential pressure inside and outside the membrane sample 236b is 0.5 atm (that is, the pressure applied to the side in contact with the helium gas is 0.5 atm higher than the water pressure applied to the opposite side). Whether or not helium gas bubbles are generated in the water from the composite material sample 236 was observed. As a result, generation of bubbles due to helium gas was not observed. Therefore, it was confirmed that the membrane sample 236b has high density so as not to have air permeability.
- Example 2 Production of Zinc-Air Secondary Battery
- This example is a reference example based on a unit cell provided with a pair of air electrode plate / separator / negative electrode plate.
- this example is not an example relating to a zinc-air battery cell pack using a flexible bag body, it is an example of producing a zinc-air secondary battery using an LDH separator, and therefore the zinc-air battery cell pack of the present invention. It can be used as a reference when manufacturing the above.
- the ⁇ -MnO 2 particles and LDH particles obtained above and carbon black (product number VXC72, manufactured by Cabot Co., Ltd.) as an electron conductive material are weighed so as to have a predetermined blending ratio, and in the presence of an ethanol solvent. Wet mixed. The resulting mixture is dried at 70 ° C. and then crushed. The obtained pulverized powder was mixed with a binder (PTFE, manufactured by Electrochem, product number EC-TEF-500ML) and water for fibrillation. At this time, the amount of water added was 1% by mass with respect to the air electrode.
- PTFE manufactured by Electrochem, product number EC-TEF-500ML
- the fibrillar mixture thus obtained was pressure-bonded to a current collector (carbon cloth (manufactured by Electrochem, product number EC-CC1-060T)) so as to have a thickness of 50 ⁇ m, and the air electrode layer / current collector A laminated sheet was obtained.
- the air electrode layer thus obtained has an electron conductive phase (carbon black) of 20% by volume, a catalyst layer ( ⁇ -MnO 2 particles) of 5% by volume, a hydroxide ion conductive phase (LDH particles) of 70% by volume and It contained 5% by volume of a binder phase (PTFE).
- Negative Electrode Plate A mixture of 80 parts by weight of zinc oxide powder, 20 parts by weight of zinc powder and 3 parts by weight of polytetrafluoroethylene particles was applied onto a current collector made of copper punching metal, and the porosity was about A negative electrode plate coated with an active material portion at 50% is obtained.
- a zinc-air secondary battery having a horizontal structure is manufactured in the following procedure.
- a container without a lid (hereinafter referred to as a resin container) made of ABS resin and having a rectangular parallelepiped shape is prepared.
- the negative electrode plate is placed on the bottom of the resin container so that the side on which the negative electrode active material is coated faces upward.
- the negative electrode current collector is in contact with the bottom of the resin container, and the end of the negative electrode current collector is connected to an external terminal provided through the side surface of the resin container.
- a third electrode is provided at a position higher than the upper surface of the negative electrode plate on the inner wall of the resin container (that is, a position that does not contact the negative electrode plate and does not participate in the charge / discharge reaction), and the nonwoven fabric separator contacts the third electrode.
- the opening of the resin container is closed with an air electrode with a separator so that the air electrode side is on the outside.
- an epoxy resin-based adhesive EP008, manufactured by Cemedine Co., Ltd.
- a 6 mol / L aqueous solution of KOH is injected as an electrolyte into the resin container through a small inlet provided near the upper end of the resin container.
- the separator comes into contact with the electrolyte solution, and the electrolyte solution can always contact the third electrode regardless of the increase or decrease of the electrolyte solution due to the liquid retaining property of the nonwoven fabric separator.
- the amount of electrolyte to be injected is the amount of water expected not only to sufficiently hide the negative electrode active material coating part in the resin container but also to decrease during charging in order to produce a battery in a discharged state. Use an excess amount in consideration. Therefore, the resin container is designed so as to accommodate the excessive amount of the electrolytic solution. Finally, the inlet of the resin container is sealed. Thus, the internal space defined by the resin container and the separator is hermetically and liquid-tightly sealed. Finally, the third electrode and the current collecting layer of the air electrode are connected via an external circuit. In this way, a zinc-air secondary battery is obtained.
- the separator since the separator has a high degree of denseness that does not allow water and gas to pass through, the penetration of the separator by the zinc dendrite generated during charging is physically blocked to prevent a short circuit between the positive and negative electrodes, In addition, it is possible to prevent the infiltration of carbon dioxide in the air and to prevent the precipitation of alkali carbonate (caused by carbon dioxide) in the electrolyte.
- hydrogen gas that can be generated by a side reaction from the negative electrode can be brought into contact with the third electrode and returned to water through the above-described reaction. That is, a highly reliable zinc-air secondary battery that can cope with the problem of hydrogen gas generation while having a configuration suitable for preventing both short-circuiting due to zinc dendrite and mixing of carbon dioxide is provided. .
- Example 3 Preparation of nickel zinc battery cell pack (Reference) This example is a reference example regarding a nickel zinc battery cell pack. Although this example is not an example relating to a zinc-air battery, it is also an example in which a battery cell pack is produced using a zinc negative electrode and a flexible bag formed of a flexible film and an LDH separator. Thus, it can be used as a reference when producing the zinc-air battery cell pack of the present invention.
- a laminate film (manufactured by AS ONE, product name: polybag for vacuum sealer, thickness: 50 ⁇ m, material: PP resin (base film) and PE resin (thermoplastic resin)) is formed as a flexible film 324. Placed.
- the flexible film 324 has an opening 324 a formed in the center in advance, and the flexible film 324 is disposed so that the opening 324 a corresponds to an open area in the frame 332.
- the joint part of the flexible film 324, the frame 332, and the separator 328 with the porous base material 330 was heat-sealed and sealed at about 200 ° C. using a commercially available heat sealer.
- a photograph of the partition sheet thus produced is shown in FIG.
- a region H indicated by a dotted line in FIG. 12 is a region where heat sealing has been performed, and liquid tightness in this region is ensured.
- Nickel hydroxide particles to which zinc and cobalt are added so as to form a solid solution are prepared.
- the nickel hydroxide particles are coated with cobalt hydroxide to obtain a positive electrode active material.
- the obtained positive electrode active material and a 2% aqueous solution of carboxymethylcellulose are mixed to prepare a paste.
- the paste obtained above is uniformly applied to a current collector made of a nickel metal porous substrate having a porosity of about 95% and dried so that the porosity of the positive electrode active material is 50%.
- a positive electrode plate coated over a predetermined area is obtained.
- a nickel zinc battery cell pack 310 as shown in FIG. 13 was assembled by the following procedure using the partition sheet 314, the positive electrode 316 and the negative electrode 320 obtained above.
- a laminate film manufactured by AS ONE, product name: plastic bag for vacuum sealer, thickness: 50 ⁇ m, material: PP resin (base film) and PE resin (thermoplastic resin) ) was prepared.
- the negative electrode 320, the partition sheet 314, the positive electrode 316, and the flexible film 312b were laminated in this order on the flexible film 312a.
- the partition sheet 314 was disposed so that the porous base material 330 and the frame 332 were positioned on the positive electrode 316 side.
- the overlapping portions (outer peripheral edge 3 sides) of the flexible films 312a, 323, 312b were heat-sealed and bonded at about 200 ° C. using a commercially available heat sealer.
- a photograph taken from the positive electrode 316 side of the flexible bag 312 sealed in a liquid-tight manner by heat fusion bonding is shown in FIG. In FIG.
- a region H on the three outer peripheral edges surrounded by a dotted line is a portion that is heat sealed.
- the upper end portion of the flexible bag is opened without being heat-sealed, and the positive electrode current collector and the negative electrode current collector are flexible at different positions. It extends from the outer periphery of the bag at different positions (corresponding to two metal pieces visually recognized in the figure).
- the positive electrode current collector and the negative electrode current collector are provided with a considerably longer length, but this is for the purpose of trial manufacture, and in actuality, the surplus space is not increased unnecessarily. It is preferable that the length is shorter than that shown in FIG.
- FIG. 15A The photograph which image
- FIG. 15A As shown in FIG. 15A as a gray line in the portion highlighted by the frame at the upper end of the flexible bag (an enlarged photograph of that portion is shown in FIG.
- a heat-sealing flexible film and a heat-sealing sealant film that promotes welding (product name: tab lead MINUS LEAD, material: (Polyolefin resin) is disposed, so that heat fusion bonding can be reliably performed at the contact portion with the current collector (metal piece) (that is, between different materials) at the time of heat fusion bonding of the upper end portion performed later.
- the flexible bag 312 containing the partition sheet 314, the positive electrode 316, and the negative electrode 320 is placed in a vacuum desiccator and placed in each of the positive electrode chamber 315 and the negative electrode chamber 319 in the flexible bag 312 in a vacuum atmosphere.
- an electrolytic solution a 6 mol / L aqueous KOH solution was injected as an electrolytic solution.
- the electrolyte solution was injected from the open part of the upper end of the flexible bag 312.
- the open portion at the upper end of the flexible bag body 312 was heat-sealed and bonded at about 200 ° C. using a commercially available heat sealer, to obtain a nickel zinc battery cell pack 310.
- FIG. 16 The photograph which image
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Hybrid Cells (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Cell Separators (AREA)
Abstract
Provided is a form of a cell pack that has excellent handling properties and that is extremely advantageous in assembling a battery pack, for a single battery (cell) of a zinc air battery in which an air electrode and a negative electrode have been reliably separated with a hydroxide ion conducting separator. This zinc air battery cell pack is provided with: a flexible bag body formed by a flexible film and provided with an opening; a separator structure including a separator that closes the opening in an air-tight and liquid-tight manner to form a closed space along with the flexible bag body, and has hydroxide ion-conductive properties but does not have water-permeable and breathable properties; an air electrode provided on a side opposite the closed space of the separator; a negative electrode that is housed in the closed space and is formed by including zinc, a zinc alloy and/or a zinc compound; and an electrolyte that is housed in the closed space, has the negative electrode immersed therein, and is formed by including an alkali metal hydroxide aqueous solution.
Description
本発明は、亜鉛空気電池セルパック及びそれを用いた組電池に関する。
The present invention relates to a zinc-air battery cell pack and an assembled battery using the same.
革新電池候補の一つとして金属空気電池が挙げられる。金属空気電池は、電池反応に関与する酸素が空気中から供給されるため、電池容器内のスペースを負極活物質の充填に最大限利用することができ、それにより原理的に高いエネルギー密度を実現することができる。
One of the innovative battery candidates is a metal-air battery. In metal-air batteries, the oxygen involved in the battery reaction is supplied from the air, so the space in the battery container can be used to fill the negative electrode active material to the maximum, thereby realizing a high energy density in principle. can do.
現在提案されている金属空気電池の多くはリチウム空気電池である。しかし、リチウム空気電池には、空気極上での望ましくない反応生成物の析出、二酸化炭素の混入、リチウムデンドライト(樹枝状結晶)の形成による正負極間の短絡等、多くの技術的課題が存在している。
Many of the metal-air batteries currently proposed are lithium air batteries. However, there are many technical problems with lithium-air batteries, such as deposition of undesirable reaction products on the air electrode, carbon dioxide contamination, and short circuit between positive and negative electrodes due to the formation of lithium dendrite (dendritic crystals). ing.
一方、亜鉛を負極活物質として用いる亜鉛空気電池も従来から知られている。特に、亜鉛空気一次電池は既に量産化され、補聴器等の電源として広く利用されている。亜鉛空気電池においては、電解液として水酸化カリウム等のアルカリ水溶液が用いられ、正負極間の短絡を防止するためにセパレータ(隔壁)が用いられる。放電時には、以下の反応式に示されるように、空気極(正極)側でO2が還元されてOH-が生成する一方、負極で亜鉛が酸化されてZnOが生成する。
空気極: O2+2H2O+4e-→4OH-
負極: 2Zn+4OH-→2ZnO+2H2O+4e- On the other hand, a zinc-air battery using zinc as a negative electrode active material has also been conventionally known. In particular, zinc-air primary batteries have already been mass-produced and are widely used as power supplies for hearing aids and the like. In a zinc-air battery, an alkaline aqueous solution such as potassium hydroxide is used as an electrolytic solution, and a separator (partition) is used to prevent a short circuit between positive and negative electrodes. At the time of discharge, as shown in the following reaction formula, O 2 is reduced on the air electrode (positive electrode) side to generate OH −, while zinc is oxidized on the negative electrode to generate ZnO.
Air electrode: O 2 + 2H 2 O + 4e − → 4OH −
Negative electrode: 2Zn + 4OH − → 2ZnO + 2H 2 O + 4e −
空気極: O2+2H2O+4e-→4OH-
負極: 2Zn+4OH-→2ZnO+2H2O+4e- On the other hand, a zinc-air battery using zinc as a negative electrode active material has also been conventionally known. In particular, zinc-air primary batteries have already been mass-produced and are widely used as power supplies for hearing aids and the like. In a zinc-air battery, an alkaline aqueous solution such as potassium hydroxide is used as an electrolytic solution, and a separator (partition) is used to prevent a short circuit between positive and negative electrodes. At the time of discharge, as shown in the following reaction formula, O 2 is reduced on the air electrode (positive electrode) side to generate OH −, while zinc is oxidized on the negative electrode to generate ZnO.
Air electrode: O 2 + 2H 2 O + 4e − → 4OH −
Negative electrode: 2Zn + 4OH − → 2ZnO + 2H 2 O + 4e −
この亜鉛空気電池を二次電池として使う試みもなされたが、充電時に負極でZnOが還元されて金属亜鉛が樹枝状に析出してデンドライトを形成してしまい、このデンドライトがセパレータを貫通して空気極と短絡を起こしてしまうという問題があり、亜鉛空気電池の二次電池としての実用化を大きく妨げていた。その上、空気極側では、空気中の二酸化炭素が空気極を通り抜けて電解液に溶解し、アルカリ炭酸塩を析出して電池性能を低下させるという問題もあった。亜鉛空気電池は、リチウム空気電池と比べて、反応に伴う問題は大きくないことから、亜鉛デンドライトによる正負極間の短絡及び二酸化炭素の混入に伴う問題が解決すれば高容量二次電池としての実現性が高いものと言われている。したがって、亜鉛空気二次電池において、亜鉛デンドライトによる短絡及び二酸化炭素の混入の両方を防止する技術が強く望まれている。
Attempts have also been made to use this zinc-air battery as a secondary battery, but during charging, ZnO is reduced at the negative electrode, and metallic zinc is deposited in a dendritic form to form dendrites, and these dendrites penetrate the separator through the air. There is a problem of causing a short circuit with the electrode, which greatly hinders the practical application of zinc-air batteries as secondary batteries. In addition, on the air electrode side, carbon dioxide in the air passes through the air electrode and dissolves in the electrolytic solution, and there is a problem in that the alkaline carbonate is precipitated to deteriorate the battery performance. Compared to lithium-air batteries, zinc-air batteries do not have much of a problem with reaction, so if the problems with short circuit between positive and negative electrodes due to zinc dendrite and carbon dioxide contamination are solved, it can be realized as a high-capacity secondary battery. It is said to have a high quality. Therefore, in a zinc-air secondary battery, a technique for preventing both short-circuiting by zinc dendrite and mixing of carbon dioxide is strongly desired.
そのような問題ないし要望に対処する技術として、特許文献1(国際公開第2013/073292号)には、セパレータとして水酸化物イオン伝導性の無機固体電解質体を用い、かつ、無機固体電解質体を空気極の一面側に密着させて設けることにより、充電時における亜鉛デンドライトによる正負極間の短絡と、二酸化炭素の電解液への混入との両方を防止する試みが提案されている。また、この文献には、無機固体電解質体が、一般式:M2+
1-xM3+
x(OH)2An-
x/n・mH2O(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An-はn価の陰イオンであり、nは1以上の整数、xは0.1~0.4である)の基本組成を有する層状複水酸化物からなるものが好ましいことも記載されている。
As a technique for coping with such problems or requests, Patent Document 1 (International Publication No. 2013/073292) uses a hydroxide ion conductive inorganic solid electrolyte as a separator, and an inorganic solid electrolyte is used as a separator. There has been proposed an attempt to prevent both short-circuit between positive and negative electrodes due to zinc dendrite during charging and mixing of carbon dioxide into the electrolyte by providing the air electrode in close contact with one side. Further, this document inorganic solid electrolyte body has the general formula: M 2+ 1-x M 3+ x (OH) 2 A n- x / n · mH 2 O ( wherein, M 2+ is a divalent cation in and, M 3+ is a trivalent cation, a n-is the n-valent anion, n represents an integer of 1 or more, x is has a basic composition of a is) 0.1 to 0.4 It is also described that what consists of a layered double hydroxide is preferable.
一方、高電圧や大電流を得るために、複数の単電池を組み合わせて作られた組電池が広く採用されている。組電池は、単電池を複数直列または並列に接続した積層体が一つの電池容器内に収納された構成を有する。
On the other hand, in order to obtain a high voltage and a large current, an assembled battery made by combining a plurality of single cells is widely used. The assembled battery has a configuration in which a stacked body in which a plurality of cells are connected in series or in parallel is housed in one battery container.
本出願人は、水酸化物イオン伝導性を有するが透水性及び通気性を有しない程に高度に緻密化されたセラミックスセパレータ(無機固体電解質セパレータ)の開発に先だって成功している。また、そのようなセラミックスセパレータを多孔質基材(例えばアルミナ多孔質基材)上に形成することにも成功している。このようなセパレータ(あるいは多孔質基材付きセパレータ)を用いて亜鉛空気二次電池を構成した場合、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止し、かつ、空気中の二酸化炭素の侵入を阻止して電解液中での(二酸化炭素に起因する)アルカリ炭酸塩の析出を防止できる。そして、この効果を最大限に発揮させるためには、水酸化物イオン伝導性セラミックスセパレータで電池容器内を空気極側と負極側に確実に仕切ることが望まれる。特に、かかる構成を確保しながら、高電圧や大電流を得るために、複数の単電池を組み合わせて組電池を効率よく組み立てることができれば極めて好都合である。
The present applicant has succeeded in developing a ceramic separator (inorganic solid electrolyte separator) that has hydroxide ion conductivity but is highly densified to such an extent that it does not have water permeability and air permeability. Moreover, it has succeeded also in forming such a ceramic separator on a porous base material (for example, alumina porous base material). When a zinc-air secondary battery is configured using such a separator (or a separator with a porous substrate), the penetration of the separator by zinc dendrite generated during charging is physically blocked to prevent a short circuit between the positive and negative electrodes. In addition, the intrusion of carbon dioxide in the air can be prevented to prevent the precipitation of alkali carbonate (caused by carbon dioxide) in the electrolyte. In order to maximize this effect, it is desired to reliably partition the inside of the battery container into an air electrode side and a negative electrode side with a hydroxide ion conductive ceramic separator. In particular, it is extremely advantageous if an assembled battery can be efficiently assembled by combining a plurality of single cells in order to obtain a high voltage and a large current while securing such a configuration.
本発明者らは、今般、電池容器等の構成材料として堅い材料ではなく可撓性フィルムを用いることで、空気極及び負極間が水酸化物イオン伝導性セパレータで確実に隔離された亜鉛空気電池の単電池(セル)を、取扱い性に優れ、かつ、組電池の組み立てに極めて有利なセルパックの形態で提供できるとの知見を得た。
The present inventors have recently used a zinc-air battery in which the air electrode and the negative electrode are reliably separated by a hydroxide ion conductive separator by using a flexible film instead of a hard material as a constituent material of a battery container or the like. It has been found that the single cell (cell) can be provided in the form of a cell pack that is excellent in handling and extremely advantageous for assembling the assembled battery.
したがって、本発明の目的は、空気極及び負極間が水酸化物イオン伝導性セパレータで確実に隔離された亜鉛空気電池の単電池(セル)を、取扱い性に優れ、かつ、組電池の組み立てに極めて有利なセルパックの形態で提供することにある。
Accordingly, an object of the present invention is to provide a zinc-air battery cell (cell) in which the air electrode and the negative electrode are reliably separated by a hydroxide ion conductive separator, and is excellent in handleability and for assembling an assembled battery. It is to be provided in the form of a very advantageous cell pack.
本発明の一態様によれば、可撓性フィルムで形成され且つ開口部を備えた可撓性袋体と、
前記開口部を気密かつ液密に閉塞して前記可撓性袋体と共に密閉空間を形成する、水酸化物イオン伝導性を有するが透水性及び通気性を有しないセパレータを含むセパレータ構造体と、
前記セパレータの前記密閉空間と反対側に設けられる空気極と、
前記密閉空間に収容される、亜鉛、亜鉛合金及び/又は亜鉛化合物を含んでなる負極と、
前記密閉空間に収容されて前記負極が浸漬される、アルカリ金属水酸化物水溶液を含んでなる電解液と、
を備えた、亜鉛空気電池セルパックが提供される。 According to one aspect of the present invention, a flexible bag formed of a flexible film and provided with an opening,
A separator structure including a separator having hydroxide ion conductivity but not having water permeability and air permeability, wherein the opening is hermetically and liquid-tightly closed to form a sealed space together with the flexible bag;
An air electrode provided on the side opposite to the sealed space of the separator;
A negative electrode containing zinc, a zinc alloy and / or a zinc compound, contained in the sealed space;
An electrolytic solution containing an aqueous alkali metal hydroxide solution that is housed in the sealed space and in which the negative electrode is immersed;
A zinc-air battery cell pack is provided.
前記開口部を気密かつ液密に閉塞して前記可撓性袋体と共に密閉空間を形成する、水酸化物イオン伝導性を有するが透水性及び通気性を有しないセパレータを含むセパレータ構造体と、
前記セパレータの前記密閉空間と反対側に設けられる空気極と、
前記密閉空間に収容される、亜鉛、亜鉛合金及び/又は亜鉛化合物を含んでなる負極と、
前記密閉空間に収容されて前記負極が浸漬される、アルカリ金属水酸化物水溶液を含んでなる電解液と、
を備えた、亜鉛空気電池セルパックが提供される。 According to one aspect of the present invention, a flexible bag formed of a flexible film and provided with an opening,
A separator structure including a separator having hydroxide ion conductivity but not having water permeability and air permeability, wherein the opening is hermetically and liquid-tightly closed to form a sealed space together with the flexible bag;
An air electrode provided on the side opposite to the sealed space of the separator;
A negative electrode containing zinc, a zinc alloy and / or a zinc compound, contained in the sealed space;
An electrolytic solution containing an aqueous alkali metal hydroxide solution that is housed in the sealed space and in which the negative electrode is immersed;
A zinc-air battery cell pack is provided.
本発明の他の一態様によれば、電池容器内に、上記態様による亜鉛空気電池セルパックが複数個詰め込まれた、組電池が提供される。
According to another aspect of the present invention, an assembled battery is provided in which a plurality of zinc-air battery cell packs according to the above aspect are packed in a battery container.
亜鉛空気電池セルパック
本発明は亜鉛空気電池セルパックに関する。本明細書において「亜鉛空気電池セルパック」とは亜鉛空気電池(好ましくは亜鉛空気二次電池)の単電池(セル)を備えたパッケージであり、パッケージを構成する包装材料が可撓性を有する(すなわちフレキシブルな)ものである。図1Aに、本発明による亜鉛空気電池セルパックの一例を模式的に示す。図1Aに示される亜鉛空気電池セルパック10は、可撓性袋体12と、セパレータ構造体14と、空気極16と、負極18と、電解液20とを備える。可撓性袋体12は、可撓性フィルム12a,12bで形成され且つ開口部12cを備える。セパレータ構造体14は、水酸化物イオン伝導性を有するが透水性及び通気性を有しないセパレータ28を含む構造体であり、開口部12cを気密かつ液密に閉塞して可撓性袋体12と共に密閉空間22を形成する。空気極16は、セパレータ28の密閉空間22と反対側に設けられる。負極18は、亜鉛、亜鉛合金及び/又は亜鉛化合物を含んでなり、密閉空間22に収容される。電解液20はアルカリ金属水酸化物水溶液を含んでなる液であり、密閉空間22に収容されて負極18が浸漬される。なお、空気極16及び負極18にはそれぞれ集電体(図1Aでは空気極集電体17及び負極集電体19)、配線及び/又は端子が接続されて、セルパック10の外部に電気を取り出せるように構成されることはいうまでもない。 Zinc air battery cell pack present invention relates to zinc-air battery cell pack. In this specification, the “zinc-air battery cell pack” is a package including a single battery (cell) of a zinc-air battery (preferably a zinc-air secondary battery), and the packaging material constituting the package has flexibility. (Ie flexible). FIG. 1A schematically shows an example of a zinc-air battery cell pack according to the present invention. A zinc-airbattery cell pack 10 shown in FIG. 1A includes a flexible bag 12, a separator structure 14, an air electrode 16, a negative electrode 18, and an electrolytic solution 20. The flexible bag 12 is formed of flexible films 12a and 12b and includes an opening 12c. The separator structure 14 is a structure including a separator 28 that has hydroxide ion conductivity but does not have water permeability and air permeability. The separator 12 is closed in an airtight and liquid tight manner to form the flexible bag 12. In addition, a sealed space 22 is formed. The air electrode 16 is provided on the side of the separator 28 opposite to the sealed space 22. The negative electrode 18 includes zinc, a zinc alloy, and / or a zinc compound, and is accommodated in the sealed space 22. The electrolytic solution 20 is a solution containing an alkali metal hydroxide aqueous solution, and is accommodated in the sealed space 22 in which the negative electrode 18 is immersed. A current collector (air electrode current collector 17 and negative electrode current collector 19 in FIG. 1A), wiring and / or terminals are connected to the air electrode 16 and the negative electrode 18, respectively, and electricity is supplied to the outside of the cell pack 10. Needless to say, it is configured to be removable.
本発明は亜鉛空気電池セルパックに関する。本明細書において「亜鉛空気電池セルパック」とは亜鉛空気電池(好ましくは亜鉛空気二次電池)の単電池(セル)を備えたパッケージであり、パッケージを構成する包装材料が可撓性を有する(すなわちフレキシブルな)ものである。図1Aに、本発明による亜鉛空気電池セルパックの一例を模式的に示す。図1Aに示される亜鉛空気電池セルパック10は、可撓性袋体12と、セパレータ構造体14と、空気極16と、負極18と、電解液20とを備える。可撓性袋体12は、可撓性フィルム12a,12bで形成され且つ開口部12cを備える。セパレータ構造体14は、水酸化物イオン伝導性を有するが透水性及び通気性を有しないセパレータ28を含む構造体であり、開口部12cを気密かつ液密に閉塞して可撓性袋体12と共に密閉空間22を形成する。空気極16は、セパレータ28の密閉空間22と反対側に設けられる。負極18は、亜鉛、亜鉛合金及び/又は亜鉛化合物を含んでなり、密閉空間22に収容される。電解液20はアルカリ金属水酸化物水溶液を含んでなる液であり、密閉空間22に収容されて負極18が浸漬される。なお、空気極16及び負極18にはそれぞれ集電体(図1Aでは空気極集電体17及び負極集電体19)、配線及び/又は端子が接続されて、セルパック10の外部に電気を取り出せるように構成されることはいうまでもない。 Zinc air battery cell pack present invention relates to zinc-air battery cell pack. In this specification, the “zinc-air battery cell pack” is a package including a single battery (cell) of a zinc-air battery (preferably a zinc-air secondary battery), and the packaging material constituting the package has flexibility. (Ie flexible). FIG. 1A schematically shows an example of a zinc-air battery cell pack according to the present invention. A zinc-air
このように、本発明によれば、電池容器等の構成材料として堅い材料ではなく可撓性フィルムを用いることで、空気極及び負極間が水酸化物イオン伝導性セパレータで確実に隔離された亜鉛空気電池の単電池(セル)を、取扱い性に優れ、かつ、組電池の組み立てに極めて有利なセルパックの形態で提供できる。すなわち、亜鉛空気電池セルパック10はセパレータ構造体14で開口部12cが気密かつ液密に閉塞された可撓性袋体12内に、空気極16、負極18及び電解液20が全てコンパクトに収容できるため、液漏れが無く、持ち運びもしやすく、それ故、取扱い性に優れる。その上、亜鉛空気電池セルパック10は可撓性フィルム12a,12bで形成される可撓性袋体12内に電解液20が収容されているため、セルパック10全体としてフレキシブル性に富んだ形態を有している。すなわち、空気極16、負極18及びセパレータ構造体14はフレキシブル性が無いか又は劣るものの、可撓性フィルム12a,12bのフレキシブル性が電解液の流動性と相まって、セルパック10全体として組電池の組み立てに好都合なフレキシブル性を与えることができる。特に、組電池を構成する場合、単電池が硬い材料で構成されていると、複数の単電池を収容する組電池用の電池容器との間で寸法公差が問題となりやすい。すなわち、単電池の寸法精度を高くしないと組電池構成時に電池容器に上手く収容できなくなることが起こりうる。例えば、電池容器に単電池をきつく詰め込んだ場合に過度に応力が発生する一方、電池容器に単電池を緩く組み込んだ場合には無駄な隙間が形成されうる。特に単電池に過度な応力が加わった場合、電池性能への悪影響が懸念される。この点、本発明による亜鉛空気電池セルパック10は全体としてフレキシブル性に富んでいるため、図1Bに模式的に示されるように組電池100用の電池容器102に複数個のセルパック10を収容する際、寸法公差等の設計上の要件をそれ程気にすることなく、複数の(望ましくはできるだけ多くの)セルパック10を電池容器に容易に詰め込むことができる。すなわち、亜鉛空気電池の単電池(セル)としての所望の機能がセルパック10単位で十分に確保されているため、スペーサ等で空気極16への空気の供給経路さえ確保しさえすれば、組電池用の電池容器内に複数個のセルパック10を比較的ラフに詰め込み、互いに直列ないし並列に接続するだけで、所望の性能の組電池を容易に得ることができる。比較的ラフに詰め込んだとしても、セルパック10内のフレキシブル性(及びその中の電解液の流動性)により応力が容易に分散され、組電池及びその内部の単電池の構造安定性及び性能安定性が確保されるからである。その上、セルパック10内では空気極16と負極18が水酸化物イオン伝導性を有するが透水性及び通気性を有しないセパレータ28を含むセパレータ構造体14で確実に隔離されているため、充放電に伴い負極18から空気極16に向かって成長する亜鉛デンドライトをセパレータ28で阻止し、それにより亜鉛デンドライトによる正負極間の短絡を効果的に防止することができる。その上、空気中の二酸化炭素の侵入を阻止して電解液中での(二酸化炭素に起因する)アルカリ炭酸塩の析出をも効果的に防止することができる。
As described above, according to the present invention, the zinc ion in which the air electrode and the negative electrode are reliably separated by the hydroxide ion conductive separator by using a flexible film instead of a hard material as a constituent material of the battery container or the like. A single cell (cell) of an air battery can be provided in the form of a cell pack that is excellent in handleability and extremely advantageous for assembling an assembled battery. That is, the zinc-air battery cell pack 10 contains the air electrode 16, the negative electrode 18, and the electrolytic solution 20 in a compact manner in the flexible bag 12 in which the opening 12 c is airtight and liquid tightly closed by the separator structure 14. Because it can, it does not leak and is easy to carry, so it is easy to handle. In addition, since the zinc-air battery cell pack 10 contains the electrolytic solution 20 in the flexible bag 12 formed of the flexible films 12a and 12b, the cell pack 10 as a whole is highly flexible. have. That is, although the air electrode 16, the negative electrode 18, and the separator structure 14 are not flexible or inferior, the flexibility of the flexible films 12a and 12b is combined with the fluidity of the electrolyte solution, so that the cell pack 10 as a whole is an assembled battery. Flexibility that is convenient for assembly can be provided. In particular, when the assembled battery is configured, if the unit cell is made of a hard material, a dimensional tolerance tends to be a problem with the battery case for the assembled battery that houses a plurality of unit cells. That is, unless the dimensional accuracy of the unit cell is increased, it may occur that the battery cannot be stored well in the battery pack configuration. For example, excessive stress is generated when the cells are tightly packed in the battery container, while useless gaps can be formed when the cells are loosely assembled in the battery container. In particular, when excessive stress is applied to the unit cell, there is a concern that the battery performance may be adversely affected. In this regard, since the zinc-air battery cell pack 10 according to the present invention is highly flexible as a whole, a plurality of cell packs 10 are accommodated in the battery container 102 for the assembled battery 100 as schematically shown in FIG. 1B. In doing so, a plurality (preferably as many) of cell packs 10 can be easily packed into the battery container without much concern for design requirements such as dimensional tolerances. That is, since the desired function as a single cell (cell) of the zinc-air battery is sufficiently ensured in the unit of the cell pack 10, as long as the air supply path to the air electrode 16 is secured with a spacer or the like, the assembly A battery pack having a desired performance can be easily obtained simply by packing a plurality of cell packs 10 in a battery container for batteries relatively roughly and connecting them in series or in parallel. Even if the packing is relatively rough, the stress is easily dispersed by the flexibility in the cell pack 10 (and the fluidity of the electrolyte therein), and the structural stability and performance stability of the assembled battery and the single cells therein This is because the sex is secured. Moreover, in the cell pack 10, the air electrode 16 and the negative electrode 18 are reliably isolated by the separator structure 14 including the separator 28 having hydroxide ion conductivity but not water permeability and air permeability. Zinc dendrite that grows from the negative electrode 18 toward the air electrode 16 as a result of discharge is blocked by the separator 28, thereby effectively preventing a short circuit between the positive and negative electrodes due to the zinc dendrite. In addition, the infiltration of carbon dioxide in the air can be prevented and precipitation of alkali carbonate (caused by carbon dioxide) in the electrolyte can be effectively prevented.
可撓性袋体
可撓性袋体12は可撓性フィルムで形成された袋状のフレキシブルなパッケージであり、開口部12cを備えている。可撓性袋体12を構成する可撓性フィルムは樹脂フィルムを含んでなるのが好ましい。樹脂フィルムは水酸化カリウム等のアルカリ金属水酸化物に対する耐性を有し、かつ、熱融着による接合が可能なものであるのが好ましく、例えば、PP(ポリプロピレン)フィルム、PET(ポリエチレンテレフタレート)フィルム、PVC(ポリ塩化ビニル)フィルム等が挙げられる。樹脂フィルムを含む可撓性フィルムとして、市販のラミネートフィルムが使用可能であり、好ましいラミネートフィルムとしては、ベースフィルム(例えばPETフィルムやPPフィルム)及び熱可塑性樹脂層を備えた2層以上の構成の熱ラミネートフィルムが挙げられる。可撓性フィルム(例えばラミネートフィルム)の好ましい厚さは、20~500μmであり、より好ましくは30~300μm、さらに好ましくは50~150μmである。図1Aに示されるように、可撓性袋体12は一対の可撓性フィルム12a,12bからなり、一対の可撓性フィルム12a,12bの外周縁が熱融着により封止されているのが好ましい。上記外周縁が封止されることで、開口部12cを閉塞するセパレータ構造体14と相まって、電解液20を液漏れ無く且つ外気(例えば空気中の二酸化炭素)の侵入も無く、確実に可撓性袋体12内に保持することができる。熱融着による接合ないし封止は市販のヒートシール機等を用いて行えばよい。 Flexible bag body Theflexible bag body 12 is a bag-like flexible package formed of a flexible film, and includes an opening 12c. The flexible film constituting the flexible bag body 12 preferably includes a resin film. It is preferable that the resin film has resistance to alkali metal hydroxides such as potassium hydroxide and can be joined by thermal fusion, for example, PP (polypropylene) film, PET (polyethylene terephthalate) film. And PVC (polyvinyl chloride) film. As a flexible film including a resin film, a commercially available laminate film can be used. As a preferable laminate film, a base film (for example, a PET film or a PP film) and a thermoplastic resin layer having two or more layers are provided. A heat laminate film is mentioned. A preferred thickness of the flexible film (for example, a laminate film) is 20 to 500 μm, more preferably 30 to 300 μm, and still more preferably 50 to 150 μm. As shown in FIG. 1A, the flexible bag 12 is composed of a pair of flexible films 12a and 12b, and the outer peripheral edges of the pair of flexible films 12a and 12b are sealed by heat sealing. Is preferred. By sealing the outer peripheral edge, coupled with the separator structure 14 that closes the opening 12c, the electrolyte solution 20 does not leak and there is no intrusion of outside air (for example, carbon dioxide in the air). It can hold | maintain in the sex bag body 12. FIG. Bonding or sealing by thermal fusion may be performed using a commercially available heat sealing machine or the like.
可撓性袋体12は可撓性フィルムで形成された袋状のフレキシブルなパッケージであり、開口部12cを備えている。可撓性袋体12を構成する可撓性フィルムは樹脂フィルムを含んでなるのが好ましい。樹脂フィルムは水酸化カリウム等のアルカリ金属水酸化物に対する耐性を有し、かつ、熱融着による接合が可能なものであるのが好ましく、例えば、PP(ポリプロピレン)フィルム、PET(ポリエチレンテレフタレート)フィルム、PVC(ポリ塩化ビニル)フィルム等が挙げられる。樹脂フィルムを含む可撓性フィルムとして、市販のラミネートフィルムが使用可能であり、好ましいラミネートフィルムとしては、ベースフィルム(例えばPETフィルムやPPフィルム)及び熱可塑性樹脂層を備えた2層以上の構成の熱ラミネートフィルムが挙げられる。可撓性フィルム(例えばラミネートフィルム)の好ましい厚さは、20~500μmであり、より好ましくは30~300μm、さらに好ましくは50~150μmである。図1Aに示されるように、可撓性袋体12は一対の可撓性フィルム12a,12bからなり、一対の可撓性フィルム12a,12bの外周縁が熱融着により封止されているのが好ましい。上記外周縁が封止されることで、開口部12cを閉塞するセパレータ構造体14と相まって、電解液20を液漏れ無く且つ外気(例えば空気中の二酸化炭素)の侵入も無く、確実に可撓性袋体12内に保持することができる。熱融着による接合ないし封止は市販のヒートシール機等を用いて行えばよい。 Flexible bag body The
セパレータ構造体
セパレータ構造体14は、開口部12cを気密かつ液密に閉塞して可撓性袋体12と共に密閉空間22を形成する構造体である。このセパレータ構造体14は、水酸化物イオン伝導性を有するが透水性及び通気性を有しないセパレータを含んでおり、それにより空気極16と密閉空間22の間で水酸化物イオンの伝導を許容するが液体連通及び気体連通を許容しないように構成される。セパレータ構造体14はセパレータ28の外周縁に沿って枠32を備えるのが好ましく、可撓性フィルム12bとセパレータ構造体14とが枠32を介して液密かつ気密に接着されているのが好ましい。枠32が樹脂枠であるのが好ましく、可撓性フィルム12bと樹脂枠32とが接着剤及び/又は熱融着により接着されているのがより好ましい。接着剤はエポキシ樹脂系接着剤が耐アルカリ性に特に優れる点で好ましい。ホットメルト接着剤を用いてもよい。いずれにしても、可撓性フィルム12bと枠32の接合部分では液密性が確保されることが望まれる。枠32を構成する樹脂は水酸化カリウム等のアルカリ金属水酸化物に対する耐性を有する樹脂であるのが好ましく、より好ましくはポリオレフィン樹脂、ABS樹脂、PP樹脂、PE樹脂、又は変性ポリフェニレンエーテルであり、さらに好ましくはABS樹脂、PP樹脂、PE樹脂、又は変性ポリフェニレンエーテルである。 The separatorstructure separator structure 14 is a structure that closes the opening 12 c in an airtight and liquid-tight manner to form a sealed space 22 together with the flexible bag body 12. The separator structure 14 includes a separator having hydroxide ion conductivity but not water permeability and air permeability, thereby allowing hydroxide ions to be conducted between the air electrode 16 and the sealed space 22. However, it is configured not to allow liquid communication and gas communication. The separator structure 14 preferably includes a frame 32 along the outer peripheral edge of the separator 28, and the flexible film 12 b and the separator structure 14 are preferably bonded in a liquid-tight and air-tight manner via the frame 32. . The frame 32 is preferably a resin frame, and more preferably, the flexible film 12b and the resin frame 32 are bonded by an adhesive and / or heat fusion. An adhesive is preferable in that an epoxy resin adhesive is particularly excellent in alkali resistance. A hot melt adhesive may be used. In any case, it is desirable that liquid-tightness is secured at the joint between the flexible film 12b and the frame 32. The resin constituting the frame 32 is preferably a resin having resistance to an alkali metal hydroxide such as potassium hydroxide, more preferably a polyolefin resin, an ABS resin, a PP resin, a PE resin, or a modified polyphenylene ether. More preferred are ABS resin, PP resin, PE resin, or modified polyphenylene ether.
セパレータ構造体14は、開口部12cを気密かつ液密に閉塞して可撓性袋体12と共に密閉空間22を形成する構造体である。このセパレータ構造体14は、水酸化物イオン伝導性を有するが透水性及び通気性を有しないセパレータを含んでおり、それにより空気極16と密閉空間22の間で水酸化物イオンの伝導を許容するが液体連通及び気体連通を許容しないように構成される。セパレータ構造体14はセパレータ28の外周縁に沿って枠32を備えるのが好ましく、可撓性フィルム12bとセパレータ構造体14とが枠32を介して液密かつ気密に接着されているのが好ましい。枠32が樹脂枠であるのが好ましく、可撓性フィルム12bと樹脂枠32とが接着剤及び/又は熱融着により接着されているのがより好ましい。接着剤はエポキシ樹脂系接着剤が耐アルカリ性に特に優れる点で好ましい。ホットメルト接着剤を用いてもよい。いずれにしても、可撓性フィルム12bと枠32の接合部分では液密性が確保されることが望まれる。枠32を構成する樹脂は水酸化カリウム等のアルカリ金属水酸化物に対する耐性を有する樹脂であるのが好ましく、より好ましくはポリオレフィン樹脂、ABS樹脂、PP樹脂、PE樹脂、又は変性ポリフェニレンエーテルであり、さらに好ましくはABS樹脂、PP樹脂、PE樹脂、又は変性ポリフェニレンエーテルである。 The separator
セパレータ28は水酸化物イオン伝導性を有するが透水性及び通気性を有しない部材であり、典型的には板状、膜状又は層状の形態である。なお、本明細書において「透水性を有しない」とは、後述する例1で採用される「緻密性判定試験I」又はそれに準ずる手法ないし構成で透水性を評価した場合に、測定対象物(例えばLDH膜及び/又は多孔質基材)の一面側に接触した水が他面側に透過しないことを意味する。すなわち、セパレータ28が透水性及び通気性を有しないということは、セパレータ28が水も気体も通さない程の高度な緻密性を有することを意味し、透水性及び通気性を有する多孔性フィルムやその他の多孔質材料ではないことを意味する。このため、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止するのに極めて効果的な構成となっている。もっとも、図1Aに示されるようにセパレータ28に多孔質基材30が付設されてよいのはいうまでもない。いずれにしても、セパレータ28は水酸化物イオン伝導性を有するため、空気極16と電解液20との間で必要な水酸化物イオンの効率的な移動を可能として空気極16及び負極18における充放電反応を実現することができる。
The separator 28 is a member having hydroxide ion conductivity but not water permeability and air permeability, and typically has a plate shape, a film shape, or a layer shape. In the present specification, “not having water permeability” means “measurement object (when the water permeability is evaluated by a“ denseness determination test I ”employed in Example 1 described later) or a technique or configuration according to the“ denseness determination test I ”. For example, it means that water that contacts one side of the LDH membrane and / or porous substrate does not permeate the other side. In other words, the fact that the separator 28 does not have water permeability and air permeability means that the separator 28 has a high degree of denseness that allows neither water nor gas to pass through, and a porous film having water permeability and air permeability. It means that it is not other porous material. For this reason, it has a very effective configuration for physically preventing penetration of the separator by zinc dendrite generated during charging and preventing a short circuit between the positive and negative electrodes. However, it goes without saying that the porous substrate 30 may be attached to the separator 28 as shown in FIG. 1A. In any case, since the separator 28 has hydroxide ion conductivity, it is possible to efficiently move the necessary hydroxide ions between the air electrode 16 and the electrolytic solution 20, so that in the air electrode 16 and the negative electrode 18. A charge / discharge reaction can be realized.
セパレータ28は無機固体電解質体からなるのが好ましい。セパレータ28として水酸化物イオン伝導性の無機固体電解質体を用いることで、正負極間の電解液を隔離するとともに水酸化物イオン伝導性を確保する。そして、セパレータ28を構成する無機固体電解質は典型的には緻密で硬い無機固体であるため、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止することが可能となる。その結果、亜鉛空気電池の信頼性を大幅に向上することができる。無機固体電解質体は透水性及び通気性を有しない程にまで緻密化されていることが望まれる。例えば、無機固体電解質体は、アルキメデス法で算出して、90%以上の相対密度を有するのが好ましく、より好ましくは92%以上、さらに好ましくは95%以上であるが、亜鉛デンドライトの貫通を防止する程度に緻密で硬いものであればこれに限定されない。このような緻密で硬い無機固体電解質体は水熱処理を経て製造することが可能である。したがって、水熱処理を経ていない単なる圧粉体は、緻密でなく、溶液中で脆いことから本発明の無機固体電解質体として好ましくない。もっとも、水熱処理を経たものでなくても、緻密で硬い無機固体電解質体が得られるかぎりにおいて、あらゆる製法が採用可能である。
The separator 28 is preferably made of an inorganic solid electrolyte. By using a hydroxide ion conductive inorganic solid electrolyte as the separator 28, the electrolyte solution between the positive and negative electrodes is isolated and the hydroxide ion conductivity is ensured. And since the inorganic solid electrolyte which comprises the separator 28 is a dense and hard inorganic solid typically, the penetration of the separator by the zinc dendrite produced | generated at the time of charge is blocked | prevented, and the short circuit between positive and negative electrodes is prevented. Is possible. As a result, the reliability of the zinc-air battery can be greatly improved. It is desirable that the inorganic solid electrolyte body is densified to such an extent that it does not have water permeability and air permeability. For example, the inorganic solid electrolyte body preferably has a relative density of 90% or more, more preferably 92% or more, and even more preferably 95% or more, calculated by the Archimedes method, but prevents penetration of zinc dendrite. It is not limited to this as long as it is as dense and hard as possible. Such a dense and hard inorganic solid electrolyte body can be produced through a hydrothermal treatment. Therefore, a simple green compact that has not been subjected to hydrothermal treatment is not preferable as the inorganic solid electrolyte body of the present invention because it is not dense and is brittle in solution. Of course, any manufacturing method can be used as long as a dense and hard inorganic solid electrolyte body can be obtained, even if it has not undergone hydrothermal treatment.
セパレータ28ないし無機固体電解質体は、水酸化物イオン伝導性を有する無機固体電解質を含んで構成される粒子群と、これら粒子群の緻密化や硬化を助ける補助成分との複合体であってもよい。あるいは、セパレータ28は、基材としての開気孔性の多孔質体と、この多孔質体の孔を埋めるように孔中に析出及び成長させた無機固体電解質(例えば層状複水酸化物)との複合体であってもよい。この多孔質体を構成する物質の例としては、アルミナ、ジルコニア等のセラミックスや、発泡樹脂又は繊維状物質からなる多孔性シート等の絶縁性の物質が挙げられる。
The separator 28 or the inorganic solid electrolyte body may be a composite of a particle group including an inorganic solid electrolyte having hydroxide ion conductivity and an auxiliary component that assists densification and hardening of the particle group. Good. Alternatively, the separator 28 includes an open-pore porous body as a base material and an inorganic solid electrolyte (for example, a layered double hydroxide) deposited and grown in the pores so as to fill the pores of the porous body. It may be a complex. Examples of the substance constituting the porous body include ceramics such as alumina and zirconia, and insulating substances such as a porous sheet made of a foamed resin or a fibrous substance.
無機固体電解質体は、層状複水酸化物(LDH)を含むのが好ましく、より好ましくはLDHからなる。典型的には、LDHは、一般式:M2+
1-xM3+
x(OH)2An-
x/n・mH2O(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An-はn価の陰イオンであり、nは1以上の整数であり、xは0.1~0.4であり、mは0以上である)の基本組成を有する。上記一般式において、M2+は任意の2価の陽イオンでありうるが、好ましい例としてはMg2+、Ca2+及びZn2+が挙げられ、より好ましくはMg2+である。M3+は任意の3価の陽イオンでありうるが、好ましい例としてはAl3+又はCr3+が挙げられ、より好ましくはAl3+である。An-は任意の陰イオンでありうるが、好ましい例としてはOH-及びCO3
2-が挙げられる。したがって、上記一般式において、M2+がMg2+を含み、M3+がAl3+を含み、An-がOH-及び/又はCO3
2-を含むのが好ましい。nは1以上の整数であるが、好ましくは1又は2である。xは0.1~0.4であるが、好ましくは0.2~0.35である。また、上記一般式においてM3+の一部または全部を4価またはそれ以上の価数の陽イオンで置き換えてもよく、その場合は、上記一般式における陰イオンAn-の係数x/nは適宜変更されてよい。mは水のモル数を意味する任意の数であり、0以上、典型的には0を超える又は1以上の実数ないし整数である。
The inorganic solid electrolyte body preferably contains a layered double hydroxide (LDH), more preferably LDH. Typically, LDH is represented by the general formula: M 2+ 1-x M 3+ x (OH) 2 A n− x / n · mH 2 O (where M 2+ is a divalent cation and M 3+ is a trivalent cation, a n-is the n-valent anion, n is an integer of 1 or more, x is 0.1 ~ 0.4, m is 0 or more) Has a basic composition. In the above general formula, M 2+ may be any divalent cation, and preferred examples include Mg 2+ , Ca 2+ and Zn 2+ , and more preferably Mg 2+ . M 3+ may be any trivalent cation, but preferred examples include Al 3+ or Cr 3+ , and more preferred is Al 3+ . A n- can be any anion, but preferred examples include OH - and CO 3 2- . Therefore, in the general formula, M 2+ comprises Mg 2+, M 3+ comprises Al 3+, A n-is OH - and / or CO preferably contains 3 2-. n is an integer of 1 or more, preferably 1 or 2. x is 0.1 to 0.4, preferably 0.2 to 0.35. It is also possible to replace the part or all of the M 3+ in the general formula tetravalent or higher valency cation, in which case, the anion A n- coefficients x / n of the above general formula It may be changed as appropriate. m is an arbitrary number which means the number of moles of water, and is a real number or an integer of 0 or more, typically more than 0 or 1 or more.
無機固体電解質体は水熱処理によって緻密化されたものであるのが好ましい。水熱処理は、層状複水酸化物、とりわけMg-Al型層状複水酸化物の一体緻密化に極めて有効である。水熱処理による緻密化は、例えば、特許文献1(国際公開第2013/073292号)に記載されるように、耐圧容器に純水と板状の圧粉体を入れ、120~250℃、好ましくは180~250℃の温度、2~24時間、好ましくは3~10時間で行うことができる。もっとも、水熱処理を用いたより好ましい製造方法については後述するものとする。
It is preferable that the inorganic solid electrolyte body is densified by hydrothermal treatment. Hydrothermal treatment is extremely effective for the densification of layered double hydroxides, especially Mg—Al type layered double hydroxides. Densification by hydrothermal treatment is performed, for example, as described in Patent Document 1 (International Publication No. 2013/073292), in which pure water and a plate-shaped green compact are placed in a pressure vessel, and 120 to 250 ° C., preferably The reaction can be carried out at a temperature of 180 to 250 ° C., 2 to 24 hours, preferably 3 to 10 hours. However, a more preferable production method using hydrothermal treatment will be described later.
無機固体電解質体は、板状、膜状又は層状のいずれの形態であってもよく、膜状又は層状の形態である場合、膜状又は層状の無機固体電解質体が多孔質基材上又はその中に形成されたものであるのが好ましい。板状の形態であると十分な堅さを確保して亜鉛デンドライトの貫通をより効果的に阻止することができる。一方、板状よりも厚さが薄い膜状又は層状の形態であると亜鉛デンドライトの貫通を阻止するための必要最低限の堅さを確保しながらセパレータの抵抗を有意に低減できるとの利点がある。板状の無機固体電解質体の好ましい厚さは、0.01~0.5mmであり、より好ましくは0.02~0.2mm、さらに好ましくは0.05~0.1mmである。また、無機固体電解質体の水酸化物イオン伝導度は高ければ高い方が望ましいが、典型的には10-4~10-1S/mの伝導度を有する。一方、膜状又は層状の形態の場合には、厚さが100μm以下であるのが好ましく、より好ましくは75μm以下、さらに好ましくは50μm以下、特に好ましくは25μm以下、最も好ましくは5μm以下である。このように薄いことでセパレータ28の低抵抗化を実現できる。厚さの下限値は用途に応じて異なるため特に限定されないが、セパレータ膜ないし層として望まれるある程度の堅さを確保するためには厚さ1μm以上であるのが好ましく、より好ましくは2μm以上である。
The inorganic solid electrolyte body may be in the form of a plate, a film, or a layer. When the inorganic solid electrolyte is in the form of a film or a layer, the film or layer of the inorganic solid electrolyte is on the porous substrate or its It is preferably formed in the inside. When the plate-like form is used, sufficient hardness can be secured and penetration of zinc dendrites can be more effectively prevented. On the other hand, if the film or layer form is thinner than the plate, there is an advantage that the resistance of the separator can be significantly reduced while ensuring the minimum necessary hardness to prevent the penetration of zinc dendrite. is there. The preferred thickness of the plate-like inorganic solid electrolyte body is 0.01 to 0.5 mm, more preferably 0.02 to 0.2 mm, and still more preferably 0.05 to 0.1 mm. Further, the higher the hydroxide ion conductivity of the inorganic solid electrolyte body is, the higher is desirable, but typically it has a conductivity of 10 −4 to 10 −1 S / m. On the other hand, in the case of a film-like or layered form, the thickness is preferably 100 μm or less, more preferably 75 μm or less, still more preferably 50 μm or less, particularly preferably 25 μm or less, and most preferably 5 μm or less. Thus, the resistance of the separator 28 can be reduced. The lower limit of the thickness is not particularly limited because it varies depending on the application, but in order to ensure a certain degree of rigidity desired as a separator film or layer, the thickness is preferably 1 μm or more, more preferably 2 μm or more. is there.
セパレータ28の少なくともいずれか一方の側に多孔質基材30を設けてもよい。好ましくは、セパレータ28の負極18側(密閉空間22側)に多孔質基材30が設けられるが、後述するようにその逆であってもよい。多孔質基材30は透水性を有し、それ故電解液20がセパレータ28に到達可能であることはいうまでもないが、多孔質基材30があることでセパレータ28上により安定に水酸化物イオンを保持することも可能となる。また、多孔質基材30により強度を付与できるため、セパレータ28を薄くして低抵抗化を図ることもできる。また、多孔質基材30上又はその中に無機固体電解質体(好ましくはLDH)の緻密膜ないし緻密層を形成することもできる。セパレータ28の片面に多孔質基材を設ける場合には、多孔質基材を用意して、この多孔質基材に無機固体電解質を成膜する手法が考えられる(この手法については後述する)。なお、図1Aにおいて多孔質基材30はセパレータ28の片面の全面にわたって設けられているが、セパレータ28の片面の一部(例えば充放電反応に関与する領域)にのみ設ける構成としてもよい。例えば、多孔質基材30上又はその中に無機固体電解質体を膜状又は層状に形成した場合、その製法に由来して、セパレータ28の片面の全面にわたって多孔質基材30が設けられた構成になるのが典型的である。一方、無機固体電解質体を(基材を必要としない)自立した板状に形成した場合には、セパレータ28の片面の一部(例えば充放電反応に関与する領域)にのみ多孔質基材30を後付けしてもよいし、片面の全面にわたって多孔質基材30を後付けしてもよい。
The porous substrate 30 may be provided on at least one side of the separator 28. Preferably, the porous substrate 30 is provided on the negative electrode 18 side (sealed space 22 side) of the separator 28, but the reverse may be used as described later. It goes without saying that the porous base material 30 has water permeability, and therefore the electrolytic solution 20 can reach the separator 28, but the presence of the porous base material 30 makes the hydroxylation more stable on the separator 28. It is also possible to retain product ions. Further, since the strength can be imparted by the porous base material 30, the separator 28 can be thinned to reduce the resistance. In addition, a dense film or a dense layer of an inorganic solid electrolyte (preferably LDH) can be formed on or in the porous substrate 30. In the case of providing a porous substrate on one side of the separator 28, a method of preparing a porous substrate and depositing an inorganic solid electrolyte on the porous substrate can be considered (this method will be described later). In FIG. 1A, the porous base material 30 is provided over the entire surface of one side of the separator 28. However, the porous base material 30 may be provided only on a part of one side of the separator 28 (for example, a region involved in the charge / discharge reaction). For example, when the inorganic solid electrolyte is formed in a film or a layer on or in the porous substrate 30, the porous substrate 30 is provided over the entire surface of one side of the separator 28 due to the manufacturing method. It is typical to become. On the other hand, when the inorganic solid electrolyte body is formed in a self-supporting plate shape (which does not require a base material), the porous base material 30 is formed only on a part of one side of the separator 28 (for example, a region involved in charge / discharge reaction). May be retrofitted, or the porous substrate 30 may be retrofitted over the entire surface of one side.
セパレータ構造体14がセパレータ28の一方の側に多孔質基材30を備える場合、セパレータ28は多孔質基材30の空気極16側及び負極18側(密閉空間22側)のいずれに設けられてもよい。例えば、セパレータ28を多孔質基材30の負極18側(密閉空間22側)に設けた場合、セパレータ28(例えばLDH緻密膜)の多孔質基材30からの剥離をより効果的に抑制することができる。すなわち、負極18に由来して亜鉛デンドライトが成長してセパレータ28に到達した場合に、亜鉛デンドライトの成長に伴い発生しうる応力が、セパレータ28を多孔質基材30に押し付ける方向に働くことになり、その結果、セパレータ28が多孔質基材30から剥離しにくくなる。この場合、セパレータ28及び空気極16間の水酸化物イオン伝導性を確保するため、多孔質基材30中にセパレータ28の一部又は全部が組み込まれている、且つ/又は多孔質基材30中に水酸化物イオン伝導性材料が組み込まれているのが好ましい。
When the separator structure 14 includes the porous substrate 30 on one side of the separator 28, the separator 28 is provided on either the air electrode 16 side or the negative electrode 18 side (sealed space 22 side) of the porous substrate 30. Also good. For example, when the separator 28 is provided on the negative electrode 18 side (sealed space 22 side) of the porous base material 30, the separation of the separator 28 (for example, LDH dense film) from the porous base material 30 is more effectively suppressed. Can do. That is, when zinc dendrite grows from the negative electrode 18 and reaches the separator 28, the stress that can be generated as the zinc dendrite grows acts in a direction to press the separator 28 against the porous substrate 30. As a result, the separator 28 is difficult to peel off from the porous substrate 30. In this case, in order to ensure the hydroxide ion conductivity between the separator 28 and the air electrode 16, a part or all of the separator 28 is incorporated in the porous substrate 30 and / or the porous substrate 30. It is preferred that a hydroxide ion conductive material is incorporated therein.
前述のとおり、セパレータ構造体14はセパレータ28の外周縁に沿って枠32を備えるのが好ましく、枠32は樹脂枠であるのがより好ましい。図17に、セパレータ28が多孔質基材30の負極18側に設けられる場合(すなわち多孔質基材30がセパレータ28の空気極16側に設けられる場合)における、枠32を備えたセパレータ構造体14の好ましい態様が示される。図17に示される態様における枠32は、セパレータ28及び多孔質基材30を収容可能な開口部を有する外枠部32aと、外枠部32aの空気極16側の端部及び/又はその近傍から開口部に向かって延在する内枠部32bとを備える。そして、内枠部32bが多孔質基材30の空気極16側と係合する。そして、多孔質基材30と枠32(すなわち外枠部32a及び内枠部32b)との間、又は多孔質基材30及びセパレータ28の両方と枠32(すなわち外枠部32a及び内枠部32b)との間が接着剤31で液密に封止されているのが好ましい。かかる構成によれば、負極18に由来して亜鉛デンドライトが成長してセパレータ28に到達した場合に、亜鉛デンドライトの成長に伴い発生しうる応力が、多孔質基材30を内枠部32bに押し付ける方向に働くことになり、その結果、多孔質基材30と内枠部32bとの間で接着剤31を圧縮して接着剤31による液密封止効果及び接着効果を向上させることができる。すなわち、接着剤31を引っ張る方向ではなく圧縮する方向に上記応力を作用させることができるので、仮に亜鉛デンドライトによる応力が加わったとしても、接着剤31の引っ張りによる枠32の剥離を効果的に回避することができる。もっとも、内枠部32a及び外枠部32bを備えた枠32は、セパレータ28が多孔質基材30の空気極16側に設けられる場合においても採用可能であることはいうまでもない。
As described above, the separator structure 14 preferably includes the frame 32 along the outer peripheral edge of the separator 28, and the frame 32 is more preferably a resin frame. FIG. 17 shows a separator structure provided with a frame 32 when the separator 28 is provided on the negative electrode 18 side of the porous substrate 30 (that is, when the porous substrate 30 is provided on the air electrode 16 side of the separator 28). Fourteen preferred embodiments are shown. The frame 32 in the embodiment shown in FIG. 17 includes an outer frame portion 32a having an opening that can accommodate the separator 28 and the porous substrate 30, and an end of the outer frame portion 32a on the air electrode 16 side and / or the vicinity thereof. And an inner frame portion 32b extending toward the opening. Then, the inner frame portion 32 b engages with the air electrode 16 side of the porous substrate 30. And between the porous substrate 30 and the frame 32 (that is, the outer frame portion 32a and the inner frame portion 32b), or both the porous substrate 30 and the separator 28 and the frame 32 (that is, the outer frame portion 32a and the inner frame portion). 32b) is preferably liquid-tightly sealed with an adhesive 31. According to this configuration, when zinc dendrite grows from the negative electrode 18 and reaches the separator 28, stress that can be generated as the zinc dendrite grows presses the porous substrate 30 against the inner frame portion 32 b. As a result, the adhesive 31 is compressed between the porous base material 30 and the inner frame portion 32b, and the liquid-tight sealing effect and the adhesive effect by the adhesive 31 can be improved. That is, since the stress can be applied in the compressing direction rather than the direction in which the adhesive 31 is pulled, even if the stress due to the zinc dendrite is applied, the peeling of the frame 32 due to the pulling of the adhesive 31 is effectively avoided. can do. However, it goes without saying that the frame 32 having the inner frame portion 32a and the outer frame portion 32b can be employed even when the separator 28 is provided on the air electrode 16 side of the porous substrate 30.
また、負極18とセパレータ28の間に不織布等の吸水性樹脂又は保液性樹脂製の第2のセパレータ(樹脂セパレータ)を配置して、電解液が減少した場合であっても電解液を負極の反応部分に電解液を保持可能とする構成としてもよい。吸水性樹脂又は保液性樹脂の好ましい例としては、ポリオレフィン系樹脂が挙げられる。
In addition, a second separator (resin separator) made of a water-absorbing resin such as a nonwoven fabric or a liquid-retaining resin is disposed between the negative electrode 18 and the separator 28, so that the electrolytic solution can be used even when the electrolytic solution is reduced. It is good also as a structure which can hold | maintain electrolyte solution in this reaction part. Preferable examples of the water absorbent resin or the liquid retaining resin include polyolefin resins.
空気極
空気極16は、亜鉛空気電池等の金属空気電池に使用される公知の空気極であってよく特に限定されない。空気極16は、空気極触媒、電子伝導性材料、及び所望により水酸化物イオン伝導性材料を含んでなるのが典型的である。もっとも、電子伝導性材料としても機能する空気極触媒を用いる場合には、空気極16は、そのような電子伝導性材料兼空気極触媒、及び所望により水酸化物イオン伝導性材料を含んでなるものであってもよい。 Theair electrode 16 may be a known air electrode used in metal-air batteries such as zinc-air batteries, and is not particularly limited. The air electrode 16 typically comprises an air electrode catalyst, an electronically conductive material, and optionally a hydroxide ion conductive material. However, when an air electrode catalyst that also functions as an electron conductive material is used, the air electrode 16 includes such an electron conductive material / air electrode catalyst and, optionally, a hydroxide ion conductive material. It may be a thing.
空気極16は、亜鉛空気電池等の金属空気電池に使用される公知の空気極であってよく特に限定されない。空気極16は、空気極触媒、電子伝導性材料、及び所望により水酸化物イオン伝導性材料を含んでなるのが典型的である。もっとも、電子伝導性材料としても機能する空気極触媒を用いる場合には、空気極16は、そのような電子伝導性材料兼空気極触媒、及び所望により水酸化物イオン伝導性材料を含んでなるものであってもよい。 The
空気極触媒は、金属空気電池における正極として機能するものであれば特に限定されず、酸素を正極活物質として利用可能な種々の空気極触媒が使用可能である。空気極触媒の好ましい例としては、黒鉛等の酸化還元触媒機能を有するカーボン系材料、白金、ニッケル等の酸化還元触媒機能を有する金属、ペロブスカイト型酸化物、二酸化マンガン、酸化ニッケル、酸化コバルト、スピネル酸化物等の酸化還元触媒機能を有する無機酸化物が挙げられる。空気極触媒の形状は特に限定されないが、粒子形状であるのが好ましい。空気極16における空気極触媒の含有量は特に限定されないが、空気極16の合計量に対して、5~70体積%が好ましく、より好ましくは5~60体積%、さらに好ましくは5~50体積%である。
The air electrode catalyst is not particularly limited as long as it functions as a positive electrode in a metal-air battery, and various air electrode catalysts that can use oxygen as a positive electrode active material can be used. Preferred examples of the air electrode catalyst include carbon-based materials having a redox catalyst function such as graphite, metals having a redox catalyst function such as platinum and nickel, perovskite oxides, manganese dioxide, nickel oxide, cobalt oxide, spinel. Examples thereof include inorganic oxides having a redox catalyst function such as oxides. The shape of the air electrode catalyst is not particularly limited, but is preferably a particle shape. The content of the air electrode catalyst in the air electrode 16 is not particularly limited, but is preferably 5 to 70% by volume, more preferably 5 to 60% by volume, and still more preferably 5 to 50% by volume with respect to the total amount of the air electrode 16. %.
電子伝導性材料は、導電性を有し、空気極触媒とセパレータ28(又は該当する場合には後述する中間層)との間で電子伝導を可能とするものであれば特に限定されない。電子伝導性材料の好ましい例としては、ケッチェンブラック、アセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、鱗片状黒鉛のような天然黒鉛、人造黒鉛、膨張黒鉛等のグラファイト類、炭素繊維、金属繊維等の導電性繊維類、銅、銀、ニッケル、アルミニウム等の金属粉末類、ポリフェニレン誘導体等の有機電子伝導性材料、及びこれらの任意の混合物が挙げられる。電子伝導性材料の形状は、粒子形状であってもよいし、その他の形状であってもよいが、空気極16において厚さ方向に連続した相(即ち電子伝導相)をもたらす形態で用いられるのが好ましい。例えば、電子伝導性材料は、多孔質材料であってもよい。また、電子伝導性材料は空気極触媒との混合物ないし複合体の形態(例えば白金担持カーボン)であってもよく、前述したように電子伝導性材料としても機能する空気極触媒(例えば遷移金属を含有するペロブスカイト型化合物)であってもよい。空気極16における電子伝導性材料の含有量は特に限定されないが、空気極16の合計量に対して、10~80体積%が好ましく、より好ましくは15~80体積%、さらに好ましくは20~80体積%である。
The electron conductive material is not particularly limited as long as it has conductivity and enables electron conduction between the air electrode catalyst and the separator 28 (or an intermediate layer to be described later if applicable). Preferred examples of the electron conductive material include carbon blacks such as ketjen black, acetylene black, channel black, furnace black, lamp black, and thermal black, natural graphite such as flake graphite, artificial graphite, and expanded graphite. Examples thereof include conductive fibers such as graphites, carbon fibers, and metal fibers, metal powders such as copper, silver, nickel, and aluminum, organic electron conductive materials such as polyphenylene derivatives, and any mixture thereof. The shape of the electron conductive material may be a particle shape or any other shape, but is used in a form that provides a continuous phase (that is, an electron conductive phase) in the thickness direction in the air electrode 16. Is preferred. For example, the electron conductive material may be a porous material. The electron conductive material may be in the form of a mixture or complex with an air electrode catalyst (for example, platinum-supported carbon). As described above, an air electrode catalyst (for example, a transition metal) that also functions as an electron conductive material. Perovskite-type compounds). The content of the electron conductive material in the air electrode 16 is not particularly limited, but is preferably 10 to 80% by volume, more preferably 15 to 80% by volume, and still more preferably 20 to 80% with respect to the total amount of the air electrode 16. % By volume.
空気極16は、水酸化物イオン伝導性材料を任意成分としてさらに含んでいてもよい。特にセパレータ28が緻密質セラミックスである水酸化物イオン伝導性無機固体電解質からなる場合、そのようなセパレータ28上に(所望により水酸化物イオン伝導性を有する中間層を介在させて)、従来から使用される空気極触媒及び電子伝導性材料のみならず、水酸化物イオン伝導性材料をも含有させた空気極16を形成することで、緻密質セラミックス製のセパレータ28による所望の特性を確保しながら、金属空気電池において空気極の反応抵抗を低減することが可能となる。すなわち、空気極触媒及び電子伝導性材料のみならず、水酸化物イオン伝導性材料をも空気極16中に含有させることで、電子伝導相(電子伝導性材料)と、気相(空気)とからなる三相界面がセパレータ28(又は該当する場合には中間層)と空気極16の界面のみならず空気極16中にも存在することになり、電池反応に寄与する水酸化物イオンの授受がより広い表面積で効果的に行われることになる結果、金属空気電池において空気極の反応抵抗が低減されるものと考えられる。水酸化物イオン伝導性材料は、水酸化物イオンを透過可能な材料であれば特に限定されず、無機材料及び有機材料を問わず、各種の材質及び形態の材料が使用可能であり、前述した基本組成の層状複水酸化物であってもよい。水酸化物イオン伝導性材料は、粒子形態に限らず、空気極触媒及び電子伝導性材料を部分的に又は概ね全体的に被覆するような塗布膜の形態であってもよい。もっとも、この塗布膜の形態においても、イオン伝導性材料は緻密質ではなく、開気孔を有しており、空気極16の外側表面からセパレータ28(又は該当する場合には中間層)との界面に向かって、O2やH2Oが気孔中を拡散できるように構成されるのが望ましい。空気極16における水酸化物イオン伝導性材料の含有量は特に限定されないが、空気極16の合計量に対して、0~95体積%が好ましく、より好ましくは5~85体積%、さらに好ましくは10~80体積%である。
The air electrode 16 may further include a hydroxide ion conductive material as an optional component. In particular, when the separator 28 is made of a hydroxide ion conductive inorganic solid electrolyte, which is a dense ceramic, on the separator 28 (with an intermediate layer having hydroxide ion conductivity if desired), conventionally. By forming the air electrode 16 containing not only the air electrode catalyst and the electron conductive material to be used but also the hydroxide ion conductive material, desired characteristics by the separator 28 made of dense ceramics can be secured. However, it is possible to reduce the reaction resistance of the air electrode in the metal-air battery. That is, not only the air electrode catalyst and the electron conductive material, but also the hydroxide ion conductive material is contained in the air electrode 16 so that the electron conductive phase (electron conductive material), the gas phase (air), The three-phase interface consisting of is present not only in the interface between the separator 28 (or the intermediate layer, if applicable) and the air electrode 16 but also in the air electrode 16, and exchanges hydroxide ions that contribute to the battery reaction. As a result, the reaction resistance of the air electrode is considered to be reduced in the metal-air battery. The hydroxide ion conductive material is not particularly limited as long as it is a material that can transmit hydroxide ions, and various materials and forms of materials can be used regardless of whether the material is an inorganic material or an organic material. It may be a layered double hydroxide having a basic composition. The hydroxide ion conductive material is not limited to the particle form, but may be in the form of a coating film that partially or substantially entirely covers the air electrode catalyst and the electron conductive material. However, also in the form of this coating film, the ion conductive material is not dense and has open pores, and the interface from the outer surface of the air electrode 16 to the separator 28 (or intermediate layer if applicable). It is desirable that O 2 or H 2 O can be diffused in the pores. The content of the hydroxide ion conductive material in the air electrode 16 is not particularly limited, but is preferably 0 to 95% by volume, more preferably 5 to 85% by volume, and still more preferably based on the total amount of the air electrode 16. 10 to 80% by volume.
空気極16の形成はあらゆる手法で行われてよく、特に限定されない。例えば、空気極触媒、電子伝導性材料、及び所望により水酸化物イオン伝導性材料をエタノール等の溶媒を用いて湿式混合して乾燥及び解砕した後、バインダーと混合してフィブリル化し、得られたフィブリル状混合物を集電体に圧着して空気極16を形成し、この空気極16/集電体の積層シートの空気極16側をセパレータ28(又は該当する場合には中間層)に圧着してもよい。あるいは、空気極触媒、電子伝導性材料、及び所望により水酸化物イオン伝導性材料をエタノール等の溶媒と共に湿式混合してスラリー化し、このスラリーを中間層に塗布して乾燥させて空気極16を形成してもよい。したがって、空気極16はバインダーを含んでいてもよい。バインダーは、熱可塑性樹脂や熱硬化性樹脂であってよく特に限定されない。
The formation of the air electrode 16 may be performed by any method and is not particularly limited. For example, an air electrode catalyst, an electron conductive material, and optionally a hydroxide ion conductive material are wet-mixed using a solvent such as ethanol, dried and crushed, and then mixed with a binder to obtain a fibril. The fibrillar mixture is pressure-bonded to the current collector to form the air electrode 16, and the air electrode 16 side of the air electrode 16 / current collector laminated sheet is pressure-bonded to the separator 28 (or an intermediate layer if applicable). May be. Alternatively, an air electrode catalyst, an electron conductive material, and, if desired, a hydroxide ion conductive material are wet mixed with a solvent such as ethanol to form a slurry, and this slurry is applied to an intermediate layer and dried to form the air electrode 16. It may be formed. Therefore, the air electrode 16 may contain a binder. The binder may be a thermoplastic resin or a thermosetting resin and is not particularly limited.
空気極16は5~200μmの厚さを有する層状の形態であるのが好ましく、より好ましくは5~100μmであり、さらに好ましくは5~50μm、特に好ましくは5~30μmである。例えば、水酸化物イオン伝導性材料を含む場合、上記範囲内の厚さであると、ガス拡散抵抗の増大を抑えながら三相界面の面積を比較的大きく確保することができ、空気極の反応抵抗の低減をより好ましく実現することができる。
The air electrode 16 is preferably in the form of a layer having a thickness of 5 to 200 μm, more preferably 5 to 100 μm, still more preferably 5 to 50 μm, and particularly preferably 5 to 30 μm. For example, when a hydroxide ion conductive material is included, if the thickness is within the above range, a relatively large area of the three-phase interface can be secured while suppressing an increase in gas diffusion resistance, and the reaction of the air electrode Reduction of resistance can be realized more preferably.
セパレータ28及び空気極16の間には中間層が設けられてもよい。中間層はセパレータ28と空気極16の密着性を向上し、かつ、水酸化物イオン伝導性を有するものであれば特に限定されず、有機材料及び無機材料を問わず、公知各種の組成及び構成の層であることができる。中間層は高分子材料及び/又はセラミックス材料を含んでなるのが好ましく、この場合、中間層に含まれる高分子材料及びセラミックス材料の少なくともいずれか一方が水酸化物イオン伝導性を有していればよい。中間層は複数設けられてもよく、これら複数の中間層は互いに同種の及び/又は異なる層であってよい。すなわち、中間層は単層構成であってもよいし、2層以上の構成であってもよい。中間層は1~200μmの厚さを有するのが好ましく、より好ましくは1~100μmであり、さらに好ましくは1~50μm、特に好ましくは1~30μmである。このような厚さであると、セパレータ28と空気極16の密着性を向上しやすく、亜鉛空気二次電池において電池抵抗(特に空気極及びセパレータ間の界面抵抗)をより効果的に低減することができる。
An intermediate layer may be provided between the separator 28 and the air electrode 16. The intermediate layer is not particularly limited as long as it improves the adhesion between the separator 28 and the air electrode 16 and has hydroxide ion conductivity, regardless of whether it is an organic material or an inorganic material. Layer. The intermediate layer preferably includes a polymer material and / or a ceramic material. In this case, at least one of the polymer material and the ceramic material included in the intermediate layer may have hydroxide ion conductivity. That's fine. A plurality of intermediate layers may be provided, and the plurality of intermediate layers may be the same type and / or different layers. That is, the intermediate layer may have a single layer structure or a structure having two or more layers. The intermediate layer preferably has a thickness of 1 to 200 μm, more preferably 1 to 100 μm, still more preferably 1 to 50 μm, and particularly preferably 1 to 30 μm. With such a thickness, the adhesion between the separator 28 and the air electrode 16 can be easily improved, and the battery resistance (particularly, the interface resistance between the air electrode and the separator) can be more effectively reduced in the zinc-air secondary battery. Can do.
負極
負極18は、負極活物質として機能する亜鉛、亜鉛合金及び/又は亜鉛化合物を含んでなる。負極18は、粒子状、板状、ゲル状等のいかなる形状又は形態であってもよいが、粒子状またはゲル状とするのが反応速度の点で好ましい。粒子状の負極としては、30~350μmの粒径のものを好ましく用いることができる。ゲル状の負極としては、100~300μmの粒径の無汞化亜鉛合金粉、アルカリ電解液及び増粘剤(ゲル化剤)を混合攪拌してゲル状に形成したものを好ましく用いることができる。亜鉛合金は、マグネシウム、アルミニウム、リチウム、ビスマス、インジウム、鉛等の汞化又は無汞化の合金であることができ、負極活物質として所望の性能を確保できる限り、その含有量は特に限定されない。好ましい亜鉛合金は、無水銀かつ鉛無添加の無汞化亜鉛合金であり、アルミニウム、ビスマス、インジウム又はこれらの組合せを含むものがより好ましい。さらに好ましくは、ビスマスを50~1000ppm、インジウムを100~1000ppmで、アルミニウム及び/又はカルシウムを10~100ppm含む無汞化亜鉛合金であり、特に好ましくはビスマスを100~500ppm、インジウムを300~700ppm、アルミニウム及び/又はカルシウムを20~50ppm含む。好ましい亜鉛化合物の例としては酸化亜鉛が挙げられる。 The negative electrodenegative electrode 18 includes zinc, a zinc alloy, and / or a zinc compound that functions as a negative electrode active material. The negative electrode 18 may have any shape or form such as a particle shape, a plate shape, or a gel shape, but it is preferable that the negative electrode 18 has a particle shape or a gel shape from the viewpoint of reaction rate. As the particulate negative electrode, those having a particle diameter of 30 to 350 μm can be preferably used. As the gelled negative electrode, a gelled negative electrode alloy powder having a particle diameter of 100 to 300 μm, an alkaline electrolyte, and a thickener (gelling agent) mixed and stirred can be preferably used. . The zinc alloy can be a hatched or non-hatched alloy such as magnesium, aluminum, lithium, bismuth, indium, lead, etc., and its content is not particularly limited as long as desired performance can be secured as a negative electrode active material. . Preferred zinc alloys are anhydrous silver and lead-free zinc-free zinc alloys, more preferably those containing aluminum, bismuth, indium or combinations thereof. More preferably, a zinc-free zinc alloy containing 50 to 1000 ppm of bismuth, 100 to 1000 ppm of indium and 10 to 100 ppm of aluminum and / or calcium, particularly preferably 100 to 500 ppm of bismuth, 300 to 700 ppm of indium, Contains 20 to 50 ppm of aluminum and / or calcium. Examples of preferred zinc compounds include zinc oxide.
負極18は、負極活物質として機能する亜鉛、亜鉛合金及び/又は亜鉛化合物を含んでなる。負極18は、粒子状、板状、ゲル状等のいかなる形状又は形態であってもよいが、粒子状またはゲル状とするのが反応速度の点で好ましい。粒子状の負極としては、30~350μmの粒径のものを好ましく用いることができる。ゲル状の負極としては、100~300μmの粒径の無汞化亜鉛合金粉、アルカリ電解液及び増粘剤(ゲル化剤)を混合攪拌してゲル状に形成したものを好ましく用いることができる。亜鉛合金は、マグネシウム、アルミニウム、リチウム、ビスマス、インジウム、鉛等の汞化又は無汞化の合金であることができ、負極活物質として所望の性能を確保できる限り、その含有量は特に限定されない。好ましい亜鉛合金は、無水銀かつ鉛無添加の無汞化亜鉛合金であり、アルミニウム、ビスマス、インジウム又はこれらの組合せを含むものがより好ましい。さらに好ましくは、ビスマスを50~1000ppm、インジウムを100~1000ppmで、アルミニウム及び/又はカルシウムを10~100ppm含む無汞化亜鉛合金であり、特に好ましくはビスマスを100~500ppm、インジウムを300~700ppm、アルミニウム及び/又はカルシウムを20~50ppm含む。好ましい亜鉛化合物の例としては酸化亜鉛が挙げられる。 The negative electrode
集電体
亜鉛空気電池セルパック10は、空気極16のセパレータ28と反対側に設けられる空気極集電体17と、負極18に接触して設けられる負極集電体19とをさらに備えるのが好ましい。この場合、負極集電体19が可撓性袋体12の外周縁から延出するのが好ましい。また、空気極集電体17も可撓性袋体12の外周縁に対応する位置から延出するのが好ましい。あるいは、空気極16及び負極18が、別途設けられた空気極端子及び負極端子に可撓性袋体12内又は外でそれぞれ接続される構成としてもよい。空気極集電体17は空気極16に空気が供給されるように通気性を有するのが好ましい。空気極集電体17の好ましい例としては、ステンレス鋼、銅、ニッケル等の金属板若しくは金属メッシュ、カーボンペーパー、カーボンクロス、及び電子伝導性酸化物等が挙げられ、耐食性及び通気性の点でステンレス金網が特に好ましい。負極集電体19の好ましい例としては、ステンレス鋼、銅(例えば銅パンチングメタル)、ニッケル等の金属板若しくは金属メッシュ、カーボンペーパー、及び酸化物導電体等が挙げられる。この場合、例えば、銅パンチングメタル上に、酸化亜鉛粉末及び/又は亜鉛粉末、並びに所望によりバインダー(例えばポリテトラフルオロエチレン粒子)を含んでなる混合物を塗布して負極/負極集電体からなる負極板を好ましく作製することができる。その際、乾燥後の負極板(すなわち負極18/負極集電体19)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。 The current collector zinc-airbattery cell pack 10 further includes an air electrode current collector 17 provided on the opposite side of the air electrode 16 from the separator 28 and a negative electrode current collector 19 provided in contact with the negative electrode 18. preferable. In this case, the negative electrode current collector 19 preferably extends from the outer peripheral edge of the flexible bag body 12. The air electrode current collector 17 also preferably extends from a position corresponding to the outer peripheral edge of the flexible bag body 12. Alternatively, the air electrode 16 and the negative electrode 18 may be connected to the separately provided air electrode terminal and negative electrode terminal inside or outside the flexible bag body 12, respectively. The air electrode current collector 17 preferably has air permeability so that air is supplied to the air electrode 16. Preferred examples of the air electrode current collector 17 include metal plates or metal meshes such as stainless steel, copper, and nickel, carbon paper, carbon cloth, and electron conductive oxides, and the like in terms of corrosion resistance and air permeability. Stainless steel wire mesh is particularly preferred. Preferable examples of the negative electrode current collector 19 include a metal plate or metal mesh such as stainless steel, copper (for example, copper punching metal), nickel, carbon paper, and an oxide conductor. In this case, for example, a negative electrode comprising a negative electrode / negative electrode current collector by applying a mixture containing zinc oxide powder and / or zinc powder and optionally a binder (for example, polytetrafluoroethylene particles) on copper punching metal. A plate can be preferably produced. At that time, it is also preferable to press the dried negative electrode plate (that is, negative electrode 18 / negative electrode current collector 19) to prevent the electrode active material from falling off and to improve the electrode density.
亜鉛空気電池セルパック10は、空気極16のセパレータ28と反対側に設けられる空気極集電体17と、負極18に接触して設けられる負極集電体19とをさらに備えるのが好ましい。この場合、負極集電体19が可撓性袋体12の外周縁から延出するのが好ましい。また、空気極集電体17も可撓性袋体12の外周縁に対応する位置から延出するのが好ましい。あるいは、空気極16及び負極18が、別途設けられた空気極端子及び負極端子に可撓性袋体12内又は外でそれぞれ接続される構成としてもよい。空気極集電体17は空気極16に空気が供給されるように通気性を有するのが好ましい。空気極集電体17の好ましい例としては、ステンレス鋼、銅、ニッケル等の金属板若しくは金属メッシュ、カーボンペーパー、カーボンクロス、及び電子伝導性酸化物等が挙げられ、耐食性及び通気性の点でステンレス金網が特に好ましい。負極集電体19の好ましい例としては、ステンレス鋼、銅(例えば銅パンチングメタル)、ニッケル等の金属板若しくは金属メッシュ、カーボンペーパー、及び酸化物導電体等が挙げられる。この場合、例えば、銅パンチングメタル上に、酸化亜鉛粉末及び/又は亜鉛粉末、並びに所望によりバインダー(例えばポリテトラフルオロエチレン粒子)を含んでなる混合物を塗布して負極/負極集電体からなる負極板を好ましく作製することができる。その際、乾燥後の負極板(すなわち負極18/負極集電体19)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。 The current collector zinc-air
第三電極
所望により、亜鉛空気電池セルパック10は、電解液20と接触するが負極18と接触しないように設けられる第三電極(図示せず)を備えてもよく、この場合、第三電極が外部回路を経て空気極16と接続されている。かかる構成とすることで、負極18から副反応により発生しうる水素ガスを第三電極に接触させて以下の反応:
第三電極: H2+2OH-→2H2O+2e-
空気極放電: O2+2H2O+4e-→4OH-により水に戻すことができる。別の表現をすれば、負極18で発生した水素ガスが第三電極で吸収され自己放電をすることになる。これにより、水素ガスの発生による負極側密閉空間における内圧の上昇及びそれに伴う不具合を抑制又は回避できるとともに、(放電反応に伴い上記反応式に従い減少することになる)水を発生させて負極側密閉空間内での水不足を抑制又は回避することができる。すなわち、負極から発生した水素ガスを負極側密閉空間内で水に戻して再利用することができる。その結果、亜鉛デンドライトによる短絡及び二酸化炭素の混入の両方を防止するのに極めて効果的な構成を有しながら、水素ガス発生の問題にも対処可能な、信頼性の高い亜鉛空気二次電池を提供することができる。 If desired, the zinc-airbattery cell pack 10 may include a third electrode (not shown) provided so as to be in contact with the electrolytic solution 20 but not to be in contact with the negative electrode 18. In this case, the third electrode Is connected to the air electrode 16 via an external circuit. With this configuration, hydrogen gas that can be generated from the negative electrode 18 by a side reaction is brought into contact with the third electrode, and the following reaction is performed:
Third electrode: H 2 + 2OH − → 2H 2 O + 2e −
Air electrode discharge: It can be returned to water by O 2 + 2H 2 O + 4e − → 4OH − . In other words, the hydrogen gas generated at thenegative electrode 18 is absorbed by the third electrode and self-discharged. As a result, an increase in internal pressure in the negative electrode-side sealed space due to the generation of hydrogen gas and the accompanying problems can be suppressed or avoided, and water (which will be reduced according to the above reaction formula along with the discharge reaction) is generated and the negative electrode-side sealed Water shortage in the space can be suppressed or avoided. That is, the hydrogen gas generated from the negative electrode can be recycled by returning it to water in the negative electrode-side sealed space. As a result, a highly reliable zinc-air secondary battery that can cope with the problem of hydrogen gas generation while having a configuration that is extremely effective in preventing both short-circuiting due to zinc dendrite and carbon dioxide contamination. Can be provided.
所望により、亜鉛空気電池セルパック10は、電解液20と接触するが負極18と接触しないように設けられる第三電極(図示せず)を備えてもよく、この場合、第三電極が外部回路を経て空気極16と接続されている。かかる構成とすることで、負極18から副反応により発生しうる水素ガスを第三電極に接触させて以下の反応:
第三電極: H2+2OH-→2H2O+2e-
空気極放電: O2+2H2O+4e-→4OH-により水に戻すことができる。別の表現をすれば、負極18で発生した水素ガスが第三電極で吸収され自己放電をすることになる。これにより、水素ガスの発生による負極側密閉空間における内圧の上昇及びそれに伴う不具合を抑制又は回避できるとともに、(放電反応に伴い上記反応式に従い減少することになる)水を発生させて負極側密閉空間内での水不足を抑制又は回避することができる。すなわち、負極から発生した水素ガスを負極側密閉空間内で水に戻して再利用することができる。その結果、亜鉛デンドライトによる短絡及び二酸化炭素の混入の両方を防止するのに極めて効果的な構成を有しながら、水素ガス発生の問題にも対処可能な、信頼性の高い亜鉛空気二次電池を提供することができる。 If desired, the zinc-air
Third electrode: H 2 + 2OH − → 2H 2 O + 2e −
Air electrode discharge: It can be returned to water by O 2 + 2H 2 O + 4e − → 4OH − . In other words, the hydrogen gas generated at the
第三電極は、外部回路を経て空気極16と接続されることで、上述したような反応により水素ガス(H2)を水(H2O)に変換可能な電極であれば特に限定されないが、空気極16よりも酸素過電圧が大きいことが望まれる。また、第三電極は通常の充放電反応に関与しないことも望まれる。第三電極は、白金及び/又は炭素材料を含んでなるのが好ましく、より好ましくは炭素材料を含んでなる。炭素材料の好ましい例としては、天然黒鉛、人造黒鉛、ハードカーボン、ソフトカーボン、炭素繊維、カーボンナノチューブ、グラフェン、活性炭、及びそれらの任意の組合せが挙げられる。第三電極の形状は特に限定されないが、比表面積が大きくなるような形状(例えばメッシュ状や粒子状)とするのが好ましい。第三電極(好ましくは比表面積の大きい形状の第三電極)は集電体上に塗工及び/又は配置されるのがより好ましい。第三電極用の集電体はいかなる形状であってもよいが、好ましい例としては、線材(例えばワイヤ)、パンチングメタル、メッシュ、発泡金属、及びそれらの任意の組合せが挙げられる。第三電極用集電体の材質としては第三電極の材質と同様の材質であってもよいし、金属(例えばニッケル)、合金又はその他の導電性材料であってもよい。
The third electrode is not particularly limited as long as it is an electrode capable of converting hydrogen gas (H 2 ) into water (H 2 O) by the reaction as described above by being connected to the air electrode 16 through an external circuit. It is desirable that the oxygen overvoltage is larger than that of the air electrode 16. It is also desirable that the third electrode does not participate in normal charge / discharge reactions. The third electrode preferably comprises platinum and / or a carbon material, and more preferably comprises a carbon material. Preferable examples of the carbon material include natural graphite, artificial graphite, hard carbon, soft carbon, carbon fiber, carbon nanotube, graphene, activated carbon, and any combination thereof. Although the shape of a 3rd electrode is not specifically limited, It is preferable to set it as the shape (for example, mesh shape or particle shape) that a specific surface area becomes large. More preferably, the third electrode (preferably the third electrode having a large specific surface area) is applied and / or disposed on the current collector. The current collector for the third electrode may have any shape, but preferable examples include a wire (for example, a wire), a punching metal, a mesh, a foam metal, and any combination thereof. The material for the current collector for the third electrode may be the same material as the material for the third electrode, or may be a metal (for example, nickel), an alloy, or other conductive material.
第三電極は電解液20と接触するが、通常の充放電反応と直接関係の無い場所に配置されることが望ましい。この場合、負極側密閉空間内に第三電極と接触可能に不織布等の吸水性樹脂又は保液性樹脂製の保水部材を配置して、電解液が減少した場合であっても電解液20を第三電極と常時接触可能に保持する構成とするのが好ましい。保水部材として市販の電池用セパレータも使用可能である。吸水性樹脂又は保液性樹脂の好ましい例としては、ポリオレフィン系樹脂が挙げられる。第三電極は、必ずしも多量の電解液20で含浸されている必要はなく、少量ないし微量の電解液20で湿っている程度でも所望の機能を発揮することができるので、その程度の保水性能を保水部材が有していればよい。
The third electrode is in contact with the electrolytic solution 20, but it is desirable that the third electrode be disposed at a place not directly related to the normal charge / discharge reaction. In this case, a water retaining member made of a water absorbent resin such as a nonwoven fabric or a liquid retaining resin is disposed in the negative electrode side sealed space so as to be in contact with the third electrode. It is preferable that the third electrode is held so as to be always contactable. A commercially available battery separator can also be used as the water retaining member. Preferable examples of the water absorbent resin or the liquid retaining resin include polyolefin resins. The third electrode does not necessarily need to be impregnated with a large amount of the electrolytic solution 20 and can exhibit a desired function even when it is wet with a small amount or a small amount of the electrolytic solution 20. The water retention member should just have.
電解液
電解液20はアルカリ金属水酸化物水溶液を含んでなる。アルカリ金属水酸化物の例としては、水酸化カリウム、水酸化ナトリウム等が挙げられるが、水酸化カリウムがより好ましい。亜鉛合金の自己溶解を抑制するために、電解液中に酸化亜鉛、水酸化亜鉛等の亜鉛化合物を添加してもよい。前述のとおり、電解液20は空気極16及び/又は負極18と混合させて空気極合材及び/又は負極合材の形態で存在させてもよい。また、電解液の漏洩を防止するために電解液をゲル化してもよい。ゲル化剤としては電解液の溶媒を吸収して膨潤するようなポリマーを用いるのが望ましく、ポリエチレンオキサイド,ポリビニルアルコール,ポリアクリルアミドなどのポリマーやデンプンが用いられる。 Electrolytic solutionElectrolytic solution 20 comprises an aqueous alkali metal hydroxide solution. Examples of the alkali metal hydroxide include potassium hydroxide and sodium hydroxide, and potassium hydroxide is more preferable. In order to suppress self-dissolution of the zinc alloy, a zinc compound such as zinc oxide or zinc hydroxide may be added to the electrolytic solution. As described above, the electrolytic solution 20 may be mixed with the air electrode 16 and / or the negative electrode 18 to be present in the form of an air electrode mixture and / or a negative electrode mixture. Further, the electrolytic solution may be gelled in order to prevent leakage of the electrolytic solution. As the gelling agent, it is desirable to use a polymer that swells by absorbing the solvent of the electrolytic solution, and polymers such as polyethylene oxide, polyvinyl alcohol, and polyacrylamide, and starch are used.
電解液20はアルカリ金属水酸化物水溶液を含んでなる。アルカリ金属水酸化物の例としては、水酸化カリウム、水酸化ナトリウム等が挙げられるが、水酸化カリウムがより好ましい。亜鉛合金の自己溶解を抑制するために、電解液中に酸化亜鉛、水酸化亜鉛等の亜鉛化合物を添加してもよい。前述のとおり、電解液20は空気極16及び/又は負極18と混合させて空気極合材及び/又は負極合材の形態で存在させてもよい。また、電解液の漏洩を防止するために電解液をゲル化してもよい。ゲル化剤としては電解液の溶媒を吸収して膨潤するようなポリマーを用いるのが望ましく、ポリエチレンオキサイド,ポリビニルアルコール,ポリアクリルアミドなどのポリマーやデンプンが用いられる。 Electrolytic solution
亜鉛空気電池セルパック10は、密閉空間22に充放電時の負極反応に伴う水分量の減増を許容する容積の余剰空間を含むのが好ましい。これにより密閉空間22における水分量の増減に伴う不具合(例えば、液漏れ、容器内圧の変化に伴う容器の変形等)を効果的に防止して、亜鉛空気の信頼性を更に向上することができる。すなわち、前述した反応式から分かるように、充電時には密閉空間22で水が減少する。一方、放電時には密閉空間22で水が増加する。この点、従来の殆どのセパレータは、透水性を有するものであるため、セパレータを介して水が自由に行き来できる。しかしながら、本発明に用いるセパレータ28は透水性を有しないという緻密性の高い構造を有するため、セパレータ28を介して水が自由に行き来できず、充放電に伴い密閉空間22内において電解液量が一方的に増大して液漏れ等の不具合を引き起こしうる。そこで、密閉空間22に充放電時の負極反応に伴う水分量の減増を許容する容積の余剰空間22aを有することで、放電時に電解液20の増加に対処可能なバッファとして機能させることができる。密閉空間22における水分の増減量は、前述した反応式に基づいて算出することができる。
The zinc-air battery cell pack 10 preferably includes in the sealed space 22 an excess space having a volume that allows a decrease in the amount of water accompanying the negative electrode reaction during charging and discharging. As a result, it is possible to effectively prevent problems associated with the increase or decrease in the amount of water in the sealed space 22 (for example, liquid leakage, deformation of the container accompanying changes in the container internal pressure, etc.), and further improve the reliability of zinc air. . That is, as can be seen from the reaction formula described above, water decreases in the sealed space 22 during charging. On the other hand, water increases in the sealed space 22 during discharge. In this respect, since most conventional separators have water permeability, water can freely pass through the separators. However, since the separator 28 used in the present invention has a highly dense structure that does not have water permeability, water cannot freely pass through the separator 28, and the amount of electrolytic solution in the sealed space 22 is increased due to charge / discharge. It may increase unilaterally and cause problems such as liquid leakage. Thus, by providing the closed space 22 with the excess space 22a having a volume that allows a decrease in the amount of water associated with the negative electrode reaction during charging and discharging, the sealed space 22 can function as a buffer that can cope with an increase in the electrolyte 20 during discharging. . The increase / decrease amount of the water | moisture content in the sealed space 22 can be calculated based on the reaction formula mentioned above.
亜鉛空気電池セルパック10が放電末状態で構築される場合には、余剰空間22aが、充電時の負極反応に伴い減少することが見込まれる水分量を超える容積を有し、余剰空間22aには減少することが見込まれる量の電解液20が予め充填されているのが好ましい。一方、亜鉛空気電池セルパック10が満充電状態で構築される場合には、余剰空間22aが、放電時の負極反応に伴い増加することが見込まれる水分量を超える容積を有し、余剰空間22aには電解液20が予め充填されていないのが好ましい。
When the zinc-air battery cell pack 10 is constructed in a discharged state, the surplus space 22a has a volume exceeding the amount of moisture expected to decrease with the negative electrode reaction during charging, and the surplus space 22a It is preferable that the amount of the electrolyte solution 20 that is expected to decrease is filled in advance. On the other hand, when the zinc-air battery cell pack 10 is constructed in a fully charged state, the surplus space 22a has a volume exceeding the amount of water expected to increase with the negative electrode reaction during discharge, and the surplus space 22a. It is preferable that the electrolyte solution 20 is not filled in advance.
本発明の亜鉛空気電池セルパック10は、可撓性袋体12、セパレータ構造体14、空気極16、及び負極18が縦に設けられるのが好ましい。この場合、図1Aに示されるように、密閉空間22がその上方に余剰空間22aを有するのが好ましい。もっとも、ゲル状の電解液を使用した場合には、電解液の減少にも関わらず密閉空間22の充放電反応部分に電解液を保持可能となるため、密閉空間22の上方以外の部分(例えば側方部分や下方部分)に余剰空間22aを設けることも可能となり、設計の自由度が増加する。
In the zinc-air battery cell pack 10 of the present invention, the flexible bag 12, the separator structure 14, the air electrode 16, and the negative electrode 18 are preferably provided vertically. In this case, as shown in FIG. 1A, the sealed space 22 preferably has a surplus space 22a above it. However, when a gel electrolyte solution is used, the electrolyte solution can be held in the charge / discharge reaction portion of the sealed space 22 in spite of a decrease in the electrolyte solution. It is also possible to provide the surplus space 22a in the side portion and the lower portion), and the degree of freedom in design increases.
組電池
前述のとおり、本発明による亜鉛空気電池セルパック10は全体としてフレキシブル性に富んでいるため、図1Bに模式的に示されるように組電池100用の電池容器102に複数個のセルパック10を収容する際、スペーサ等で空気極16への空気の供給経路さえ確保しさえすれば、寸法公差等の設計上の要件をそれ程気にすることなく、複数の(望ましくはできるだけ多くの)セルパック10を電池容器に容易に詰め込むことができる。すなわち、本発明の好ましい態様によれば、電池容器102内に、本発明の亜鉛空気電池セルパック10が複数個詰め込まれている、組電池100が提供される。なお、各セルパック10の空気極16及び負極18にはそれぞれ集電体(図1Aでは空気極集電体17及び負極集電体19)、配線及び/又は端子が接続されて各セルパック10及び電池容器102の外部に電気を取り出せるように構成されることはいうまでもない。また、各セルパック10間にはスペーサ(図示せず)を介在させて、空気極16及び空気極集電体17への空気供給経路を確保するのが好ましい。電池容器102内において、複数の亜鉛空気電池セルパック10は互いに直列接続されてもよいし、互いに並列接続されてもよい。また、図1Bに示されるように電池容器102内は亜鉛空気電池セルパック10は縦向きに収容されるのが好ましいが、特段の不具合を生じないかぎり横向きに収容されてもよい。 As the battery pack described above, since the rich in flexibility as a whole zinc-airbattery cell pack 10 according to the present invention, a plurality of cell pack in the battery container 102 for the battery pack 100 as shown schematically in Figure 1B As long as the air supply path to the air electrode 16 is secured with a spacer or the like, a plurality of (preferably as many) as possible can be obtained without worrying about design requirements such as dimensional tolerances. The cell pack 10 can be easily packed in the battery container. That is, according to a preferred aspect of the present invention, there is provided an assembled battery 100 in which a plurality of zinc-air battery cell packs 10 of the present invention are packed in a battery container 102. Note that a current collector (air electrode current collector 17 and negative electrode current collector 19 in FIG. 1A), wiring, and / or terminals are connected to the air electrode 16 and the negative electrode 18 of each cell pack 10, respectively. Needless to say, the battery container 102 is configured so that electricity can be taken out. Further, it is preferable to provide an air supply path to the air electrode 16 and the air electrode current collector 17 by interposing a spacer (not shown) between the cell packs 10. In the battery container 102, the plurality of zinc-air battery cell packs 10 may be connected in series with each other or may be connected in parallel with each other. Further, as shown in FIG. 1B, the zinc-air battery cell pack 10 is preferably accommodated vertically in the battery container 102, but may be accommodated horizontally as long as no particular problem occurs.
前述のとおり、本発明による亜鉛空気電池セルパック10は全体としてフレキシブル性に富んでいるため、図1Bに模式的に示されるように組電池100用の電池容器102に複数個のセルパック10を収容する際、スペーサ等で空気極16への空気の供給経路さえ確保しさえすれば、寸法公差等の設計上の要件をそれ程気にすることなく、複数の(望ましくはできるだけ多くの)セルパック10を電池容器に容易に詰め込むことができる。すなわち、本発明の好ましい態様によれば、電池容器102内に、本発明の亜鉛空気電池セルパック10が複数個詰め込まれている、組電池100が提供される。なお、各セルパック10の空気極16及び負極18にはそれぞれ集電体(図1Aでは空気極集電体17及び負極集電体19)、配線及び/又は端子が接続されて各セルパック10及び電池容器102の外部に電気を取り出せるように構成されることはいうまでもない。また、各セルパック10間にはスペーサ(図示せず)を介在させて、空気極16及び空気極集電体17への空気供給経路を確保するのが好ましい。電池容器102内において、複数の亜鉛空気電池セルパック10は互いに直列接続されてもよいし、互いに並列接続されてもよい。また、図1Bに示されるように電池容器102内は亜鉛空気電池セルパック10は縦向きに収容されるのが好ましいが、特段の不具合を生じないかぎり横向きに収容されてもよい。 As the battery pack described above, since the rich in flexibility as a whole zinc-air
多孔質基材付きLDHセパレータ
前述のとおり、本発明の亜鉛空気電池セルパックに好ましく用いられる多孔質基材付きセパレータは、水酸化物イオン伝導性を有する無機固体電解質体からなるセパレータと、セパレータの少なくとも一方の面に設けられる多孔質基材とを備えたものである。無機固体電解質体は透水性及び通気性を有しない程に緻密化された膜状又は層状の形態である。特に好ましい多孔質基材付きセパレータは、多孔質基材と、この多孔質基材上及び/又は多孔質基材中に形成されるセパレータ層とを備えており、セパレータ層が前述したような層状複水酸化物(LDH)を含んでなるものである。セパレータ層は透水性及び通気性を有しないのが好ましい。すなわち、多孔質材料は孔の存在により透水性及び通気性を有しうるが、セパレータ層は透水性及び通気性を有しない程にまでLDHで緻密化されているのが好ましい。セパレータ層は多孔質基材上に形成されるのが好ましい。例えば、図2に示されるように、多孔質基材30上にセパレータ層28がLDH緻密膜として形成されるのが好ましい。この場合、多孔質基材30の性質上、図2に示されるように多孔質基材30の表面及びその近傍の孔内にもLDHが形成されてよいのはいうまでもない。あるいは、図3に示されるように、多孔質基材30中(例えば多孔質基材30の表面及びその近傍の孔内)にLDHが緻密に形成され、それにより多孔質基材30の少なくとも一部がセパレータ層28’を構成するものであってもよい。この点、図3に示される態様は図2に示される態様のセパレータ層28における膜相当部分を除去した構成となっているが、これに限定されず、多孔質基材30の表面と平行にセパレータ層が存在していればよい。いずれにしても、セパレータ層は透水性及び通気性を有しない程にまでLDHで緻密化されているため、水酸化物イオン伝導性を有するが透水性及び通気性を有しない(すなわち基本的に水酸化物イオンのみを通す)という特有の機能を有することができる。 LDH separator with porous base material As described above, the separator with a porous base material preferably used for the zinc-air battery cell pack of the present invention includes a separator composed of an inorganic solid electrolyte having hydroxide ion conductivity, And a porous substrate provided on at least one surface. The inorganic solid electrolyte body is in the form of a film or a layer that is so dense that it does not have water permeability and air permeability. A particularly preferable separator with a porous substrate includes a porous substrate and a separator layer formed on and / or in the porous substrate, and the separator layer is in the form of a layer as described above. It comprises double hydroxide (LDH). The separator layer preferably does not have water permeability and air permeability. That is, the porous material can have water permeability and air permeability due to the presence of pores, but the separator layer is preferably densified with LDH to such an extent that it does not have water permeability and air permeability. The separator layer is preferably formed on a porous substrate. For example, as shown in FIG. 2, theseparator layer 28 is preferably formed on the porous substrate 30 as an LDH dense film. In this case, needless to say, LDH may be formed on the surface of the porous substrate 30 and in the pores in the vicinity thereof as shown in FIG. 2 due to the nature of the porous substrate 30. Alternatively, as shown in FIG. 3, LDH is densely formed in the porous substrate 30 (for example, the surface of the porous substrate 30 and the pores in the vicinity thereof), whereby at least one of the porous substrates 30 is formed. The part may constitute separator layer 28 '. In this regard, the embodiment shown in FIG. 3 has a configuration in which the film equivalent portion in the separator layer 28 of the embodiment shown in FIG. 2 is removed, but is not limited to this, and is parallel to the surface of the porous substrate 30. A separator layer only needs to be present. In any case, since the separator layer is densified with LDH to such an extent that it does not have water permeability and air permeability, it has hydroxide ion conductivity but does not have water permeability and air permeability (ie basically It can have a unique function of passing only hydroxide ions).
前述のとおり、本発明の亜鉛空気電池セルパックに好ましく用いられる多孔質基材付きセパレータは、水酸化物イオン伝導性を有する無機固体電解質体からなるセパレータと、セパレータの少なくとも一方の面に設けられる多孔質基材とを備えたものである。無機固体電解質体は透水性及び通気性を有しない程に緻密化された膜状又は層状の形態である。特に好ましい多孔質基材付きセパレータは、多孔質基材と、この多孔質基材上及び/又は多孔質基材中に形成されるセパレータ層とを備えており、セパレータ層が前述したような層状複水酸化物(LDH)を含んでなるものである。セパレータ層は透水性及び通気性を有しないのが好ましい。すなわち、多孔質材料は孔の存在により透水性及び通気性を有しうるが、セパレータ層は透水性及び通気性を有しない程にまでLDHで緻密化されているのが好ましい。セパレータ層は多孔質基材上に形成されるのが好ましい。例えば、図2に示されるように、多孔質基材30上にセパレータ層28がLDH緻密膜として形成されるのが好ましい。この場合、多孔質基材30の性質上、図2に示されるように多孔質基材30の表面及びその近傍の孔内にもLDHが形成されてよいのはいうまでもない。あるいは、図3に示されるように、多孔質基材30中(例えば多孔質基材30の表面及びその近傍の孔内)にLDHが緻密に形成され、それにより多孔質基材30の少なくとも一部がセパレータ層28’を構成するものであってもよい。この点、図3に示される態様は図2に示される態様のセパレータ層28における膜相当部分を除去した構成となっているが、これに限定されず、多孔質基材30の表面と平行にセパレータ層が存在していればよい。いずれにしても、セパレータ層は透水性及び通気性を有しない程にまでLDHで緻密化されているため、水酸化物イオン伝導性を有するが透水性及び通気性を有しない(すなわち基本的に水酸化物イオンのみを通す)という特有の機能を有することができる。 LDH separator with porous base material As described above, the separator with a porous base material preferably used for the zinc-air battery cell pack of the present invention includes a separator composed of an inorganic solid electrolyte having hydroxide ion conductivity, And a porous substrate provided on at least one surface. The inorganic solid electrolyte body is in the form of a film or a layer that is so dense that it does not have water permeability and air permeability. A particularly preferable separator with a porous substrate includes a porous substrate and a separator layer formed on and / or in the porous substrate, and the separator layer is in the form of a layer as described above. It comprises double hydroxide (LDH). The separator layer preferably does not have water permeability and air permeability. That is, the porous material can have water permeability and air permeability due to the presence of pores, but the separator layer is preferably densified with LDH to such an extent that it does not have water permeability and air permeability. The separator layer is preferably formed on a porous substrate. For example, as shown in FIG. 2, the
多孔質基材は、その上及び/又は中にLDH含有セパレータ層を形成できるものが好ましく、その材質や多孔構造は特に限定されない。多孔質基材上及び/又は中にLDH含有セパレータ層を形成するのが典型的ではあるが、無孔質基材上にLDH含有セパレータ層を成膜し、その後公知の種々の手法により無孔質基材を多孔化してもよい。いずれにしても、多孔質基材は透水性を有する多孔構造を有するのが、電池用セパレータとして電池に組み込まれた場合に電解液をセパレータ層に到達可能に構成できる点で好ましい。
The porous substrate is preferably one that can form an LDH-containing separator layer on and / or in the porous substrate, and the material and porous structure are not particularly limited. Typically, an LDH-containing separator layer is formed on and / or in a porous substrate, but an LDH-containing separator layer is formed on a non-porous substrate and then non-porous by various known techniques. The porous substrate may be made porous. In any case, it is preferable that the porous base material has a porous structure having water permeability in that the electrolyte solution can reach the separator layer when incorporated into the battery as a battery separator.
多孔質基材は、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成されるのが好ましい。多孔質基材は、セラミックス材料で構成されるのがより好ましい。この場合、セラミックス材料の好ましい例としては、アルミナ、ジルコニア、チタニア、マグネシア、スピネル、カルシア、コージライト、ゼオライト、ムライト、フェライト、酸化亜鉛、炭化ケイ素、及びそれらの任意の組合せが挙げられ、より好ましくは、アルミナ、ジルコニア、チタニア、及びそれらの任意の組合せであり、特に好ましくはアルミナ及びジルコニアであり、最も好ましくはアルミナである。これらの多孔質セラミックスを用いると緻密性に優れたLDH含有セパレータ層を形成しやすい。金属材料の好ましい例としては、アルミニウム及び亜鉛が挙げられる。高分子材料の好ましい例としては、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、親水化したフッ素樹脂(四フッ素化樹脂:PTFE等)、及びそれらの任意の組合せが挙げられる。上述した各種の好ましい材料から電池の電解液に対する耐性として耐アルカリ性に優れたものを適宜選択するのが更に好ましい。
The porous substrate is preferably composed of at least one selected from the group consisting of ceramic materials, metal materials, and polymer materials. More preferably, the porous substrate is made of a ceramic material. In this case, preferable examples of the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable. Is alumina, zirconia, titania, and any combination thereof, particularly preferably alumina and zirconia, most preferably alumina. When these porous ceramics are used, it is easy to form an LDH-containing separator layer having excellent denseness. Preferable examples of the metal material include aluminum and zinc. Preferable examples of the polymer material include polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, hydrofluorinated fluororesin (tetrafluorinated resin: PTFE, etc.), and any combination thereof. It is more preferable to appropriately select a material excellent in alkali resistance as the resistance to the battery electrolyte from the various preferable materials described above.
多孔質基材は0.001~1.5μmの平均気孔径を有するのが好ましく、より好ましくは0.001~1.25μm、さらに好ましくは0.001~1.0μm、特に好ましくは0.001~0.75μm、最も好ましくは0.001~0.5μmである。これらの範囲内とすることで多孔質基材に所望の透水性を確保しながら、透水性を有しない程に緻密なLDH含有セパレータ層を形成することができる。本発明において、平均気孔径の測定は多孔質基材の表面の電子顕微鏡(SEM)画像をもとに気孔の最長距離を測長することにより行うことができる。この測定に用いる電子顕微鏡(SEM)画像の倍率は20000倍であり、得られた全ての気孔径をサイズ順に並べて、その平均値から上位15点及び下位15点、合わせて1視野あたり30点で2視野分の平均値を算出して、平均気孔径を得ることができる。測長には、SEMのソフトウェアの測長機能や画像解析ソフト(例えば、Photoshop、Adobe社製)等を用いることができる。
The porous substrate preferably has an average pore diameter of 0.001 to 1.5 μm, more preferably 0.001 to 1.25 μm, still more preferably 0.001 to 1.0 μm, and particularly preferably 0.001. 0.75 μm, most preferably 0.001 to 0.5 μm. By setting it within these ranges, it is possible to form an LDH-containing separator layer that is so dense that it does not have water permeability while ensuring desired water permeability in the porous substrate. In the present invention, the average pore diameter can be measured by measuring the longest distance of the pores based on an electron microscope (SEM) image of the surface of the porous substrate. The magnification of the electron microscope (SEM) image used for this measurement is 20000 times, and all obtained pore diameters are arranged in order of size, and the top 15 points and the bottom 15 points from the average value, with 30 points per field of view in total. The average pore diameter can be obtained by calculating an average value for two visual fields. For the length measurement, a length measurement function of SEM software, image analysis software (for example, Photoshop, manufactured by Adobe) or the like can be used.
多孔質基材の表面は、10~60%の気孔率を有するのが好ましく、より好ましくは15~55%、さらに好ましくは20~50%である。これらの範囲内とすることで多孔質基材に所望の透水性を確保しながら、透水性を有しない程に緻密なLDH含有セパレータ層を形成することができる。ここで、多孔質基材の表面の気孔率を採用しているのは、以下に述べる画像処理を用いた気孔率の測定がしやすいことによるものであり、多孔質基材の表面の気孔率は多孔質基材内部の気孔率を概ね表しているといえるからである。すなわち、多孔質基材の表面が緻密であれば多孔質基材の内部もまた同様に緻密であるといえる。本発明において、多孔質基材の表面の気孔率は画像処理を用いた手法により以下のようにして測定することができる。すなわち、1)多孔質基材の表面の電子顕微鏡(SEM)画像(倍率10000倍以上)を取得し、2)Photoshop(Adobe社製)等の画像解析ソフトを用いてグレースケールのSEM画像を読み込み、3)[イメージ]→[色調補正]→[2階調化]の手順で白黒の2値画像を作成し、4)黒い部分が占めるピクセル数を画像の全ピクセル数で割った値を気孔率(%)とする。なお、この画像処理による気孔率の測定は多孔質基材表面の6μm×6μmの領域について行われるのが好ましく、より客観的な指標とするためには、任意に選択された3箇所の領域について得られた気孔率の平均値を採用するのがより好ましい。
The surface of the porous substrate preferably has a porosity of 10 to 60%, more preferably 15 to 55%, still more preferably 20 to 50%. By setting it within these ranges, it is possible to form an LDH-containing separator layer that is so dense that it does not have water permeability while ensuring desired water permeability in the porous substrate. Here, the porosity of the surface of the porous substrate is adopted because it is easy to measure the porosity using the image processing described below, and the porosity of the surface of the porous substrate. This is because it can be said that it generally represents the porosity inside the porous substrate. That is, if the surface of the porous substrate is dense, the inside of the porous substrate can be said to be dense as well. In the present invention, the porosity of the surface of the porous substrate can be measured as follows by a technique using image processing. That is, 1) An electron microscope (SEM) image of the surface of the porous substrate (acquisition of 10,000 times or more) is obtained, and 2) a grayscale SEM image is read using image analysis software such as Photoshop (manufactured by Adobe). 3) Create a black-and-white binary image by the procedure of [Image] → [Tonal Correction] → [Turn Tone], and 4) The value obtained by dividing the number of pixels occupied by the black part by the total number of pixels in the image Rate (%). The porosity measurement by this image processing is preferably performed for a 6 μm × 6 μm region on the surface of the porous substrate. In order to obtain a more objective index, three arbitrarily selected regions are used. It is more preferable to employ the average value of the obtained porosity.
セパレータ層は、多孔質基材上及び/又は多孔質基材中、好ましくは多孔質基材上に形成される。例えば、図2に示されるようにセパレータ層28が多孔質基材30上に形成される場合には、セパレータ層28はLDH緻密膜の形態であり、このLDH緻密膜は典型的にはLDHからなる。また、図3に示されるようにセパレータ層28’が多孔質基材30中に形成される場合には、多孔質基材30中(典型的には多孔質基材30の表面及びその近傍の孔内)にLDHが緻密に形成されることから、セパレータ層28’は典型的には多孔質基材30の少なくとも一部及びLDHからなる。図3に示されるセパレータ層28’は、図2に示されるセパレータ層28における膜相当部分を研磨、切削等の公知の手法により除去することにより得ることができる。
The separator layer is formed on the porous substrate and / or in the porous substrate, preferably on the porous substrate. For example, when the separator layer 28 is formed on the porous substrate 30 as shown in FIG. 2, the separator layer 28 is in the form of an LDH dense film, typically from the LDH. Become. As shown in FIG. 3, when the separator layer 28 'is formed in the porous substrate 30, the surface of the porous substrate 30 (typically the surface of the porous substrate 30 and the vicinity thereof). Since the LDH is densely formed in the pores), the separator layer 28 'is typically composed of at least a part of the porous substrate 30 and LDH. The separator layer 28 ′ shown in FIG. 3 can be obtained by removing a portion corresponding to the film in the separator layer 28 shown in FIG. 2 by a known method such as polishing or cutting.
セパレータ層は透水性及び通気性を有しないのが好ましい。例えば、セパレータ層はその片面を25℃で1週間水と接触させても水を透過させず、また、その片面に0.5atmの内外差圧でヘリウムガスを加圧してもヘリウムガスを透過させない。すなわち、セパレータ層は透水性及び通気性を有しない程にまでLDHで緻密化されているのが好ましい。もっとも、局所的且つ/又は偶発的に透水性を有する欠陥が機能膜に存在する場合には、当該欠陥を適当な補修剤(例えばエポキシ樹脂等)で埋めて補修することで水不透性及び気体不透過性を確保してもよく、そのような補修剤は必ずしも水酸化物イオン伝導性を有する必要はない。いずれにしても、セパレータ層(典型的にはLDH緻密膜)の表面が20%以下の気孔率を有するのが好ましく、より好ましくは15%以下、さらに好ましくは10%以下、特に好ましくは7%以下である。セパレータ層の表面の気孔率が低ければ低いほど、セパレータ層(典型的にはLDH緻密膜)の緻密性が高いことを意味し、好ましいといえる。ここで、セパレータ層の表面の気孔率を採用しているのは、以下に述べる画像処理を用いた気孔率の測定がしやすいことによるものであり、セパレータ層の表面の気孔率はセパレータ層内部の気孔率を概ね表しているといえるからである。すなわち、セパレータ層の表面が緻密であればセパレータ層の内部もまた同様に緻密であるといえる。本発明において、セパレータ層の表面の気孔率は画像処理を用いた手法により以下のようにして測定することができる。すなわち、1)セパレータ層の表面の電子顕微鏡(SEM)画像(倍率10000倍以上)を取得し、2)Photoshop(Adobe社製)等の画像解析ソフトを用いてグレースケールのSEM画像を読み込み、3)[イメージ]→[色調補正]→[2階調化]の手順で白黒の2値画像を作成し、4)黒い部分が占めるピクセル数を画像の全ピクセル数で割った値を気孔率(%)とする。なお、この画像処理による気孔率の測定はセパレータ層表面の6μm×6μmの領域について行われるのが好ましく、より客観的な指標とするためには、任意に選択された3箇所の領域について得られた気孔率の平均値を採用するのがより好ましい。
The separator layer preferably has no water permeability and air permeability. For example, the separator layer does not allow permeation of water even if one side of the separator layer is brought into contact with water at 25 ° C. for 1 week, and does not allow permeation of helium gas even if helium gas is pressurized on the one side with a pressure difference of 0.5 atm. . That is, the separator layer is preferably densified with LDH to such an extent that it does not have water permeability and air permeability. However, when a defect having water permeability locally and / or accidentally exists in the functional film, the defect is filled with an appropriate repair agent (for example, epoxy resin) to repair the water impermeability and Gas impermeability may be ensured and such repair agents need not necessarily have hydroxide ion conductivity. In any case, the surface of the separator layer (typically the LDH dense film) preferably has a porosity of 20% or less, more preferably 15% or less, still more preferably 10% or less, and particularly preferably 7%. It is as follows. It means that the lower the porosity of the surface of the separator layer, the higher the density of the separator layer (typically the LDH dense film), which is preferable. Here, the porosity of the surface of the separator layer is adopted because it is easy to measure the porosity using the image processing described below, and the porosity of the surface of the separator layer is determined inside the separator layer. It is because it can be said that the porosity of is generally expressed. That is, if the surface of the separator layer is dense, it can be said that the inside of the separator layer is also dense. In the present invention, the porosity of the surface of the separator layer can be measured as follows by a technique using image processing. That is, 1) An electron microscope (SEM) image (10,000 times or more magnification) of the surface of the separator layer is acquired, and 2) a gray-scale SEM image is read using image analysis software such as Photoshop (manufactured by Adobe). ) Create a black-and-white binary image by the procedure of [Image] → [Tone Correction] → [2 Gradation], and 4) Porosity (the value obtained by dividing the number of pixels occupied by the black part by the total number of pixels in the image) %). The porosity measurement by this image processing is preferably performed for a 6 μm × 6 μm region on the surface of the separator layer. In order to obtain a more objective index, it is obtained for three arbitrarily selected regions. It is more preferable to adopt the average value of the porosity.
層状複水酸化物は複数の板状粒子(すなわちLDH板状粒子)の集合体で構成され、当該複数の板状粒子がそれらの板面が多孔質基材の表面(基材面)と垂直に又は斜めに交差するような向きに配向しているのが好ましい。この態様は、図2に示されるように、多孔質基材30上にセパレータ層28がLDH緻密膜として形成される場合に特に好ましく実現可能な態様であるが、図3に示されるように、多孔質基材30中(典型的には多孔質基材30の表面及びその近傍の孔内)にLDHが緻密に形成され、それにより多孔質基材30の少なくとも一部がセパレータ層28’を構成する場合においても実現可能である。
The layered double hydroxide is composed of an aggregate of a plurality of plate-like particles (that is, LDH plate-like particles), and the plurality of plate-like particles have their plate surfaces perpendicular to the surface of the porous substrate (substrate surface). It is preferably oriented in such a direction as to cross each other at an angle. As shown in FIG. 2, this embodiment is a particularly preferable and feasible embodiment when the separator layer 28 is formed as an LDH dense film on the porous substrate 30, but as shown in FIG. 3, LDH is densely formed in the porous substrate 30 (typically in the surface of the porous substrate 30 and in the pores in the vicinity thereof), whereby at least a part of the porous substrate 30 forms the separator layer 28 ′. This can be realized even in the case of configuration.
すなわち、LDH結晶は図4に示されるような層状構造を持った板状粒子の形態を有することが知られているが、上記垂直又は斜めの配向は、LDH含有セパレータ層(例えばLDH緻密膜)にとって極めて有利な特性である。というのも、配向されたLDH含有セパレータ層(例えば配向LDH緻密膜)には、LDH板状粒子が配向する方向(即ちLDHの層と平行方向)の水酸化物イオン伝導度が、これと垂直方向の伝導度よりも格段に高いという伝導度異方性があるためである。実際、本出願人は、LDHの配向バルク体において、配向方向における伝導度(S/cm)が配向方向と垂直な方向の伝導度(S/cm)と比べて1桁高いとの知見を得ている。すなわち、本態様のLDH含有セパレータ層における上記垂直又は斜めの配向は、LDH配向体が持ちうる伝導度異方性を層厚方向(すなわちセパレータ層又は多孔質基材の表面に対して垂直方向)に最大限または有意に引き出すものであり、その結果、層厚方向への伝導度を最大限又は有意に高めることができる。その上、LDH含有セパレータ層は層形態を有するため、バルク形態のLDHよりも低抵抗を実現することができる。このような配向性を備えたLDH含有セパレータ層は、層厚方向に水酸化物イオンを伝導させやすくなる。その上、緻密化されているため、層厚方向への高い伝導度及び緻密性が望まれるセパレータに極めて適する。
That is, the LDH crystal is known to have the form of a plate-like particle having a layered structure as shown in FIG. 4, but the vertical or oblique orientation is determined by the LDH-containing separator layer (for example, an LDH dense film). This is a very advantageous property for the user. This is because, in an oriented LDH-containing separator layer (for example, an oriented LDH dense film), the hydroxide ion conductivity in the direction in which the LDH plate-like particles are oriented (that is, the direction parallel to the LDH layer) is perpendicular to this. This is because there is a conductivity anisotropy that is much higher than the conductivity in the direction. In fact, the present applicant has obtained knowledge that the conductivity (S / cm) in the alignment direction is one order of magnitude higher than the conductivity (S / cm) in the direction perpendicular to the alignment direction in the LDH oriented bulk body. ing. That is, the vertical or oblique orientation in the LDH-containing separator layer of the present embodiment indicates the conductivity anisotropy that the LDH oriented body can have in the layer thickness direction (that is, the direction perpendicular to the surface of the separator layer or the porous substrate). As a result, the conductivity in the layer thickness direction can be maximized or significantly increased. In addition, since the LDH-containing separator layer has a layer form, lower resistance can be realized than a bulk form LDH. An LDH-containing separator layer having such an orientation is easy to conduct hydroxide ions in the layer thickness direction. In addition, since it is densified, it is extremely suitable for a separator that requires high conductivity and denseness in the layer thickness direction.
特に好ましくは、LDH含有セパレータ層(典型的にはLDH緻密膜)においてLDH板状粒子が垂直方向に高度に配向している。この高度な配向は、セパレータ層の表面をX線回折法により測定した場合に、(003)面のピークが実質的に検出されないか又は(012)面のピークよりも小さく検出されることで確認可能なものである(但し、(012)面に起因するピークと同位置に回折ピークが観察される多孔質基材を用いた場合には、LDH板状粒子に起因する(012)面のピークを特定できないことから、この限りでない)。この特徴的なピーク特性は、セパレータ層を構成するLDH板状粒子がセパレータ層に対して垂直方向に配向していることを示す。ここで、本明細書において「垂直方向」とは厳密な垂直方向のみならずそれに類する略垂直方向を含む概念であることはいうまでもない。すなわち、(003)面のピークは無配向のLDH粉末をX線回折した場合に観察される最も強いピークとして知られているが、配向LDH含有セパレータ層にあっては、LDH板状粒子がセパレータ層に対して垂直方向に配向していることで(003)面のピークが実質的に検出されないか又は(012)面のピークよりも小さく検出される。これは、(003)面が属するc軸方向(00l)面(lは3及び6である)がLDH板状粒子の層状構造と平行な面であるため、このLDH板状粒子がセパレータ層に対して垂直方向に配向しているとLDH層状構造も垂直方向を向くこととなる結果、セパレータ層表面をX線回折法により測定した場合に(00l)面(lは3及び6である)のピークが現れないか又は現れにくくなるからである。特に(003)面のピークは、それが存在する場合、(006)面のピークよりも強く出る傾向があるから、(006)面のピークよりも垂直方向の配向の有無を評価しやすいといえる。したがって、配向LDH含有セパレータ層は、(003)面のピークが実質的に検出されないか又は(012)面のピークよりも小さく検出されるのが、垂直方向への高度な配向を示唆することから好ましいといえる。
Particularly preferably, the LDH plate-like particles are highly oriented in the vertical direction in the LDH-containing separator layer (typically the LDH dense film). This high degree of orientation is confirmed by the fact that when the surface of the separator layer is measured by an X-ray diffraction method, the peak of the (003) plane is not substantially detected or smaller than the peak of the (012) plane. (However, when a porous substrate in which a diffraction peak is observed at the same position as the peak due to the (012) plane is used, the peak of the (012) plane due to the LDH plate-like particle is used. This is not the case). This characteristic peak characteristic indicates that the LDH plate-like particles constituting the separator layer are oriented in a direction perpendicular to the separator layer. Here, it is needless to say that the “vertical direction” in this specification includes not only a strict vertical direction but also a substantially vertical direction similar thereto. That is, the (003) plane peak is known as the strongest peak observed when X-ray diffraction is performed on non-oriented LDH powder. In the oriented LDH-containing separator layer, the LDH plate-like particles are separated from the separator. Due to the orientation in the direction perpendicular to the layer, the peak of the (003) plane is not substantially detected or is smaller than the peak of the (012) plane. This is because the c-axis direction (00l) plane (l is 3 and 6) to which the (003) plane belongs is a plane parallel to the layered structure of the LDH plate-like particles. On the other hand, when oriented in the vertical direction, the LDH layered structure also faces the vertical direction. As a result, when the separator layer surface is measured by the X-ray diffraction method, the (00l) plane (l is 3 and 6). This is because the peak does not appear or becomes difficult to appear. In particular, the (003) plane peak tends to be stronger than the (006) plane peak when it exists, so it can be said that it is easier to evaluate the presence of vertical orientation than the (006) plane peak. . Therefore, in the oriented LDH-containing separator layer, the (003) plane peak is substantially not detected or smaller than the (012) plane peak, suggesting a high degree of vertical orientation. It can be said that it is preferable.
セパレータ層は100μm以下の厚さを有するのが好ましく、より好ましくは75μm以下、さらに好ましくは50μm以下、特に好ましくは25μm以下、最も好ましくは5μm以下である。このように薄いことでセパレータの低抵抗化を実現できる。セパレータ層が多孔質基材上にLDH緻密膜として形成されるのが好ましく、この場合、セパレータ層の厚さはLDH緻密膜の厚さに相当する。また、セパレータ層が多孔質基材中に形成される場合には、セパレータ層の厚さは多孔質基材の少なくとも一部及びLDHからなる複合層の厚さに相当し、セパレータ層が多孔質基材上及び中にまたがって形成される場合にはLDH緻密膜と上記複合層の合計厚さに相当する。いずれにしても、上記のような厚さであると、電池用途等への実用化に適した所望の低抵抗を実現することができる。LDH配向膜の厚さの下限値は用途に応じて異なるため特に限定されないが、セパレータ等の機能膜として望まれるある程度の堅さを確保するためには厚さ1μm以上であるのが好ましく、より好ましくは2μm以上である。
The separator layer preferably has a thickness of 100 μm or less, more preferably 75 μm or less, still more preferably 50 μm or less, particularly preferably 25 μm or less, and most preferably 5 μm or less. Thus, the resistance of the separator can be reduced by being thin. The separator layer is preferably formed as an LDH dense film on the porous substrate. In this case, the thickness of the separator layer corresponds to the thickness of the LDH dense film. When the separator layer is formed in the porous substrate, the thickness of the separator layer corresponds to the thickness of the composite layer composed of at least part of the porous substrate and LDH, and the separator layer is porous. When formed over and in the substrate, this corresponds to the total thickness of the LDH dense film and the composite layer. In any case, when the thickness is as described above, a desired low resistance suitable for practical use in battery applications and the like can be realized. The lower limit of the thickness of the LDH alignment film is not particularly limited because it varies depending on the application, but in order to ensure a certain degree of hardness desired as a functional film such as a separator, the thickness is preferably 1 μm or more. Preferably it is 2 micrometers or more.
上述した多孔質基材付きLDHセパレータは、(1)多孔質基材を用意し、(2)マグネシウムイオン(Mg2+)及びアルミニウムイオン(Al3+)を0.20~0.40mol/Lの合計濃度で含み、かつ、尿素を含んでなる原料水溶液に、多孔質基材を浸漬させ、(3)原料水溶液中で多孔質基材を水熱処理して、層状複水酸化物を含んでなるセパレータ層を多孔質基材上及び/又は多孔質基材中に形成させることにより製造することができる。
The LDH separator with a porous substrate described above is (1) a porous substrate is prepared, and (2) a total of 0.20 to 0.40 mol / L of magnesium ions (Mg 2+ ) and aluminum ions (Al 3+ ). A separator comprising a layered double hydroxide by immersing the porous substrate in a raw material aqueous solution containing urea at a concentration and (3) hydrothermally treating the porous substrate in the raw material aqueous solution It can be produced by forming a layer on and / or in a porous substrate.
(1)多孔質基材の用意
多孔質基材は、前述したとおりであり、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成されるのが好ましい。多孔質基材は、セラミックス材料で構成されるのがより好ましい。この場合、セラミックス材料の好ましい例としては、アルミナ、ジルコニア、チタニア、マグネシア、スピネル、カルシア、コージライト、ゼオライト、ムライト、フェライト、酸化亜鉛、炭化ケイ素、及びそれらの任意の組合せが挙げられ、より好ましくは、アルミナ、ジルコニア、チタニア、及びそれらの任意の組合せであり、特に好ましくはアルミナ及びジルコニアであり、最も好ましくはアルミナである。これらの多孔質セラミックスを用いるとLDH含有セパレータ層の緻密性を向上しやすい傾向がある。セラミックス材料製の多孔質基材を用いる場合、超音波洗浄、イオン交換水での洗浄等を多孔質基材に施すのが好ましい。 (1) Preparation of porous substrate The porous substrate is as described above, and is preferably composed of at least one selected from the group consisting of ceramic materials, metal materials, and polymer materials. More preferably, the porous substrate is made of a ceramic material. In this case, preferable examples of the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable. Is alumina, zirconia, titania, and any combination thereof, particularly preferably alumina and zirconia, most preferably alumina. When these porous ceramics are used, the density of the LDH-containing separator layer tends to be improved. When using a porous substrate made of a ceramic material, it is preferable to subject the porous substrate to ultrasonic cleaning, cleaning with ion exchange water, and the like.
多孔質基材は、前述したとおりであり、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成されるのが好ましい。多孔質基材は、セラミックス材料で構成されるのがより好ましい。この場合、セラミックス材料の好ましい例としては、アルミナ、ジルコニア、チタニア、マグネシア、スピネル、カルシア、コージライト、ゼオライト、ムライト、フェライト、酸化亜鉛、炭化ケイ素、及びそれらの任意の組合せが挙げられ、より好ましくは、アルミナ、ジルコニア、チタニア、及びそれらの任意の組合せであり、特に好ましくはアルミナ及びジルコニアであり、最も好ましくはアルミナである。これらの多孔質セラミックスを用いるとLDH含有セパレータ層の緻密性を向上しやすい傾向がある。セラミックス材料製の多孔質基材を用いる場合、超音波洗浄、イオン交換水での洗浄等を多孔質基材に施すのが好ましい。 (1) Preparation of porous substrate The porous substrate is as described above, and is preferably composed of at least one selected from the group consisting of ceramic materials, metal materials, and polymer materials. More preferably, the porous substrate is made of a ceramic material. In this case, preferable examples of the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable. Is alumina, zirconia, titania, and any combination thereof, particularly preferably alumina and zirconia, most preferably alumina. When these porous ceramics are used, the density of the LDH-containing separator layer tends to be improved. When using a porous substrate made of a ceramic material, it is preferable to subject the porous substrate to ultrasonic cleaning, cleaning with ion exchange water, and the like.
(2)原料水溶液への浸漬
次に、多孔質基材を原料水溶液に所望の向きで(例えば水平又は垂直に)浸漬させる。多孔質基材を水平に保持する場合は、吊るす、浮かせる、容器の底に接するように多孔質基材を配置すればよく、例えば、容器の底から原料水溶液中に浮かせた状態で多孔質基材を固定としてもよい。多孔質基材を垂直に保持する場合は、容器の底に多孔質基材を垂直に設置できるような冶具を置けばよい。いずれにしても、多孔質基材にLDHを垂直方向又はそれに近い方向(すなわちLDH板状粒子がそれらの板面が多孔質基材の表面(基材面)と垂直に又は斜めに交差するような向きに)に成長させる構成ないし配置とするのが好ましい。原料水溶液は、マグネシウムイオン(Mg2+)及びアルミニウムイオン(Al3+)を所定の合計濃度で含み、かつ、尿素を含んでなる。尿素が存在することで尿素の加水分解を利用してアンモニアが溶液中に発生することによりpH値が上昇し、共存する金属イオンが水酸化物を形成することによりLDHを得ることができる。また、加水分解に二酸化炭素の発生を伴うため、陰イオンが炭酸イオン型のLDHを得ることができる。原料水溶液に含まれるマグネシウムイオン及びアルミニウムイオンの合計濃度(Mg2++Al3+)は0.20~0.40mol/Lが好ましく、より好ましくは0.22~0.38mol/Lであり、さらに好ましくは0.24~0.36mol/L、特に好ましくは0.26~0.34mol/Lである。このような範囲内の濃度であると核生成と結晶成長をバランスよく進行させることができ、配向性のみならず緻密性にも優れたLDH含有セパレータ層を得ることが可能となる。すなわち、マグネシウムイオン及びアルミニウムイオンの合計濃度が低いと核生成に比べて結晶成長が支配的となり、粒子数が減少して粒子サイズが増大する一方、この合計濃度が高いと結晶成長に比べて核生成が支配的となり、粒子数が増大して粒子サイズが減少するものと考えられる。 (2) Immersion in raw material aqueous solution Next, the porous substrate is immersed in the raw material aqueous solution in a desired direction (for example, horizontally or vertically). When the porous substrate is held horizontally, the porous substrate may be suspended, floated, or disposed so as to be in contact with the bottom of the container. For example, the porous substrate is suspended from the bottom of the container in the raw material aqueous solution. The material may be fixed. When the porous substrate is held vertically, a jig that can set the porous substrate vertically on the bottom of the container may be placed. In any case, the LDH is perpendicular to or close to the porous substrate (that is, the LDH plate-like particles are such that their plate surfaces intersect the surface (substrate surface) of the porous substrate perpendicularly or obliquely. It is preferable to adopt a configuration or arrangement in which the growth is performed in any direction. The raw material aqueous solution contains magnesium ions (Mg 2+ ) and aluminum ions (Al 3+ ) at a predetermined total concentration, and contains urea. By the presence of urea, ammonia is generated in the solution by utilizing hydrolysis of urea, so that the pH value increases, and the coexisting metal ions form hydroxides to obtain LDH. Further, since carbon dioxide is generated in the hydrolysis, LDH in which the anion is carbonate ion type can be obtained. The total concentration (Mg 2+ + Al 3+ ) of magnesium ions and aluminum ions contained in the raw material aqueous solution is preferably 0.20 to 0.40 mol / L, more preferably 0.22 to 0.38 mol / L, still more preferably The amount is 0.24 to 0.36 mol / L, particularly preferably 0.26 to 0.34 mol / L. When the concentration is within such a range, nucleation and crystal growth can proceed in a well-balanced manner, and an LDH-containing separator layer that is excellent not only in orientation but also in denseness can be obtained. That is, when the total concentration of magnesium ions and aluminum ions is low, crystal growth becomes dominant compared to nucleation, and the number of particles decreases and particle size increases. It is considered that the generation becomes dominant, the number of particles increases, and the particle size decreases.
次に、多孔質基材を原料水溶液に所望の向きで(例えば水平又は垂直に)浸漬させる。多孔質基材を水平に保持する場合は、吊るす、浮かせる、容器の底に接するように多孔質基材を配置すればよく、例えば、容器の底から原料水溶液中に浮かせた状態で多孔質基材を固定としてもよい。多孔質基材を垂直に保持する場合は、容器の底に多孔質基材を垂直に設置できるような冶具を置けばよい。いずれにしても、多孔質基材にLDHを垂直方向又はそれに近い方向(すなわちLDH板状粒子がそれらの板面が多孔質基材の表面(基材面)と垂直に又は斜めに交差するような向きに)に成長させる構成ないし配置とするのが好ましい。原料水溶液は、マグネシウムイオン(Mg2+)及びアルミニウムイオン(Al3+)を所定の合計濃度で含み、かつ、尿素を含んでなる。尿素が存在することで尿素の加水分解を利用してアンモニアが溶液中に発生することによりpH値が上昇し、共存する金属イオンが水酸化物を形成することによりLDHを得ることができる。また、加水分解に二酸化炭素の発生を伴うため、陰イオンが炭酸イオン型のLDHを得ることができる。原料水溶液に含まれるマグネシウムイオン及びアルミニウムイオンの合計濃度(Mg2++Al3+)は0.20~0.40mol/Lが好ましく、より好ましくは0.22~0.38mol/Lであり、さらに好ましくは0.24~0.36mol/L、特に好ましくは0.26~0.34mol/Lである。このような範囲内の濃度であると核生成と結晶成長をバランスよく進行させることができ、配向性のみならず緻密性にも優れたLDH含有セパレータ層を得ることが可能となる。すなわち、マグネシウムイオン及びアルミニウムイオンの合計濃度が低いと核生成に比べて結晶成長が支配的となり、粒子数が減少して粒子サイズが増大する一方、この合計濃度が高いと結晶成長に比べて核生成が支配的となり、粒子数が増大して粒子サイズが減少するものと考えられる。 (2) Immersion in raw material aqueous solution Next, the porous substrate is immersed in the raw material aqueous solution in a desired direction (for example, horizontally or vertically). When the porous substrate is held horizontally, the porous substrate may be suspended, floated, or disposed so as to be in contact with the bottom of the container. For example, the porous substrate is suspended from the bottom of the container in the raw material aqueous solution. The material may be fixed. When the porous substrate is held vertically, a jig that can set the porous substrate vertically on the bottom of the container may be placed. In any case, the LDH is perpendicular to or close to the porous substrate (that is, the LDH plate-like particles are such that their plate surfaces intersect the surface (substrate surface) of the porous substrate perpendicularly or obliquely. It is preferable to adopt a configuration or arrangement in which the growth is performed in any direction. The raw material aqueous solution contains magnesium ions (Mg 2+ ) and aluminum ions (Al 3+ ) at a predetermined total concentration, and contains urea. By the presence of urea, ammonia is generated in the solution by utilizing hydrolysis of urea, so that the pH value increases, and the coexisting metal ions form hydroxides to obtain LDH. Further, since carbon dioxide is generated in the hydrolysis, LDH in which the anion is carbonate ion type can be obtained. The total concentration (Mg 2+ + Al 3+ ) of magnesium ions and aluminum ions contained in the raw material aqueous solution is preferably 0.20 to 0.40 mol / L, more preferably 0.22 to 0.38 mol / L, still more preferably The amount is 0.24 to 0.36 mol / L, particularly preferably 0.26 to 0.34 mol / L. When the concentration is within such a range, nucleation and crystal growth can proceed in a well-balanced manner, and an LDH-containing separator layer that is excellent not only in orientation but also in denseness can be obtained. That is, when the total concentration of magnesium ions and aluminum ions is low, crystal growth becomes dominant compared to nucleation, and the number of particles decreases and particle size increases. It is considered that the generation becomes dominant, the number of particles increases, and the particle size decreases.
好ましくは、原料水溶液に硝酸マグネシウム及び硝酸アルミニウムが溶解されており、それにより原料水溶液がマグネシウムイオン及びアルミニウムイオンに加えて硝酸イオンを含んでなる。そして、この場合、原料水溶液における、尿素の硝酸イオン(NO3
-)に対するモル比(尿素/NO3
-)が、2~6が好ましく、より好ましくは4~5である。
Preferably, magnesium nitrate and aluminum nitrate are dissolved in the raw material aqueous solution, so that the raw material aqueous solution contains nitrate ions in addition to magnesium ions and aluminum ions. In this case, the molar ratio of urea to nitrate ions (NO 3 − ) (urea / NO 3 − ) in the raw material aqueous solution is preferably 2 to 6, and more preferably 4 to 5.
(3)水熱処理によるLDH含有セパレータ層の形成
そして、原料水溶液中で多孔質基材を水熱処理して、LDHを含んでなるセパレータ層を多孔質基材上及び/又は多孔質基材中に形成させる。この水熱処理は密閉容器中、60~150℃で行われるのが好ましく、より好ましくは65~120℃であり、さらに好ましくは65~100℃であり、特に好ましくは70~90℃である。水熱処理の上限温度は多孔質基材(例えば高分子基材)が熱で変形しない程度の温度を選択すればよい。水熱処理時の昇温速度は特に限定されず、例えば10~200℃/hであってよいが、好ましくは100~200℃/hである、より好ましくは100~150℃/hである。水熱処理の時間はLDH含有セパレータ層の目的とする密度と厚さに応じて適宜決定すればよい。 (3) Formation of LDH-containing separator layer by hydrothermal treatment Then, the porous substrate is hydrothermally treated in the raw material aqueous solution, and the separator layer containing LDH is placed on the porous substrate and / or in the porous substrate. Let it form. This hydrothermal treatment is preferably carried out in a closed container at 60 to 150 ° C., more preferably 65 to 120 ° C., further preferably 65 to 100 ° C., and particularly preferably 70 to 90 ° C. The upper limit temperature of the hydrothermal treatment may be selected so that the porous substrate (for example, the polymer substrate) is not deformed by heat. The rate of temperature increase during the hydrothermal treatment is not particularly limited, and may be, for example, 10 to 200 ° C./h, preferably 100 to 200 ° C./h, more preferably 100 to 150 ° C./h. The hydrothermal treatment time may be appropriately determined according to the target density and thickness of the LDH-containing separator layer.
そして、原料水溶液中で多孔質基材を水熱処理して、LDHを含んでなるセパレータ層を多孔質基材上及び/又は多孔質基材中に形成させる。この水熱処理は密閉容器中、60~150℃で行われるのが好ましく、より好ましくは65~120℃であり、さらに好ましくは65~100℃であり、特に好ましくは70~90℃である。水熱処理の上限温度は多孔質基材(例えば高分子基材)が熱で変形しない程度の温度を選択すればよい。水熱処理時の昇温速度は特に限定されず、例えば10~200℃/hであってよいが、好ましくは100~200℃/hである、より好ましくは100~150℃/hである。水熱処理の時間はLDH含有セパレータ層の目的とする密度と厚さに応じて適宜決定すればよい。 (3) Formation of LDH-containing separator layer by hydrothermal treatment Then, the porous substrate is hydrothermally treated in the raw material aqueous solution, and the separator layer containing LDH is placed on the porous substrate and / or in the porous substrate. Let it form. This hydrothermal treatment is preferably carried out in a closed container at 60 to 150 ° C., more preferably 65 to 120 ° C., further preferably 65 to 100 ° C., and particularly preferably 70 to 90 ° C. The upper limit temperature of the hydrothermal treatment may be selected so that the porous substrate (for example, the polymer substrate) is not deformed by heat. The rate of temperature increase during the hydrothermal treatment is not particularly limited, and may be, for example, 10 to 200 ° C./h, preferably 100 to 200 ° C./h, more preferably 100 to 150 ° C./h. The hydrothermal treatment time may be appropriately determined according to the target density and thickness of the LDH-containing separator layer.
水熱処理後、密閉容器から多孔質基材を取り出し、イオン交換水で洗浄するのが好ましい。
After the hydrothermal treatment, it is preferable to take out the porous substrate from the sealed container and wash it with ion-exchanged water.
上記のようにして製造されたLDH含有複合材料におけるLDH含有セパレータ層は、LDH板状粒子が高度に緻密化したものであり、しかも伝導に有利な垂直方向に配向したものである。したがって、亜鉛デンドライト進展が実用化の大きな障壁となっている亜鉛空気二次電池に極めて好適といえる。
The LDH-containing separator layer in the LDH-containing composite material produced as described above is one in which LDH plate-like particles are highly densified and are oriented in the vertical direction advantageous for conduction. Therefore, it can be said that it is extremely suitable for a zinc-air secondary battery in which the progress of zinc dendrite has become a major barrier to practical use.
ところで、上記製造方法により得られるLDH含有セパレータ層は多孔質基材の両面に形成されうる。このため、LDH含有複合材料をセパレータとして好適に使用可能な形態とするためには、成膜後に多孔質基材の片面のLDH含有セパレータ層を機械的に削るか、あるいは成膜時に片面にはLDH含有セパレータ層が成膜できないような措置を講ずるのが望ましい。
By the way, the LDH containing separator layer obtained by the said manufacturing method can be formed in both surfaces of a porous base material. For this reason, in order to make the LDH-containing composite material suitable for use as a separator, the LDH-containing separator layer on one side of the porous substrate is mechanically scraped after film formation, or on one side during film formation. It is desirable to take measures so that the LDH-containing separator layer cannot be formed.
本発明を以下の例によってさらに具体的に説明する。
The present invention will be described more specifically with reference to the following examples.
例1:多孔質基材付きLDHセパレータの作製及び評価
(1)多孔質基材の作製
ベーマイト(サソール社製、DISPAL 18N4-80)、メチルセルロース、及びイオン交換水を、(ベーマイト):(メチルセルロース):(イオン交換水)の質量比が10:1:5となるように秤量した後、混練した。得られた混練物を、ハンドプレスを用いた押出成形に付し、5cm×8cmを十分に超える大きさで且つ厚さ0.5cmの板状に成形した。得られた成形体を80℃で12時間乾燥した後、1150℃で3時間焼成して、アルミナ製多孔質基材を得た。こうして得られた多孔質基材を5cm×8cmの大きさに切断加工した。 Example 1 : Production and evaluation of LDH separator with porous substrate (1) Production of porous substrate Boehmite (manufactured by Sasol, DISPAL 18N4-80), methylcellulose, and ion-exchanged water (boehmite): (methylcellulose) : (Ion-exchanged water) mass ratio was 10: 1: 5, and then kneaded. The obtained kneaded product was subjected to extrusion molding using a hand press and molded into a plate shape having a size sufficiently exceeding 5 cm × 8 cm and a thickness of 0.5 cm. The obtained molded body was dried at 80 ° C. for 12 hours and then calcined at 1150 ° C. for 3 hours to obtain an alumina porous substrate. The porous substrate thus obtained was cut into a size of 5 cm × 8 cm.
(1)多孔質基材の作製
ベーマイト(サソール社製、DISPAL 18N4-80)、メチルセルロース、及びイオン交換水を、(ベーマイト):(メチルセルロース):(イオン交換水)の質量比が10:1:5となるように秤量した後、混練した。得られた混練物を、ハンドプレスを用いた押出成形に付し、5cm×8cmを十分に超える大きさで且つ厚さ0.5cmの板状に成形した。得られた成形体を80℃で12時間乾燥した後、1150℃で3時間焼成して、アルミナ製多孔質基材を得た。こうして得られた多孔質基材を5cm×8cmの大きさに切断加工した。 Example 1 : Production and evaluation of LDH separator with porous substrate (1) Production of porous substrate Boehmite (manufactured by Sasol, DISPAL 18N4-80), methylcellulose, and ion-exchanged water (boehmite): (methylcellulose) : (Ion-exchanged water) mass ratio was 10: 1: 5, and then kneaded. The obtained kneaded product was subjected to extrusion molding using a hand press and molded into a plate shape having a size sufficiently exceeding 5 cm × 8 cm and a thickness of 0.5 cm. The obtained molded body was dried at 80 ° C. for 12 hours and then calcined at 1150 ° C. for 3 hours to obtain an alumina porous substrate. The porous substrate thus obtained was cut into a size of 5 cm × 8 cm.
得られた多孔質基材について、画像処理を用いた手法により、多孔質基材表面の気孔率を測定したところ、24.6%であった。この気孔率の測定は、1)表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察して多孔質基材表面の電子顕微鏡(SEM)画像(倍率10000倍以上)を取得し、2)Photoshop(Adobe社製)等の画像解析ソフトを用いてグレースケールのSEM画像を読み込み、3)[イメージ]→[色調補正]→[2階調化]の手順で白黒の2値画像を作成し、4)黒い部分が占めるピクセル数を画像の全ピクセル数で割った値を気孔率(%)とすることにより行った。この気孔率の測定は多孔質基材表面の6μm×6μmの領域について行われた。なお、図5に多孔質基材表面のSEM画像を示す。
For the obtained porous substrate, the porosity of the surface of the porous substrate was measured by a technique using image processing, and it was 24.6%. The porosity is measured by 1) observing the surface microstructure with an accelerating voltage of 10 to 20 kV using a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL Co., Ltd.). SEM) image (magnification of 10,000 times or more) is obtained, 2) a grayscale SEM image is read using image analysis software such as Photoshop (manufactured by Adobe), etc. 3) [Image] → [Tone Correction] → [2 A monochrome binary image was created by the procedure of [gradation], and 4) the porosity (%) was obtained by dividing the number of pixels occupied by the black portion by the total number of pixels in the image. This porosity measurement was performed on a 6 μm × 6 μm region on the surface of the porous substrate. FIG. 5 shows an SEM image of the porous substrate surface.
また、多孔質基材の平均気孔径を測定したところ約0.1μmであった。本発明において、平均気孔径の測定は多孔質基材の表面の電子顕微鏡(SEM)画像をもとに気孔の最長距離を測長することにより行った。この測定に用いた電子顕微鏡(SEM)画像の倍率は20000倍であり、得られた全ての気孔径をサイズ順に並べて、その平均値から上位15点及び下位15点、合わせて1視野あたり30点で2視野分の平均値を算出して、平均気孔径を得た。測長には、SEMのソフトウェアの測長機能を用いた。
Further, when the average pore diameter of the porous substrate was measured, it was about 0.1 μm. In the present invention, the average pore diameter was measured by measuring the longest distance of the pores based on an electron microscope (SEM) image of the surface of the porous substrate. The magnification of the electron microscope (SEM) image used for this measurement is 20000 times, and all the obtained pore diameters are arranged in order of size, and the top 15 points and the bottom 15 points from the average value, and 30 points per visual field in total. The average value for two visual fields was calculated to obtain the average pore diameter. For length measurement, the length measurement function of SEM software was used.
(2)多孔質基材の洗浄
得られた多孔質基材をアセトン中で5分間超音波洗浄し、エタノール中で2分間超音波洗浄、その後、イオン交換水中で1分間超音波洗浄した。 (2) Cleaning of porous substrate The obtained porous substrate was ultrasonically cleaned in acetone for 5 minutes, ultrasonically cleaned in ethanol for 2 minutes, and then ultrasonically cleaned in ion-exchanged water for 1 minute.
得られた多孔質基材をアセトン中で5分間超音波洗浄し、エタノール中で2分間超音波洗浄、その後、イオン交換水中で1分間超音波洗浄した。 (2) Cleaning of porous substrate The obtained porous substrate was ultrasonically cleaned in acetone for 5 minutes, ultrasonically cleaned in ethanol for 2 minutes, and then ultrasonically cleaned in ion-exchanged water for 1 minute.
(3)原料水溶液の作製
原料として、硝酸マグネシウム六水和物(Mg(NO3)2・6H2O、関東化学株式会社製)、硝酸アルミニウム九水和物(Al(NO3)3・9H2O、関東化学株式会社製)、及び尿素((NH2)2CO、シグマアルドリッチ製)を用意した。カチオン比(Mg2+/Al3+)が2となり且つ全金属イオンモル濃度(Mg2++Al3+)が0.320mol/Lとなるように、硝酸マグネシウム六水和物と硝酸アルミニウム九水和物を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を600mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO3 -=4の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。 (3) As the manufacturing raw material of the raw aqueous solution, magnesium nitrate hexahydrate (Mg (NO 3) 2 · 6H 2 O, manufactured by Kanto Chemical Co., Inc.), aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O, manufactured by Kanto Chemical Co., Ltd.) and urea ((NH 2 ) 2 CO, manufactured by Sigma-Aldrich) were prepared. Weigh magnesium nitrate hexahydrate and aluminum nitrate nonahydrate so that the cation ratio (Mg 2+ / Al 3+ ) is 2 and the total metal ion molar concentration (Mg 2+ + Al 3+ ) is 0.320 mol / L. In a beaker, ion exchange water was added to make a total volume of 600 ml. After stirring the obtained solution, urea weighed at a ratio of urea / NO 3 − = 4 was added to the solution, and further stirred to obtain an aqueous raw material solution.
原料として、硝酸マグネシウム六水和物(Mg(NO3)2・6H2O、関東化学株式会社製)、硝酸アルミニウム九水和物(Al(NO3)3・9H2O、関東化学株式会社製)、及び尿素((NH2)2CO、シグマアルドリッチ製)を用意した。カチオン比(Mg2+/Al3+)が2となり且つ全金属イオンモル濃度(Mg2++Al3+)が0.320mol/Lとなるように、硝酸マグネシウム六水和物と硝酸アルミニウム九水和物を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を600mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO3 -=4の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。 (3) As the manufacturing raw material of the raw aqueous solution, magnesium nitrate hexahydrate (Mg (NO 3) 2 · 6H 2 O, manufactured by Kanto Chemical Co., Inc.), aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O, manufactured by Kanto Chemical Co., Ltd.) and urea ((NH 2 ) 2 CO, manufactured by Sigma-Aldrich) were prepared. Weigh magnesium nitrate hexahydrate and aluminum nitrate nonahydrate so that the cation ratio (Mg 2+ / Al 3+ ) is 2 and the total metal ion molar concentration (Mg 2+ + Al 3+ ) is 0.320 mol / L. In a beaker, ion exchange water was added to make a total volume of 600 ml. After stirring the obtained solution, urea weighed at a ratio of urea / NO 3 − = 4 was added to the solution, and further stirred to obtain an aqueous raw material solution.
(4)水熱処理による成膜
テフロン(登録商標)製密閉容器(内容量800ml、外側がステンレス製ジャケット)に上記(3)で作製した原料水溶液と上記(2)で洗浄した多孔質基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように水平に設置した。その後、水熱温度70℃で168時間(7日間)水熱処理を施すことにより基材表面に層状複水酸化物配向膜(セパレータ層)の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、層状複水酸化物(以下、LDHという)の緻密膜(以下、膜試料という)を基材上に得た。得られた膜試料の厚さは約1.5μmであった。こうして、層状複水酸化物含有複合材料試料(以下、複合材料試料という)を得た。なお、LDH膜は多孔質基材の両面に形成されていたが、セパレータとして形態を複合材料に付与するため、多孔質基材の片面のLDH膜を機械的に削り取った。 (4) Film formation by hydrothermal treatment The Teflon (registered trademark) sealed container (with an internal volume of 800 ml, the outside is a stainless steel jacket), the raw material aqueous solution prepared in (3) above and the porous substrate washed in (2) above Both were enclosed. At this time, the base material was fixed by being floated from the bottom of a Teflon (registered trademark) sealed container, and placed horizontally so that the solution was in contact with both surfaces of the base material. Thereafter, hydrothermal treatment was performed at a hydrothermal temperature of 70 ° C. for 168 hours (7 days) to form a layered double hydroxide alignment film (separator layer) on the substrate surface. After the elapse of a predetermined time, the substrate is taken out from the sealed container, washed with ion-exchanged water, dried at 70 ° C. for 10 hours, and a dense layer of layered double hydroxide (hereinafter referred to as LDH) (hereinafter referred to as a membrane sample). ) Was obtained on a substrate. The thickness of the obtained film sample was about 1.5 μm. Thus, a layered double hydroxide-containing composite material sample (hereinafter referred to as a composite material sample) was obtained. Although the LDH film was formed on both surfaces of the porous substrate, the LDH film on one surface of the porous substrate was mechanically scraped to give the composite material a form as a separator.
テフロン(登録商標)製密閉容器(内容量800ml、外側がステンレス製ジャケット)に上記(3)で作製した原料水溶液と上記(2)で洗浄した多孔質基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように水平に設置した。その後、水熱温度70℃で168時間(7日間)水熱処理を施すことにより基材表面に層状複水酸化物配向膜(セパレータ層)の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、層状複水酸化物(以下、LDHという)の緻密膜(以下、膜試料という)を基材上に得た。得られた膜試料の厚さは約1.5μmであった。こうして、層状複水酸化物含有複合材料試料(以下、複合材料試料という)を得た。なお、LDH膜は多孔質基材の両面に形成されていたが、セパレータとして形態を複合材料に付与するため、多孔質基材の片面のLDH膜を機械的に削り取った。 (4) Film formation by hydrothermal treatment The Teflon (registered trademark) sealed container (with an internal volume of 800 ml, the outside is a stainless steel jacket), the raw material aqueous solution prepared in (3) above and the porous substrate washed in (2) above Both were enclosed. At this time, the base material was fixed by being floated from the bottom of a Teflon (registered trademark) sealed container, and placed horizontally so that the solution was in contact with both surfaces of the base material. Thereafter, hydrothermal treatment was performed at a hydrothermal temperature of 70 ° C. for 168 hours (7 days) to form a layered double hydroxide alignment film (separator layer) on the substrate surface. After the elapse of a predetermined time, the substrate is taken out from the sealed container, washed with ion-exchanged water, dried at 70 ° C. for 10 hours, and a dense layer of layered double hydroxide (hereinafter referred to as LDH) (hereinafter referred to as a membrane sample). ) Was obtained on a substrate. The thickness of the obtained film sample was about 1.5 μm. Thus, a layered double hydroxide-containing composite material sample (hereinafter referred to as a composite material sample) was obtained. Although the LDH film was formed on both surfaces of the porous substrate, the LDH film on one surface of the porous substrate was mechanically scraped to give the composite material a form as a separator.
(5)各種評価
(5a)膜試料の同定
X線回折装置(リガク社製 RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:10~70°の測定条件で、膜試料の結晶相を測定したところ、図6に示されるXRDプロファイルが得られた。得られたXRDプロファイルについて、JCPDSカードNO.35-0964に記載される層状複水酸化物(ハイドロタルサイト類化合物)の回折ピークを用いて同定した。その結果、膜試料は層状複水酸化物(LDH、ハイドロタルサイト類化合物)であることが確認された。なお、図6に示されるXRDプロファイルにおいては、膜試料が形成されている多孔質基材を構成するアルミナに起因するピーク(図中で○印が付されたピーク)も併せて観察されている。 (5) Various evaluations (5a) Identification of film sample Film sample with X-ray diffractometer (RINT TTR III manufactured by Rigaku Corporation) under voltage: 50 kV, current value: 300 mA, measurement range: 10-70 ° As a result, the XRD profile shown in FIG. 6 was obtained. About the obtained XRD profile, JCPDS card NO. It was identified using the diffraction peak of the layered double hydroxide (hydrotalcite compound) described in 35-0964. As a result, it was confirmed that the film sample was a layered double hydroxide (LDH, hydrotalcite compound). In addition, in the XRD profile shown in FIG. 6, a peak (peak marked in the figure) due to alumina constituting the porous substrate on which the film sample is formed is also observed. .
(5a)膜試料の同定
X線回折装置(リガク社製 RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:10~70°の測定条件で、膜試料の結晶相を測定したところ、図6に示されるXRDプロファイルが得られた。得られたXRDプロファイルについて、JCPDSカードNO.35-0964に記載される層状複水酸化物(ハイドロタルサイト類化合物)の回折ピークを用いて同定した。その結果、膜試料は層状複水酸化物(LDH、ハイドロタルサイト類化合物)であることが確認された。なお、図6に示されるXRDプロファイルにおいては、膜試料が形成されている多孔質基材を構成するアルミナに起因するピーク(図中で○印が付されたピーク)も併せて観察されている。 (5) Various evaluations (5a) Identification of film sample Film sample with X-ray diffractometer (RINT TTR III manufactured by Rigaku Corporation) under voltage: 50 kV, current value: 300 mA, measurement range: 10-70 ° As a result, the XRD profile shown in FIG. 6 was obtained. About the obtained XRD profile, JCPDS card NO. It was identified using the diffraction peak of the layered double hydroxide (hydrotalcite compound) described in 35-0964. As a result, it was confirmed that the film sample was a layered double hydroxide (LDH, hydrotalcite compound). In addition, in the XRD profile shown in FIG. 6, a peak (peak marked in the figure) due to alumina constituting the porous substrate on which the film sample is formed is also observed. .
(5b)微構造の観察
膜試料の表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察した。得られた膜試料の表面微構造のSEM画像(二次電子像)を図7に示す。 (5b) Observation of microstructure The surface microstructure of the film sample was observed with a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL) at an acceleration voltage of 10 to 20 kV. FIG. 7 shows an SEM image (secondary electron image) of the surface microstructure of the obtained film sample.
膜試料の表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察した。得られた膜試料の表面微構造のSEM画像(二次電子像)を図7に示す。 (5b) Observation of microstructure The surface microstructure of the film sample was observed with a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL) at an acceleration voltage of 10 to 20 kV. FIG. 7 shows an SEM image (secondary electron image) of the surface microstructure of the obtained film sample.
また、複合材料試料の断面をCP研磨によって研磨して研磨断面を形成し、この研磨断面の微構造を走査型電子顕微鏡(SEM)を用いて10~20kVの加速電圧で観察した。こうして得られた複合材料試料の研磨断面微構造のSEM画像を図8に示す。
Also, the cross section of the composite material sample was polished by CP polishing to form a polished cross section, and the microstructure of the polished cross section was observed with a scanning electron microscope (SEM) at an acceleration voltage of 10 to 20 kV. An SEM image of the polished cross-sectional microstructure of the composite material sample thus obtained is shown in FIG.
(5c)気孔率の測定
膜試料について、画像処理を用いた手法により、膜の表面の気孔率を測定した。この気孔率の測定は、1)表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察して膜の表面の電子顕微鏡(SEM)画像(倍率10000倍以上)を取得し、2)Photoshop(Adobe社製)等の画像解析ソフトを用いてグレースケールのSEM画像を読み込み、3)[イメージ]→[色調補正]→[2階調化]の手順で白黒の2値画像を作成し、4)黒い部分が占めるピクセル数を画像の全ピクセル数で割った値を気孔率(%)とすることにより行った。この気孔率の測定は配向膜表面の6μm×6μmの領域について行われた。その結果、膜の表面の気孔率は19.0%であった。また、この膜表面の気孔率を用いて、膜表面から見たときの密度D(以下、表面膜密度という)をD=100%-(膜表面の気孔率)により算出したところ、81.0%であった。 (5c) Measurement of porosity The porosity of the surface of the membrane was measured for the membrane sample by a technique using image processing. The porosity is measured by 1) observing the surface microstructure with a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL) at an acceleration voltage of 10 to 20 kV, and observing an electron microscope (SEM) on the surface of the film. An image (magnification of 10,000 times or more) is acquired, 2) a grayscale SEM image is read using image analysis software such as Photoshop (manufactured by Adobe), and 3) [image] → [tone correction] → [2 gradations] A black and white binary image was created by the procedure of 4), and 4) the value obtained by dividing the number of pixels occupied by the black portion by the total number of pixels of the image was taken as the porosity (%). This porosity measurement was performed on a 6 μm × 6 μm region of the alignment film surface. As a result, the porosity of the film surface was 19.0%. Further, using the porosity of the film surface, the density D when viewed from the film surface (hereinafter referred to as the surface film density) was calculated by D = 100% − (porosity of the film surface). %Met.
膜試料について、画像処理を用いた手法により、膜の表面の気孔率を測定した。この気孔率の測定は、1)表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察して膜の表面の電子顕微鏡(SEM)画像(倍率10000倍以上)を取得し、2)Photoshop(Adobe社製)等の画像解析ソフトを用いてグレースケールのSEM画像を読み込み、3)[イメージ]→[色調補正]→[2階調化]の手順で白黒の2値画像を作成し、4)黒い部分が占めるピクセル数を画像の全ピクセル数で割った値を気孔率(%)とすることにより行った。この気孔率の測定は配向膜表面の6μm×6μmの領域について行われた。その結果、膜の表面の気孔率は19.0%であった。また、この膜表面の気孔率を用いて、膜表面から見たときの密度D(以下、表面膜密度という)をD=100%-(膜表面の気孔率)により算出したところ、81.0%であった。 (5c) Measurement of porosity The porosity of the surface of the membrane was measured for the membrane sample by a technique using image processing. The porosity is measured by 1) observing the surface microstructure with a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL) at an acceleration voltage of 10 to 20 kV, and observing an electron microscope (SEM) on the surface of the film. An image (magnification of 10,000 times or more) is acquired, 2) a grayscale SEM image is read using image analysis software such as Photoshop (manufactured by Adobe), and 3) [image] → [tone correction] → [2 gradations] A black and white binary image was created by the procedure of 4), and 4) the value obtained by dividing the number of pixels occupied by the black portion by the total number of pixels of the image was taken as the porosity (%). This porosity measurement was performed on a 6 μm × 6 μm region of the alignment film surface. As a result, the porosity of the film surface was 19.0%. Further, using the porosity of the film surface, the density D when viewed from the film surface (hereinafter referred to as the surface film density) was calculated by D = 100% − (porosity of the film surface). %Met.
また、膜試料について、研磨断面の気孔率についても測定した。この研磨断面の気孔率についても測定は、上記(5b)に示される手順に従い膜の厚み方向における断面研磨面の電子顕微鏡(SEM)画像(倍率10000倍以上)を取得したこと以外は、上述の膜表面の気孔率と同様にして行った。この気孔率の測定は配向膜断面の膜部分について行われた。こうして膜試料の断面研磨面から算出した気孔率は平均で3.5%(3箇所の断面研磨面の平均値)であり、多孔質基材上でありながら非常に高密度な膜が形成されていることが確認された。
In addition, the porosity of the polished cross section of the film sample was also measured. The measurement of the porosity of the polished cross section is the same as that described above except that an electron microscope (SEM) image (magnification of 10,000 times or more) of the cross-section polished surface in the thickness direction of the film was obtained according to the procedure shown in (5b) above. It carried out similarly to the porosity of the film | membrane surface. The measurement of the porosity was performed on the film portion of the alignment film cross section. Thus, the porosity calculated from the cross-sectional polished surface of the film sample is 3.5% on average (average value of the three cross-sectional polished surfaces), and a very high-density film is formed on the porous substrate. It was confirmed that
(5d)緻密性判定試験I
膜試料が透水性を有しない程の緻密性を有することを確認すべく、緻密性判定試験を以下のとおり行った。まず、図9Aに示されるように、上記(1)において得られた複合材料試料220(1cm×1cm平方に切り出されたもの)の膜試料側に、中央に0.5cm×0.5cm平方の開口部222aを備えたシリコンゴム222を接着し、得られた積層物を2つのアクリル製容器224,226で挟んで接着した。シリコンゴム222側に配置されるアクリル製容器224は底が抜けており、それによりシリコンゴム222はその開口部222aが開放された状態でアクリル製容器224と接着される。一方、複合材料試料220の多孔質基材側に配置されるアクリル製容器226は底を有しており、その容器226内にはイオン交換水228が入っている。この時、イオン交換水にAl及び/又はMgを溶解させておいてもよい。すなわち、組み立て後に上下逆さにすることで、複合材料試料220の多孔質基材側にイオン交換水228が接するように各構成部材が配置されている。これらの構成部材等を組み立て後、総重量を測定した。これらの構成部材等を組み立て後、総重量を測定した。なお、容器226には閉栓された通気穴(図示せず)が形成されており、上下逆さにした後に開栓されることはいうまでもない。図9Bに示されるように組み立て体を上下逆さに配置して25℃で1週間保持した後、総重量を再度測定した。このとき、アクリル製容器224の内側側面に水滴が付着している場合には、その水滴を拭き取った。そして、試験前後の総重量の差を算出することにより緻密度を判定した。その結果、25℃で1週間保持した後においても、イオン交換水の重量に変化は見られなかった。このことから、膜試料(すなわち機能膜)は透水性を有しない程に高い緻密性を有することが確認された。 (5d) Denseness determination test I
In order to confirm that the membrane sample has a denseness that does not have water permeability, a denseness determination test was performed as follows. First, as shown in FIG. 9A, thecomposite material sample 220 obtained in (1) above (cut to 1 cm × 1 cm square) has a center of 0.5 cm × 0.5 cm square on the film sample side. The silicon rubber 222 provided with the opening 222a was bonded, and the obtained laminate was bonded between two acrylic containers 224 and 226. The bottom of the acrylic container 224 disposed on the silicon rubber 222 side is removed, and thereby the silicon rubber 222 is bonded to the acrylic container 224 with the opening 222a opened. On the other hand, the acrylic container 226 disposed on the porous substrate side of the composite material sample 220 has a bottom, and ion-exchanged water 228 is contained in the container 226. At this time, Al and / or Mg may be dissolved in the ion exchange water. That is, the constituent members are arranged so that the ion-exchanged water 228 is in contact with the porous substrate side of the composite material sample 220 by turning upside down after assembly. After assembling these components, the total weight was measured. After assembling these components, the total weight was measured. Needless to say, the container 226 has a closed vent hole (not shown) and is opened after being turned upside down. As shown in FIG. 9B, the assembly was placed upside down and held at 25 ° C. for 1 week, after which the total weight was measured again. At this time, when water droplets adhered to the inner side surface of the acrylic container 224, the water droplets were wiped off. Then, the density was determined by calculating the difference in the total weight before and after the test. As a result, no change was observed in the weight of ion-exchanged water even after holding at 25 ° C. for 1 week. From this, it was confirmed that the membrane sample (that is, the functional membrane) has high density so as not to have water permeability.
膜試料が透水性を有しない程の緻密性を有することを確認すべく、緻密性判定試験を以下のとおり行った。まず、図9Aに示されるように、上記(1)において得られた複合材料試料220(1cm×1cm平方に切り出されたもの)の膜試料側に、中央に0.5cm×0.5cm平方の開口部222aを備えたシリコンゴム222を接着し、得られた積層物を2つのアクリル製容器224,226で挟んで接着した。シリコンゴム222側に配置されるアクリル製容器224は底が抜けており、それによりシリコンゴム222はその開口部222aが開放された状態でアクリル製容器224と接着される。一方、複合材料試料220の多孔質基材側に配置されるアクリル製容器226は底を有しており、その容器226内にはイオン交換水228が入っている。この時、イオン交換水にAl及び/又はMgを溶解させておいてもよい。すなわち、組み立て後に上下逆さにすることで、複合材料試料220の多孔質基材側にイオン交換水228が接するように各構成部材が配置されている。これらの構成部材等を組み立て後、総重量を測定した。これらの構成部材等を組み立て後、総重量を測定した。なお、容器226には閉栓された通気穴(図示せず)が形成されており、上下逆さにした後に開栓されることはいうまでもない。図9Bに示されるように組み立て体を上下逆さに配置して25℃で1週間保持した後、総重量を再度測定した。このとき、アクリル製容器224の内側側面に水滴が付着している場合には、その水滴を拭き取った。そして、試験前後の総重量の差を算出することにより緻密度を判定した。その結果、25℃で1週間保持した後においても、イオン交換水の重量に変化は見られなかった。このことから、膜試料(すなわち機能膜)は透水性を有しない程に高い緻密性を有することが確認された。 (5d) Denseness determination test I
In order to confirm that the membrane sample has a denseness that does not have water permeability, a denseness determination test was performed as follows. First, as shown in FIG. 9A, the
(5e)緻密性判定試験II
膜試料が通気性を有しない程の緻密性を有することを確認すべく、緻密性判定試験を以下のとおり行った。まず、図10A及び10Bに示されるように、蓋の無いアクリル容器230と、このアクリル容器230の蓋として機能しうる形状及びサイズのアルミナ治具232とを用意した。アクリル容器230にはその中にガスを供給するためのガス供給口230aが形成されている。また、アルミナ治具232には直径5mmの開口部232aが形成されており、この開口部232aの外周に沿って膜試料載置用の窪み232bが形成されている。アルミナ治具232の窪み232bにエポキシ接着剤234を塗布し、この窪み232bに複合材料試料236の膜試料236b側を載置してアルミナ治具232に気密かつ液密に接着させた。そして、複合材料試料236が接合されたアルミナ治具232を、アクリル容器230の開放部を完全に塞ぐようにシリコーン接着剤238を用いて気密かつ液密にアクリル容器230の上端に接着させて、測定用密閉容器240を得た。この測定用密閉容器240を水槽242に入れ、アクリル容器230のガス供給口230aを圧力計244及び流量計246に接続して、ヘリウムガスをアクリル容器230内に供給可能に構成した。水槽242に水243を入れて測定用密閉容器240を完全に水没させた。このとき、測定用密閉容器240の内部は気密性及び液密性が十分に確保されており、複合材料試料236の膜試料236b側が測定用密閉容器240の内部空間に露出する一方、複合材料試料236の多孔質基材236a側が水槽242内の水に接触している。この状態で、アクリル容器230内にガス供給口230aを介してヘリウムガスを測定用密閉容器240内に導入した。圧力計244及び流量計246を制御して膜試料236b内外の差圧が0.5atmとなる(すなわちヘリウムガスに接する側に加わる圧力が反対側に加わる水圧よりも0.5atm高くなる)ようにして、複合材料試料236から水中にヘリウムガスの泡が発生するか否かを観察した。その結果、ヘリウムガスに起因する泡の発生は観察されなかった。よって、膜試料236bは通気性を有しない程に高い緻密性を有することが確認された。 (5e) Denseness determination test II
In order to confirm that the film sample has a denseness that does not have air permeability, a denseness determination test was performed as follows. First, as shown in FIGS. 10A and 10B, anacrylic container 230 without a lid and an alumina jig 232 having a shape and size that can function as a lid for the acrylic container 230 were prepared. The acrylic container 230 is formed with a gas supply port 230a for supplying gas therein. The alumina jig 232 has an opening 232a having a diameter of 5 mm, and a recess 232b for placing a film sample is formed along the outer periphery of the opening 232a. An epoxy adhesive 234 was applied to the depression 232b of the alumina jig 232, and the film sample 236b side of the composite material sample 236 was placed in the depression 232b to adhere to the alumina jig 232 in an airtight and liquid-tight manner. Then, the alumina jig 232 to which the composite material sample 236 is bonded is adhered to the upper end of the acrylic container 230 in a gas-tight and liquid-tight manner using a silicone adhesive 238 so as to completely close the opening of the acrylic container 230. A measurement sealed container 240 was obtained. The measurement sealed container 240 was placed in a water tank 242, and the gas supply port 230 a of the acrylic container 230 was connected to the pressure gauge 244 and the flow meter 246 so that helium gas could be supplied into the acrylic container 230. Water 243 was put into the water tank 242 and the measurement sealed container 240 was completely submerged. At this time, the inside of the measurement sealed container 240 is sufficiently airtight and liquid-tight, and the membrane sample 236b side of the composite material sample 236 is exposed to the internal space of the measurement sealed container 240, while the composite material sample The porous base material 236 a side of 236 is in contact with the water in the water tank 242. In this state, helium gas was introduced into the measurement sealed container 240 into the acrylic container 230 via the gas supply port 230a. The pressure gauge 244 and the flow meter 246 are controlled so that the differential pressure inside and outside the membrane sample 236b is 0.5 atm (that is, the pressure applied to the side in contact with the helium gas is 0.5 atm higher than the water pressure applied to the opposite side). Whether or not helium gas bubbles are generated in the water from the composite material sample 236 was observed. As a result, generation of bubbles due to helium gas was not observed. Therefore, it was confirmed that the membrane sample 236b has high density so as not to have air permeability.
膜試料が通気性を有しない程の緻密性を有することを確認すべく、緻密性判定試験を以下のとおり行った。まず、図10A及び10Bに示されるように、蓋の無いアクリル容器230と、このアクリル容器230の蓋として機能しうる形状及びサイズのアルミナ治具232とを用意した。アクリル容器230にはその中にガスを供給するためのガス供給口230aが形成されている。また、アルミナ治具232には直径5mmの開口部232aが形成されており、この開口部232aの外周に沿って膜試料載置用の窪み232bが形成されている。アルミナ治具232の窪み232bにエポキシ接着剤234を塗布し、この窪み232bに複合材料試料236の膜試料236b側を載置してアルミナ治具232に気密かつ液密に接着させた。そして、複合材料試料236が接合されたアルミナ治具232を、アクリル容器230の開放部を完全に塞ぐようにシリコーン接着剤238を用いて気密かつ液密にアクリル容器230の上端に接着させて、測定用密閉容器240を得た。この測定用密閉容器240を水槽242に入れ、アクリル容器230のガス供給口230aを圧力計244及び流量計246に接続して、ヘリウムガスをアクリル容器230内に供給可能に構成した。水槽242に水243を入れて測定用密閉容器240を完全に水没させた。このとき、測定用密閉容器240の内部は気密性及び液密性が十分に確保されており、複合材料試料236の膜試料236b側が測定用密閉容器240の内部空間に露出する一方、複合材料試料236の多孔質基材236a側が水槽242内の水に接触している。この状態で、アクリル容器230内にガス供給口230aを介してヘリウムガスを測定用密閉容器240内に導入した。圧力計244及び流量計246を制御して膜試料236b内外の差圧が0.5atmとなる(すなわちヘリウムガスに接する側に加わる圧力が反対側に加わる水圧よりも0.5atm高くなる)ようにして、複合材料試料236から水中にヘリウムガスの泡が発生するか否かを観察した。その結果、ヘリウムガスに起因する泡の発生は観察されなかった。よって、膜試料236bは通気性を有しない程に高い緻密性を有することが確認された。 (5e) Denseness determination test II
In order to confirm that the film sample has a denseness that does not have air permeability, a denseness determination test was performed as follows. First, as shown in FIGS. 10A and 10B, an
例2(参考):亜鉛空気二次電池の作製
本例は、1対の空気極板/セパレータ/負極板を備えた単電池に基づく参考例である。本例は可撓性袋体を用いた亜鉛空気電池セルパックに関する実施例ではないが、LDHセパレータを用いた亜鉛空気二次電池を作製した例である点で、本発明の亜鉛空気電池セルパックを作製する上で参考にできるものである。 Example 2 (Reference): Production of Zinc-Air Secondary Battery This example is a reference example based on a unit cell provided with a pair of air electrode plate / separator / negative electrode plate. Although this example is not an example relating to a zinc-air battery cell pack using a flexible bag body, it is an example of producing a zinc-air secondary battery using an LDH separator, and therefore the zinc-air battery cell pack of the present invention. It can be used as a reference when manufacturing the above.
本例は、1対の空気極板/セパレータ/負極板を備えた単電池に基づく参考例である。本例は可撓性袋体を用いた亜鉛空気電池セルパックに関する実施例ではないが、LDHセパレータを用いた亜鉛空気二次電池を作製した例である点で、本発明の亜鉛空気電池セルパックを作製する上で参考にできるものである。 Example 2 (Reference): Production of Zinc-Air Secondary Battery This example is a reference example based on a unit cell provided with a pair of air electrode plate / separator / negative electrode plate. Although this example is not an example relating to a zinc-air battery cell pack using a flexible bag body, it is an example of producing a zinc-air secondary battery using an LDH separator, and therefore the zinc-air battery cell pack of the present invention. It can be used as a reference when manufacturing the above.
(1)多孔質基材付きセパレータの用意
例1と同様の手順により、多孔質基材付きセパレータ(以下、単にセパレータという)として、アルミナ基材上LDH膜を用意した。 (1) Preparation of separator with porous substrate By the same procedure as in Example 1, an LDH film on an alumina substrate was prepared as a separator with a porous substrate (hereinafter simply referred to as a separator).
例1と同様の手順により、多孔質基材付きセパレータ(以下、単にセパレータという)として、アルミナ基材上LDH膜を用意した。 (1) Preparation of separator with porous substrate By the same procedure as in Example 1, an LDH film on an alumina substrate was prepared as a separator with a porous substrate (hereinafter simply referred to as a separator).
(2)空気極層の作製
空気極触媒としてのα-MnO2粒子を次のようにして作製した。まず、Mn(SO4)・5H2O及びKMnO4を5:13のモル比で脱イオン水に溶かして混合した。得られた混合液をテフロン(登録商標)が内貼りされたステンレス製密閉容器に入れ、140℃で水熱合成を2時間行う。水熱合成により得られた沈殿物をろ過し、蒸留水で洗浄した後、80℃で6時間乾燥した。こうしてα-MnO2の粉末を得た。 (2) Preparation of air electrode layer α-MnO 2 particles as an air electrode catalyst were prepared as follows. First, Mn (SO 4 ) · 5H 2 O and KMnO 4 were dissolved in deionized water at a molar ratio of 5:13 and mixed. The obtained mixed liquid is put into a stainless steel sealed container with Teflon (registered trademark) attached thereto, and hydrothermal synthesis is performed at 140 ° C. for 2 hours. The precipitate obtained by hydrothermal synthesis was filtered, washed with distilled water, and dried at 80 ° C. for 6 hours. Thus, α-MnO 2 powder was obtained.
空気極触媒としてのα-MnO2粒子を次のようにして作製した。まず、Mn(SO4)・5H2O及びKMnO4を5:13のモル比で脱イオン水に溶かして混合した。得られた混合液をテフロン(登録商標)が内貼りされたステンレス製密閉容器に入れ、140℃で水熱合成を2時間行う。水熱合成により得られた沈殿物をろ過し、蒸留水で洗浄した後、80℃で6時間乾燥した。こうしてα-MnO2の粉末を得た。 (2) Preparation of air electrode layer α-MnO 2 particles as an air electrode catalyst were prepared as follows. First, Mn (SO 4 ) · 5H 2 O and KMnO 4 were dissolved in deionized water at a molar ratio of 5:13 and mixed. The obtained mixed liquid is put into a stainless steel sealed container with Teflon (registered trademark) attached thereto, and hydrothermal synthesis is performed at 140 ° C. for 2 hours. The precipitate obtained by hydrothermal synthesis was filtered, washed with distilled water, and dried at 80 ° C. for 6 hours. Thus, α-MnO 2 powder was obtained.
水酸化物イオン伝導性材料としての層状複水酸化物粒子(以下、LDH粒子という)を次のようにして作製した。まず、Ni(NO3)2・6H2O及びFe(NO3)3・9H2Oを脱イオン水にNi:Fe=3:1のモル比になるように溶かして混合した。得られた混合液を70℃で0.3MのNa2CO3溶液に撹拌しながら滴下した。この際、2MのNaOH溶液を加えながら混合液のpHを10に調整して、70℃で24時間保持する。混合液中に生成した沈殿物をろ過し、蒸留水で洗浄後、80℃で乾燥してLDHの粉末を得た。
Layered double hydroxide particles (hereinafter referred to as LDH particles) as hydroxide ion conductive materials were produced as follows. First, Ni (NO 3 ) 2 · 6H 2 O and Fe (NO 3 ) 3 · 9H 2 O were dissolved and mixed in deionized water to a molar ratio of Ni: Fe = 3: 1. The resulting mixture was added dropwise to a 0.3 M Na 2 CO 3 solution at 70 ° C. with stirring. At this time, the pH of the mixed solution is adjusted to 10 while adding a 2M NaOH solution and maintained at 70 ° C. for 24 hours. The precipitate formed in the mixed solution was filtered, washed with distilled water, and then dried at 80 ° C. to obtain LDH powder.
先に得られたα-MnO2粒子及びLDH粒子、並びに電子伝導性材料としてのカーボンブラック(Cabot社製、品番VXC72)を所定の配合比となるように秤量して、エタノール溶媒の共存下で湿式混合した。得られた混合物を70℃で乾燥した後、解砕する。得られた解砕粉をバインダー(PTFE、エレクトロケム社製、品番EC-TEF-500ML)及び水と混合してフィブリル化した。このとき、水の添加量は空気極に対して1質量%とした。こうして得られたフィブリル状混合物を厚さ50μmとなるように集電体(カーボンクロス(エレクトロケム社製、品番EC-CC1-060T))にシート状に圧着して空気極層/集電体の積層シートを得た。こうして得られた空気極層は、電子伝導相(カーボンブラック)を20体積%、触媒層(α-MnO2粒子)を5体積%、水酸化物イオン伝導相(LDH粒子)を70体積%及びバインダー相(PTFE)を5体積%含むものであった。
The α-MnO 2 particles and LDH particles obtained above and carbon black (product number VXC72, manufactured by Cabot Co., Ltd.) as an electron conductive material are weighed so as to have a predetermined blending ratio, and in the presence of an ethanol solvent. Wet mixed. The resulting mixture is dried at 70 ° C. and then crushed. The obtained pulverized powder was mixed with a binder (PTFE, manufactured by Electrochem, product number EC-TEF-500ML) and water for fibrillation. At this time, the amount of water added was 1% by mass with respect to the air electrode. The fibrillar mixture thus obtained was pressure-bonded to a current collector (carbon cloth (manufactured by Electrochem, product number EC-CC1-060T)) so as to have a thickness of 50 μm, and the air electrode layer / current collector A laminated sheet was obtained. The air electrode layer thus obtained has an electron conductive phase (carbon black) of 20% by volume, a catalyst layer (α-MnO 2 particles) of 5% by volume, a hydroxide ion conductive phase (LDH particles) of 70% by volume and It contained 5% by volume of a binder phase (PTFE).
(3)セパレータ付き空気極の作製
アニオン交換膜(アストム社、ネオセプタAHA)を1MのNaOH水溶液に一晩浸漬させた。このアニオン交換膜をセパレータのLDH膜上に中間層として積層して、セパレータ/中間層積層体を得る。中間層の厚さは30μmである。得られたセパレータ/中間層積層体に、先に作製した空気極層/集電体の積層シートを、空気極層側が中間層と接するように圧着して、セパレータ付き空気極試料を得る。 (3) Production of air electrode with separator An anion exchange membrane (Astom Corp., Neocepta AHA) was immersed in 1M NaOH aqueous solution overnight. This anion exchange membrane is laminated as an intermediate layer on the LDH membrane of the separator to obtain a separator / intermediate layer laminate. The thickness of the intermediate layer is 30 μm. The separator / intermediate layer laminate thus obtained is pressure-bonded with the air electrode layer / current collector laminated sheet prepared previously so that the air electrode layer side is in contact with the intermediate layer, thereby obtaining an air electrode sample with a separator.
アニオン交換膜(アストム社、ネオセプタAHA)を1MのNaOH水溶液に一晩浸漬させた。このアニオン交換膜をセパレータのLDH膜上に中間層として積層して、セパレータ/中間層積層体を得る。中間層の厚さは30μmである。得られたセパレータ/中間層積層体に、先に作製した空気極層/集電体の積層シートを、空気極層側が中間層と接するように圧着して、セパレータ付き空気極試料を得る。 (3) Production of air electrode with separator An anion exchange membrane (Astom Corp., Neocepta AHA) was immersed in 1M NaOH aqueous solution overnight. This anion exchange membrane is laminated as an intermediate layer on the LDH membrane of the separator to obtain a separator / intermediate layer laminate. The thickness of the intermediate layer is 30 μm. The separator / intermediate layer laminate thus obtained is pressure-bonded with the air electrode layer / current collector laminated sheet prepared previously so that the air electrode layer side is in contact with the intermediate layer, thereby obtaining an air electrode sample with a separator.
(4)負極板の作製
銅パンチングメタルからなる集電体上に、酸化亜鉛粉末80重量部、亜鉛粉末20重量部及びポリテトラフルオロエチレン粒子3重量部からなる混合物を塗布して、多孔度約50%で活物質部分が塗工された負極板を得る。 (4) Production of Negative Electrode Plate A mixture of 80 parts by weight of zinc oxide powder, 20 parts by weight of zinc powder and 3 parts by weight of polytetrafluoroethylene particles was applied onto a current collector made of copper punching metal, and the porosity was about A negative electrode plate coated with an active material portion at 50% is obtained.
銅パンチングメタルからなる集電体上に、酸化亜鉛粉末80重量部、亜鉛粉末20重量部及びポリテトラフルオロエチレン粒子3重量部からなる混合物を塗布して、多孔度約50%で活物質部分が塗工された負極板を得る。 (4) Production of Negative Electrode Plate A mixture of 80 parts by weight of zinc oxide powder, 20 parts by weight of zinc powder and 3 parts by weight of polytetrafluoroethylene particles was applied onto a current collector made of copper punching metal, and the porosity was about A negative electrode plate coated with an active material portion at 50% is obtained.
(5)第三電極の作製
ニッケルメッシュからなる集電体上に白金ペーストを塗布して、第三電極を得る。 (5) Production of third electrode A platinum paste is applied on a current collector made of nickel mesh to obtain a third electrode.
ニッケルメッシュからなる集電体上に白金ペーストを塗布して、第三電極を得る。 (5) Production of third electrode A platinum paste is applied on a current collector made of nickel mesh to obtain a third electrode.
(6)電池の組み立て
上記得られたセパレータ付き空気極、負極板、及び第三電極を用いて、横型構造の亜鉛空気二次電池を以下のような手順で作製する。まず、ABS樹脂製で直方体形状を有する蓋の無い容器(以下、樹脂容器という)を用意する。この樹脂容器の底に負極板を、負極活物質が塗工された側が上を向くように載置する。このとき、負極集電体が樹脂容器の底部に接しており、負極集電体の端部が樹脂容器側面に貫通して設けられる外部端子と接続する。次に、樹脂容器内壁の負極板の上面よりも高い位置に(すなわち負極板と接触せず充放電反応に関与しない位置)に第三電極を設け、不織布セパレータを第三電極と接触するように配置する。樹脂容器の開口部をセパレータ付き空気極で空気極側が外側になるように塞ぎ、その際、開口部の外周部分にエポキシ樹脂系接着剤(セメダイン社製、EP008)を塗工して気密性及び液密性を与えるように封止して接着する。樹脂容器の上端近傍に設けられた小さな注入口を介して樹脂容器内に6mol/LのKOH水溶液を電解液として注入する。こうして、セパレータが電解液と接触するとともに、不織布セパレータの保液性により電解液の増減に関わらず電解液が第三電極に常時接触可能な状態とされる。このとき、注入する電解液の量は、放電末状態で電池を作製すべく、樹脂容器内で負極活物質塗工部分が十分に隠れるだけでなく、充電時に減少することが見込まれる水分量を考慮した過剰量とする。したがって、樹脂容器は上記過剰量の電解液を収容できるように設計されている。最後に、樹脂容器の注入口を封止する。こうして樹脂容器及びセパレータで区画された内部空間は気密且つ液密に密閉されている。最後に第三電極と空気極の集電層とを外部回路を介して接続する。こうして亜鉛空気二次電池を得る。 (6) Assembly of battery Using the obtained air electrode with separator, negative electrode plate, and third electrode, a zinc-air secondary battery having a horizontal structure is manufactured in the following procedure. First, a container without a lid (hereinafter referred to as a resin container) made of ABS resin and having a rectangular parallelepiped shape is prepared. The negative electrode plate is placed on the bottom of the resin container so that the side on which the negative electrode active material is coated faces upward. At this time, the negative electrode current collector is in contact with the bottom of the resin container, and the end of the negative electrode current collector is connected to an external terminal provided through the side surface of the resin container. Next, a third electrode is provided at a position higher than the upper surface of the negative electrode plate on the inner wall of the resin container (that is, a position that does not contact the negative electrode plate and does not participate in the charge / discharge reaction), and the nonwoven fabric separator contacts the third electrode. Deploy. The opening of the resin container is closed with an air electrode with a separator so that the air electrode side is on the outside. At that time, an epoxy resin-based adhesive (EP008, manufactured by Cemedine Co., Ltd.) is applied to the outer peripheral portion of the opening to Seal and bond to give liquid tightness. A 6 mol / L aqueous solution of KOH is injected as an electrolyte into the resin container through a small inlet provided near the upper end of the resin container. In this way, the separator comes into contact with the electrolyte solution, and the electrolyte solution can always contact the third electrode regardless of the increase or decrease of the electrolyte solution due to the liquid retaining property of the nonwoven fabric separator. At this time, the amount of electrolyte to be injected is the amount of water expected not only to sufficiently hide the negative electrode active material coating part in the resin container but also to decrease during charging in order to produce a battery in a discharged state. Use an excess amount in consideration. Therefore, the resin container is designed so as to accommodate the excessive amount of the electrolytic solution. Finally, the inlet of the resin container is sealed. Thus, the internal space defined by the resin container and the separator is hermetically and liquid-tightly sealed. Finally, the third electrode and the current collecting layer of the air electrode are connected via an external circuit. In this way, a zinc-air secondary battery is obtained.
上記得られたセパレータ付き空気極、負極板、及び第三電極を用いて、横型構造の亜鉛空気二次電池を以下のような手順で作製する。まず、ABS樹脂製で直方体形状を有する蓋の無い容器(以下、樹脂容器という)を用意する。この樹脂容器の底に負極板を、負極活物質が塗工された側が上を向くように載置する。このとき、負極集電体が樹脂容器の底部に接しており、負極集電体の端部が樹脂容器側面に貫通して設けられる外部端子と接続する。次に、樹脂容器内壁の負極板の上面よりも高い位置に(すなわち負極板と接触せず充放電反応に関与しない位置)に第三電極を設け、不織布セパレータを第三電極と接触するように配置する。樹脂容器の開口部をセパレータ付き空気極で空気極側が外側になるように塞ぎ、その際、開口部の外周部分にエポキシ樹脂系接着剤(セメダイン社製、EP008)を塗工して気密性及び液密性を与えるように封止して接着する。樹脂容器の上端近傍に設けられた小さな注入口を介して樹脂容器内に6mol/LのKOH水溶液を電解液として注入する。こうして、セパレータが電解液と接触するとともに、不織布セパレータの保液性により電解液の増減に関わらず電解液が第三電極に常時接触可能な状態とされる。このとき、注入する電解液の量は、放電末状態で電池を作製すべく、樹脂容器内で負極活物質塗工部分が十分に隠れるだけでなく、充電時に減少することが見込まれる水分量を考慮した過剰量とする。したがって、樹脂容器は上記過剰量の電解液を収容できるように設計されている。最後に、樹脂容器の注入口を封止する。こうして樹脂容器及びセパレータで区画された内部空間は気密且つ液密に密閉されている。最後に第三電極と空気極の集電層とを外部回路を介して接続する。こうして亜鉛空気二次電池を得る。 (6) Assembly of battery Using the obtained air electrode with separator, negative electrode plate, and third electrode, a zinc-air secondary battery having a horizontal structure is manufactured in the following procedure. First, a container without a lid (hereinafter referred to as a resin container) made of ABS resin and having a rectangular parallelepiped shape is prepared. The negative electrode plate is placed on the bottom of the resin container so that the side on which the negative electrode active material is coated faces upward. At this time, the negative electrode current collector is in contact with the bottom of the resin container, and the end of the negative electrode current collector is connected to an external terminal provided through the side surface of the resin container. Next, a third electrode is provided at a position higher than the upper surface of the negative electrode plate on the inner wall of the resin container (that is, a position that does not contact the negative electrode plate and does not participate in the charge / discharge reaction), and the nonwoven fabric separator contacts the third electrode. Deploy. The opening of the resin container is closed with an air electrode with a separator so that the air electrode side is on the outside. At that time, an epoxy resin-based adhesive (EP008, manufactured by Cemedine Co., Ltd.) is applied to the outer peripheral portion of the opening to Seal and bond to give liquid tightness. A 6 mol / L aqueous solution of KOH is injected as an electrolyte into the resin container through a small inlet provided near the upper end of the resin container. In this way, the separator comes into contact with the electrolyte solution, and the electrolyte solution can always contact the third electrode regardless of the increase or decrease of the electrolyte solution due to the liquid retaining property of the nonwoven fabric separator. At this time, the amount of electrolyte to be injected is the amount of water expected not only to sufficiently hide the negative electrode active material coating part in the resin container but also to decrease during charging in order to produce a battery in a discharged state. Use an excess amount in consideration. Therefore, the resin container is designed so as to accommodate the excessive amount of the electrolytic solution. Finally, the inlet of the resin container is sealed. Thus, the internal space defined by the resin container and the separator is hermetically and liquid-tightly sealed. Finally, the third electrode and the current collecting layer of the air electrode are connected via an external circuit. In this way, a zinc-air secondary battery is obtained.
かかる構成によれば、セパレータが水及び気体を通さない程の高度な緻密性を有するため、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止し、かつ、空気中の二酸化炭素の侵入を阻止して電解液中での(二酸化炭素に起因する)アルカリ炭酸塩の析出を防止することができる。その上、負極から副反応により発生しうる水素ガスを第三電極に接触させて前述した反応を経て水に戻すことができる。すなわち、亜鉛デンドライトによる短絡及び二酸化炭素の混入の両方を防止するのに好適な構成を有しながら、水素ガス発生の問題にも対処可能な、信頼性の高い亜鉛空気二次電池が提供される。
According to such a configuration, since the separator has a high degree of denseness that does not allow water and gas to pass through, the penetration of the separator by the zinc dendrite generated during charging is physically blocked to prevent a short circuit between the positive and negative electrodes, In addition, it is possible to prevent the infiltration of carbon dioxide in the air and to prevent the precipitation of alkali carbonate (caused by carbon dioxide) in the electrolyte. In addition, hydrogen gas that can be generated by a side reaction from the negative electrode can be brought into contact with the third electrode and returned to water through the above-described reaction. That is, a highly reliable zinc-air secondary battery that can cope with the problem of hydrogen gas generation while having a configuration suitable for preventing both short-circuiting due to zinc dendrite and mixing of carbon dioxide is provided. .
例3(参考):ニッケル亜鉛電池セルパックの作製(参考)
本例はニッケル亜鉛電池セルパックに関する参考例である。本例は亜鉛空気電池に関する実施例ではないが、同じく亜鉛負極を用い、かつ、可撓性フィルムで形成される可撓性袋体及びLDHセパレータを用いて電池セルパックを作製した例である点で、本発明の亜鉛空気電池セルパックを作製する上で参考にできるものである。 Example 3 (Reference): Preparation of nickel zinc battery cell pack (Reference)
This example is a reference example regarding a nickel zinc battery cell pack. Although this example is not an example relating to a zinc-air battery, it is also an example in which a battery cell pack is produced using a zinc negative electrode and a flexible bag formed of a flexible film and an LDH separator. Thus, it can be used as a reference when producing the zinc-air battery cell pack of the present invention.
本例はニッケル亜鉛電池セルパックに関する参考例である。本例は亜鉛空気電池に関する実施例ではないが、同じく亜鉛負極を用い、かつ、可撓性フィルムで形成される可撓性袋体及びLDHセパレータを用いて電池セルパックを作製した例である点で、本発明の亜鉛空気電池セルパックを作製する上で参考にできるものである。 Example 3 (Reference): Preparation of nickel zinc battery cell pack (Reference)
This example is a reference example regarding a nickel zinc battery cell pack. Although this example is not an example relating to a zinc-air battery, it is also an example in which a battery cell pack is produced using a zinc negative electrode and a flexible bag formed of a flexible film and an LDH separator. Thus, it can be used as a reference when producing the zinc-air battery cell pack of the present invention.
(1)中仕切りシートの作製
例1と同様の手順により、多孔質基材付きセパレータとして、アルミナ基材上LDH膜を用意した。図11A及び11Bに示されるように、多孔質基材330付きセパレータ328のセパレータ328側(すなわちLDH膜側)の外周縁に沿って変性ポリフェニレンエーテル樹脂製の枠332を載置した。このとき、枠332は正方形の枠であり、その内周縁には段差が設けられており、この段差に多孔質基材330及びセパレータ328の外周縁を嵌合させた。この枠332上に可撓性フィルム324としてラミネートフィルム(アズワン社製、製品名:バキュームシーラー用ポリ袋、厚さ:50μm、材質:PP樹脂(ベースフィルム)及びPE樹脂(熱可塑性樹脂))を載置した。この可撓性フィルム324は予め中央に開口部324aが形成されており、この開口部324aが枠332内の開放領域に対応するように可撓性フィルム324を配置した。可撓性フィルム324、枠332、及び多孔質基材330付きセパレータ328の接合部分を、市販のヒートシール機を用いて約200℃で熱融着封止した。こうして作製された中仕切りシートの写真が図12に示される。図12において点線で示される領域Hが熱融着封止が行われた領域であり、この領域における液密性が確保される。 (1) Production of partition sheet In the same procedure as in Example 1, an LDH film on an alumina substrate was prepared as a separator with a porous substrate. As shown in FIGS. 11A and 11B, a modified polyphenyleneether resin frame 332 was placed along the outer periphery of the separator 328 with the porous substrate 330 on the separator 328 side (that is, the LDH film side). At this time, the frame 332 is a square frame, and a step is provided on the inner periphery thereof, and the outer periphery of the porous substrate 330 and the separator 328 is fitted to the step. On this frame 332, a laminate film (manufactured by AS ONE, product name: polybag for vacuum sealer, thickness: 50 μm, material: PP resin (base film) and PE resin (thermoplastic resin)) is formed as a flexible film 324. Placed. The flexible film 324 has an opening 324 a formed in the center in advance, and the flexible film 324 is disposed so that the opening 324 a corresponds to an open area in the frame 332. The joint part of the flexible film 324, the frame 332, and the separator 328 with the porous base material 330 was heat-sealed and sealed at about 200 ° C. using a commercially available heat sealer. A photograph of the partition sheet thus produced is shown in FIG. A region H indicated by a dotted line in FIG. 12 is a region where heat sealing has been performed, and liquid tightness in this region is ensured.
例1と同様の手順により、多孔質基材付きセパレータとして、アルミナ基材上LDH膜を用意した。図11A及び11Bに示されるように、多孔質基材330付きセパレータ328のセパレータ328側(すなわちLDH膜側)の外周縁に沿って変性ポリフェニレンエーテル樹脂製の枠332を載置した。このとき、枠332は正方形の枠であり、その内周縁には段差が設けられており、この段差に多孔質基材330及びセパレータ328の外周縁を嵌合させた。この枠332上に可撓性フィルム324としてラミネートフィルム(アズワン社製、製品名:バキュームシーラー用ポリ袋、厚さ:50μm、材質:PP樹脂(ベースフィルム)及びPE樹脂(熱可塑性樹脂))を載置した。この可撓性フィルム324は予め中央に開口部324aが形成されており、この開口部324aが枠332内の開放領域に対応するように可撓性フィルム324を配置した。可撓性フィルム324、枠332、及び多孔質基材330付きセパレータ328の接合部分を、市販のヒートシール機を用いて約200℃で熱融着封止した。こうして作製された中仕切りシートの写真が図12に示される。図12において点線で示される領域Hが熱融着封止が行われた領域であり、この領域における液密性が確保される。 (1) Production of partition sheet In the same procedure as in Example 1, an LDH film on an alumina substrate was prepared as a separator with a porous substrate. As shown in FIGS. 11A and 11B, a modified polyphenylene
(2)正極板の作製
亜鉛及びコバルトを固溶体となるように添加した水酸化ニッケル粒子を用意する。この水酸化ニッケル粒子を水酸化コバルトで被覆して正極活物質を得る。得られた正極活物質と、カルボキシメチルセルロースの2%水溶液とを混合してペーストを調製する。正極活物質の多孔度が50%となるように、多孔度が約95%のニッケル金属多孔質基板からなる集電体に上記得られたペーストを均一に塗布して乾燥し、活物質部分が所定の領域にわたって塗工された正極板を得る。 (2) Preparation of positive electrode plate Nickel hydroxide particles to which zinc and cobalt are added so as to form a solid solution are prepared. The nickel hydroxide particles are coated with cobalt hydroxide to obtain a positive electrode active material. The obtained positive electrode active material and a 2% aqueous solution of carboxymethylcellulose are mixed to prepare a paste. The paste obtained above is uniformly applied to a current collector made of a nickel metal porous substrate having a porosity of about 95% and dried so that the porosity of the positive electrode active material is 50%. A positive electrode plate coated over a predetermined area is obtained.
亜鉛及びコバルトを固溶体となるように添加した水酸化ニッケル粒子を用意する。この水酸化ニッケル粒子を水酸化コバルトで被覆して正極活物質を得る。得られた正極活物質と、カルボキシメチルセルロースの2%水溶液とを混合してペーストを調製する。正極活物質の多孔度が50%となるように、多孔度が約95%のニッケル金属多孔質基板からなる集電体に上記得られたペーストを均一に塗布して乾燥し、活物質部分が所定の領域にわたって塗工された正極板を得る。 (2) Preparation of positive electrode plate Nickel hydroxide particles to which zinc and cobalt are added so as to form a solid solution are prepared. The nickel hydroxide particles are coated with cobalt hydroxide to obtain a positive electrode active material. The obtained positive electrode active material and a 2% aqueous solution of carboxymethylcellulose are mixed to prepare a paste. The paste obtained above is uniformly applied to a current collector made of a nickel metal porous substrate having a porosity of about 95% and dried so that the porosity of the positive electrode active material is 50%. A positive electrode plate coated over a predetermined area is obtained.
(3)負極板の作製
銅パンチングメタルからなる集電体上に、酸化亜鉛粉末80重量部、亜鉛粉末20重量部及びポリテトラフルオロエチレン粒子3重量部からなる混合物を塗布して、多孔度約50%で、活物質部分が所定の領域にわたって塗工された負極板を得る。 (3) Production of negative electrode plate A mixture of 80 parts by weight of zinc oxide powder, 20 parts by weight of zinc powder and 3 parts by weight of polytetrafluoroethylene particles was applied on a current collector made of copper punching metal, and the porosity was about A negative electrode plate in which the active material portion is applied over a predetermined region at 50% is obtained.
銅パンチングメタルからなる集電体上に、酸化亜鉛粉末80重量部、亜鉛粉末20重量部及びポリテトラフルオロエチレン粒子3重量部からなる混合物を塗布して、多孔度約50%で、活物質部分が所定の領域にわたって塗工された負極板を得る。 (3) Production of negative electrode plate A mixture of 80 parts by weight of zinc oxide powder, 20 parts by weight of zinc powder and 3 parts by weight of polytetrafluoroethylene particles was applied on a current collector made of copper punching metal, and the porosity was about A negative electrode plate in which the active material portion is applied over a predetermined region at 50% is obtained.
(4)ニッケル亜鉛電池セルパックの作製
上記得られた中仕切りシート314、正極316及び負極320を用いて図13に示されるようなニッケル亜鉛電池セルパック310を以下の手順で組み立てた。まず、1対の可撓性フィルム312a,312bとしてラミネートフィルム(アズワン社製、製品名:バキュームシーラー用ポリ袋、厚さ:50μm、材質:PP樹脂(ベースフィルム)及びPE樹脂(熱可塑性樹脂))を用意した。図13に示されるように、可撓性フィルム312a上に負極320、中仕切りシート314、正極316及び可撓性フィルム312bをこの順に積層した。このとき、中仕切りシート314は多孔質基材330及び枠332が正極316側に位置するように配置した。可撓性フィルム312a,312bの外周縁3辺(上端部以外の辺)と、中仕切りシート314を構成する可撓性フィルム324の外周縁3辺(上端部以外の辺)は重なっており、この可撓性フィルム312a,323,312bの重なり部分(外周縁3辺)を市販のヒートシール機を用いて約200℃で熱融着接合した。こうして熱融着接合により液密に封止された可撓性袋体312を正極316側から撮影した写真を図14に示す。図14において点線で囲まれた外周縁3辺の領域Hが熱融着封止された部分である。この時点では、図14から分かるように、可撓性袋体の上端部は熱融着封止されずに開放されており、正極集電体と負極集電体が互いに異なる位置で可撓性袋体の外周縁から互いに異なる位置で延出している(図中に視認される2本の金属片に相当)。なお、図14において、正極集電体と負極集電体がかなり長めに設けられているが、これは試作上の都合によるものであり、実際には余剰空間が無駄に大きくならないように図14に示される長さよりも短く構成されるのが好ましい。熱融着封止された可撓性袋体を負極側から撮影した写真を図15Aに示す。図15Aにおいて可撓性袋体の上端部の枠で強調された部分(その部分の拡大写真が図15Bに示される)において灰色のラインとして観察されるように、集電体(金属片)の可撓性袋体の上端部と接触されるべき部分には、熱融着による可撓性フィルムと溶着を促進する熱融着用シーラントフィルム(住友電工社製、製品名:タブリード MINUS LEAD、材質:ポリオレフィン樹脂)が配設されており、後に行われる上端部の熱融着接合の際に集電体(金属片)との接触部分において(すなわち異種材料間において)確実に熱融着接合できるようにされている。こうして中仕切りシート314、正極316及び負極320を収容した可撓性袋体312を真空デシケータ中に入れ、真空雰囲気下で、可撓性袋体312内の正極室315及び負極室319の各々に電解液として6mol/LのKOH水溶液を電解液として注液した。この電解液の注入は、可撓性袋体312の上端部の開放部分から行った。最後に、可撓性袋体312の上端部の開放部分を市販のヒートシール機を用いて約200℃で熱融着接合して、ニッケル亜鉛電池セルパック310を得た。こうして上端部が熱融着接合されたニッケル亜鉛電池セルパック310を撮影した写真を図16に示す。図16において点線で囲まれた外周縁である上端部1辺の領域Hが熱融着接合された部分である。 (4) Production of Nickel Zinc Battery Cell Pack A nickel zincbattery cell pack 310 as shown in FIG. 13 was assembled by the following procedure using the partition sheet 314, the positive electrode 316 and the negative electrode 320 obtained above. First, as a pair of flexible films 312a and 312b, a laminate film (manufactured by AS ONE, product name: plastic bag for vacuum sealer, thickness: 50 μm, material: PP resin (base film) and PE resin (thermoplastic resin) ) Was prepared. As shown in FIG. 13, the negative electrode 320, the partition sheet 314, the positive electrode 316, and the flexible film 312b were laminated in this order on the flexible film 312a. At this time, the partition sheet 314 was disposed so that the porous base material 330 and the frame 332 were positioned on the positive electrode 316 side. The outer periphery 3 sides (sides other than the upper end) of the flexible films 312a and 312b and the outer periphery 3 sides (sides other than the upper end) of the flexible film 324 constituting the partition sheet 314 overlap, The overlapping portions (outer peripheral edge 3 sides) of the flexible films 312a, 323, 312b were heat-sealed and bonded at about 200 ° C. using a commercially available heat sealer. A photograph taken from the positive electrode 316 side of the flexible bag 312 sealed in a liquid-tight manner by heat fusion bonding is shown in FIG. In FIG. 14, a region H on the three outer peripheral edges surrounded by a dotted line is a portion that is heat sealed. At this point, as can be seen from FIG. 14, the upper end portion of the flexible bag is opened without being heat-sealed, and the positive electrode current collector and the negative electrode current collector are flexible at different positions. It extends from the outer periphery of the bag at different positions (corresponding to two metal pieces visually recognized in the figure). In FIG. 14, the positive electrode current collector and the negative electrode current collector are provided with a considerably longer length, but this is for the purpose of trial manufacture, and in actuality, the surplus space is not increased unnecessarily. It is preferable that the length is shorter than that shown in FIG. The photograph which image | photographed the flexible bag body heat-sealed and sealed from the negative electrode side is shown to FIG. 15A. As shown in FIG. 15A as a gray line in the portion highlighted by the frame at the upper end of the flexible bag (an enlarged photograph of that portion is shown in FIG. 15B), On the portion to be brought into contact with the upper end of the flexible bag body, a heat-sealing flexible film and a heat-sealing sealant film that promotes welding (product name: tab lead MINUS LEAD, material: (Polyolefin resin) is disposed, so that heat fusion bonding can be reliably performed at the contact portion with the current collector (metal piece) (that is, between different materials) at the time of heat fusion bonding of the upper end portion performed later. Has been. Thus, the flexible bag 312 containing the partition sheet 314, the positive electrode 316, and the negative electrode 320 is placed in a vacuum desiccator and placed in each of the positive electrode chamber 315 and the negative electrode chamber 319 in the flexible bag 312 in a vacuum atmosphere. As an electrolytic solution, a 6 mol / L aqueous KOH solution was injected as an electrolytic solution. The electrolyte solution was injected from the open part of the upper end of the flexible bag 312. Finally, the open portion at the upper end of the flexible bag body 312 was heat-sealed and bonded at about 200 ° C. using a commercially available heat sealer, to obtain a nickel zinc battery cell pack 310. The photograph which image | photographed the nickel zinc battery cell pack 310 by which the upper end part was heat-seal-bonded in this way is shown in FIG. In FIG. 16, a region H on one side of the upper end that is the outer periphery surrounded by a dotted line is a portion that is heat-sealed.
上記得られた中仕切りシート314、正極316及び負極320を用いて図13に示されるようなニッケル亜鉛電池セルパック310を以下の手順で組み立てた。まず、1対の可撓性フィルム312a,312bとしてラミネートフィルム(アズワン社製、製品名:バキュームシーラー用ポリ袋、厚さ:50μm、材質:PP樹脂(ベースフィルム)及びPE樹脂(熱可塑性樹脂))を用意した。図13に示されるように、可撓性フィルム312a上に負極320、中仕切りシート314、正極316及び可撓性フィルム312bをこの順に積層した。このとき、中仕切りシート314は多孔質基材330及び枠332が正極316側に位置するように配置した。可撓性フィルム312a,312bの外周縁3辺(上端部以外の辺)と、中仕切りシート314を構成する可撓性フィルム324の外周縁3辺(上端部以外の辺)は重なっており、この可撓性フィルム312a,323,312bの重なり部分(外周縁3辺)を市販のヒートシール機を用いて約200℃で熱融着接合した。こうして熱融着接合により液密に封止された可撓性袋体312を正極316側から撮影した写真を図14に示す。図14において点線で囲まれた外周縁3辺の領域Hが熱融着封止された部分である。この時点では、図14から分かるように、可撓性袋体の上端部は熱融着封止されずに開放されており、正極集電体と負極集電体が互いに異なる位置で可撓性袋体の外周縁から互いに異なる位置で延出している(図中に視認される2本の金属片に相当)。なお、図14において、正極集電体と負極集電体がかなり長めに設けられているが、これは試作上の都合によるものであり、実際には余剰空間が無駄に大きくならないように図14に示される長さよりも短く構成されるのが好ましい。熱融着封止された可撓性袋体を負極側から撮影した写真を図15Aに示す。図15Aにおいて可撓性袋体の上端部の枠で強調された部分(その部分の拡大写真が図15Bに示される)において灰色のラインとして観察されるように、集電体(金属片)の可撓性袋体の上端部と接触されるべき部分には、熱融着による可撓性フィルムと溶着を促進する熱融着用シーラントフィルム(住友電工社製、製品名:タブリード MINUS LEAD、材質:ポリオレフィン樹脂)が配設されており、後に行われる上端部の熱融着接合の際に集電体(金属片)との接触部分において(すなわち異種材料間において)確実に熱融着接合できるようにされている。こうして中仕切りシート314、正極316及び負極320を収容した可撓性袋体312を真空デシケータ中に入れ、真空雰囲気下で、可撓性袋体312内の正極室315及び負極室319の各々に電解液として6mol/LのKOH水溶液を電解液として注液した。この電解液の注入は、可撓性袋体312の上端部の開放部分から行った。最後に、可撓性袋体312の上端部の開放部分を市販のヒートシール機を用いて約200℃で熱融着接合して、ニッケル亜鉛電池セルパック310を得た。こうして上端部が熱融着接合されたニッケル亜鉛電池セルパック310を撮影した写真を図16に示す。図16において点線で囲まれた外周縁である上端部1辺の領域Hが熱融着接合された部分である。 (4) Production of Nickel Zinc Battery Cell Pack A nickel zinc
Claims (20)
- 可撓性フィルムで形成され且つ開口部を備えた可撓性袋体と、
前記開口部を気密かつ液密に閉塞して前記可撓性袋体と共に密閉空間を形成する、水酸化物イオン伝導性を有するが透水性及び通気性を有しないセパレータを含むセパレータ構造体と、
前記セパレータの前記密閉空間と反対側に設けられる空気極と、
前記密閉空間に収容される、亜鉛、亜鉛合金及び/又は亜鉛化合物を含んでなる負極と、
前記密閉空間に収容されて前記負極が浸漬される、アルカリ金属水酸化物水溶液を含んでなる電解液と、
を備えた、亜鉛空気電池セルパック。 A flexible bag formed of a flexible film and provided with an opening;
A separator structure including a separator having hydroxide ion conductivity but not having water permeability and air permeability, wherein the opening is hermetically and liquid-tightly closed to form a sealed space together with the flexible bag;
An air electrode provided on the side opposite to the sealed space of the separator;
A negative electrode containing zinc, a zinc alloy and / or a zinc compound, contained in the sealed space;
An electrolytic solution containing an aqueous alkali metal hydroxide solution that is housed in the sealed space and in which the negative electrode is immersed;
A zinc-air battery cell pack comprising: - 前記可撓性フィルムが樹脂フィルムを含んでなる、請求項1に記載の亜鉛空気電池セルパック。 The zinc-air battery cell pack according to claim 1, wherein the flexible film comprises a resin film.
- 前記可撓性袋体が一対の可撓性フィルムからなり、前記一対の可撓性フィルムの外周縁が熱融着により封止されている、請求項1又は2に記載の亜鉛空気電池セルパック。 The zinc-air battery cell pack according to claim 1 or 2, wherein the flexible bag is made of a pair of flexible films, and the outer peripheral edges of the pair of flexible films are sealed by heat sealing. .
- 前記セパレータ構造体が前記セパレータの外周縁に沿って枠を備えており、前記可撓性フィルムと前記セパレータ構造体とが前記枠を介して液密かつ気密に接着されている、請求項1~3のいずれか一項に記載の亜鉛空気電池セルパック。 The separator structure includes a frame along an outer peripheral edge of the separator, and the flexible film and the separator structure are bonded in a liquid-tight and air-tight manner through the frame. 4. The zinc-air battery cell pack according to claim 3.
- 前記枠が樹脂枠であり、前記可撓性フィルムと前記樹脂枠とが接着剤及び/又は熱融着により接着されている、請求項4に記載の亜鉛空気電池セルパック。 The zinc-air battery cell pack according to claim 4, wherein the frame is a resin frame, and the flexible film and the resin frame are bonded by an adhesive and / or heat fusion.
- 前記密閉空間は、充放電時の負極反応に伴う水分量の減増を許容する容積の余剰空間を含む、請求項1~5のいずれか一項に記載の亜鉛空気電池セルパック。 The zinc-air battery cell pack according to any one of claims 1 to 5, wherein the sealed space includes a surplus space having a volume that allows a decrease in water amount accompanying a negative electrode reaction during charge and discharge.
- 前記可撓性袋体、前記セパレータ構造体、前記空気極、及び前記負極が縦に設けられ、前記密閉空間がその上方に前記余剰空間を有する、請求項6に記載の亜鉛空気電池セルパック。 The zinc-air battery cell pack according to claim 6, wherein the flexible bag, the separator structure, the air electrode, and the negative electrode are provided vertically, and the sealed space has the excess space above it.
- 前記セパレータが無機固体電解質体からなる、請求項1~7のいずれか一項に記載の亜鉛空気電池セルパック。 The zinc-air battery cell pack according to any one of claims 1 to 7, wherein the separator is made of an inorganic solid electrolyte body.
- 前記無機固体電解質体が90%以上の相対密度を有する、請求項8に記載の亜鉛空気電池セルパック。 The zinc-air battery cell pack according to claim 8, wherein the inorganic solid electrolyte body has a relative density of 90% or more.
- 前記無機固体電解質体が層状複水酸化物からなる、請求項8又は9に記載の亜鉛空気電池セルパック。 The zinc-air battery cell pack according to claim 8 or 9, wherein the inorganic solid electrolyte body is composed of a layered double hydroxide.
- 前記無機固体電解質体が、板状、膜状又は層状の形態を有する、請求項8~10のいずれか一項に記載の亜鉛空気電池セルパック。 The zinc-air battery cell pack according to any one of claims 8 to 10, wherein the inorganic solid electrolyte body has a plate shape, a film shape, or a layer shape.
- 前記セパレータ構造体が、前記セパレータの少なくともいずれか一方の側に多孔質基材をさらに備えた、請求項1~11のいずれか一項に記載の亜鉛空気電池セルパック。 The zinc-air battery cell pack according to any one of claims 1 to 11, wherein the separator structure further includes a porous substrate on at least one side of the separator.
- 前記無機固体電解質体が膜状又は層状の形態であり、該膜状又は層状の無機固体電解質体が前記多孔質基材上又はその中に形成されたものである、請求項12に記載の亜鉛空気電池セルパック。 The zinc according to claim 12, wherein the inorganic solid electrolyte body is in the form of a film or a layer, and the film or layered inorganic solid electrolyte is formed on or in the porous substrate. Air battery cell pack.
- 前記セパレータが前記多孔質基材の前記密閉空間側に設けられる、請求項12又は13に記載の亜鉛空気電池セルパック。 The zinc-air battery cell pack according to claim 12 or 13, wherein the separator is provided on the sealed space side of the porous substrate.
- 前記セパレータ構造体が前記セパレータの外周縁に沿って枠を備えており、前記枠が、
前記セパレータ及び前記多孔質基材を収容可能な開口部を有する外枠部と、
前記外枠部の前記空気極側の端部及び/又はその近傍から前記開口部に向かって延在し、前記多孔質基材の前記空気極側と係合する内枠部と、
を備え、前記多孔質基材と前記枠との間、又は前記多孔質基材及び前記セパレータの両方と枠との間が接着剤で液密に封止されている、請求項14に記載の亜鉛空気電池セルパック。 The separator structure includes a frame along an outer peripheral edge of the separator, and the frame includes:
An outer frame portion having an opening capable of accommodating the separator and the porous substrate;
An inner frame portion extending from the end of the outer frame portion on the air electrode side and / or the vicinity thereof toward the opening, and engaging with the air electrode side of the porous substrate;
The space between the porous substrate and the frame or between the porous substrate and the separator and the frame is liquid-tightly sealed with an adhesive. Zinc-air battery cell pack. - 前記無機固体電解質体が層状複水酸化物からなり、前記層状複水酸化物が、複数の板状粒子の集合体で構成され、該複数の板状粒子がそれらの板面が前記多孔質基材の表面と垂直に又は斜めに交差するような向きに配向している、請求項8~15のいずれか一項に記載の亜鉛空気電池セルパック。 The inorganic solid electrolyte body is composed of a layered double hydroxide, and the layered double hydroxide is composed of an assembly of a plurality of plate-like particles, and the plate surfaces of the plurality of plate-like particles are the porous group. The zinc-air battery cell pack according to any one of claims 8 to 15, wherein the zinc-air battery cell pack is oriented in a direction perpendicular to or obliquely intersecting the surface of the material.
- 前記亜鉛空気電池セルパックが、前記空気極の前記セパレータと反対側に設けられる、通気性を有する空気極集電体と、前記負極に接触して設けられる負極集電体とをさらに備えた、請求項1~16のいずれか一項に記載の亜鉛空気電池セルパック。 The zinc-air battery cell pack further comprises a breathable air electrode current collector provided on the air electrode opposite to the separator, and a negative electrode current collector provided in contact with the negative electrode. The zinc-air battery cell pack according to any one of claims 1 to 16.
- 前記負極集電体が前記可撓性袋体の外周縁から延出している、請求項1~17のいずれか一項に記載の亜鉛空気電池セルパック。 The zinc-air battery cell pack according to any one of claims 1 to 17, wherein the negative electrode current collector extends from an outer peripheral edge of the flexible bag.
- 前記亜鉛空気電池セルパックが、前記電解液と接触するが前記負極と接触しないように設けられる第三電極を備えており、前記第三電極が外部回路を経て前記空気極と接続されている、請求項1~18のいずれか一項に記載の亜鉛空気電池セルパック。 The zinc-air battery cell pack includes a third electrode provided so as to be in contact with the electrolyte but not in contact with the negative electrode, and the third electrode is connected to the air electrode via an external circuit, The zinc-air battery cell pack according to any one of claims 1 to 18.
- 電池容器内に、請求項1~19のいずれか一項に記載の亜鉛空気電池セルパックが複数個詰め込まれた、組電池。
An assembled battery in which a plurality of zinc-air battery cell packs according to any one of claims 1 to 19 are packed in a battery container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017526376A JP7095991B2 (en) | 2015-07-01 | 2016-06-28 | Zinc-air battery Cell pack and battery assembly using it |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015132861 | 2015-07-01 | ||
JP2015-132861 | 2015-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017002815A1 true WO2017002815A1 (en) | 2017-01-05 |
Family
ID=57608670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/069161 WO2017002815A1 (en) | 2015-07-01 | 2016-06-28 | Zinc air battery cell pack and battery pack using same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7095991B2 (en) |
WO (1) | WO2017002815A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017086278A1 (en) * | 2015-11-16 | 2017-05-26 | 日本碍子株式会社 | Electrode cartridge and zinc secondary cell using same |
WO2019077953A1 (en) * | 2017-10-20 | 2019-04-25 | 日本碍子株式会社 | Zinc secondary battery |
CN110313101A (en) * | 2017-02-03 | 2019-10-08 | 藤仓复合材料科技有限公司 | Metal-air battery and its application method |
CN110534696A (en) * | 2019-07-29 | 2019-12-03 | 深圳大学 | A kind of flexible battery and preparation method thereof |
CN111326757A (en) * | 2018-12-14 | 2020-06-23 | 中国科学院大连化学物理研究所 | Metal seawater fuel cell stack |
WO2020179645A1 (en) * | 2019-03-05 | 2020-09-10 | シャープ株式会社 | Negative electrode and metal-air battery |
JPWO2020246176A1 (en) * | 2019-06-05 | 2020-12-10 | ||
CN112585799A (en) * | 2018-08-22 | 2021-03-30 | 株式会社丰田自动织机 | Power storage module and method for manufacturing power storage module |
CN112640197A (en) * | 2018-08-31 | 2021-04-09 | 夏普株式会社 | Metal-air battery module |
CN113707840A (en) * | 2021-08-19 | 2021-11-26 | 深圳德夏科技发展有限公司 | Manufacturing method of flexible battery, flexible battery and application |
CN114391198A (en) * | 2019-09-25 | 2022-04-22 | 日本碍子株式会社 | Air electrode/separator assembly and zinc-air secondary battery |
US11575181B2 (en) | 2019-03-15 | 2023-02-07 | Kabushiki Kaisha Toshiba | Battery, battery pack, and stationary power supply |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004288571A (en) * | 2003-03-25 | 2004-10-14 | Toshiba Battery Co Ltd | Water-based metal-air cell and electronic apparatus using the same |
JP2005515606A (en) * | 2001-12-31 | 2005-05-26 | エビオニクス、インク. | Rechargeable metal-air electrochemical cell with foldable cathode assembly |
US20100255375A1 (en) * | 2009-04-01 | 2010-10-07 | United States Of America As Represented By Secretary Of The Army | Molybdenum/air battery and cell design |
JP2013037999A (en) * | 2011-08-10 | 2013-02-21 | Toyota Motor Corp | Metal-air battery |
WO2013073292A1 (en) * | 2011-11-16 | 2013-05-23 | 日本碍子株式会社 | Zinc-air secondary battery |
JP2013225443A (en) * | 2012-04-23 | 2013-10-31 | Sharp Corp | Metal-air battery and energy system |
WO2014156578A1 (en) * | 2013-03-25 | 2014-10-02 | 日本碍子株式会社 | Dense layered double hydroxide, and method for producing same |
JP2014225344A (en) * | 2013-05-15 | 2014-12-04 | 日本碍子株式会社 | Method for using air metal secondary battery |
WO2016076047A1 (en) * | 2014-11-13 | 2016-05-19 | 日本碍子株式会社 | Separator structure body for use in zinc secondary battery |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012028062A (en) | 2010-07-21 | 2012-02-09 | Panasonic Corp | Negative electrode for lithium ion secondary battery and method of manufacturing the same, and lithium ion secondary battery |
-
2016
- 2016-06-28 JP JP2017526376A patent/JP7095991B2/en active Active
- 2016-06-28 WO PCT/JP2016/069161 patent/WO2017002815A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005515606A (en) * | 2001-12-31 | 2005-05-26 | エビオニクス、インク. | Rechargeable metal-air electrochemical cell with foldable cathode assembly |
JP2004288571A (en) * | 2003-03-25 | 2004-10-14 | Toshiba Battery Co Ltd | Water-based metal-air cell and electronic apparatus using the same |
US20100255375A1 (en) * | 2009-04-01 | 2010-10-07 | United States Of America As Represented By Secretary Of The Army | Molybdenum/air battery and cell design |
JP2013037999A (en) * | 2011-08-10 | 2013-02-21 | Toyota Motor Corp | Metal-air battery |
WO2013073292A1 (en) * | 2011-11-16 | 2013-05-23 | 日本碍子株式会社 | Zinc-air secondary battery |
JP2013225443A (en) * | 2012-04-23 | 2013-10-31 | Sharp Corp | Metal-air battery and energy system |
WO2014156578A1 (en) * | 2013-03-25 | 2014-10-02 | 日本碍子株式会社 | Dense layered double hydroxide, and method for producing same |
JP2014225344A (en) * | 2013-05-15 | 2014-12-04 | 日本碍子株式会社 | Method for using air metal secondary battery |
WO2016076047A1 (en) * | 2014-11-13 | 2016-05-19 | 日本碍子株式会社 | Separator structure body for use in zinc secondary battery |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10686177B2 (en) | 2015-11-16 | 2020-06-16 | Ngk Insulators, Ltd. | Electrode cartridge and zinc secondary cell using same |
WO2017086278A1 (en) * | 2015-11-16 | 2017-05-26 | 日本碍子株式会社 | Electrode cartridge and zinc secondary cell using same |
CN110313101B (en) * | 2017-02-03 | 2023-04-04 | 藤仓复合材料科技株式会社 | Metal-air battery and use method thereof |
CN110313101A (en) * | 2017-02-03 | 2019-10-08 | 藤仓复合材料科技有限公司 | Metal-air battery and its application method |
US11342551B2 (en) | 2017-10-20 | 2022-05-24 | Ngk Insulators, Ltd. | Zinc secondary battery |
JPWO2019077953A1 (en) * | 2017-10-20 | 2020-05-28 | 日本碍子株式会社 | Zinc secondary battery |
WO2019077953A1 (en) * | 2017-10-20 | 2019-04-25 | 日本碍子株式会社 | Zinc secondary battery |
CN112585799B (en) * | 2018-08-22 | 2024-02-02 | 株式会社丰田自动织机 | Power storage module and method for manufacturing power storage module |
CN112585799A (en) * | 2018-08-22 | 2021-03-30 | 株式会社丰田自动织机 | Power storage module and method for manufacturing power storage module |
US12034185B2 (en) | 2018-08-31 | 2024-07-09 | Sharp Kabushiki Kaisha | Metal air battery module |
CN112640197B (en) * | 2018-08-31 | 2023-08-29 | 夏普株式会社 | Metal-air battery module |
CN112640197A (en) * | 2018-08-31 | 2021-04-09 | 夏普株式会社 | Metal-air battery module |
CN111326757A (en) * | 2018-12-14 | 2020-06-23 | 中国科学院大连化学物理研究所 | Metal seawater fuel cell stack |
JP7223114B2 (en) | 2019-03-05 | 2023-02-15 | シャープ株式会社 | Anode and metal-air batteries |
JPWO2020179645A1 (en) * | 2019-03-05 | 2021-12-23 | シャープ株式会社 | Negative electrode and metal-air battery |
WO2020179645A1 (en) * | 2019-03-05 | 2020-09-10 | シャープ株式会社 | Negative electrode and metal-air battery |
US11575181B2 (en) | 2019-03-15 | 2023-02-07 | Kabushiki Kaisha Toshiba | Battery, battery pack, and stationary power supply |
WO2020246176A1 (en) * | 2019-06-05 | 2020-12-10 | 日本碍子株式会社 | Air electrode/separator assembly and metal-air secondary battery |
JPWO2020246176A1 (en) * | 2019-06-05 | 2020-12-10 | ||
CN110534696A (en) * | 2019-07-29 | 2019-12-03 | 深圳大学 | A kind of flexible battery and preparation method thereof |
CN114391198A (en) * | 2019-09-25 | 2022-04-22 | 日本碍子株式会社 | Air electrode/separator assembly and zinc-air secondary battery |
CN113707840A (en) * | 2021-08-19 | 2021-11-26 | 深圳德夏科技发展有限公司 | Manufacturing method of flexible battery, flexible battery and application |
Also Published As
Publication number | Publication date |
---|---|
JP7095991B2 (en) | 2022-07-05 |
JPWO2017002815A1 (en) | 2018-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017002815A1 (en) | Zinc air battery cell pack and battery pack using same | |
JP6067925B2 (en) | Zinc-air secondary battery | |
KR101691338B1 (en) | Secondary cell using hydroxide-ion-conductive ceramic separator | |
JP6165998B2 (en) | Nickel-zinc battery cell pack and assembled battery using the same | |
JP6784694B2 (en) | Electrode cartridge and zinc secondary battery using it | |
JP6723473B2 (en) | Zinc secondary battery | |
JP5940237B1 (en) | Secondary battery using hydroxide ion conductive ceramic separator | |
JP6180063B2 (en) | Battery and its assembly method | |
JP6030780B2 (en) | Secondary battery using hydroxide ion conductive ceramic separator | |
JPWO2016051934A1 (en) | Batteries using layered double hydroxides | |
JP6677860B2 (en) | Method for producing negative electrode structure for zinc secondary battery | |
JP6598290B2 (en) | Secondary battery using hydroxide ion conductive ceramic separator | |
JP2017091949A (en) | Zinc secondary battery | |
JP6408878B2 (en) | Secondary battery using hydroxide ion conductive ceramic separator | |
JP2019117780A (en) | Negative electrode structure for zinc secondary battery | |
JP6580379B2 (en) | Nickel zinc battery | |
JP6313156B2 (en) | Zinc-air secondary battery | |
JP2017016901A (en) | Zinc air cell | |
JP2016207631A (en) | Zinc air battery, and method of assembling the same | |
WO2018078738A1 (en) | Nickel zinc battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16817923 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017526376 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16817923 Country of ref document: EP Kind code of ref document: A1 |