WO2008029911A1 - Planar light source element, light control member using the same, and image display device using the same - Google Patents

Planar light source element, light control member using the same, and image display device using the same Download PDF

Info

Publication number
WO2008029911A1
WO2008029911A1 PCT/JP2007/067490 JP2007067490W WO2008029911A1 WO 2008029911 A1 WO2008029911 A1 WO 2008029911A1 JP 2007067490 W JP2007067490 W JP 2007067490W WO 2008029911 A1 WO2008029911 A1 WO 2008029911A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
axis direction
light control
axis
Prior art date
Application number
PCT/JP2007/067490
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshimi Ohta
Ikuo Onishi
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to JP2008533210A priority Critical patent/JPWO2008029911A1/en
Publication of WO2008029911A1 publication Critical patent/WO2008029911A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light

Definitions

  • the present invention relates to a surface light source element having a plurality of point light sources, a sheet-like light control member provided in the surface light source element, and an image display device using the same.
  • the present invention relates to a direct-type surface light source element used in lighting signage devices, liquid crystal display devices, and the like that are required to have high performance, a light control member included in the surface light source element, and an image display device using the light control member.
  • surface light source elements used in image display devices include an edge light method and a direct method.
  • the edge light method is a method in which light from a light source arranged on the end face of the light guide plate is taken out from the main surface perpendicular to the end face by the light guide plate in the front direction. This is a system in which light is incident on the diffuser plate, light is made uniform by the diffuser plate, and light is extracted to the exit surface opposite to the incident surface.
  • Luminance uniformity is particularly important for eliminating the light / dark difference in the screen due to the light source image, and is important for applications such as image display devices and illuminated signboards.
  • a direct-type surface light source element includes a light source, a reflection plate, a diffusion plate, a diffusion sheet, and the like!
  • Anti The projecting plate reflects the light emitted from the light source to the back side in the front direction, and the diffusion plate has a function of reducing the image of the light source in which fine particles that diffuse the light are dispersed.
  • Fluorescent lamps which are linear light sources, have been used as the light source, but there are problems such as poor color reproducibility and the burden on the environment due to the use of mercury. . Therefore, it has been proposed that a point light source such as a light emitting diode (LED) or the like is arranged in a plane and used as a planar light source (for example, a non-light source) that has good color reproducibility and does not use mercury. (See Patent Document 1).
  • LED light emitting diode
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-340750
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-327682
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-38643
  • Non-Patent Document 1 flat-panel display2004 Business Edition pl 70 Nikkei BP Publishing Invention Disclosure
  • a direct-type surface light source element used in an image display device or the like which enables high color reproducibility using a point light source such as an LED, and has high light use efficiency. Therefore, there is no change in the optical design of the light control component, brightness reduction, brightness uniformity, and color uniformity deterioration due to the increase in size, which is high brightness and high brightness uniformity and color uniformity. Therefore, it is easy to respond to the increase in size, and it is possible to obtain high brightness and color uniformity in the front direction without strict alignment between the light source and other members.
  • An object of the present invention is to provide a sheet-like light control member and an image display device using the same.
  • the present invention provides the following means for solving the above problems.
  • At least an exit surface parallel to the XY plane with one of the normals of the XY plane parallel to the X axis and the Y axis orthogonal to the X axis as the front direction.
  • the plurality of point light sources are periodically arranged in the X-axis and Y-axis directions in a virtual plane parallel to the XY plane, and include a light emitting surface parallel to the XY plane,
  • the light control member is arranged in parallel to the XY plane and in the front direction of the plurality of point light sources, and the emission surface is arranged on the front direction side of the light control member.
  • a first light control unit comprising a plurality of hook-shaped convex portions 1 orthogonal to the X-axis direction and parallel to the Y-axis direction is provided on the exit surface side of one light control member,
  • a second light control unit comprising a plurality of hook-shaped convex portions 2 parallel to the X-axis direction and perpendicular to the Y-axis direction is provided on the other exit surface side.
  • the center position of the point light sources arbitrarily selected, where D is the length of one cycle along the X axis and D is the length of one cycle along the Y axis.
  • the origin X-axis direction
  • the light emitting surface of the selected point light source and the first light in a plane parallel to the X-axis direction and perpendicular to the Y-axis direction, where X is the position coordinate and Y is the position coordinate in the Y-axis direction.
  • the distance from the control unit is H, and the function of the light incident on the first light control unit from the selected point light source in the direction of the front surface of the exit surface at X is f (X),
  • 1 1 mm 1 max 1 mm 1 ma3 ⁇ 4 is 0.8 or more
  • the minimum value X of X is — 3. OD ⁇ X 0.5.
  • the maximum value of X is in the range of 0.5D ⁇ X ⁇ 3.0D
  • n Refractive index of hook-shaped convex part 1 of the first light control part
  • n Refractive index of the base material of the first light control unit
  • thickness from the incident surface of the first light control unit to the bottom of the bowl-shaped convex part 1
  • the distance between the light emitting surface of the selected point light source and the second light control unit is H
  • a function that expresses the intensity of light incident on the second light control unit from the selected point light source in the direction of the front surface of the exit surface in the position coordinate Y in the Y-axis direction is represented by f (Y),
  • 2 ma is 0.8 or more
  • the minimum value of Y is Y 3. OD ⁇ Y ⁇ -0.
  • the maximum direct value of Y is in the range 0.5D ⁇ Y ⁇ 3.0D
  • n Refractive index of the ridge-shaped convex part 2 of the second light control part
  • n Refractive index of the base material of the second light control unit
  • T Thickness from the incident surface of the second light control unit to the bottom of the bowl-shaped convex part 2
  • the second invention is the surface light source element of the first invention
  • the area representing the cross-sectional shape in the X-axis direction of the ridge-shaped convex part 1 is arranged in the order of the ⁇ to ⁇ force ⁇ axis position coordinates
  • the surface light source elements are arranged in order.
  • a third invention is the surface light source element of the first or second invention
  • the surface light source element is characterized in that the shape of one region is approximated by a curve.
  • a fourth invention is the surface light source element according to any one of the first ;! to 3, wherein in the first light control unit,
  • the proportion of light emitted within 0 degrees is 50% or more of the total emitted light
  • the ratio of the light emitted within an angle of 30 degrees with respect to the front direction is 50% or more of the total emitted light. It is a surface light source element.
  • the fifth invention is a sheet-like light control member having light control means for controlling a light beam direction along the X axis or the Y axis, which is included in the surface light source element of the present invention.
  • a sixth invention is an image display device characterized in that a transmissive display device is arranged in the front direction of the surface light source element of the present invention.
  • high luminance uniformity and high color uniformity are obtained by replacing the diffusion plate in which fine particles for diffusing light are dispersed with two sheet-like light control members.
  • the present invention by providing a hook-shaped convex portion having a suitable shape on the exit surface of the light control member, the use of fine particles that diffuse light is avoided or greatly reduced, and the light use efficiency is improved. Therefore, high brightness can be achieved.
  • all points on the incident surface of the light control member have a uniform property that controls the direction in which the incident light is emitted in the same way, so that the alignment with the light source is not only advantageous for size change. Is also unnecessary.
  • the intensity distribution of the emitted light in the front direction can be obtained.
  • the combined functions of the light control member such as brightness uniformity and brightness enhancement, make it possible to eliminate or reduce the use of other functional optical films, which is advantageous for productivity and thinning.
  • a transmissive display device on the exit surface side of these surface light source elements, image display with high color reproducibility, high brightness, brightness uniformity, and color uniformity is achieved. A device is obtained.
  • a surface light source element provided by the present invention is a surface light source element having an emission surface parallel to an XY plane parallel to an X axis and a Y axis perpendicular to the X axis.
  • the element includes a plurality of point light sources having a light emitting surface parallel to the XY plane, and two sheet-like light control members. It is possible to obtain brightness uniformity and color uniformity. If the distribution of the position of the intensity of the emitted light in a certain direction is constant on the emission surface of the surface light source element, high luminance uniformity in that direction is achieved. In addition, when many types of point light sources that emit specific colors are used, high uniformity and color uniformity can be achieved by making the above distribution constant for each color.
  • the light control member provided in the surface light source element of the present invention obtains luminance uniformity in the front direction by making the intensity of the emitted light in the front direction substantially constant.
  • high color uniformity is obtained by obtaining luminance uniformity in the front direction.
  • a first invention of the present invention comprises a plurality of point light sources, an exit surface parallel to the XY plane, and two light control members, wherein the plurality of point light sources are X—
  • the surface light source element is periodically arranged in the X-axis and Y-axis directions in a virtual plane parallel to the Y plane, and the light control member is arranged in parallel to the XY plane.
  • one of the surfaces from which light is mainly emitted is the first light composed of a plurality of hook-shaped convex portions 1 that are orthogonal to the X-axis direction and parallel to the Y-axis direction.
  • the other one of the two light control members that emits light mainly has a surface that is parallel to the X-axis direction and orthogonal to the Y-axis direction.
  • the second light control unit is configured to control the light from the point light source by the first light control unit and the second light control unit, and the distribution of the emitted light in the front direction is made uniform. It becomes possible to do.
  • the first light control unit is composed of a plurality of ridge-shaped convex portions 1 that are orthogonal to the X-axis direction and parallel to the Y-axis direction, and controls light rays along the X-axis direction to transmit light from the point light source X Uniform along the axial direction.
  • the second light control unit is composed of a plurality of ridge-shaped convex portions 2 that are parallel to the X-axis direction and orthogonal to the Y-axis direction, control the light beam along the Y-axis direction, and direct the light from the point light source to Y Uniform along the axial direction.
  • the first light control unit Further, by combining the second light control unit, it is possible to obtain two-dimensional luminance uniformity and color uniformity. Also, by providing two light control members, it is possible to provide the first light control unit and the second light control unit in different light control members, which facilitates the manufacturing process and increases the brightness. This is advantageous in improving color uniformity and achieving improved brightness.
  • the light control member used for the surface light source element of the present invention is suitable for the cross-sectional shape of the hook-shaped convex part 1 and the hook-shaped convex part 2 to achieve uniformity of luminance in the front direction and uniformity of color. It is possible to increase.
  • the optical properties of the light control member become uniform, so that no precise alignment is required, and a surface light source element or a point light source
  • the surface light source elements can be manufactured with high productivity.
  • the light control member has a length of one period along the X axis of the plurality of point light sources as D, a center position of the arbitrarily selected point light source as an origin, and a position coordinate in the X axis direction.
  • the position coordinates in the X and Y axis directions are set to Y, and the distance between the light emitting surface of the selected point light source and the first light control unit is represented as H and the light output intensity in the front direction of the exit surface at X.
  • the light control member has a length D of one period along the Y axis of the plurality of point light sources as D, the light emitting surface of the selected point light source, and the second light control.
  • D the length of one period along the Y axis of the plurality of point light sources as D, the light emitting surface of the selected point light source, and the second light control.
  • the function that expresses the light intensity in the front direction of the exit surface in 2 2 is defined as f (X).
  • one period along the X axis or the Y axis refers to a unit of arrangement of light sources arranged repeatedly in the X axis direction or the Y axis direction.
  • the array of point light sources is reproduced by repeating this unit, including all elements related to the uniformity of color and brightness, such as the intensity, relative position, and color of each light source along the direction or Y-axis direction.
  • the arrangement in the X-axis direction and the arrangement in the Y-axis direction are independent.
  • the period is as shown in FIG.
  • the point light source selected as the center, and by realizing high brightness and color uniformity in the range of one cycle of the array of point light sources
  • high luminance and color uniformity can be obtained over the entire emission surface of the surface light source element.
  • the light control member since the light control member uniformly controls the direction of the emitted light at an arbitrary point on the incident surface, the light control member can be controlled within a period of one cycle! /, High! /, By obtaining brightness and color uniformity, the power S can be obtained to obtain high brightness and color uniformity over the entire emission surface of the surface light source element.
  • Luminance uniformity in the surface direction and color uniformity can be obtained.
  • Ratio of g (X), which is the minimum value of g (X), to g (X), which is the maximum value, g (X) / g (X) is greater than or equal to 0 ⁇ 8 and g (Y) mm 1 max 1 mm 1 max 2
  • Ratio of minimum value g (Y) to maximum value g (Y) g (Y) / g (Y) is more than 0 ⁇ 8
  • the intensity of the emitted light in the front direction at an arbitrary position on the exit surface of the surface light source element becomes substantially constant, and it is possible to obtain luminance and color uniformity.
  • FIG. 10 is a diagram showing f (X) and g (X) of the surface light source element of the present invention in which a point light source is arranged in the X-axis direction as 30 mm, which is shown for (X) in FIG. is there.
  • Arbitrarily selected point light source The center position of the light source is the origin, and the distance [mm] in the X-axis direction is the X coordinate.
  • Figure 10 and Figure 8 shows a similar distribution for f (Y) and g (Y), where Y is the position coordinate.
  • f (Y) need not have the same distribution as f (Y).
  • the present inventors have found out the cross-sectional shapes of the hook-like convex part 1 and the hook-like convex part 2 for making the intensity distribution of the emitted light in the front direction substantially uniform. That is, in the present invention, the minimum value X of X is in the range of-3. OD ⁇ X ⁇ -0. 5D, and the maximum value X force S, 0.5D min 1 min 1 max 1
  • hook-shaped convex part 1 A region having different inclinations N to N forces. Of these, hook-shaped convex part 1
  • the area 0 is inclined at 0, that is, parallel to the inclination of the light incident surface of the light control member, and the light incident from directly below can be efficiently emitted in the front direction.
  • n Refractive index of hook-shaped convex part 1 of the first light control part
  • n Refractive index of the base material of the first light control unit
  • thickness from the incident surface of the first light control unit to the bottom of the bowl-shaped convex part 1 I (a): Arbitrarily selected point light source force Unit angle in the direction of ⁇ along the X-axis direction
  • n Refractive index of the ridge-shaped convex part 2 of the second light control part
  • n Refractive index of the base material of the second light control unit
  • T Thickness from the incident surface of the second light control unit to the bottom of the bowl-shaped convex part 2
  • the angle formed clockwise is positive and the angle formed counterclockwise is negative with respect to the reference line.
  • equation (8) will be described with reference to FIG.
  • the light is refracted, and the first light control is performed at an angle ⁇ expressed by Equation (7) with respect to the normal direction.
  • the length of the slope of region i occupied by the slope of angle ⁇ is b, and the first li li from the slope of region i
  • e be the length of projection in the direction perpendicular to the ray direction in the ridge-shaped convex part 1 of the light control unit
  • the proportion of the light 8 directed to the region i out of the light 8 directed to is e / (P ⁇ cos / 3).
  • the intensity of light per unit area incident on the first light control unit at an angle ⁇ ie, illumination.
  • the degree is proportional to I (a) -cos 2 a as described later.
  • the light incident on the coordinate is coordinated when the thickness of the substrate of the first light control unit
  • the intensity of the emitted light in the front direction is proportional to the emission intensity of the point light source and the emission ratio in the front direction.
  • the sum of a can be set such that the width of the ridge-shaped convex portion 1 is P,
  • V U / cos ⁇ (26)
  • V is proportional to cos 2 ⁇ . If the intensity of the emitted light from the linear light source within ⁇ ⁇ is ⁇ ( ⁇ ), the intensity of the incident light per unit area to the light control unit 1, that is, the illuminance is ⁇ ( ⁇ ) -cos 2 ⁇ Proportional.
  • Fig. 7 shows the principle of directing light to the front by the first light controller used in the surface light source element of the present invention.
  • the incident light 7 entering the first light control unit 2 having a refractive index n from the point light source with ⁇ is the light control unit 2
  • the light 8 is refracted by the incident surface 6 and passes through the inside of the light control unit 2, and the light 8 is refracted by the hook-shaped convex portion 1 on the emission surface side and is emitted to the emission surface side. At this time, the emitted light 9 is emitted in the front direction when the inclination is a desirable angle ⁇ in the bowl-shaped convex portion 1.
  • the present invention is based on the arrangement.
  • the front direction can be adjusted by adjusting the ratio of angle ⁇ .
  • the inclination ⁇ of the exit surface for deflecting the incident light 7 in the front direction is equal to the refractive index of the bowl-shaped convex portion 1.
  • the angle at which light is incident on the incident surface 6 with respect to the normal of the incident surface 6 is ⁇ , and the light is refracted at the incident surface 6 and passes through the inside of the bowl-shaped convex portion 1.
  • the angle formed by the incident light with respect to the normal of the incident surface 6 is / 3, and the light traveling inside the ridge-shaped convex portion 1
  • the angle formed with respect to the normal of the exit slope of the hook-shaped convex part is ⁇ , and the light is refracted at the exit slope
  • the directional force on the exit surface and the angle formed with respect to the normal to the slope of the light is ⁇ , and Let the ratio be. At this time, let ⁇ be the angle of the slope of the ridge-shaped convex portion so that the light emitted from the ridge-shaped convex portion travels in the front direction.
  • a, n, and ⁇ have such a relationship that the refractive index n of the bowl-shaped convex part 1 and the slope of the bowl-shaped convex part 1
  • the emitted light can be emitted from the region i of the bowl-shaped convex portion 1 in the front direction.
  • the intensity of light emitted per unit angle in the direction of ⁇ along the Y-axis direction from an arbitrarily selected point light source is affected by the first light control unit. This effect is explained below.
  • I (a) is obtained from the arbitrarily selected point light source by ⁇ along the Y-axis direction.
  • 2 2j A decays at a large angle with respect to the intensity of light emitted per unit angle in the 2j direction.
  • This attenuation can be approximated by an appropriate function, for example (cos a) m and I (
  • a second invention of the present invention is the surface light source element of the first invention, wherein a region N to N force axis position coordinates representing a cross-sectional shape of the hook-shaped convex portion 1 in the X-axis direction are provided.
  • the regions N to N that are arranged in order and that represent the cross-sectional shape in the Y-axis direction of the bowl-shaped convex part 2 are the Y-axis.
  • inflection points are present in the cross-sectional shape in the X-axis direction of the unit bowl-shaped protrusion 1 and the cross-sectional shape in the Y-axis direction of the unit bowl-shaped protrusion 2.
  • the entire convex part is substantially convex.
  • the light reaches the region on another convex part before it reaches the region on the desired convex part, and the direction of the light beam is changed by reflection or refraction, and the light emission direction is controlled. May be difficult.
  • a shape that does not have an inflection point has a simpler shape than a shape that has an inflection point.
  • a third invention of the present invention is the surface light source element of the first or second invention, wherein the cross-sectional shape in the X-axis direction of the bowl-shaped convex portion 1 forms the convex portion (2N + 1)
  • a shape obtained by approximating the shape of at least one pair of two adjacent regions out of a plurality of regions with different inclinations by a curve, and the cross-sectional shape in the Y-axis direction of the bowl-shaped convex portion 2 is the convex shape (2N + 1) slopes forming part
  • the surface light source element is characterized in that the shape of at least one pair of two adjacent regions among the different regions is approximated by a curve.
  • the hook-shaped convex portion 1 is a force composed of (2N + 1) slopes of angle ⁇ .
  • the hook-like convex part 2 of the first invention is composed of (2N + 1) slopes of angle ⁇ .
  • Figure 2 shows a shape that approximates the shape of at least one of the two adjacent regions with a curve.
  • the intensity distribution of outgoing light and the angular distribution of outgoing light in the front direction become smoother, which is desirable.
  • it is easier to shape it is advantageous in production and desirable.
  • the joint portion in the region is not sharp and has a shape, it is difficult to cause damage, so it is preferable that the light emission direction change due to the breakage of the joint portion in the region and unnecessary scattering hardly occur.
  • a fourth invention of the present invention is the surface light source element of any of the first to third inventions, wherein the first light control unit is parallel to the X-axis direction and orthogonal to the Y-axis direction.
  • the ratio of the light emitted within an angle of 30 degrees with respect to the front direction is 50% or more of the total emitted light
  • the second light control unit is orthogonal to the X-axis direction and Y
  • the surface light source element is characterized in that the proportion of light emitted within an angle of 30 degrees with respect to the front direction is 50% or more of the total emitted light.
  • the surface light source element emits a relatively large proportion of light emitted in the front direction, bright illumination can be efficiently obtained in applications such as a television or a personal computer monitor that mainly observe the light exit surface in the front direction.
  • the first light control unit in a cross section parallel to the X-axis direction and perpendicular to the Y-axis direction.
  • the ratio of the light emitted within a range of an angle of 30 degrees or less with respect to the front direction can be adjusted by adjusting the angle of the inclined surface of the hook-shaped convex part 1 of the first light control part
  • the ratio of light emitted within a range of an angle of 30 degrees or less with respect to the front direction in the cross section orthogonal to the X-axis direction and parallel to the Y-axis direction is It can be adjusted by adjusting the angle of the slope of the hook-like convex part 2 of the second light control part.
  • the angle of the slope of the bowl-shaped convex part 1 can be adjusted by adjusting the width of X to X, and the front max mm
  • the angle of the slope of the recording-like convex portion 2 can be adjusted by adjusting the width of Y to ⁇ .
  • a fifth invention of the present invention is a sheet-like shape having a light control means for controlling the direction of the light beam along the X-axis or Y-axis, which is included in the surface light source element of any of the first to fourth inventions.
  • This is a light control member.
  • the light control member includes a first light control unit and a second light control unit that control a light beam direction, and light incident mainly from a light incident surface of the light control member is a first light control unit. Part of the light is reflected by the means or the second light control means, and part of the light is transmitted. This function improves the brightness uniformity and color uniformity of the emitted light.
  • the light passing through the light incident surface of the light control member mainly refracts at the incident surface, passes through the light control member, and reaches the hook-shaped protrusion 1 and / or the hook-shaped protrusion 2.
  • the light incident on the hook-shaped convex part 1 is refracted along the X-axis direction according to the slope of the slope of each region in the hook-shaped convex part 1, and the light reaching the hook-shaped convex part 2 Refracts along the Y-axis according to the slope of the slope in each region in 2.
  • the light that reaches the region of an appropriate angle is emitted in the front direction.
  • the luminance distribution of the emitted light in the front direction at a point on an arbitrary emission surface is made constant. It is possible to do.
  • a sixth invention of the present invention is an image display device configured by disposing a transmissive display device in the front direction of the surface light source element of any one of the inventions !!
  • the surface light source element is a uniform surface light source element having a uniform intensity distribution of emitted light in the front direction, and the ratio of the intensity of emitted light in the front direction can be increased.
  • the image display device of the present invention is a display module in which a surface light source element and a display element are combined, and further, this display module is used. It is a device having at least an image display function, and includes a television, a personal computer monitor, and the like.
  • the intensity distribution of outgoing light in the front direction can be evaluated by measuring the distribution of front luminance.
  • the distribution of front luminance is the same as the luminance meter is moved at regular intervals in the X-axis direction and Y-axis direction while keeping the distance between the luminance meter and the measurement point on the exit surface of the surface light source element constant. 3 ⁇ 4 Measure.
  • the ratio of the outgoing light in the front direction is first measured along the cross section parallel to the X axis direction and perpendicular to the Y axis direction, and along the cross section perpendicular to the X axis direction and parallel to the Y axis direction. Measure the point by changing the angle while keeping the distance between the luminance meter and the measurement point constant.
  • the brightness value obtained for each angle is converted into energy, and the ratio of light emitted within an angle of 30 degrees with respect to the front direction in the cross section parallel to the X axis direction and perpendicular to the Y axis direction, and the X axis direction Calculate the proportion of light emitted within an angle of 30 degrees with respect to the normal direction in a cross section orthogonal to the Y-axis direction.
  • the intensity distribution of the emitted light in the front direction where the light use efficiency is high is made constant, thereby eliminating the light / dark difference due to the image of the point light source.
  • a surface light source element with improved brightness uniformity and color uniformity in the front direction is also provided.
  • by approximating the ridge-like convex part 1 and the ridge-like convex part 2 of the light control member with curves it is possible to obtain a smooth intensity distribution of outgoing light in the front direction and a desired smooth outgoing light angle distribution. .
  • the use of other functional optical films can be eliminated or reduced, which is advantageous for productivity and thinning.
  • the light control member provided in the surface light source element of the present invention performs the same optical control on the incident light at all locations, the strict alignment between the point light source and the light control member is achieved. It is unnecessary and can respond immediately to changes in the display size and the number and arrangement of point light sources, making it possible to manufacture surface light source elements with high productivity.
  • the present invention also provides an image display apparatus using the surface light source element.
  • FIG. 1 is a diagram showing a preferred example of a surface light source element of the present invention.
  • FIG. 2 is a diagram showing the relationship between the position of a point light source in a plane parallel to the X axis and perpendicular to the Y axis and the intensity distribution of emitted light in the front direction of the surface light source element of FIG.
  • FIG. 3 A flat plane parallel to the X axis and perpendicular to the Y axis when three adjacent point light sources are arranged It is a figure which shows the intensity distribution of the emitted light to the position of the point light source in a surface, and each front direction.
  • FIG. 4 is a diagram showing an example of an array of a plurality of point light sources in the surface light source element of the present invention.
  • Fig. 5 An incident angle of light from the point light source on a plane parallel to the X axis and perpendicular to the Y axis.
  • FIG. 7 is a diagram showing a relation between a, the slope ⁇ of the slope of the region i in the bowl-shaped convex portion 1, and the width a of the region i in the X-axis direction.
  • FIG. 7 is a diagram showing the principle of deflecting light in the front direction with the surface light source element of the present invention.
  • FIG. 8 is a diagram showing an example of an intensity distribution in the X-axis direction of light emitted from a single point light source in a plane direction in a cross section parallel to the X-axis and perpendicular to the Y-axis. .
  • FIG. 9 The intensity distribution in the X-axis direction of the light emitted from one point light source in the front direction in a cross section parallel to the X-axis and perpendicular to the Y-axis is different from that in Fig. 8. It is a figure which shows an example
  • FIG. 10 is a diagram showing f (X) of the surface light source element shown in FIG. 8 and g (X) corresponding thereto. 11] FIG. 10 is a diagram showing f (X) of the surface light source element shown in FIG. 9 and g (X) corresponding thereto.
  • FIG. 12 is a diagram showing the traveling direction of light when light from a point light source is incident on the incident surface of the light control member of Comparative Example 2 vertically.
  • FIG. 16 is a graph showing the ratio of directional force and luminous intensity to region i out of the light traveling toward bowl-shaped convex part 1 at an angle of 0.
  • FIG. 17 It is a diagram showing an angle ⁇ at which a point light source is viewed at a point of coordinate X in a cross section parallel to the X axis and perpendicular to the Y axis.
  • Fig.18 Relationship between the position of a point light source on a plane parallel to the X axis and perpendicular to the Y axis, and the intensity distribution of the emitted light in the front direction, for a surface light source element using three types of point light sources
  • FIG. 19 is a diagram showing the influence of the first light control unit on the intensity of light emitted per unit angle in the direction of ⁇ along the axial direction.
  • FIG. 20 is a table showing configurations and results of examples and comparative examples.
  • Reflected light D i Period of array of point light sources in the X-axis direction
  • f (Y) of light from any point light source in a plane perpendicular to the x axis and parallel to the Y axis
  • N natural number
  • n Refractive index of the base material of the first light control unit
  • n s refractive index of the base material of the second light control unit
  • g (X) Minimum value of g (X) between X and X
  • g (Y) Minimum value of g (Y) between Y and Y
  • g (Y) Maximum value of g (Y) between Y and Y
  • X X coordinate center value of each element when X to X are equally divided by (2N + 1)
  • T Thickness from the incident surface of the first light control unit to the bottom of the bowl-shaped convex part 1
  • T Thickness from the incident surface of the second light control unit to the bottom of the bowl-shaped convex part 2
  • li from the point light source to the first light controller in a plane parallel to the ⁇ axis and perpendicular to the ⁇ axis
  • From a point light source to the second light control unit in a plane perpendicular to the axis and parallel to the axis
  • The light direction from the point light source that is incident on the first light control unit from the point light source and exits from the exit surface on the plane parallel to the X axis and perpendicular to the Y axis is relative to the front direction.
  • ⁇ ⁇ Angle formed by a small area centered on the light with the incident angle ⁇ on the plane parallel to the X axis and perpendicular to the Y axis.
  • H ′ a point on the incident surface of the first light control unit through which light emitted from the point light source at an angle ( ⁇ ) passes in a plane parallel to the X axis and perpendicular to the Y axis, and the point light source
  • an angle
  • V In the plane parallel to the X axis and perpendicular to the Y axis, the incident light from the point light source is centered on the incident angle ⁇ .
  • Light incident on the first light control unit from the point light source on the plane parallel to the ⁇ axis and orthogonal to the ⁇ axis, and emitted from the ridge projection 1 to the region i of the ridge projection 1 Angle formed by ray direction with respect to normal of slope in area i
  • ⁇ a Angle at which the point light source is viewed from the coordinate X on a plane parallel to the X axis and perpendicular to the Y axis
  • L (X) Minimum luminance value in front of the surface light source element in one period along the X axis
  • L (Y) Maximum value of luminance in the front direction of the surface light source element in one cycle along the Y axis z: The cross-sectional shape of the hook-shaped convex part 1 or the hook-shaped convex part 2 when the vertex is the origin, Height coordinate
  • FIG. 1 An example of the best mode for carrying out the present invention is shown in FIG.
  • One of the normals of the X—Y plane parallel to the X axis and the Y axis perpendicular to the X axis is the front direction, and at least an emission surface parallel to the X—Y plane, a plurality of point light sources, 2
  • a plurality of sheet-like light control members, wherein the plurality of point light sources are periodically arranged in the X-axis and Y-axis directions in a virtual plane parallel to the XY plane, and are arranged on the XY plane.
  • a first light control unit comprising a plurality of convex protrusions 1 orthogonal to the X-axis direction and parallel to the Y-axis direction on the emission surface side of the two light control members Second light consisting of a plurality of hook-shaped convex portions 2 parallel to the X-axis direction and orthogonal to the Y-axis direction on the emission surface side of the two light control members System It is a surface light source element with a control unit!
  • the point light source of the present invention is not particularly limited, but an LED or the like can be used. There are white LED, red, blue, green, and other color LEDs, but only white is used, and each color LED is arranged periodically. In addition, a plurality of light sources having the same color may be arranged within one period depending on the color required on the emission surface.
  • the period in the X-axis direction and Y-axis direction is preferably 7mm to 70mm. More desirably, it is 15 mm to 50 mm.
  • FIG. 15 is a diagram showing the intensity of emitted light in the front direction and the position of the point light source in a cross section parallel to the X axis direction and perpendicular to the Y axis direction when the point light sources are arranged.
  • the intensity of emitted light in the front direction is the portion directly above each point light source 1.
  • the point light source adjacent to the directly above portion and the intermediate position portion of the point light source are greatly different.
  • the intensity of the incident light on the surface on which the light is mainly incident on the light control member is greatly different between the portion directly above the respective point light sources 1 and the obliquely upper portion. ing.
  • the difference in strength is the same in the cross section orthogonal to the X-axis direction and parallel to the Y-axis direction.
  • FIG. 2 is a diagram showing the relationship between the position of the point light source and the intensity of the emitted light in the front direction in a cross section parallel to the X axis direction and orthogonal to the Y axis direction of the surface light source element of FIG. .
  • a similar intensity distribution is shown even in a cross section orthogonal to the X-axis direction and parallel to the Y-axis direction.
  • the intensity distribution of the emitted light in the front direction is almost constant. Uniformity of luminance in the surface direction and uniformity of color can be obtained.
  • FIG. 18 shows the position of the point light source when three different types of point light sources in the cross section parallel to the X axis direction and perpendicular to the Y axis direction are arranged for three periods in the Y axis direction.
  • FIG. 6 is a diagram showing the intensity distribution of outgoing light in the respective frontal directions. For each type of point light source, if the sum of the three periods is almost constant, the brightness and color in the high front direction Uniformity is obtained.
  • the surface light source element of the present invention has a substantially uniform intensity distribution of the emitted light in the front direction, as shown in FIG. Is obtained.
  • D 30 mm
  • An example of the distribution in a cross section parallel to the X axis direction and perpendicular to the Y axis direction is shown.
  • the light emitted in the front direction from the light from one point light source is in the range of X to X. Gently as shown in Figure 8.
  • the value of X when the value of f (X) is 1/100 of the maximum value can be substituted.
  • the values of f (X) for determining X and x must be the same.
  • the ratio of g (Y) which is the minimum value of 1 max 2 and g (Y) which is the maximum value is g (Y) / g (Y)
  • g (X) / g (X) and g (Y) / g (Y) values are 0
  • More than 85 is more suitable, and in this case, a surface light source element with higher luminance uniformity and color uniformity can be obtained, and a transmissive liquid crystal panel or the like can be provided in front of the exit surface of the surface light source element.
  • a high screen quality can be obtained. In order to obtain higher screen quality, 0.90 or higher is desirable.
  • the intensity distribution of the emitted light in the front direction is determined by the sum of the three adjacent periods, so it is most desirable that g (X) be constant. At this time, light is emitted in the front direction in the range of X X, and its distribution is f (X).
  • the slope of the ramp is limited because the width of the ridge-shaped projection is limited.
  • the distribution of the outgoing light in the front direction is determined by the distribution of the degree ⁇ .
  • the cross-sectional shape in the direction has a slope angle that directs light with low energy incident from an oblique direction to the front as shown in Fig. 8. Only the light incident in the range of D ⁇ X ⁇ D without the angle ⁇
  • Frontal brightness is improved by the hook-shaped convex part 1 formed by the angle ⁇ to be directed.
  • X x like this
  • the width of X varies depending on f (X) .
  • the intensity of the emitted light is more than half of the maximum value mm 1
  • the X range can be used as a guide. If this range is large, the width of X x
  • the front brightness can be increased by suitably determining the width of X x.
  • FIG. 11 shows g (X) of the surface light source element shown for f (X) in FIG.
  • g (X) is one period of the point light source—if it is constant in the range D / 2 ⁇ X ⁇ D / 2, high brightness and color uniformity are obtained in the front direction.
  • XX is optimal
  • the brightness in the front direction becomes higher.
  • g / 2 (X) is one period of the point light source D / 2 ⁇
  • the mm max range is the same as that of the ridge-shaped convex part 1, for example, the range of Y where the intensity of the emitted light is 1/2 or more of the maximum value, and the range of ⁇ to ⁇ can be set according to this range.
  • the arrangement order of the regions N to N does not necessarily have to be along the X axis.
  • the direction of the light beam changes and does not reach the slope of angle ⁇ , or at an undesirable angle.
  • the shape of the convex part usually has no inflection point, and the entire convex part is substantially convex.
  • Such a convex portion is advantageous in that it is easy to control the direction of the light beam, in which light does not normally reach the region on the desired convex portion and the direction of the light beam changes due to reflection or refraction.
  • the arrangement order of the regions N to N is not necessarily along the X axis.
  • the shape of the convex portion does not have an inflection point, and the entire convex portion is substantially convex.
  • it is easy to control the direction of the light beam which is usually advantageous because the light reaches the region on the desired convex part and the direction of the light beam does not change due to reflection or refraction.
  • the preferred width may deviate slightly due to the height from the bottom to the surface of the protrusion. There is no significant impact. The effect of the height of the surface from the bottom of the convex part is not significant for the hook-shaped convex part 2 as well.
  • the light control member arranged closest to the light source has a thickness that does not bend or deform.
  • the light control member arranged on the most light source side varies depending on the size of the surface light source element, and the thickness is preferably 0.5 mm to 5 mm. If it is thinner than this, the light control member will bend or deform, the point light source will come into contact with the light control member, and the appearance quality will deteriorate. If it is thicker, the surface light source element becomes thicker and the weight increases. More desirably, the thickness is 1 mm to 4 mm, and more preferably 1.5 mm to 2.5 mm. In this range, the strength is maintained, and it is possible to suppress an increase in manufacturing cost due to an increase in the amount of base material used per main surface area.
  • N and N determine the number of regions into which the ridge-shaped protrusion 1 and the ridge-shaped protrusion 2 are divided.
  • 1 2 is preferably 2 or more.
  • the convex portion in the cross-sectional shape in the X-axis direction and / or the cross-sectional shape in the Y-axis direction of the bowl-shaped convex portion 2 has a complicated shape having many inclinations.
  • the number of inclinations is large, the outgoing light in the front direction can be accurately controlled, and the intensity distribution of the outgoing light in the front direction is highly uniform. From the aspect of accuracy, N and N are better, but if it is too large, the shape becomes complicated.
  • N and N force must be less than
  • At least one pair of regions forming the protrusions is adjacent to the cross-sectional shape in the X-axis direction of the hook-shaped convex portion 1 and / or the cross-sectional shape in the Y-axis direction of the hook-shaped convex portion 2.
  • the shape of the area may be approximated by a curve.
  • the shape of three or more adjacent regions may be approximated by a curve.
  • the shape of the entire convex portion may be approximated by a curve. Approximating the shape of many areas with a curve, curves the shape of adjacent areas such as smoothing the intensity distribution of outgoing light in the front direction and the angular distribution of outgoing light, shaping shading, and preventing damage. The effect of approximating with is more desirable and desirable.
  • Approximation method to a curve there are no particular limitations, and the well-known least square method, spline interpolation method, Lagrange interpolation method and the like can be used.
  • Approximation Select at least one point from the approximated area and use it more than the number of approximated areas. For example, it is possible to select both ends of a plurality of continuous regions and contact points of each region. Further, the midpoint of each region can also be used for approximation.
  • the ratio of the light emitted within 30 degrees is 50% or more, and the ratio of the light emitted within 30 degrees with respect to the front direction in the cross section parallel to the X axis direction and perpendicular to the Y axis direction is When it is 50% or more, a surface light source element having high luminance in the front direction can be obtained.
  • this value is more desirable if it is 60% or more, and more desirably 80% or more.
  • a display device that requires a wide viewing angle such as a lighting signboard
  • this value is preferably 60% to 80%.
  • the distance between the point light source and the light control member is preferably 5 to 50 mm. More desirably, it is 10 mm to 30 mm.
  • the ratio of the period of the point light source, D / H, D / H is expected to be 0.5-3.
  • the width P of the ridge-shaped protrusions and the width P of the ridge-shaped protrusions are 10 111 and 500 111, respectively. 500 ⁇ m
  • the pattern itself is visually recognized from the emission surface, and the appearance quality is lowered.
  • it is smaller than 1 ⁇ , it will be colored by the diffraction phenomenon and the appearance quality will be lowered. More preferably, it is 20 mm 111, 400 mm 111, and more preferably 40 mm force, 300 mm. Within this range, the visibility of the pattern itself is difficult to observe, and the production becomes easier and the productivity is improved. Further, in the image display device in which the transmission type display device is provided on the exit surface side of the surface light source element of the present invention, P and P are in the range of 1/100 to 1 / 1.5 of the pixel pitch of the transmission type display device.
  • the method for producing the light control member of the present invention is not particularly limited, but may be extrusion molding or injection molding. 2P (Photo Polymerization) molding using mold and UV curable resin. However, when providing convex parts, it is necessary to select an appropriate molding method in consideration of the size of the convex parts, the shape of the convex parts, mass productivity, and the like. If the main surface is large, extrusion molding is suitable!
  • the normal hook-shaped convex part 1 and the hook-shaped convex part 2 may each be provided with a flat portion between the force S and the hook-shaped convex part 1 and / or the hook-shaped convex part 2 that are continuously arranged. .
  • the flat portion By providing the flat portion, the convex portion of the mold becomes difficult to be deformed, which is advantageous in forming the convex portion.
  • the light directly above the point light source is emitted in the front direction, it is effective in improving only the luminance directly above the point light source.
  • the flat portion when the flat portion is not provided, the light beam direction can be controlled on the entire emission surface of the first light control unit and / or the second light control unit. It is easy to make the intensity distribution uniform.
  • the cross-sectional shape in the X-axis direction of the hook-shaped convex part 1 in the first light control unit is the same shape, and the Y-axis direction of the hook-shaped convex part 2 in the second light control unit
  • the cross-sectional shape is desirably the same shape. Because the optical properties of the light control member are uniform, exact alignment is not necessary, and it is possible to immediately respond to changes in the display size and the number and arrangement of point light sources, which improves productivity.
  • a light source element can be manufactured.
  • any optically transparent material can be used.
  • Examples thereof include methacrylic resin, polystyrene resin, polycarbonate resin, cycloolefin resin, methacryl styrene copolymer resin, and cycloolefin alkene copolymer resin.
  • a reflector or the like may be used on the back surface of the light source.
  • the reflector By using the reflector, the light emitted from the light source in the back direction and the light emitted from the light control member in the back direction can be directed to the front direction, so that more light can be used and high luminance can be obtained. Is possible.
  • the reflecting plate has a function of reflecting light emitted from the light source to the back side in the front direction.
  • a reflectance of 95% or higher is desirable because of high light utilization efficiency.
  • the material of the reflector include metal foils such as aluminum, silver, and stainless steel, white coating, and foamed PET resin. In order to increase the light utilization efficiency, it is desirable that the material has a high reflectance. This includes power S such as silver and foamed PET. In order to improve brightness uniformity, the material should be diffusely reflected. Good. This includes foamed PET.
  • the light control member of the present invention may be provided with a light diffusion means.
  • a light diffusing means a method of providing random irregularities such as embossing on the main surface of the light control member, a method of providing fine particles that diffuse a small amount of light inside the structure, and a diffusion sheet as the incident surface of the light control member And a method of providing them on the side and / or the exit surface side, or a combination thereof.
  • Random irregularities can be realized by applying a solution in which fine particles are dispersed to the main surface by spraying, molding by extruding a resin in which fine particles are dispersed, and transferring from a mold having irregularities. is there.
  • the arithmetic average roughness Ra is desirably 3 m or less. If it is larger than this, the front luminance is lowered because the diffusion effect becomes too large.
  • the concentration of the fine particles can be kept very low compared to a normal diffusion plate. Any light diffusing material used in a fine particle diffusion plate or the like can be suitably used.
  • a suitable concentration of fine particles varies depending on the material. For example, 0.4% by weight of siloxane polymer particles is dispersed in a methyl styrene / methacrylate copolymer.
  • the thickness of the light control member may be set in consideration of the strength, productivity, etc. of the light control member itself! /.
  • the vicinity of the end surface is fixed together with the light control member arranged closest to the light source, so that even a thin sheet is unlikely to stagnate. Therefore, the light control member that is not closest to the light source can be made thinner than the light control member that is closest to the light source.
  • the light control member that is not closest to the light source is preferably thinner in order to reduce the thickness of the entire apparatus.
  • the force thickness varies depending on the size of the surface light source element.
  • the thickness is preferably 0.05 mm to lmm. If it is thinner than this, the strength of the light control member itself is lowered, and the quality is lowered due to deformation or the like. If it is thicker than this, the surface light source element becomes thick and the weight also increases. Furthermore, in order to prevent deformation of the light control member due to heat, etc., and to obtain high productivity by extrusion molding, etc., 0.1 mm to 0.7 mm is more desirable, and 0.2 mm force, 0.5 mm is more desirable. desirable.
  • a transparent support substrate made of resin, glass or the like is stacked on the light source side of the light control member. It may be provided. By disposing the support substrate, it is possible to support the light control member even if the light control member is made as thin as 0.1 mm to 1 mm, for example. By making the light control member thinner, molding by extrusion molding or the like becomes easier and productivity is improved. In addition, it becomes easier to support a light control member that becomes increasingly difficult as the surface light source element becomes larger.
  • the thickness of the support substrate is not particularly limited, but is usually from 1 mm to 5 mm, and more preferably from 2 mm to 4 mm from the viewpoint of weight reduction and strength.
  • the supporting substrate may be improved in diffusibility by dispersing fine particles for diffusing light therein, embossing on the surface, or applying fine particles.
  • a suitable material that is preferable in production that the base material is a thermoplastic resin is equivalent to the light control member.
  • the support substrate may be bonded to the light control member, for example, it can be bonded with a transparent adhesive or the like, thereby simplifying the process of assembling the surface light source elements and further shifting the light control member. And generation of wrinkles can be prevented.
  • Equation (8) can be derived by approximating according to the thickness ratio. For example, if the part of the support substrate consists of three plates with refractive indices n ', n' ', n' '' and plate thicknesses T ', ⁇ ' ', ⁇ ' '', ⁇ is ( ⁇ ' ⁇ ' + ⁇ " ⁇ ⁇ " + ⁇ "' ⁇ ⁇ "') / ⁇
  • a diffusion sheet may be used in order to obtain more uniform brightness and color uniformity
  • a prism sheet, a deflection separation film, or the like may be used in order to obtain high frontal brightness.
  • the light control member of the present invention can also be used for light sources other than a plurality of point light sources. For example, uniform and high brightness can be obtained in a wider range by using a single point light source.
  • the light control unit included in the light control member of the present invention includes a plurality of linear light sources arranged in a virtual plane parallel to the X plane and parallel to the X axis direction and along the vertical axis, or the axial direction Linear light sources arranged along the X axis parallel to the X axis It is possible to control the direction of light rays from the light source, and high luminance uniformity can be realized.
  • these linear light sources it is also possible to use a linear light source configured by linearly arranging fluorescent light sources or point light sources such as LEDs at narrow intervals.
  • the image display device of the present invention is realized by providing a transmissive display device on a surface light source element, and a transmissive liquid crystal panel or the like is raised as the display device. As a result, it is possible to obtain an image display device that has high luminance uniformity and color uniformity with high luminance on the display surface and good color reproducibility.
  • the configuration of the surface light source element of this example is as shown in the schematic diagram of FIG.
  • the period is the distance from the position where the red LED is placed in the X-axis direction to the position where the red LED is placed, and D is the place where the red LED is placed in the Y-axis direction.
  • the light control member is disposed in the order of the first light control member and the second light control member in the front direction at a position 20 mm from the light emitting surface of the light source in the front direction.
  • the distance H from the light emitting surface of the light source to the incident surface of the first light control unit is 20 mm
  • the distance H from the light emitting surface of the light source to the incident surface of the second light control unit is 23 mm.
  • a 95% reflective plate made of foamed PET resin is installed on the back side.
  • a light control member 1 1 6 having a first light control unit, a light control member 2— ;! 2-7 having a second light control unit, and Produced by the method
  • an ultraviolet curable resin (refractive index 1.) was obtained from a mold in which groove-shaped concave portions having a width of 60 in were continuously formed by cutting. 55) A 2 mm thick polystyrene resin (refractive index 1.60) substrate is formed with a ridge-shaped convex part. 1 light control unit is produced. Similarly, in order to obtain the ridge-shaped convex part 2, from a mold in which groove-shaped concave parts having a width of 60 11 m are continuously formed in parallel by cutting, the thickness is increased with an ultraviolet curable resin (refractive index 1.55). the ridge-shaped protrusions formed 0.
  • Each region N to N with a defined slope ⁇ and width a in the radial direction is defined as the region shown in Table 1.
  • the intensity distribution of the emitted light in the front direction is evaluated by measuring the distribution of the front luminance.
  • the front brightness is measured by using a luminance meter (Topcon Co., Ltd., BM-7) with a measurement angle range of 0.2 degrees, moving the measurement distance constant, and moving by lmm along the X axis where the point light sources are arranged. Measure for one cycle. Also, measure for one cycle while moving by lmm in the Y-axis direction.
  • Luminance uniformity in the X-axis direction is the ratio of L (X), which is the minimum value of luminance in one cycle measured in the X-axis direction, to L (X), which is the maximum value.
  • the ratio of the light emitted in the front direction is determined by measuring the luminance distribution for each angle, converting the obtained luminance into energy, Calculate the percentage of total energy.
  • the luminance distribution for each angle is obtained by measuring the same luminance with a luminance meter (BM-9 manufactured by Topcon Co., Ltd.) attached to the rotating table, with a measurement angle range of 0.2 degrees, and a constant measurement distance. taking measurement.
  • BM-9 manufactured by Topcon Co., Ltd.
  • a transmissive liquid crystal panel is arranged in the front direction of the exit surface of the surface light source element of this embodiment, and the screen quality and the brightness of the screen are observed.
  • the image of the point light source is reduced on the emission surface, and the luminance in the front direction is reduced.
  • the uniformity of color and the uniformity of color are improved. Furthermore, since the ratio of light emitted in the front direction where the light use efficiency is high is increased, the luminance in the front direction is high.
  • the diffusion plate was produced by extruding a methyl methacrylate-styrene copolymer resin in which 1.9% by weight of cyclohexane-based polymer particles were dispersed as fine particles for diffusing light. Evaluation was carried out when a diffusion sheet was arranged in the front direction of the diffusion plate containing fine particles. In this case, the luminance uniformity is low because the light source image is not sufficiently reduced. Further, since the light utilization efficiency is low, high front luminance is not obtained. In addition, when a transmissive liquid crystal panel is placed in the front direction of the emission surface of the surface light source element and observed, the light source image is remarkably observed and the screen quality is poor. In addition, the screen is dark because there is little light going to the front.
  • hook-shaped convex part 1 and hook-shaped convex part 2 are hook-shaped prisms having an apex angle of 90 degrees.
  • the luminance is greatly reduced in the portion directly above the light source, and the luminance uniformity is poor.
  • the brightness is uniform for different color light sources!
  • a transmissive liquid crystal panel is placed in front of the exit surface of the surface light source element and observed, the image quality is poor because the light source image is not reduced.
  • Figs. 12 and 13 show the principle of light control performed by the prism having a vertex angle of 90 degrees, which is mentioned as Comparative Example 2.
  • FIG. 12 since all the light 7 incident on the prism 10 from the front direction is totally reflected and returns to the light source side, the amount of transmitted light at the position of the light source is zero.
  • FIG. 13 since the light 7 incident on the prism 10 from an oblique direction is refracted by the prism and deflected near the front direction, the amount of transmitted light is large. Therefore, the brightness uniformity cannot be obtained with the prism mentioned as Comparative Example 2.
  • the luminance is high and the luminance uniformity is poor just above the light source in the Y-axis direction. Furthermore, the luminance is not uniform for the light sources of different colors, and the color is emphasized at the location of the light source of each color, and the color uniformity is poor. In addition, when a transmissive liquid crystal panel is placed in the front direction of the exit surface of this surface light source element, the luminance and color uniformity are low, so the screen quality is poor!
  • a lenticular lens made up of a part of an arc whose cross-sectional shape is expressed by the formula (31) as the ridge-shaped convex portion 1 and the ridge-shaped convex portion 2 is disposed on the light exit surface side of the light control member.
  • An evaluation was conducted when the wrench sheet 1 was used. In this case, since the direction of the light emitted from the light control member and the amount of light are not controlled, the luminance and color uniformity are not sufficient to reduce the light source image sufficiently. Further, when a transmissive liquid crystal panel is placed in front of the exit surface of the surface light source element and observed, the light source image is recognized remarkably, and the screen quality is poor due to low luminance and color uniformity.
  • P Position coordinate in the X-axis direction or Y-axis direction of the cross-sectional shape of bowl-shaped convex part 1 or bowl-shaped convex part 2 when the top is the origin
  • Coordinates in the height direction of the cross-sectional shape of hook-like convex part 1 or hook-like convex part 2 when the vertex is the origin
  • Position coordinate in the X-axis direction or ⁇ -axis direction of the cross-sectional shape of the ridge-shaped convex part 1 or ridge-shaped convex part 2 when the top is the origin

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

A planar light source element includes a light control member having a first light control unit formed by a plurality of ribbed convex portions (1) and a second light control unit formed by a plurality of ribbed convex portions (2). It is assumed that the length of one cycle of point-shaped light sources in the X-axis direction is D1, the length of one cycle of the point-shaped light source in the Y-axis direction is D2, the distance between the point-shaped light sources and the first light control unit is H1, the distance between the point-shaped light sources and the second light control unit is H2, the center position of an arbitrarily selected point-shaped light source is an origin, the position coordinate in the X-axis direction is X, and the position coordinate in the Y-axis direction is Y. The ratio of the maximum value against the minimum value of the light emission intensity of the light incident into the first light control unit in the direction toward the front surface at X and the light emission intensity of the light incident into the second light control unit in the direction toward the front surface at Y in three cycles is not smaller than 0.8. The cross section of the ribbed convex portions (1) in the X direction has a shape formed having different inclinations expressed by D1, H1, X and the cross section of the ribbed convex portions (2) in the Y direction has a shape formed having different inclinations expressed by D2, H2, Y.

Description

明 細 書  Specification
面光源素子並びにこれに用いる光制御部材およびこれを用いた画像表 示装置  Surface light source element, light control member used therefor, and image display device using the same
技術分野  Technical field
[0001] 本発明は、複数の点状光源を有する面光源素子と、これが備えるシート状の光制 御部材およびこれを用いた画像表示装置に関するものであり、特に、大型で高輝度 と輝度均一性が要求される照明看板装置、液晶ディスプレイ装置等に用いられる直 下方式の面光源素子と、これが備える光制御部材およびこれを用いた画像表示装置 に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a surface light source element having a plurality of point light sources, a sheet-like light control member provided in the surface light source element, and an image display device using the same. The present invention relates to a direct-type surface light source element used in lighting signage devices, liquid crystal display devices, and the like that are required to have high performance, a light control member included in the surface light source element, and an image display device using the light control member.
背景技術  Background art
[0002] 例えば、画像表示装置に用いられる面光源素子では、エッジライト方式と直下方式 がある。エッジライト方式は、導光板の端面に配置した光源からの光を、導光板によ つて端面と直交する主面から正面方向に取り出す方式であり、直下方式は、複数の 光源を装置の背面に並べ、拡散板に光を入射し、拡散板で光を均一化して入射面と 対向する出射面に光を取り出す方式である。  [0002] For example, surface light source elements used in image display devices include an edge light method and a direct method. The edge light method is a method in which light from a light source arranged on the end face of the light guide plate is taken out from the main surface perpendicular to the end face by the light guide plate in the front direction. This is a system in which light is incident on the diffuser plate, light is made uniform by the diffuser plate, and light is extracted to the exit surface opposite to the incident surface.
[0003] 携帯電話ゃモパイルパソコンに用いられる画像表示装置では、装置の薄さが要求 される為、光源を装置の側端に備えることで薄型に対して有利なエッジライト方式が 主流である。一方で、テレビやパソコンのモニタでは、画像表示装置の大型化、高輝 度化、低消費電力化の要求が高まっている。大型の画面では、画面面積に対する周 辺部の長さの割合が減少し、十分な輝度を得ることが出来ない。また、導光板が厚く なり、重量が増加する。従って、大型の面光源素子では直下方式が主流となっている  [0003] Since image display devices used for mobile phones and mopile personal computers are required to be thin, an edge light system that is advantageous for thinness is mainly used by providing a light source at the side end of the device. . On the other hand, for television and personal computer monitors, there are increasing demands for larger, higher brightness, and lower power consumption image display devices. In a large screen, the ratio of the length of the periphery to the screen area decreases, and sufficient brightness cannot be obtained. In addition, the light guide plate becomes thick and the weight increases. Therefore, the direct type is the mainstream for large surface light source elements.
[0004] 直下方式の面光源素子においては、輝度均一性の向上、正面輝度の向上、薄型 化、低消費電力化即ち省エネルギー化が要求される。輝度均一性は、特には、光源 像による画面中の明暗差の解消が挙げられ、画像表示装置、照明看板等の照射面 を観察する用途では重要である。 [0004] In the direct-type surface light source element, improvement in luminance uniformity, improvement in front luminance, reduction in thickness, and reduction in power consumption, that is, energy saving are required. Luminance uniformity is particularly important for eliminating the light / dark difference in the screen due to the light source image, and is important for applications such as image display devices and illuminated signboards.
[0005] 直下方式の面光源素子は、光源、反射板、拡散板、拡散シート等を備えて!/、る。反 射板は光源から背面側に出射した光を正面方向に反射させ、拡散板は光を拡散さ せる微粒子が分散されており、光源の像を低減する機能を有してレ、る。 [0005] A direct-type surface light source element includes a light source, a reflection plate, a diffusion plate, a diffusion sheet, and the like! Anti The projecting plate reflects the light emitted from the light source to the back side in the front direction, and the diffusion plate has a function of reducing the image of the light source in which fine particles that diffuse the light are dispersed.
[0006] 光源としては、線状光源である蛍光灯が用いられてきたが、色の再現性が悪い、ま た水銀を使用している為に環境に負荷力 Sかかる等の問題があった。そこで、色の再 現性の良い、水銀を使用しなレ、発光ダイオード(LED)等の点状光源を平面内に配 置し、面状光源として用いることが提案されている(例えば、非特許文献 1参照)。  [0006] Fluorescent lamps, which are linear light sources, have been used as the light source, but there are problems such as poor color reproducibility and the burden on the environment due to the use of mercury. . Therefore, it has been proposed that a point light source such as a light emitting diode (LED) or the like is arranged in a plane and used as a planar light source (for example, a non-light source) that has good color reproducibility and does not use mercury. (See Patent Document 1).
[0007] しかし、点状光源を平面内に配置すると、光源像による明暗差は 2次元的に生じる 。更に、 LEDの発光は指向性が強ぐ高い輝度均一性を得ることが線状光源を用い る場合よりも困難となる。また、色座標を広くする為に、赤、青、緑等の各色の LEDを 用いる場合には、色の均一性を得ることが困難である。拡散板の微粒子を増加させる ことで輝度均一性と色の均一性とを上げることが可能である力 光の吸収や、不要な 方向へ出射する光が増加し、光の利用効率が低下する為、省エネルギーの観点から 好ましくない。  However, when the point light source is arranged in a plane, a light / dark difference due to the light source image is generated two-dimensionally. In addition, it is more difficult to obtain high luminance uniformity with strong directivity than LED linear light sources. Also, when using LEDs of each color such as red, blue, and green in order to widen the color coordinates, it is difficult to obtain color uniformity. Increasing the number of fine particles on the diffuser can increase brightness uniformity and color uniformity. Light absorption and light emitted in unnecessary directions increase, reducing the light utilization efficiency. From the viewpoint of energy saving, it is not preferable.
[0008] 一方 LEDのパッケージに独特の形状を持たせて、 LEDからの光を分散させて光源 像を消去する方法も提案されている(例えば、特許文献 1参照)。しかし、パッケージ により面光源素子の薄型化が阻害されること、生産性が低下することなどから好ましく ない。  [0008] On the other hand, a method of erasing a light source image by dispersing the light from the LED by giving the LED package a unique shape has also been proposed (for example, see Patent Document 1). However, it is not preferable because the package prevents the surface light source element from being thinned and the productivity is lowered.
[0009] 更に、 LEDの光を均一にさせる導光部を設ける方法も提案されている(例えば、特 許文献 2参照)が、生産性が低下すること、面光源素子の重量が増加することなどか ら好ましくない。  [0009] Further, a method of providing a light guide unit that makes the light of the LED uniform is also proposed (see, for example, Patent Document 2), but the productivity decreases and the weight of the surface light source element increases. This is not desirable.
[0010] また、点状光源の配列に合わせて、光を拡散させる微粒子を分散させた拡散板に ノ ターンを設ける方法も提案されている(例えば、特許文献 3参照)。しかし、点状光 源との厳密な位置合わせを必要とすることから生産性が低下すること、面光源素子の サイズの変更により大幅に輝度の均一性と色の均一性が低下することなどから好まし くない。  [0010] In addition, a method has been proposed in which a pattern is provided on a diffusion plate in which fine particles for diffusing light are dispersed in accordance with the arrangement of point light sources (see, for example, Patent Document 3). However, because it requires strict alignment with the point light source, productivity is reduced, and by changing the size of the surface light source element, luminance uniformity and color uniformity are greatly reduced. I don't like it.
[0011] 特許文献 1 :特開 2005— 340750号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-340750
特許文献 2:特開 2005— 327682号公報  Patent Document 2: Japanese Patent Laid-Open No. 2005-327682
特許文献 3:特開 2005— 38643号公報 非特許文献 1 : flat— panel display2004 実務編 pl 70 日経 BP社刊 発明の開示 Patent Document 3: Japanese Patent Laid-Open No. 2005-38643 Non-Patent Document 1: flat-panel display2004 Business Edition pl 70 Nikkei BP Publishing Invention Disclosure
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] そこで、本発明では、例えば画像表示装置等に用いられる直下型の面光源素子で あって、 LED等の点状光源を用いて高い色再現性を可能とし、光の利用効率が高 いために高輝度でかつ輝度の均一性と色の均一性とが高ぐ大型化に伴う光制御部 材の光学設計の変更や輝度低下や輝度の均一性と色の均一性の低下がないことか ら大型化への対応が容易で、光源と他の部材との厳密な位置合わせなく正面方向の 高い輝度と色の均一性が得られ、生産性や薄型化にも有利な面光源素子と、これが 備えるシート状の光制御部材およびこれを用いた画像表示装置とを提供することを 目白勺とする。 Therefore, in the present invention, for example, a direct-type surface light source element used in an image display device or the like, which enables high color reproducibility using a point light source such as an LED, and has high light use efficiency. Therefore, there is no change in the optical design of the light control component, brightness reduction, brightness uniformity, and color uniformity deterioration due to the increase in size, which is high brightness and high brightness uniformity and color uniformity. Therefore, it is easy to respond to the increase in size, and it is possible to obtain high brightness and color uniformity in the front direction without strict alignment between the light source and other members. An object of the present invention is to provide a sheet-like light control member and an image display device using the same.
課題を解決するための手段  Means for solving the problem
[0013] 即ち、本発明は、以上の課題を解決すベぐ以下の手段を提供する。 That is, the present invention provides the following means for solving the above problems.
本発明の第 1の発明は、 X軸と、 X軸に直交する Y軸とに平行な X— Y平面の法線 の一方を正面方向として、少なくとも、 X— Y平面に平行な出射面と、複数の点状光 源と、 2枚のシート状の光制御部材を備え、  According to a first aspect of the present invention, there is provided at least an exit surface parallel to the XY plane, with one of the normals of the XY plane parallel to the X axis and the Y axis orthogonal to the X axis as the front direction. A plurality of point light sources and two sheet-like light control members,
前記複数の点状光源が、前記 X— Y平面に平行な仮想平面内に X軸および Y軸方 向に周期的に配置され、前記 X— Y平面に平行な発光面を備え、  The plurality of point light sources are periodically arranged in the X-axis and Y-axis directions in a virtual plane parallel to the XY plane, and include a light emitting surface parallel to the XY plane,
前記光制御部材が、前記 X— Y平面に平行に、かつ、前記複数の点状光源の正面 方向に配置され、前記出射面が、前記光制御部材の正面方向側に配置されている 面光源素子であって、  The light control member is arranged in parallel to the XY plane and in the front direction of the plurality of point light sources, and the emission surface is arranged on the front direction side of the light control member. An element,
前記 2枚のうち、一方の光制御部材の出射面側に、 X軸方向に直交しかつ Y軸方向 に平行な複数の畝状凸部 1からなる第 1の光制御部を備え、  Of the two sheets, a first light control unit comprising a plurality of hook-shaped convex portions 1 orthogonal to the X-axis direction and parallel to the Y-axis direction is provided on the exit surface side of one light control member,
かつ、  And,
前記 2枚の光制御部材のうち、別の一方の出射面側に、 X軸方向に平行かつ Y軸方 向に直交する複数の畝状凸部 2からなる第 2の光制御部を備えており、  Of the two light control members, a second light control unit comprising a plurality of hook-shaped convex portions 2 parallel to the X-axis direction and perpendicular to the Y-axis direction is provided on the other exit surface side. And
前記複数の点状光源の、 X軸に平行に沿った 1周期の長さを D 、 Y軸に平行に沿つ た 1周期の長さを Dとして、任意に選択した点状光源の中心位置を原点、 X軸方向 の位置座標を X、 Y軸方向の位置座標を Yとして、 X軸方向に平行かつ Y軸方向に直 交する平面内において、前記選択した点状光源の前記発光面と、前記第 1の光制御 部との距離を H、前記選択した点状光源から前記第 1の光制御部に入射した光の、 Xにおける出射面の正面方向への出光強度を表した関数を f (X)とし、 The center position of the point light sources arbitrarily selected, where D is the length of one cycle along the X axis and D is the length of one cycle along the Y axis. The origin, X-axis direction The light emitting surface of the selected point light source and the first light in a plane parallel to the X-axis direction and perpendicular to the Y-axis direction, where X is the position coordinate and Y is the position coordinate in the Y-axis direction. The distance from the control unit is H, and the function of the light incident on the first light control unit from the selected point light source in the direction of the front surface of the exit surface at X is f (X),
g (X)=f (X-D )+f (X)+f (X+D )  g (X) = f (X-D) + f (X) + f (X + D)
としたとさ、
Figure imgf000006_0001
And
Figure imgf000006_0001
g (X)の最小値である g (X) と、最大値である g (X) の比、 g (X) /g (X)The ratio of g (X), the minimum value of g (X), to g (X), the maximum value, g (X) / g (X)
1 1 mm 1 max 1 mm 1 ma¾ が 0. 8以上であり、 1 1 mm 1 max 1 mm 1 ma¾ is 0.8 or more,
Xの最小値 X が— 3. OD ≤X 0. 5Dの範囲であり、  The minimum value X of X is — 3. OD ≤X 0.5.
min 1 min 1  min 1 min 1
Xの最大値 X が 0. 5D ≤X ≤3. 0Dの範囲であり  The maximum value of X is in the range of 0.5D ≤X ≤3.0D
max 1 max 1  max 1 max 1
(X および X は、 f (X)の値が x=oである任意に選択した点状光源付近を中心 mm max 1  (X and X are centered around an arbitrarily selected point light source with f (X) value x = o mm max 1
に減衰し、実質 0になる両端の座標)、 , The coordinates of both ends to become 0)
任意の畝状凸部 1の X軸方向の断面形状が、下記の式で表される(2N +1)個の傾 きの異なる領域 N〜Nからなり、 The cross-sectional shape in the X-axis direction of any bowl-shaped convex part 1 is composed of (2N + 1) differently inclined areas N to N represented by the following formula:
δ =(X —X )/(2N +1)  δ = (X --X) / (2N +1)
1 max mm 1  1 max mm 1
X=iX δ  X = iX δ
a =tan_1(X/H ) a = tan _1 (X / H)
Figure imgf000006_0002
Figure imgf000006_0002
Φ =tan— ((n -sin/3 )/(n -cos β 1)) Φ = tan— ((n -sin / 3) / (n -cos β 1))
li 1 li 1 li  li 1 li 1 li
N :自然数  N: Natural number
i:-N力、ら Nの整数  i: -N force, etc. Integer of N
n :第 1の光制御部の畝状凸部 1の屈折率  n: Refractive index of hook-shaped convex part 1 of the first light control part
n :第 1の光制御部の基材の屈折率  n: Refractive index of the base material of the first light control unit
Is  Is
a :領域 iの X軸方向の幅 Φ :領域 iの出射面に対する斜面の傾き a: The width of area i in the X-axis direction Φ: Slope inclination with respect to the exit surface of region i
li  li
τ:第 1の光制御部の入射面から畝状凸部 1の底部までの厚み  τ: thickness from the incident surface of the first light control unit to the bottom of the bowl-shaped convex part 1
I (α ) :任意に選択した点状光源力 X軸方向に沿って α の方向へ単位角 I (α): arbitrarily selected point light source power Unit angle in the direction of α along the X-axis direction
1 li li 1 li li
度あたりに放射する光の強度 Intensity of light emitted per degree
かつ、 And,
X軸方向に直交かつ Y軸方向に平行な平面内にお!、て、  In a plane perpendicular to the X-axis direction and parallel to the Y-axis direction!
前記選択した点状光源の前記発光面と、前記第 2の光制御部との距離を H、 The distance between the light emitting surface of the selected point light source and the second light control unit is H,
2  2
前記選択した点状光源から前記第 2の光制御部に入射した光の、 Y軸方向の位置座 標 Yにおける出射面の正面方向への出光強度を表した関数を f (Y)とし、 A function that expresses the intensity of light incident on the second light control unit from the selected point light source in the direction of the front surface of the exit surface in the position coordinate Y in the Y-axis direction is represented by f (Y),
2  2
g (Y) =f (Y-D ) +f (Y) +f (Y + D )
Figure imgf000007_0001
g (Y) = f (YD) + f (Y) + f (Y + D)
Figure imgf000007_0001
g (Y)の最小値である g (Y) .と、最大値である g (Y) の比、 g (Y) xg (Y) The ratio of g (Y) which is the minimum value of g (Y) and g (Y) which is the maximum value, g (Y) x g (Y)
2 ma が 0. 8以上であり、  2 ma is 0.8 or more,
Yの最小値 Y がー 3. OD ≤Y ≤-0. 5Dの範囲であり、  The minimum value of Y is Y 3. OD ≤ Y ≤-0.
min 2 min 2  min 2 min 2
Yの最大ィ直丫 が 0. 5D ≤Y ≤3. 0Dの範囲であり  The maximum direct value of Y is in the range 0.5D ≤Y ≤3.0D
max 2 max 2  max 2 max 2
(Y および Υ は、 f (Υ)の値が Υ=0である任意に選択した点状光源付近を中心 mm max 2  (Y and Υ are centered around an arbitrarily selected point light source with f (Υ) value Υ = 0 mm max 2
に減衰し、実質 0になる両端の座標)、 , The coordinates of both ends to become 0)
任意の畝状凸部 2の Y軸方向の断面形状が、下記の式で表される(2N +1)個の傾 The cross-sectional shape in the Y-axis direction of any bowl-shaped convex part 2 is (2N + 1) tilts represented by the following formula:
2  2
きの異なる領域 N〜Nからなることを特徴とする面光源素子である c C is a surface light source element characterized by consisting of regions N to N
2 2  twenty two
6 = (Y Υ )/(2Ν +1)  6 = (Y)) / (2 Ν +1)
2 max min 2  2 max min 2
γ叫  γ shout
J x δ 2  J x δ 2
=tan_1(Y/H ) = tan _1 (Y / H)
2j j 2  2j j 2
β =sin ( (1/ n ) sin )  β = sin ((1 / n) sin)
2j 2 2j  2j 2 2j
γ =sin (1/ n ) sin )  γ = sin (1 / n) sin)
2j 2s 2j  2j 2s 2j
a ccf (Y +T -tany ) -cosO -cos β ί ( ) cos (a )/ cos (Φ — β a ccf (Y + T -tany) -cosO -cos β ί () cos (a) / cos (Φ — β
2j 2 j 2 2j 2j 2j 2j 2j 2j 2j 2 j 2 2j 2j 2j 2j 2j 2j
Φ =tan~ ((n -sin/3 )/(n -cos β 1)) Φ = tan ~ ((n -sin / 3) / (n -cos β 1))
2j 2 2j 2 2j N :自然数 2j 2 2j 2 2j N: Natural number
2  2
j : - Nから Nの整数  j:-an integer from N to N
2 2  twenty two
n :第 2の光制御部の畝状凸部 2の屈折率  n: Refractive index of the ridge-shaped convex part 2 of the second light control part
2  2
n :第 2の光制御部の基材の屈折率  n: Refractive index of the base material of the second light control unit
2s  2s
a :領域 jの Y軸方向の幅  a: Width of area j in the Y-axis direction
Φ :領域 jの出射面に対する斜面の傾き  Φ: slope of the slope with respect to the exit surface of region j
T :第 2の光制御部の入射面から畝状凸部 2の底部までの厚み  T: Thickness from the incident surface of the second light control unit to the bottom of the bowl-shaped convex part 2
2  2
I ( a ) :任意に選択した点状光源から第 1の光制御部を通過し、 Y軸方向に I (a): Passes through the first light control unit from the arbitrarily selected point light source and moves in the Y-axis direction.
2 2j 2 2j
沿って α の方向へ単位角度あたりに放射する光の強度  Intensity of light emitted per unit angle in the direction of α along
[0014] また、第 2の発明は、前記第 1の発明の面光源素子であって、 [0014] Further, the second invention is the surface light source element of the first invention,
前記畝状凸部 1の X軸方向の断面形状を表す領域 Ν〜Ν力 Χ軸の位置座標の 順に並んでおり、  The area representing the cross-sectional shape in the X-axis direction of the ridge-shaped convex part 1 is arranged in the order of the 座標 to Ν force Χ axis position coordinates,
かつ、  And,
前記畝状凸部 2の Y軸方向の断面形状を表す領域 N〜N力 Y軸の位置座標の  Region representing the cross-sectional shape in the Y-axis direction of the ridge-shaped convex part 2 N to N force Y-axis position coordinate
2 2  twenty two
順に並んでいることを特徴とする面光源素子である。  The surface light source elements are arranged in order.
[0015] また、第 3の発明は、前記第 1または第 2の発明の面光源素子であって、 [0015] Further, a third invention is the surface light source element of the first or second invention,
前記畝状凸部 1の X軸方向の断面形状が、  The cross-sectional shape in the X-axis direction of the hook-shaped convex part 1 is
該凸部を形成する(2N + 1 )個の傾きの異なる領域のうち少なくとも 1組の隣接する 2 つの領域の形状を曲線で近似した形状であり、  A shape approximating the shape of at least one pair of two adjacent regions out of (2N + 1) different regions forming the convex portion with a curve,
かつ、  And,
前記畝状凸部 2の Y軸方向の断面形状が、  The cross-sectional shape in the Y-axis direction of the hook-shaped convex part 2 is
該凸部を形成する(2N + 1 )個の傾きの異なる領域のうち少なくとも 1組の隣接する 2  At least one pair of adjacent 2 out of (2N + 1) different regions forming the convex portion
2  2
つの領域の形状を曲線で近似した形状であることを特徴とする面光源素子である。  The surface light source element is characterized in that the shape of one region is approximated by a curve.
[0016] また、第 4の発明は、前記第;!〜 3のいずれか 1つの発明の面光源素子であって、 前記第 1の光制御部において、 [0016] Further, a fourth invention is the surface light source element according to any one of the first ;! to 3, wherein in the first light control unit,
X軸方向に平行かつ Y軸方向に直交する断面内にぉレ、て、正面方向に対して角度 3 In the cross-section parallel to the X-axis direction and perpendicular to the Y-axis direction, angle 3 with respect to the front direction
0度以内に出射する光の割合が全出射光の 50 %以上であり、 The proportion of light emitted within 0 degrees is 50% or more of the total emitted light,
かつ、 前記第 2の光制御部において、 And, In the second light control unit,
X軸方向に直交かつ Y軸方向に平行な断面内にお!/、て、正面方向に対して角度 30 度以内に出射する光の割合が全出射光の 50%以上であることを特徴とする面光源 素子である。  In the cross section perpendicular to the X-axis direction and parallel to the Y-axis direction, the ratio of the light emitted within an angle of 30 degrees with respect to the front direction is 50% or more of the total emitted light. It is a surface light source element.
[0017] また、第 5の発明は、本発明の面光源素子が備える、 X軸または Y軸に沿って光線 方向を制御する光制御手段を有するシート状の光制御部材である。  [0017] Further, the fifth invention is a sheet-like light control member having light control means for controlling a light beam direction along the X axis or the Y axis, which is included in the surface light source element of the present invention.
[0018] また、第 6の発明は、本発明の面光源素子の前記正面方向に透過型表示装置を 配置することを特徴とする画像表示装置である。  [0018] Further, a sixth invention is an image display device characterized in that a transmissive display device is arranged in the front direction of the surface light source element of the present invention.
発明の効果  The invention's effect
[0019] 以下に、本発明の効果について詳細に説明する。  Hereinafter, the effects of the present invention will be described in detail.
[0020] 本発明では、光を拡散させる微粒子を分散させた拡散板を、 2枚のシート状の光制 御部材に置き換えることによって、高い輝度均一性と高い色の均一性とを得る。本発 明では、光制御部材の出射面に好適な形状の畝状凸部を設けることによって光を拡 散させる微粒子の利用の回避もしくは大幅な削減を実現し、光の利用効率を向上さ せることによって高輝度化を達成できる。また、光制御部材の入射面上の全ての点で 、入射した光が出射する方向を同様に制御する一様な性質を持たせることで、サイズ 変更に有利なだけでなぐ光源との位置合わせも不要となる。また、正面方向への出 射光の強度分布を一定にすることで、正面方向の輝度均一性を得ることができる。更 に光制御部材の持つ輝度均一性、輝度向上効果などの複合的な機能により、他の 機能性光学フィルムの利用の解消もしくは削減が可能となり、生産性や薄型化にも 有利となる。加えてこれらの面光源素子の出射面側に透過型表示装置を配置するこ とによって、高い色再現性を有し、高輝度でかつ輝度の均一性と色の均一性とが高 い画像表示装置が得られる。  In the present invention, high luminance uniformity and high color uniformity are obtained by replacing the diffusion plate in which fine particles for diffusing light are dispersed with two sheet-like light control members. In the present invention, by providing a hook-shaped convex portion having a suitable shape on the exit surface of the light control member, the use of fine particles that diffuse light is avoided or greatly reduced, and the light use efficiency is improved. Therefore, high brightness can be achieved. In addition, all points on the incident surface of the light control member have a uniform property that controls the direction in which the incident light is emitted in the same way, so that the alignment with the light source is not only advantageous for size change. Is also unnecessary. Further, by making the intensity distribution of the emitted light in the front direction constant, the luminance uniformity in the front direction can be obtained. In addition, the combined functions of the light control member, such as brightness uniformity and brightness enhancement, make it possible to eliminate or reduce the use of other functional optical films, which is advantageous for productivity and thinning. In addition, by arranging a transmissive display device on the exit surface side of these surface light source elements, image display with high color reproducibility, high brightness, brightness uniformity, and color uniformity is achieved. A device is obtained.
[0021] 本発明が提供する面光源素子は、 X軸と、 X軸に直交する Y軸とに平行な X— Y平 面に平行な出射面を持つ面光源素子であって、該面光源素子は、 X— Y平面に平 行な発光面を持つ複数の点状光源と、 2枚のシート状の光制御部材とを備えており、 前記光制御部材によって、正面方向への高レ、輝度の均一性と色の均一性とを得るこ と力 Sできる。 [0022] 面光源素子の出射面において、ある方向への光の出射光の強度の位置について の分布が一定であれば、その方向への高い輝度の均一性が達成される。また、特定 の色を発光する点状光源を多種類用いる場合、それぞれの色について、上記分布 を一定にすることによって、高!、色の均一性が達成される。 [0021] A surface light source element provided by the present invention is a surface light source element having an emission surface parallel to an XY plane parallel to an X axis and a Y axis perpendicular to the X axis. The element includes a plurality of point light sources having a light emitting surface parallel to the XY plane, and two sheet-like light control members. It is possible to obtain brightness uniformity and color uniformity. If the distribution of the position of the intensity of the emitted light in a certain direction is constant on the emission surface of the surface light source element, high luminance uniformity in that direction is achieved. In addition, when many types of point light sources that emit specific colors are used, high uniformity and color uniformity can be achieved by making the above distribution constant for each color.
[0023] 本発明の面光源素子が備える光制御部材は、正面方向への出射光の強度をほぼ 一定とすることによって、正面方向への輝度均一性を得る。また、それぞれの色の光 を発する点状光源について、正面方向の輝度均一性を得ることによって、高い色の 均一性を得る。  [0023] The light control member provided in the surface light source element of the present invention obtains luminance uniformity in the front direction by making the intensity of the emitted light in the front direction substantially constant. In addition, with respect to a point light source that emits light of each color, high color uniformity is obtained by obtaining luminance uniformity in the front direction.
[0024] 本発明の第 1の発明は、複数の点状光源と、 X— Y平面に平行な出射面と、 2枚の 光制御部材とを備え、前記複数の点状光源は、 X— Y平面に平行な仮想平面内に X 軸および Y軸方向に周期的に配置され、前記光制御部材が前記 X— Y平面に平行 に配置されて!/、る面光源素子である。  [0024] A first invention of the present invention comprises a plurality of point light sources, an exit surface parallel to the XY plane, and two light control members, wherein the plurality of point light sources are X— The surface light source element is periodically arranged in the X-axis and Y-axis directions in a virtual plane parallel to the Y plane, and the light control member is arranged in parallel to the XY plane.
[0025] 前記光制御部材の主面と、複数の点状光源が配置されて!/、る仮想平面と点状光 源の発光面とが平行であることによって、点状光源から光制御部材までの距離が一 様となる為、それぞれの点状光源から光制御部材へ入射する光の強度の分布が均 等となり、更に点状光源の配置力 軸方向および Y軸方向に沿って周期的であること によって、全体の入射する光の強度の分布は、点状光源の配列方向である X軸およ ひ Ύ軸方向に沿って周期的な分布となる為に、輝度の均一性の向上が容易である。  [0025] When the main surface of the light control member and a plurality of point light sources are arranged! /, The virtual plane and the light emission surface of the point light source are parallel to each other. The distribution of the intensity of light incident on the light control member from each point light source is uniform, and the arrangement force of the point light sources is periodic along the axial direction and the Y-axis direction. As a result, the intensity distribution of the incident light as a whole becomes a periodic distribution along the X-axis and Ύ-axis directions, which are the arrangement directions of the point light sources, so that the luminance uniformity is improved. Is easy.
[0026] 前記 2枚の光制御部材のうち、一方の主に光を出射する面は、 X軸方向に直交しか つ Y軸方向に平行な複数の畝状凸部 1からなる第 1の光制御部を備え、かつ、前記 2 枚の光制御部材のうち、別の一方の主に光を出射する面は、 X軸方向に平行かつ Y 軸方向に直交する複数の畝状凸部 2からなる第 2の光制御部を備えおり、第 1の光制 御部および第 2の光制御部によって、点状光源からの光を制御し、出射光の正面方 向への分布を一様にすることが可能となる。第 1の光制御部は X軸方向に直交しかつ Y軸方向に平行な複数の畝状凸部 1をからなり、 X軸方向に沿って光線を制御し、点 状光源からの光を X軸方向に沿って均一化する。一方、第 2の光制御部は X軸方向 に平行かつ Y軸方向に直交する複数の畝状凸部 2からなり、 Y軸方向に沿って光線 を制御し、点状光源からの光を Y軸方向に沿って均一化する。前記第 1の光制御部 および前記第 2の光制御部を組み合わせることによって、 2次元的に輝度の均一性、 色の均一性を得ることが可能である。また、光制御部材を 2枚備えることで、前記第 1 の光制御部と前記第 2の光制御部とを異なる光制御部材に備えることが可能であり、 製造が容易になると共に、輝度と色の均一性を高め、輝度の向上を達成する上で有 利となる。本発明の面光源素子に用いる光制御部材は、畝状凸部 1および畝状凸部 2の断面形状を好適なものとすることで、正面方向の輝度の均一性と、色の均一性を 高めることが可能である。 [0026] Of the two light control members, one of the surfaces from which light is mainly emitted is the first light composed of a plurality of hook-shaped convex portions 1 that are orthogonal to the X-axis direction and parallel to the Y-axis direction. The other one of the two light control members that emits light mainly has a surface that is parallel to the X-axis direction and orthogonal to the Y-axis direction. The second light control unit is configured to control the light from the point light source by the first light control unit and the second light control unit, and the distribution of the emitted light in the front direction is made uniform. It becomes possible to do. The first light control unit is composed of a plurality of ridge-shaped convex portions 1 that are orthogonal to the X-axis direction and parallel to the Y-axis direction, and controls light rays along the X-axis direction to transmit light from the point light source X Uniform along the axial direction. On the other hand, the second light control unit is composed of a plurality of ridge-shaped convex portions 2 that are parallel to the X-axis direction and orthogonal to the Y-axis direction, control the light beam along the Y-axis direction, and direct the light from the point light source to Y Uniform along the axial direction. The first light control unit Further, by combining the second light control unit, it is possible to obtain two-dimensional luminance uniformity and color uniformity. Also, by providing two light control members, it is possible to provide the first light control unit and the second light control unit in different light control members, which facilitates the manufacturing process and increases the brightness. This is advantageous in improving color uniformity and achieving improved brightness. The light control member used for the surface light source element of the present invention is suitable for the cross-sectional shape of the hook-shaped convex part 1 and the hook-shaped convex part 2 to achieve uniformity of luminance in the front direction and uniformity of color. It is possible to increase.
[0027] また、同様の形状の畝状凸部を平行に配置することで、光制御部材の光学的性質 は一様となる為、厳密な位置合わせが不要となり、面光源素子や点状光源の本数や 位置にも即座に対応でき、生産性よく面光源素子を製造可能である。  [0027] In addition, by arranging the hook-shaped convex portions having the same shape in parallel, the optical properties of the light control member become uniform, so that no precise alignment is required, and a surface light source element or a point light source The surface light source elements can be manufactured with high productivity.
[0028] 前記光制御部材の主に光が入射する面には、点状光源からの光が入射する。前記 光制御部材は、前記複数の点状光源の、 X軸に平行に沿った 1周期の長さを D、任 意に選択した点状光源の中心位置を原点、 X軸方向の位置座標を X、 Y軸方向の位 置座標を Yとして、前記選択した点状光源の発光面と前記第 1の光制御部との距離 を H、Xにおける出射面の正面方向への出光強度を表した関数を f (X)とし、 g (X) =f (X— D ) +f (X) +fi (X + D ) (1) [0028] Light from a point light source is incident on a surface of the light control member on which light is mainly incident. The light control member has a length of one period along the X axis of the plurality of point light sources as D, a center position of the arbitrarily selected point light source as an origin, and a position coordinate in the X axis direction. The position coordinates in the X and Y axis directions are set to Y, and the distance between the light emitting surface of the selected point light source and the first light control unit is represented as H and the light output intensity in the front direction of the exit surface at X. Let f (X) be a function, g (X) = f (X— D) + f (X) + f i (X + D) (1)
としたとさ、  And
-D /2≤X≤D /2の範囲で、  In the range of -D / 2≤X≤D / 2,
g (X)の最小値である g (X) と最大値である g (X) の比 g (X) /g (X) 力 s The ratio of g (X), which is the minimum value of g (X), to g (X), which is the maximum value g (X) / g (X) force s
1 1 mm 1 max 1 mm 1 max1 1 mm 1 max 1 mm 1 max
0. 8以上であることを特徴とする。 0. 8 or more.
[0029] また、前記光制御部材は、前記複数の点状光源の、 Y軸に平行に沿った 1周期の 長さを D、前記選択した点状光源の発光面と前記第 2の光制御部との距離を H、 Y[0029] Further, the light control member has a length D of one period along the Y axis of the plurality of point light sources as D, the light emitting surface of the selected point light source, and the second light control. H, Y
2 2 における出射面の正面方向への出光強度を表した関数を f (X)とし、 The function that expresses the light intensity in the front direction of the exit surface in 2 2 is defined as f (X).
2  2
g (X) =f (Y-D ) +f (Y) +f (Y + D ) (2)  g (X) = f (Y-D) + f (Y) + f (Y + D) (2)
としたとさ、
Figure imgf000011_0001
And
Figure imgf000011_0001
g (Y)の最小値である g (Y) と最大値である g (Y) の比 g (Y) /g (Y) が The ratio g (Y) / g (Y) of g (Y) which is the minimum value of g (Y) and g (Y) which is the maximum value is
2 2 mm 2 max 2 mm 2 max2 2 mm 2 max 2 mm 2 max
0. 8以上であることを特徴とする。 [0030] 前記複数の点状光源に、 X軸または Y軸に平行に沿った 1周期とは、 X軸方向また は Y軸方向に繰り返し配列されている光源の配置の単位を指し、 X軸方向または Y軸 方向に沿っての各光源の強度、相対位置、色等の、色や輝度の均一性に関する全 ての要素を含めて、この単位の繰り返しで点状光源の配列が再現される。但し、ここ で、 X軸方向の配列と、 Y軸方向の配列は独立であり、例えば斜方格子状に点状光 源を配置する場合、周期は図 4に示すようにとる。 0. 8 or more. [0030] In the plurality of point light sources, one period along the X axis or the Y axis refers to a unit of arrangement of light sources arranged repeatedly in the X axis direction or the Y axis direction. The array of point light sources is reproduced by repeating this unit, including all elements related to the uniformity of color and brightness, such as the intensity, relative position, and color of each light source along the direction or Y-axis direction. . Here, however, the arrangement in the X-axis direction and the arrangement in the Y-axis direction are independent. For example, when the point light sources are arranged in an orthorhombic lattice, the period is as shown in FIG.
[0031] 前記関数 g (X)、 g (Y)は隣接する同じ種類の点状光源のそれぞれ X軸方向、 Υ [0031] The functions g (X) and g (Y) are respectively the same kind of point light sources adjacent to each other in the X-axis direction, Υ
I 2  I 2
軸方向の 3周期分の正面方向への出光強度の和を表す関数であり、同じ種類の点 状光源のみが等間隔で配置された構成では、隣接する点状光源 3個につ!/、ての和 である。— D /2≤X≤D /2の範囲、— D /2≤Y≤D /2の範囲は原点となる任  This is a function that represents the sum of the intensity of light emitted in the front direction for three axial periods.In the configuration where only the same type of point light sources are arranged at equal intervals, three adjacent point light sources are connected to each other! /, It is the sum of all. — The range of D / 2≤X≤D / 2, the range of D / 2≤Y≤D / 2 is the origin.
I I 2 2  I I 2 2
意に選択した点状光源を中心としてそれぞれ X軸方向、 Y軸方向の 1周期分を表し、 点状光源の配列の 1周期の範囲において高い輝度と色の均一性を実現することによ つて、面光源素子の出射面全体においても高い輝度と色の均一性を得ることが可能 である。また、前記光制御部材は入射面の任意の点において一様に出射光の方向 を制御する為、任意に選択した光源にっレ、て 1周期の範囲にお!/、て高!/、輝度と色の 均一性を得ることによって面光源素子の出射面全体において高い輝度と色の均一性 を得ること力 Sでさる。  It represents one cycle in the X-axis direction and Y-axis direction, respectively, with the point light source selected as the center, and by realizing high brightness and color uniformity in the range of one cycle of the array of point light sources In addition, high luminance and color uniformity can be obtained over the entire emission surface of the surface light source element. In addition, since the light control member uniformly controls the direction of the emitted light at an arbitrary point on the incident surface, the light control member can be controlled within a period of one cycle! /, High! /, By obtaining brightness and color uniformity, the power S can be obtained to obtain high brightness and color uniformity over the entire emission surface of the surface light source element.
[0032] 点状光源の光の強度は距離に反比例する為に、離れた光源からの光の影響は小 さい。従って、隣接する 3周期の点状光源力もの出光強度のみを考慮した関数 g (X) 、 g (Y)を好適な分布とすることによって、正面方向の出射光の強度を制御でき、正 [0032] Since the light intensity of the point light source is inversely proportional to the distance, the influence of the light from a remote light source is small. Therefore, by setting the functions g (X) and g (Y) that take into consideration only the light output intensity of the adjacent three-point point light source power into a suitable distribution, the intensity of the emitted light in the front direction can be controlled and corrected.
2 2
面方向への輝度均一性と、色の均一性を得ることができる。 g (X)の最小値である g (X) と最大値である g (X) の比 g (X) /g (X) を 0· 8以上、かつ g (Y)の mm 1 max 1 mm 1 max 2 最小値である g (Y) と最大値である g (Y) の比 g (Y) /g (Y) を 0· 8以上  Luminance uniformity in the surface direction and color uniformity can be obtained. Ratio of g (X), which is the minimum value of g (X), to g (X), which is the maximum value, g (X) / g (X) is greater than or equal to 0 ・ 8 and g (Y) mm 1 max 1 mm 1 max 2 Ratio of minimum value g (Y) to maximum value g (Y) g (Y) / g (Y) is more than 0 · 8
2 mm 2 max 2 mm 2 max  2 mm 2 max 2 mm 2 max
とすることによって、面光源素子の出射面の任意の位置についての正面方向への出 射光の強度がほぼ一定となり、輝度と色の均一性を得ることができる。  By doing so, the intensity of the emitted light in the front direction at an arbitrary position on the exit surface of the surface light source element becomes substantially constant, and it is possible to obtain luminance and color uniformity.
[0033] 図 10は図 8で (X)について示した、 30mmとして X軸方向に点状光源を配 歹 IJした本発明の面光源素子の f (X)と g (X)を示す図である。任意に選択した点状 光源の中心位置を原点とし、 X軸方向の距離 [mm]を X座標としている。図 10および 図 8は、その位置座標を Yとして、 f (Y)および g (Y)についても同様の分布を描くこ FIG. 10 is a diagram showing f (X) and g (X) of the surface light source element of the present invention in which a point light source is arranged in the X-axis direction as 30 mm, which is shown for (X) in FIG. is there. Arbitrarily selected point light source The center position of the light source is the origin, and the distance [mm] in the X-axis direction is the X coordinate. Figure 10 and Figure 8 shows a similar distribution for f (Y) and g (Y), where Y is the position coordinate.
2 2  twenty two
とが可能である。ここで、 f (Y)は f (Y)と同一の分布である必要はない。  Is possible. Here, f (Y) need not have the same distribution as f (Y).
2 1  twenty one
[0034] 更に、本発明者らは、正面方向への出射光の強度分布をほぼ均一にする為の畝 状凸部 1および畝状凸部 2の断面形状について見出している。即ち、本発明では、 X の最小値 X がー 3. OD ≤X ≤-0. 5Dの範囲であり、最大値 X 力 S、0. 5D min 1 min 1 max 1 Furthermore, the present inventors have found out the cross-sectional shapes of the hook-like convex part 1 and the hook-like convex part 2 for making the intensity distribution of the emitted light in the front direction substantially uniform. That is, in the present invention, the minimum value X of X is in the range of-3. OD ≤ X ≤-0. 5D, and the maximum value X force S, 0.5D min 1 min 1 max 1
≤X ≤3. ODの範囲であり、畝状凸部 1の断面形状が、下記の式(3)〜(9)で表 max 1 ≤X ≤3. The range of OD, and the cross-sectional shape of the saddle-shaped convex part 1 is max 1 according to the following formulas (3) to (9)
される(2N +1)個の傾きの異なる領域 N〜Nからなり、かつ Yの最小値 Y  (2N +1) regions with different slopes N to N and the minimum Y value Y
1 1 1 min 1 1 1 min
-3. OD ≤Y 0. 5Dの範囲であり、最大ィ直 Υ 力 0. 5D ≤Y ≤3. 0D -3. OD ≤Y 0. 5D range, maximum direct force 0.5D ≤Y ≤3.0D
2 min 2 max 2 max 2 の範囲であり、畝状凸部 2の断面形状が、下記の式(10)〜(; 16)で表される(2N +  2 min 2 max 2 max 2, and the cross-sectional shape of the ridge-shaped convex part 2 is expressed by the following formulas (10) to (; 16) (2N +
2 2
1)個の傾きの異なる領域 N〜N力、らなることを特徴とする。このうち、畝状凸部 1 1) A region having different inclinations N to N forces. Of these, hook-shaped convex part 1
2 2  twenty two
および畝状凸部 2について領域 0は傾き 0、即ち光制御部材の主に光を入射する面 の傾きと平行になり、直下から入射した光を効率的に正面方向に出射することができ For the ridge-shaped convex part 2, the area 0 is inclined at 0, that is, parallel to the inclination of the light incident surface of the light control member, and the light incident from directly below can be efficiently emitted in the front direction.
^ o ^ o
[0035] δ =(X —X )/(2N +1) (3)  [0035] δ = (X —X) / (2N +1) (3)
1 max mm 1  1 max mm 1
X=iX δ (4)  X = iX δ (4)
=tan_1(X/H ) (5) = tan _1 (X / H) (5)
li i 1  li i 1
β =sin ( (1/ n ) sin a ) (6)  β = sin ((1 / n) sin a) (6)
li 1 i  li 1 i
γ =sin (1/ n ) sin a ) (7)  γ = sin (1 / n) sin a) (7)
li Is i  li Is i
a ccf (X+T -tan y ) -cosO ecos β /\ ( a ) / cos( a )/ cos(0 — β li 1 i 1 li li li 1 li li li lia ccf (X + T -tan y) -cosO e cos β / \ (a) / cos (a) / cos (0 — β li 1 i 1 li li li 1 li li li li
) (8) ) (8)
Φ =tan_1((n -sin/3 )/(n .cos/3 — 1)) (9) Φ = tan _1 ((n -sin / 3) / (n .cos / 3 — 1)) (9)
li 1 li 1 li  li 1 li 1 li
N :自然数  N: Natural number
i:-N力、ら Nの整数  i: -N force, etc. Integer of N
n :第 1の光制御部の畝状凸部 1の屈折率  n: Refractive index of hook-shaped convex part 1 of the first light control part
n :第 1の光制御部の基材の屈折率  n: Refractive index of the base material of the first light control unit
Is  Is
a :領域 iの X軸方向の幅  a: The width of area i in the X-axis direction
li  li
Φ :領域 iの出射面に対する斜面の傾き  Φ: Slope inclination with respect to the exit surface of region i
li  li
τ :第 1の光制御部の入射面から畝状凸部 1の底部までの厚み I (a ):任意に選択した点状光源力 X軸方向に沿って α の方向へ単位角τ: thickness from the incident surface of the first light control unit to the bottom of the bowl-shaped convex part 1 I (a): Arbitrarily selected point light source force Unit angle in the direction of α along the X-axis direction
1 li li 度あたりに放射する光の強度 Intensity of light emitted per 1 li li degree
[0036] δ = (Υ - Υ )/(2Ν +1) (10)  [0036] δ = (Υ-Υ) / (2Ν +1) (10)
2  2
Υ叫 δ (11)  Screaming δ (11)
2  2
=tan" (Υ/Η ) (12)  = tan "(Υ / Η) (12)
2j j 2  2j j 2
:sin ) a ) (13) : sin) a) (13)
2j 丄/ n sin  2j 丄 / n sin
2 2j  2 2j
γ =sin (1/ n ) sin a ) (14)  γ = sin (1 / n) sin a) (14)
2j 2s 2j  2j 2s 2j
a ccf (Y +T -tany ) -cosO -cos β cos a ccf (Y + T -tany) -cosO -cos β cos
2j 2 j 2 2j 2j 2j ( — β 2j 2 j 2 2j 2j 2j (— β
2j 2j 2j 2j
(15) (15)
Φ =tan_1((n -sin/3 )/( nn --ccooss β/3 —1)) (16) Φ = tan _1 ((n -sin / 3) / (nn --ccooss β / 3 --1)) (16)
2j 2 2j 2 2j  2j 2 2j 2 2j
N :自然数  N: Natural number
2  2
j : -Nから Nの整数  j: integer from -N to N
2 2  twenty two
n :第 2の光制御部の畝状凸部 2の屈折率  n: Refractive index of the ridge-shaped convex part 2 of the second light control part
2  2
n :第 2の光制御部の基材の屈折率  n: Refractive index of the base material of the second light control unit
2s  2s
a :領域 jの Y軸方向の幅  a: Width of area j in the Y-axis direction
Φ :領域 jの出射面に対する斜面の傾き  Φ: slope of the slope with respect to the exit surface of region j
T :第 2の光制御部の入射面から畝状凸部 2の底部までの厚み  T: Thickness from the incident surface of the second light control unit to the bottom of the bowl-shaped convex part 2
2  2
I (α ) :任意に選択した点状光源から第 1の光制御部を通過し、 Υ軸方向に I (α): Passes from the arbitrarily selected point light source through the first light control unit, in the axial direction
2 2j 2 2j
沿って《 の方向へ単位角度あたりに放射する光の強度  Intensity of light emitted per unit angle along the direction of
ここで、 α 、 /3 、 γ 、 Φ 、 α 、 /3 、 γ 、 Φ などの角度はいずれも絶対値が 90°  Where α, / 3, γ, Φ, α, / 3, γ, Φ, etc. all have an absolute value of 90 °
1 1 1 1 2 2 2 2  1 1 1 1 2 2 2 2
未満で、基準線に対して、右回りに成す角度を正、左回りに成す角度を負とする。  The angle formed clockwise is positive and the angle formed counterclockwise is negative with respect to the reference line.
[0037] ここで、畝状凸部 2の断面形状についての式(10)〜(; 16)は、 I (a )が第 1の光  [0037] Here, the equations (10) to (; 16) for the cross-sectional shape of the ridge-shaped convex portion 2 indicate that I (a) is the first light
2 2j  2 2j
制御部の影響を受けることを除いて、畝状凸部 1の断面形状の式(3)〜(9)と同様に 導出され、従って以降の導出の説明では畝状凸部 1の断面形状についての説明を 記す。  Except that it is affected by the control unit, it is derived in the same way as equations (3) to (9) of the cross-sectional shape of the hook-shaped convex part 1, and therefore in the explanation of derivation below, the cross-sectional shape of the hook-shaped convex part 1 Describe the description.
[0038] まず、図 5を用いて式(8)について説明する。  First, equation (8) will be described with reference to FIG.
X 、X は、 f (X)の値が X=0である任意に選択した点状光源付近を中心に減 mm max 1  X and X are reduced around an arbitrarily selected point light source whose value of f (X) is X = 0 mm max 1
衰し、実質 0になるときの両端の座標である。 X 〜X の間を等分に(2N +1)分 割すると、分割した各要素の幅 δェは式(3)で示される。このとき任意の要素の中心 座標 Xは、式 (4)で示される。 Χ= 0の位置にある点状光源力 座標 Xの第 1の光制 御部の入射面への入射角度は、入射面の法線方向に対して式(5)で示される角度 となる。 It is the coordinates of both ends when it fades and becomes virtually zero. Evenly between X and X (2N + 1) minutes When divided, the width δe of each divided element is expressed by equation (3). At this time, the center coordinate X of any element is given by equation (4). The incident angle of the point light source power coordinate X at the position of Χ = 0 with respect to the incident surface of the first light control unit is an angle represented by the equation (5) with respect to the normal direction of the incident surface.
li  li
[0039] ここで光は屈折して、法線方向に対して式(7)で示される角度 γ で第 1の光制御  [0039] Here, the light is refracted, and the first light control is performed at an angle γ expressed by Equation (7) with respect to the normal direction.
li  li
部内部へ進行する。畝状凸部 1の底部に達すると再び屈折し、式(6)で示される角 度 β で畝状凸部 1内を進行する。ここで、第 1の光制御部の畝状凸部 1と、畝状凸 li  Proceed to the inside of the department. When it reaches the bottom of the hook-shaped convex part 1, it is refracted again and travels in the hook-shaped convex part 1 at an angle β shown in Equation (6). Here, the hook-like convex part 1 of the first light control unit and the hook-like convex part li
部 1が設けられている基材の屈折率が同じであっても良ぐこの場合畝状凸部の底部 では光は屈折せず、 γ = β となる。畝状凸部 1を進行する光のうち、式(9)で示さ  In this case, light does not refract at the bottom of the hook-shaped convex portion, and γ = β. Of the light traveling through the ridge-shaped convex part 1, it is shown by equation (9)
li li  li li
れる出射面に対する傾き Φ の斜面に到達した光のみ正面方向に向かう。  Only the light that reaches the slope Φ with respect to the outgoing plane is directed in the front direction.
li  li
[0040] ここで、角度 Φ の斜面が占める領域 iの斜面の長さを b とし、領域 iの斜面から第 1 li li  [0040] Here, the length of the slope of region i occupied by the slope of angle Φ is b, and the first li li from the slope of region i
の光制御部の畝状凸部 1内での光線方向に垂直な方向への射影の長さを e とする  Let e be the length of projection in the direction perpendicular to the ray direction in the ridge-shaped convex part 1 of the light control unit
li と、 X軸方向と第 1の光制御部の主面の法線方向に平行な断面内における領域 iの 斜面の角度が、畝状凸部 1内での光線方向と垂直な角度に対して成す角度 は(  li and the angle of the slope of region i in the cross section parallel to the X-axis direction and the normal direction of the main surface of the first light control unit is The angle formed by (
li li
Φ ~ β )となるので、 Φ ~ β)
li li  li li
e =b - cos ( 0 β ) (17)  e = b-cos (0 β) (17)
li li li li  li li li li
となる。  It becomes.
[0041] またここで、角度 Φ の斜面が占める領域 iの入射面と平行な面への射影の長さ、即  [0041] Also, here, the length of the projection onto the plane parallel to the incident plane of the region i occupied by the slope of the angle Φ,
li  li
ち領域 iの X軸方向の幅を a とすると、
Figure imgf000015_0001
If the width of region i in the X-axis direction is a,
Figure imgf000015_0001
である。  It is.
[0042] 式(17)、式(18)から、  [0042] From Equation (17) and Equation (18),
e = a /οοβ Φ · οο8 ( Φ — β ) (19)  e = a / οοβ Φ · οο8 (Φ — β) (19)
li li li li li  li li li li li
となる。  It becomes.
ここで、図 16に示すように畝状凸部 1の X軸方向の幅、即ち a の総和を Pとすると、  Here, as shown in FIG. 16, when the width in the X-axis direction of the ridge-shaped convex part 1, that is, the total sum of a is P,
li 1 角度 α で第 1の光制御部の基材部 31に入射して、基材部を通過して畝状凸部 32 li  li 1 Enters the base part 31 of the first light control unit at an angle α, passes through the base part, and the hook-shaped convex part 32 li
に向力う光 8のうち領域 iに向力う光の割合は、 e / (P - cos /3 )である。  The proportion of the light 8 directed to the region i out of the light 8 directed to is e / (P−cos / 3).
li 1 li  li 1 li
[0043] 一方、角度 α で第 1の光制御部に入射する単位面積あたりの光の強度、即ち照 度は、後で述べるように I (a ) -cos2a に比例する。 [0043] On the other hand, the intensity of light per unit area incident on the first light control unit at an angle α, ie, illumination. The degree is proportional to I (a) -cos 2 a as described later.
1 li li  1 li li
また、図 17に示すように、座標 Xの点における光源を見込む角度 Δ α は、 cosa  In addition, as shown in FIG.
i li li に比例する。従って、座標 に入射する単位面積、単位角度あたりの光の強度は、 c os2a / a に itf列し、このこと力、ら、 I (α ) -cos2a /cos α 、つまり I ( α ) · li li 1 li li li 1 li cos α に比例する。つまり、点状光源からの光が X=0の点で単位凸部に入射する li It is proportional to i li li. Therefore, the light intensity per unit area and unit angle incident on the coordinate is itf column in c os 2 a / a, and this force, et al., I (α) -cos 2 a / cos α, that is, I ( α) · li li 1 li li li 1 li cos is proportional to α. In other words, the light from the point light source is incident on the unit protrusion at the point X = 0.
光の単位角度あたりの強度に対し、座標 x=xの点で単位凸部に入射する光の単位 角度あたりの強度の割合は I (a ) -cosa である。従って、正面方向に出射する光  The ratio of the intensity per unit angle of light incident on the unit convex part at the point of coordinates x = x with respect to the intensity per unit angle of light is I (a) -cosa. Therefore, the light emitted in the front direction
1 li li 1 li li
± (a ) -cos a -e /(P -cos/3 )であり、式(19)より、 a /cos -cos(0  ± (a) -cos a -e / (P -cos / 3) From equation (19), a / cos -cos (0
1 li li li 1 li li li li 1 li li li 1 li li li li
—— β ) ·Ι (a ) ecos a / (P ecos β )である。 —— β) · Ι (a) e cos a / (P e cos β).
li 1 li li 1 li  li 1 li li 1 li
[0044] 座標 に入射した光は、第 1の光制御部の基材の厚さが であるとき、座標  [0044] The light incident on the coordinate is coordinated when the thickness of the substrate of the first light control unit
T-tany )に出射する為、そのときの正面方向への出射光の強度分布は f (X+T- li 1 i tan γ )である。  T-tany), the intensity distribution of the emitted light in the front direction at that time is f (X + Tli 1 i tan γ).
li  li
[0045] 更に、正面方向への出射光強度は、点状光源の発光強度と正面方向への出射割 合とに比例する為、  [0045] Furthermore, the intensity of the emitted light in the front direction is proportional to the emission intensity of the point light source and the emission ratio in the front direction.
f (X +T-tany ) cca /αοβΦ ·< θ3(Φ —— β ) ·Ι ( ) -cos / (Ρ -cos [if (X + T-tany) cc a / αοβΦ · <θ3 (Φ —— β) · Ι () -cos / (Ρ -cos (i
1 i li li li li li 1 li li 1 1 i li li li li li 1 li li 1
) (20)  (20)
li  li
である。従って、  It is. Therefore,
a ·ί (X +T*tany ) -cosO ecos β /\ ( a ) / cos a / cos(0 一 β li 1 1 i li li li 1 li li li lia · ί (X + T * tany) -cosO e cos β / \ (a) / cos a / cos (0 1 β li 1 1 i li li li 1 li li li li
) (21) ) (twenty one)
となる。  It becomes.
[0046] ここで、 a の総和は、畝状凸部 1の幅を Pとすることが可能であり、  [0046] Here, the sum of a can be set such that the width of the ridge-shaped convex portion 1 is P,
li 1  li 1
[数 1]  [Number 1]
(23) (twenty three)
[0047] 式(23)のおいて、 Pは定数である為、 [0047] In equation (23), P is a constant, so
a ccf (X +T-tany ) -οοβΦ -cos β cos / cos (Φ ― β ) li 1 i li li  a ccf (X + T-tany) -οοβΦ -cos β cos / cos (Φ ― β) li 1 i li li
(8) が成立する。畝状凸部 1の断面は、式(8)の関係を満足するような幅 a の領域 iから (8) Is established. The cross section of saddle-shaped convex part 1 starts from region i of width a that satisfies the relationship of equation (8).
li  li
なる形状である。既に知られている通り、比例縮小光学系はほぼ同一の指向特性を 示すので、畝状凸部の幅は自由に選定することができる。  This is the shape. As already known, since the proportional reduction optical system exhibits almost the same directivity characteristics, the width of the ridge-shaped convex portion can be freely selected.
[0048] ここで、図 6を用いて光制御部 1への入射角度と入射強度の関係について説明する 。線状光源から光制御部 1への入射角 Θを中心に、微小角度 Δ Θを考慮すると、 Δ Θが十分小さい場合には次の式(24)、式(25)、式(26)が成立する。 Here, the relationship between the incident angle to the light control unit 1 and the incident intensity will be described with reference to FIG. Considering a small angle ΔΘ centered on the incident angle Θ from the linear light source to the light control unit 1, if ΔΘ is sufficiently small, the following equations (24), (25), and (26) To establish.
[0049] U = H' . Δ Θ (24)  [0049] U = H '. Δ Θ (24)
H' =H/cos θ (25)  H '= H / cos θ (25)
V = U/cos θ (26)  V = U / cos θ (26)
従って、  Therefore,
Υ=Η· Δ Θ /cos2 d (27) Υ = Η · Δ Θ / cos 2 d (27)
つまり、 Vは cos2 Θに比例する。線状光源からの Δ Θ内の出射光の強度を Ι ( Θ )とす ると、光制御部 1への単位面積あたりの入射光の強度、即ち照度は Ι ( Θ ) -cos2 Θに 比例する。 That is, V is proportional to cos 2 Θ. If the intensity of the emitted light from the linear light source within Δ Θ is Ι (Θ), the intensity of the incident light per unit area to the light control unit 1, that is, the illuminance is Ι (Θ) -cos 2 Θ Proportional.
[0050] 次に式(9)について説明する。  Next, equation (9) will be described.
図 7に本発明の面光源素子に用いる第 1の光制御部で光を正面に向ける原理を示 す。点状光源から、屈折率 nの第 1の光制御部 2に α で入る入射光 7は光制御部 2  Fig. 7 shows the principle of directing light to the front by the first light controller used in the surface light source element of the present invention. The incident light 7 entering the first light control unit 2 having a refractive index n from the point light source with α is the light control unit 2
1 li  1 li
の入射面 6で屈折し、光制御部 2の内部を通過し、この光 8は出射面側の畝状凸部 1 で屈折して出射面側に出射する。このとき出射光 9が正面方向に出射するのは畝状 凸部 1において、傾きが望ましい角度 Φ である場合である。本発明では配置に基づ  The light 8 is refracted by the incident surface 6 and passes through the inside of the light control unit 2, and the light 8 is refracted by the hook-shaped convex portion 1 on the emission surface side and is emitted to the emission surface side. At this time, the emitted light 9 is emitted in the front direction when the inclination is a desirable angle Φ in the bowl-shaped convex portion 1. The present invention is based on the arrangement.
li  li
く α の分布と入射光 7の強度を考慮し、角度 Φ の割合を調節することで正面方向 li li  Taking into account the distribution of α and the intensity of incident light 7, the front direction can be adjusted by adjusting the ratio of angle Φ.
への出射光強度の分布を調節できる。  It is possible to adjust the distribution of the intensity of the emitted light.
[0051] 入射光 7を正面方向に偏向させる為の出射面の傾き Φ は、畝状凸部 1の屈折率と [0051] The inclination Φ of the exit surface for deflecting the incident light 7 in the front direction is equal to the refractive index of the bowl-shaped convex portion 1.
li  li
、第 1の光制御部への光の入射角度によって決定される。入射面 6の法線に対する、 入射面 6へ光が入射する角度を α 、入射面 6で屈折し畝状凸部 1の内部を通過す  , Determined by the incident angle of light to the first light control unit. The angle at which light is incident on the incident surface 6 with respect to the normal of the incident surface 6 is α, and the light is refracted at the incident surface 6 and passes through the inside of the bowl-shaped convex portion 1.
li  li
る光が入射面 6の法線に対して成す角度を /3 、畝状凸部 1の内部を進行する光が  The angle formed by the incident light with respect to the normal of the incident surface 6 is / 3, and the light traveling inside the ridge-shaped convex portion 1
li  li
畝状凸部の出射側斜面の法線に対して成す角度を ε 、光が出射側斜面で屈折し、  The angle formed with respect to the normal of the exit slope of the hook-shaped convex part is ε, and the light is refracted at the exit slope,
li  li
出射面に向力、う光の斜面の法線に対して成す角度を ω とし、また、畝状凸部 1の屈 折率を とする。このとき、畝状凸部から出射した光が正面方向に進むような畝状凸 部の斜面の角度を Φ とする。 The directional force on the exit surface and the angle formed with respect to the normal to the slope of the light is ω, and Let the ratio be. At this time, let Φ be the angle of the slope of the ridge-shaped convex portion so that the light emitted from the ridge-shaped convex portion travels in the front direction.
li  li
[0052] このとき、次の関係が成立する。
Figure imgf000018_0001
[0052] At this time, the following relationship is established.
Figure imgf000018_0001
Φ = β - ε (28)  Φ = β-ε (28)
li li li  li li li
— n esin ε =— sin o =sinO ( ω =— Φ ) (29) — N e sin ε = — sin o = sinO (ω = — Φ) (29)
1 li li li li li  1 li li li li li
式(28)および式(29)より、  From Equation (28) and Equation (29),
— n -sin(/3 Φ ) =sinO (30)  — N -sin (/ 3 Φ) = sinO (30)
1 li li li  1 li li li
n · (sinO ecos β — cosO esin β ) =sinO (30), n · (sinO e cos β — cosO e sin β) = sinO (30),
1 li li li li li  1 li li li li li
式(30),の両辺を cos で除すると(sin /cosO )=tanO なので)、  Dividing both sides of equation (30) by cos (sin / cosO) = tanO)
li li li li  li li li li
n · (tanO -cos β sin β ) =tanO (30),,  n · (tanO -cos β sin β) = tanO (30),
1 li li li li  1 li li li li
従って、 Φ は次の式で表現される。  Therefore, Φ is expressed by the following equation.
li  li
Φ =tan_1(n /sin/3 )/(n -cos β —1) (9) Φ = tan _1 (n / sin / 3) / (n -cos β --1) (9)
li 1 li li li  li 1 li li li
式(6)'、式(9)より、  From Equation (6) 'and Equation (9),
Φ =tan {sin /、n -cos (sin ( (1/ n ) sin ) ) 1) }  Φ = tan {sin /, n -cos (sin ((1 / n) sin)) 1)}
li li 1 1 li  li li 1 1 li
(30),,,  (30), ...
[0053] a 、 n、 Φ はこのような関係となり、畝状凸部 1の屈折率 nと、畝状凸部 1の斜面  [0053] a, n, and Φ have such a relationship that the refractive index n of the bowl-shaped convex part 1 and the slope of the bowl-shaped convex part 1
li 1 li 1  li 1 li 1
の傾き Φ によって、所望の入射角 α の光を正面方向に出射させることができる。畝  By the inclination Φ, light having a desired incident angle α can be emitted in the front direction.畝
li li  li li
状凸部 1の各領域 iについて、式(9)を満足することで、角度 α で光制御部 1に入射  For each region i of the convex-shaped convex part 1, by satisfying equation (9), it is incident on the light control part 1 at an angle α
li  li
した光を畝状凸部 1の領域 iから正面方向に出射させることができる。  The emitted light can be emitted from the region i of the bowl-shaped convex portion 1 in the front direction.
[0054] 前述の通り、光制御部 1と光制御部 2とには同じ理論が適用可能である為、光制御 部についても同様の式が導出可能である。 As described above, since the same theory can be applied to the light control unit 1 and the light control unit 2, a similar expression can be derived for the light control unit.
[0055] 但し、任意に選択した点状光源から Y軸方向に沿って α の方向へ単位角度あたり に放射する光の強度は、第 1の光制御部の影響を受ける。以下に、この影響につい て説明する。 [0055] However, the intensity of light emitted per unit angle in the direction of α along the Y-axis direction from an arbitrarily selected point light source is affected by the first light control unit. This effect is explained below.
[0056] 一例として、点状光源力 X軸方向に沿った傾き α =0で第 1の光制御部に入射  [0056] As an example, the point light source force is incident on the first light control unit with an inclination α = 0 along the X-axis direction.
li  li
した光を考える。この第 1の光制御部に入射した光のうち、畝状凸部 1の領域 iに入射 した光線を図 19に示す。領域 i斜面の法線と、入射した光線方向とのなす角度 は 、Y軸方向に沿って正面方向に傾いていない場合(α =0)ならば、 η は、 X軸に Think of the light. Of the light incident on the first light control unit, the light beam incident on the region i of the bowl-shaped convex portion 1 is shown in FIG. The angle between the normal of the area i slope and the incident light direction is If it is not tilted in the front direction along the Y-axis direction (α = 0), η
2j li  2j li
平行かつ Y軸に直交する面における、領域 iの斜面の法線に対してなす角度 ε と等  An angle ε with respect to the normal of the slope of region i in a plane parallel to the Y axis
li しぐ ε が全反射角よりも小さい場合は屈折して領域 1から出射する。一方で、 Υ軸 li  When li shigu ε is smaller than the total reflection angle, it refracts and exits from region 1. On the other hand, Υ axis li
方向に沿って正面方向力 傾いている場合(α ≠0)、 7] > ε となり、入射した光 When the frontal force is tilted along the direction ( α ≠ 0), 7]> ε and the incident light
2j li li  2j li li
線方向が Y軸方向に大きく傾いていると、 ε が全反射角よりも小さくとも、全反射が  If the line direction is greatly tilted in the Y-axis direction, total reflection will not occur even if ε is smaller than the total reflection angle.
li  li
生じる場合がある。  May occur.
[0057] 従って、 Y軸方向に沿って大きく傾いている場合には、第 1の光制御手段によって 点状光源側に反射される確率が高くなり、点状光源から、 Y軸方向に沿って沿って α の方向へ単位角度あたりに放射する光の強度は、第 1の光制御手段を通過すること [0057] Therefore, when the tilt is greatly tilted along the Y-axis direction, the probability that the first light control means reflects to the point light source increases, and the point light source moves along the Y-axis direction. The intensity of light radiated per unit angle in the direction of α through the first light control means
2) 2)
によって α が大きくなるに従い減衰する。第 2の光制御手段では、第 1の光制御手  Attenuates as α increases. In the second light control means, the first light control hand
2)  2)
段によって影響を受けた後の光線方向を Υ軸に沿って制御する為、 I ( a )は、第 1  In order to control the ray direction after being affected by the step along the axis, I (a) is
2 2j  2 2j
の光制御手段を通過した後の角度方向の分布とする必要がある。  It is necessary to make the distribution in the angular direction after passing through the light control means.
[0058] I ( a )は、上記の説明より、任意に選択した点状光源から Y軸方向に沿って α の  [0058] From the above description, I (a) is obtained from the arbitrarily selected point light source by α along the Y-axis direction.
2 2j 2j 方向に単位角度あたりに放射する光の強度に対して、 a が大きい角度で減衰する  2 2j A decays at a large angle with respect to the intensity of light emitted per unit angle in the 2j direction.
2)  2)
分布となる。この減衰は、適切な関数で近似しても良ぐ例えば、(cos a ) mとし、 I ( Distribution. This attenuation can be approximated by an appropriate function, for example (cos a) m and I (
2j 2 a )を任意に選択した点状光源から Y軸方向に沿って α の方向に単位角度辺りに 2j 2 a) from a point light source arbitrarily selected along the Y-axis direction in the direction of α around the unit angle
2) 2) twenty two)
放射する光の強度と、 (cos a ) mとの積とすることができる。ここで mとしては 0· 5〜1 It can be the product of the intensity of the emitted light and (cos a) m . Where m is 0 · 5 to 1
2)  2)
. 2が適当である。  2 is appropriate.
[0059] 以上のように、畝状凸部 1および畝状凸部 2を決定する重要な要素である、望まし い正面方向への出射光の強度分布 f (X)および f (Y)における光制御部 1における  [0059] As described above, in the intensity distributions f (X) and f (Y) of the emitted light in the desired front direction, which is an important factor for determining the ridge-shaped protrusion 1 and the ridge-shaped protrusion 2 In light control unit 1
1 2  1 2
領域 iの傾き Φ とこれが占める X軸方向の幅 a 、光制御部 2における領域 jの傾き Φ li li 2j とこれが占める Y軸方向の幅 a 、点状光源の配置や光制御部の屈折率などの構成  The slope Φ of area i and the width a in the X axis direction occupied by this, the slope of area j in the light control unit 2 Φ li li 2j and the width a in the Y axis direction occupied by this, the arrangement of the point light sources and the refractive index of the light control unit Configuration such as
2)  2)
に基づいて選定される。  Selected based on
[0060] 本発明の第 2の発明は、前記第 1の発明の面光源素子であって、前記畝状凸部 1 の X軸方向の断面形状をあらわす領域 N〜N力 軸の位置座標の順に並んでお り、かつ、前記畝状凸部 2の Y軸方向の断面形状をあらわす領域 N〜Nが Y軸の  [0060] A second invention of the present invention is the surface light source element of the first invention, wherein a region N to N force axis position coordinates representing a cross-sectional shape of the hook-shaped convex portion 1 in the X-axis direction are provided. The regions N to N that are arranged in order and that represent the cross-sectional shape in the Y-axis direction of the bowl-shaped convex part 2 are the Y-axis.
2 2  twenty two
位置座標の順に並んで!/、ることを特徴とする面光源素子である。このとき単位畝状凸 部 1の X軸方向の断面形状、単位畝状凸部 2の Y軸方向の断面形状には変曲点が なぐ凸部全体が略凸状を成す。変曲点が多いと、光が所望の凸部上の領域に到達 する前に別の凸部上の領域に到達して、反射や屈折によって光線の方向が変化し、 光の出射方向の制御が困難である場合がある。また、変曲点を持たない形状は変曲 点を持つ形状と比較して形状が単純である為、賦形しゃすく生産上有利である。 It is a surface light source element characterized by being arranged in the order of position coordinates! /. At this time, inflection points are present in the cross-sectional shape in the X-axis direction of the unit bowl-shaped protrusion 1 and the cross-sectional shape in the Y-axis direction of the unit bowl-shaped protrusion 2. The entire convex part is substantially convex. When there are many inflection points, the light reaches the region on another convex part before it reaches the region on the desired convex part, and the direction of the light beam is changed by reflection or refraction, and the light emission direction is controlled. May be difficult. In addition, a shape that does not have an inflection point has a simpler shape than a shape that has an inflection point.
[0061] 本発明の第 3の発明は、第 1または第 2の発明の面光源素子であって、前記畝状凸 部 1の X軸方向の断面形状が、該凸部を形成する(2N + 1)個の傾きの異なる領域 のうち少なくとも 1組の隣接する 2つの領域の形状を曲線で近似した形状であり、かつ 、前記畝状凸部 2の Y軸方向の断面形状が、該凸部を形成する(2N + 1)個の傾き [0061] A third invention of the present invention is the surface light source element of the first or second invention, wherein the cross-sectional shape in the X-axis direction of the bowl-shaped convex portion 1 forms the convex portion (2N + 1) A shape obtained by approximating the shape of at least one pair of two adjacent regions out of a plurality of regions with different inclinations by a curve, and the cross-sectional shape in the Y-axis direction of the bowl-shaped convex portion 2 is the convex shape (2N + 1) slopes forming part
2  2
の異なる領域のうち少なくとも 1組の隣接する 2つの領域の形状を曲線で近似した形 状であることを特徴とする面光源素子である。第 1の発明における畝状凸部 1は(2N + 1)個の角度 Φ の斜面よりなる力 第 3の発明における畝状凸部 1は、このうち少な  The surface light source element is characterized in that the shape of at least one pair of two adjacent regions among the different regions is approximated by a curve. In the first invention, the hook-shaped convex portion 1 is a force composed of (2N + 1) slopes of angle Φ.
li  li
くとも 1組の隣接する 2つの領域の形状を曲線で近似した形状を示し、また、第 1の発 明の畝状凸部 2は(2N + 1)個の角度 Φ の斜面よりなるが、第 3の発明の畝状凸部  It shows a shape that approximates the shape of at least one pair of two adjacent areas by a curve, and the hook-like convex part 2 of the first invention is composed of (2N + 1) slopes of angle Φ. The hook-shaped convex part of the third invention
2 2j  2 2j
2は、このうち少なくとも 1組の隣接する 2つの領域の形状を曲線で近似した形状を示 している。曲線で近似することによって、正面方向への出射光の強度分布や出射光 の角度分布がより滑らかになる為、望ましい。また、より賦形がしやすいために生産上 有利となり望ましレ、。更に領域の接合部が鋭レ、形状ではな!/、ことで破損が生じにくい 為、領域の接合部の破損による光の出射方向の変化や、不必要な散乱が生じにくく 、望ましい。  Figure 2 shows a shape that approximates the shape of at least one of the two adjacent regions with a curve. By approximating with a curve, the intensity distribution of outgoing light and the angular distribution of outgoing light in the front direction become smoother, which is desirable. In addition, because it is easier to shape, it is advantageous in production and desirable. Further, since the joint portion in the region is not sharp and has a shape, it is difficult to cause damage, so it is preferable that the light emission direction change due to the breakage of the joint portion in the region and unnecessary scattering hardly occur.
[0062] 本発明の第 4の発明は、第;!〜 3の発明のいずれかの面光源素子であって、前記 第 1の光制御部において、 X軸方向に平行かつ Y軸方向に直交する断面内におい て、正面方向に対して角度 30度以内に出射する光の割合が全出射光の 50%以上 であり、かつ、前記第 2の光制御部において、 X軸方向に直交かつ Y軸方向に平行 な断面内において、正面方向に対して角度 30度以内に出射する光の割合が全出射 光の 50%以上であることを特徴とする面光源素子である。該面光源素子は、正面方 向へ出射する割合が比較的大きい為、テレビやパソコンモニタなど主として正面方向 力も出射面を観察する用途において、効率良く明るい照明を得ることができる。また、 前記第 1の光制御部において、 X軸方向に平行かつ Y軸方向に直交する断面内に おいて、正面方向に対して角度 30度以内の範囲に出射する光の割合は、前記第 1 の光制御部の畝状凸部 1の斜面の角度を調整することによって、調節可能であり、ま た、前記第 2の光制御部において、 X軸方向に直交かつ Y軸方向に平行な断面内に おいて、正面方向に対して角度 30度以内の範囲に出射する光の割合は、前記第 2 の光制御部の畝状凸部 2の斜面の角度を調整することによって、調節可能である。前 記畝状凸部 1の斜面の角度は、 X 〜X の幅を調整することで調節でき、また、前 max mm [0062] A fourth invention of the present invention is the surface light source element of any of the first to third inventions, wherein the first light control unit is parallel to the X-axis direction and orthogonal to the Y-axis direction. In the cross section, the ratio of the light emitted within an angle of 30 degrees with respect to the front direction is 50% or more of the total emitted light, and the second light control unit is orthogonal to the X-axis direction and Y In the cross section parallel to the axial direction, the surface light source element is characterized in that the proportion of light emitted within an angle of 30 degrees with respect to the front direction is 50% or more of the total emitted light. Since the surface light source element emits a relatively large proportion of light emitted in the front direction, bright illumination can be efficiently obtained in applications such as a television or a personal computer monitor that mainly observe the light exit surface in the front direction. In the first light control unit, in a cross section parallel to the X-axis direction and perpendicular to the Y-axis direction. In this case, the ratio of the light emitted within a range of an angle of 30 degrees or less with respect to the front direction can be adjusted by adjusting the angle of the inclined surface of the hook-shaped convex part 1 of the first light control part, In the second light control unit, the ratio of light emitted within a range of an angle of 30 degrees or less with respect to the front direction in the cross section orthogonal to the X-axis direction and parallel to the Y-axis direction is It can be adjusted by adjusting the angle of the slope of the hook-like convex part 2 of the second light control part. The angle of the slope of the bowl-shaped convex part 1 can be adjusted by adjusting the width of X to X, and the front max mm
記畝状凸部 2の斜面の角度は、 Y 〜Υ の幅を調整することで調節できる。  The angle of the slope of the recording-like convex portion 2 can be adjusted by adjusting the width of Y to Υ.
max mm  max mm
[0063] 本発明の第 5の発明は、第 1〜4の発明のいずれかの面光源素子が備える、 X軸ま たは Y軸に沿って光線方向を制御する光制御手段を有するシート状の光制御部材 である。該光制御部材は、光線方向を制御する第 1の光制御部および第 2の光制御 部を備え、該光制御部材の主に光を入射する面から入射した光は、第 1の光制御手 段もしくは第 2の光制御手段によって一部は反射し、一部は透過する。この機能によ つて、出射光の輝度均一性および色の均一性は向上する。光制御部材の主に光を 入射する面を通過する光は、入射面で屈折して光制御部材内部を通過し、畝状凸 部 1および/または畝状凸部 2に到達する。畝状凸部 1に入射した光は、畝状凸部 1 における各領域の斜面の傾きに応じて X軸方向に沿って屈折し、畝状凸部 2に到達 した光は、畝状凸部 2における各領域の斜面の傾きに応じて Y軸方向に沿って屈折 する。適切な角度の領域に到達した光は正面方向に出射する。従って、傾きの異な る畝状凸部 1および畝状凸部 2の各領域の割合を適切に選択することによって、任意 の出射面上の点における正面方向への出射光の輝度分布を一定にすることが可能 である。  [0063] A fifth invention of the present invention is a sheet-like shape having a light control means for controlling the direction of the light beam along the X-axis or Y-axis, which is included in the surface light source element of any of the first to fourth inventions. This is a light control member. The light control member includes a first light control unit and a second light control unit that control a light beam direction, and light incident mainly from a light incident surface of the light control member is a first light control unit. Part of the light is reflected by the means or the second light control means, and part of the light is transmitted. This function improves the brightness uniformity and color uniformity of the emitted light. The light passing through the light incident surface of the light control member mainly refracts at the incident surface, passes through the light control member, and reaches the hook-shaped protrusion 1 and / or the hook-shaped protrusion 2. The light incident on the hook-shaped convex part 1 is refracted along the X-axis direction according to the slope of the slope of each region in the hook-shaped convex part 1, and the light reaching the hook-shaped convex part 2 Refracts along the Y-axis according to the slope of the slope in each region in 2. The light that reaches the region of an appropriate angle is emitted in the front direction. Therefore, by appropriately selecting the ratio of the areas of the ridge-like convex part 1 and the ridge-like convex part 2 having different inclinations, the luminance distribution of the emitted light in the front direction at a point on an arbitrary emission surface is made constant. It is possible to do.
[0064] 本発明の第 6の発明は、第;!〜 4のいずれかの発明の面光源素子の正面方向に透 過型の表示装置を配置することによって構成される画像表示装置である。前記面光 源素子は正面方向への出射光の強度分布が一定で均一な面光源素子であり、また 正面方向への出射光の強度の割合を大きくすることが可能であり、この出射面側に 透過型の表示装置を配置することによって、色再現性がよぐ輝度と色の均一性が高 いことから高品位な画像を表示できる。ここで本発明の画像表示装置とは、面光源素 子と表示素子を組み合わせた表示モジュール、更には、この表示モジュールを用い た少なくとも画像表示機能を有する機器であり、テレビやパソコンモニタ等を含む。 [0064] A sixth invention of the present invention is an image display device configured by disposing a transmissive display device in the front direction of the surface light source element of any one of the inventions !! The surface light source element is a uniform surface light source element having a uniform intensity distribution of emitted light in the front direction, and the ratio of the intensity of emitted light in the front direction can be increased. By disposing a transmissive display device, it is possible to display high-quality images because of high brightness and color uniformity with good color reproducibility. Here, the image display device of the present invention is a display module in which a surface light source element and a display element are combined, and further, this display module is used. It is a device having at least an image display function, and includes a television, a personal computer monitor, and the like.
[0065] 正面方向への出射光の強度分布は、正面輝度の分布を測定することにより評価可 能である。正面輝度の分布は、輝度計と面光源素子の出射面上にある測定点との距 離を一定に保った状態で、輝度計を X軸方向および Y軸方向に等間隔ずつ移動しな 力 ¾計測する。また、正面方向への出射光の割合は、まず、 X軸方向に平行かつ Y 軸方向に直交する断面、および X軸方向に直交かつ Y軸方向に平行な断面に沿つ て、同一の測定点について、輝度計と測定点の距離を一定に保った状態で、角度を 変化させて計測する。得られた角度毎の輝度の値をエネルギーに変換し、 X軸方向 に平行かつ Y軸方向に直交する断面における、正面方向に対して角度 30度以内に 出射する光の割合、および X軸方向に直交かつ Y軸方向に平行な断面における、正 面方向に対して角度 30度以内に出射する光の割合を算出する。 [0065] The intensity distribution of outgoing light in the front direction can be evaluated by measuring the distribution of front luminance. The distribution of front luminance is the same as the luminance meter is moved at regular intervals in the X-axis direction and Y-axis direction while keeping the distance between the luminance meter and the measurement point on the exit surface of the surface light source element constant. ¾ Measure. In addition, the ratio of the outgoing light in the front direction is first measured along the cross section parallel to the X axis direction and perpendicular to the Y axis direction, and along the cross section perpendicular to the X axis direction and parallel to the Y axis direction. Measure the point by changing the angle while keeping the distance between the luminance meter and the measurement point constant. The brightness value obtained for each angle is converted into energy, and the ratio of light emitted within an angle of 30 degrees with respect to the front direction in the cross section parallel to the X axis direction and perpendicular to the Y axis direction, and the X axis direction Calculate the proportion of light emitted within an angle of 30 degrees with respect to the normal direction in a cross section orthogonal to the Y-axis direction.
[0066] 本発明では、直下方式の面光源素子において、光の利用効率が高ぐ正面方向へ の出射光の強度分布を一定とすることで、点状光源の像による明暗差等を解消し、 正面方向の輝度の均一性と色の均一性を高めた面光源素子を提供する。また、正 面方向への出射光の割合が大きぐ高い正面輝度が得られる面光源素子を提供す る。また、光制御部材における畝状凸部 1および畝状凸部 2を曲線で近似することに より、滑らかな正面方向への出射光の強度分布や望ましい滑らかな出射光の角度分 布が得られる。また、他の機能性光学フィルムの利用を解消もしくは削減が可能とな り、生産性や薄型化にも有利となる。更に、本発明の面光源素子が備える光制御部 材は、入射した光に対して全ての場所において同様な光学的制御を行う為、点状光 源と光制御部材との厳密な位置合わせが不要で、ディスプレイサイズや点状光源の 個数や配置の変更にも即座に対応可能であり、生産性良く面光源素子を製造できる 。また、本発明は該面光源素子を用いた画像表示装置を提供する。 [0066] In the present invention, in the direct-type surface light source element, the intensity distribution of the emitted light in the front direction where the light use efficiency is high is made constant, thereby eliminating the light / dark difference due to the image of the point light source. Provided is a surface light source element with improved brightness uniformity and color uniformity in the front direction. Also provided is a surface light source element capable of obtaining high front luminance with a large proportion of outgoing light in the front direction. In addition, by approximating the ridge-like convex part 1 and the ridge-like convex part 2 of the light control member with curves, it is possible to obtain a smooth intensity distribution of outgoing light in the front direction and a desired smooth outgoing light angle distribution. . In addition, the use of other functional optical films can be eliminated or reduced, which is advantageous for productivity and thinning. Furthermore, since the light control member provided in the surface light source element of the present invention performs the same optical control on the incident light at all locations, the strict alignment between the point light source and the light control member is achieved. It is unnecessary and can respond immediately to changes in the display size and the number and arrangement of point light sources, making it possible to manufacture surface light source elements with high productivity. The present invention also provides an image display apparatus using the surface light source element.
図面の簡単な説明  Brief Description of Drawings
[0067] [図 1]本発明の面光源素子の、好適な一例を示す図である。  [0067] FIG. 1 is a diagram showing a preferred example of a surface light source element of the present invention.
[図 2]図 1の面光源素子の、 X軸に平行かつ Y軸に直交する平面における点状光源 の位置と、正面方向への出射光の強度分布との関係を示す図である。  2 is a diagram showing the relationship between the position of a point light source in a plane parallel to the X axis and perpendicular to the Y axis and the intensity distribution of emitted light in the front direction of the surface light source element of FIG.
[図 3]隣接する 3個の点状光源を配置したときの、 X軸に平行かつ Y軸に直交する平 面における点状光源の位置とそれぞれの正面方向への出射光の強度分布を示す図 である。 [Figure 3] A flat plane parallel to the X axis and perpendicular to the Y axis when three adjacent point light sources are arranged It is a figure which shows the intensity distribution of the emitted light to the position of the point light source in a surface, and each front direction.
園 4]本発明の面光源素子における、複数の点状光源の配列の一例を示す図である 園 5]X軸に平行かつ Y軸に直交する平面における、点状光源からの光の入射角度 a と、畝状凸部 1における領域 iの斜面の傾き Φ と、領域 iの X軸方向の幅 a との関 li li li 係を示す図である。 Fig. 4 is a diagram showing an example of an array of a plurality of point light sources in the surface light source element of the present invention. Fig. 5] An incident angle of light from the point light source on a plane parallel to the X axis and perpendicular to the Y axis. FIG. 7 is a diagram showing a relation between a, the slope Φ of the slope of the region i in the bowl-shaped convex portion 1, and the width a of the region i in the X-axis direction.
園 6]光制御部材への光の入射角度と入射強度の関係を示す図である。 6] A diagram showing the relationship between the incident angle of light and the incident intensity on the light control member.
[図 7]本発明の面光源素子で、光を正面方向に偏向させる原理を示す図である。  FIG. 7 is a diagram showing the principle of deflecting light in the front direction with the surface light source element of the present invention.
[図 8]X軸に平行かつ Y軸に直交する断面における、 1個の点状光源からの光の、正 面方向への出射光の X軸方向への強度分布の一例を示す図である。  FIG. 8 is a diagram showing an example of an intensity distribution in the X-axis direction of light emitted from a single point light source in a plane direction in a cross section parallel to the X-axis and perpendicular to the Y-axis. .
[図 9]X軸に平行かつ Y軸に直交する断面における、 1個の点状光源からの光の、正 面方向への出射光の X軸方向への強度分布の、図 8とは異なる一例を示す図である  [Fig. 9] The intensity distribution in the X-axis direction of the light emitted from one point light source in the front direction in a cross section parallel to the X-axis and perpendicular to the Y-axis is different from that in Fig. 8. It is a figure which shows an example
[図 10]図 8で示した面光源素子の f (X)と、それに対応する g (X)を示す図である。 園 11]図 9で示した面光源素子の f (X)と、それに対応する g (X)を示す図である。 FIG. 10 is a diagram showing f (X) of the surface light source element shown in FIG. 8 and g (X) corresponding thereto. 11] FIG. 10 is a diagram showing f (X) of the surface light source element shown in FIG. 9 and g (X) corresponding thereto.
[図 12]比較例 2の光制御部材の入射面に、点状光源からの光が垂直に入射した場 合の光の進行方向を示す図である。 FIG. 12 is a diagram showing the traveling direction of light when light from a point light source is incident on the incident surface of the light control member of Comparative Example 2 vertically.
園 13]比較例 2の光制御部材の入射面に、点状光源からの光が斜め方向より入射し た場合の光の進行方向を示す図である。 13] A diagram showing the traveling direction of light when light from a point light source is incident on the incident surface of the light control member of Comparative Example 2 from an oblique direction.
園 14]比較例 1の、通常の微粒子を分散させた拡散板を用いた面光源素子の構成を 示す図である。 14] A diagram showing a configuration of a surface light source element of Comparative Example 1 using a diffusion plate in which normal fine particles are dispersed.
園 15]X軸に平行かつ Y軸に直交する断面における、点状光源から正面方向への出 射光の強度分布を示す図である。 15] This is a diagram showing the intensity distribution of the emitted light from the point light source in the front direction in a cross section parallel to the X axis and perpendicular to the Y axis.
[図 16]角度 0 で畝状凸部 1に向かう光のうち、領域 iに向力、う光の割合を示す図であ  FIG. 16 is a graph showing the ratio of directional force and luminous intensity to region i out of the light traveling toward bowl-shaped convex part 1 at an angle of 0.
li 園 17]X軸に平行かつ Y軸に直交する断面における、座標 Xの点における点状光源 を見込む角度 Δ α を示す図である。 [図 18]3種類の点状光源を用いた面光源素子の、 X軸に平行かつ Y軸に直交する平 面における点状光源の位置と、正面方向への出射光の強度分布との関係を示す図 である。 li-Sen 17] It is a diagram showing an angle Δα at which a point light source is viewed at a point of coordinate X in a cross section parallel to the X axis and perpendicular to the Y axis. [Fig.18] Relationship between the position of a point light source on a plane parallel to the X axis and perpendicular to the Y axis, and the intensity distribution of the emitted light in the front direction, for a surface light source element using three types of point light sources FIG.
[図 19]第 1の光制御部が、 Υ軸方向に沿って α の方向に単位角度あたりに放射する 光の強度に与える影響を示す図である。  FIG. 19 is a diagram showing the influence of the first light control unit on the intensity of light emitted per unit angle in the direction of α along the axial direction.
[図 20]実施例および比較例の構成と結果を示す表である。  FIG. 20 is a table showing configurations and results of examples and comparative examples.
符号の説明 Explanation of symbols
1:点状光源 1: Point light source
11:赤色の LED  11: Red LED
12:青色の LED 12: Blue LED
13:緑色の LED 13: Green LED
2:光制御部材 2: Light control member
3:第 1の光制御部 3: First light controller
31:第 1の光制御部における、基材部分  31: Base material part in the first light control unit
32:畝状凸部 1 32: ridge-shaped convex part 1
32a:畝状凸部 1の、領域 iの斜面  32a: Slope of area i of bowl-shaped convex part 1
4:第 2の光制御部 4: Second light control unit
5:反射板 5: Reflector
6:第 1の光制御部の主に光を入射する面  6: Main light incident surface of the first light control unit
7:光制御部材の基材部分を進む光  7: Light traveling through the base material of the light control member
8:畝状凸部 1または畝状凸部 2の内部を進む光  8: Light traveling inside hook-shaped convex part 1 or hook-shaped convex part 2
9:光制御部材から出射する光  9: Light emitted from the light control member
10:プリズムシート  10: Prism sheet
11:畝状凸部 1の、領域 iに α =0、 α =0で入射した光  11: Light incident on region i of bowl-shaped convex part 1 with α = 0 and α = 0
li 2j  li 2j
12:畝状凸部 1の、領域 iで屈折して出射する光  12: Light that is refracted and emitted from region i of bowl-shaped convex part 1
13:畝状凸部 1の、領域 iに α =0、 α ≠0で入射した光  13: Light incident on area i of bowl-shaped convex part 1 with α = 0 and α ≠ 0
li 2j  li 2j
14:畝状凸部 1の、領域 iに α =0、 α ≠0で入射した光のうち、領域 iの斜面で全  14: All of the light incident on region i of α-shaped convex part 1 with α = 0 and α ≠ 0 on the slope of region i
li 2j  li 2j
反射される光 Di : X軸方向における、点状光源の配列の周期 Reflected light D i: Period of array of point light sources in the X-axis direction
D : Y軸方向における、点状光源の配列の周期 D: Period of array of point light sources in the Y-axis direction
2  2
H :点状光源の発光面から、第 1の光制御部材の入射面までの距離  H: Distance from the light emitting surface of the point light source to the incident surface of the first light control member
H :点状光源の発光面から、第 2の光制御部材の入射面までの距離 H: Distance from the light emitting surface of the point light source to the incident surface of the second light control member
2  2
f (X) : X軸に平行かつ Y軸に直交する平面における、任意の点状光源からの光の、 第 1の光制御部から正面方向に出射する光の強度分布 f (X): Intensity distribution of light emitted from any point light source in the front direction from the first light controller on a plane parallel to the X axis and perpendicular to the Y axis
f (Y) : x軸に直交しかつ Y軸に平行な平面における、任意の点状光源からの光の、f (Y): of light from any point light source in a plane perpendicular to the x axis and parallel to the Y axis
2 2
第 2の光制御部から正面方向に出射する光の強度分布 Intensity distribution of light emitted from the second light control unit in the front direction
N、 N :自然数 N, N: natural number
1 2  1 2
n :畝状凸部 1の屈折率 n: Refractive index of bowl-shaped convex part 1
n :第 1の光制御部の基材の屈折率 n: Refractive index of the base material of the first light control unit
Is  Is
n :畝状凸部 2の屈折率 n: Refractive index of bowl-shaped convex part 2
2  2
n s :第 2の光制御部の基材の屈折率 n s: refractive index of the base material of the second light control unit
2  2
X : f (X)が 0となるときの正方向の X座標  X: X coordinate in the positive direction when f (X) is 0
max 1  max 1
X : f (X)が 0となるときの負方向の X座標  X: X coordinate in the negative direction when f (X) is 0
mm 1  mm 1
Y : f (Y)が 0となるときの正方向の Y座標  Y: Y coordinate in the positive direction when f (Y) is 0
max 2  max 2
Y : f (Y)が 0となるときの負方向の Y座標  Y: Y coordinate in the negative direction when f (Y) is 0
mm 2  mm 2
g (X): f (X-D ) +f (X) +f (X+D ) ;X軸に平行かつ Y軸に直交する平面にお ける、任意の点状光源と両側に隣接する点状光源とからの光の、第 1の光制御部か ら正面方向に出射する光の強度分布 g (X): f (XD) + f (X) + f (X + D); Any point light source and adjacent point light sources on a plane parallel to the X axis and perpendicular to the Y axis Intensity distribution of light emitted from the first light control unit in the front direction
g (Y) : f (Y-D ) +f (Y) +f (Y + D ) ;X軸に直交しかつ Y軸に平行な平面におg (Y): f (Y-D) + f (Y) + f (Y + D); in a plane perpendicular to the X axis and parallel to the Y axis
2 2 2 2 2 2 2 2 2 2 2 2
ける、任意の点状光源と両側に隣接する点状光源とからの光の、第 1の光制御部か ら正面方向に出射する光の強度分布 Intensity distribution of light emitted from the first light control unit in the front direction from light from an arbitrary point light source and adjacent point light sources on both sides
g (X) : X 〜X 間の g (X)の最小値 g (X): Minimum value of g (X) between X and X
1 min mm max 1  1 min mm max 1
g (X) : X 〜X 間の g (X)の最大値 g (X): Maximum value of g (X) between X and X
1 max min max 1  1 max min max 1
g (Y) : Y 〜Y 間の g (Y)の最小値 g (Y): Minimum value of g (Y) between Y and Y
mm mm max  mm mm max
g (Y) : Y 〜Y 間の g (Y)の最大値 g (Y): Maximum value of g (Y) between Y and Y
2 max min max 2  2 max min max 2
δ : δ = (X -X ) /2N + 1を満たす X軸方向における微小区間 6 : δ = (Υ -Υ ) /2Ν + 1を満たす Υ軸方向における微小区間 δ: Small interval in the X-axis direction that satisfies δ = (X -X) / 2N + 1 6: δ = (Υ -Υ) / 2Ν + 1 Small interval in the Υ axis direction
2 2 max min 2  2 2 max min 2
Φ :畝状凸部 1の、領域 iの出射面に対する斜面の傾き  Φ: slope of the ridge-shaped convex part 1 with respect to the exit surface of the region i
li  li
Φ :畝状凸部 2の、領域 jの出射面に対する斜面の傾き  Φ: slope of the ridge-shaped convex part 2 with respect to the exit surface of the region j
2j  2j
X : X 〜X 間を(2N + 1 )等分したときの各要素における X座標の中心値  X: X coordinate center value of each element when X to X are equally divided by (2N + 1)
1 mm max 1  1 mm max 1
Y: Υ 〜Υ 間を(2Ν + 1 )等分したときの各要素における Υ座標の中心値  Y: Center value of Υ coordinate for each element when Υ ~ Υ is equally divided by (2Ν + 1)
j min max 2  j min max 2
a :第 1の光制御部の畝状凸部 1における領域 iの X軸方向の幅 a: width in the X-axis direction of the region i in the ridge-shaped convex portion 1 of the first light control unit
li  li
a :第 2の光制御部の畝状凸部 2における領域 jの Y軸方向の幅 a: Width in the Y-axis direction of the region j in the ridge-shaped convex part 2 of the second light control part
T :第 1の光制御部の入射面から畝状凸部 1の底部までの厚み T: Thickness from the incident surface of the first light control unit to the bottom of the bowl-shaped convex part 1
T :第 2の光制御部の入射面から畝状凸部 2の底部までの厚み T: Thickness from the incident surface of the second light control unit to the bottom of the bowl-shaped convex part 2
2  2
I ( a ) :任意に選択した点状光源力 X軸方向に沿って α の方向へ単位角度あた I (a): Arbitrarily selected point light source force Unit angle in the direction of α along the X-axis direction
1 li li 1 li li
りに放射する光の強度 Intensity of light emitted
I ( α ) :任意に選択した点状光源力 Υ軸方向に沿って α の方向へ単位角度あた I (α): arbitrarily selected point light source force A unit angle in the direction of α along the Υ axis direction
2 2j 2j 2 2j 2j
りに放射する光の強度 Intensity of light emitted
a : X軸に平行かつ Y軸に直交する平面における、点状光源から第 1の光制御部に li a: From the point light source to the first light controller in a plane parallel to the X axis and orthogonal to the Y axis
入射して領域 iから出射する光の、点状光源からの光線方向が正面方向に対してな す角度 The angle that the light from the point light source enters and exits from area i with respect to the front.
a : X軸に直交しかつ Y軸に平行な平面における、点状光源から第 2の光制御部にa: From a point light source to the second light control unit in a plane perpendicular to the X axis and parallel to the Y axis
2j 2j
入射して領域 jから出射する光の、点状光源からの光線方向が正面方向に対してな す角度 The angle that the light from the point light source enters and exits from area j with respect to the front.
β : χ軸に平行かつ Υ軸に直交する平面における、点状光源から第 1の光制御部に li β: li from the point light source to the first light controller in a plane parallel to the χ axis and perpendicular to the Υ axis
入射して領域 iから出射する光の、畝状凸部 1内部での光線方向が、正面方向に対し てなす角度 The angle formed by the direction of the light beam incident on and exiting from region i with respect to the front direction in the ridge-shaped convex part 1
β : Χ軸に直交しかつ Υ軸に平行な平面における、点状光源から第 2の光制御部にβ: From a point light source to the second light control unit in a plane perpendicular to the axis and parallel to the axis
2j 2j
入射して領域 jから出射する光の、畝状凸部 2内部での光線方向が、正面方向に対し てなす角度 The angle formed by the direction of the light beam incident on and exiting from area j inside the ridge-shaped convex part 2 with respect to the front direction.
7 :x軸に平行かつ Y軸に直交する平面における、点状光源から第 1の光制御部に li  7: li from the point light source to the first light controller in the plane parallel to the x-axis and perpendicular to the Y-axis
入射して領域 iから出射する光の、第 1の光制御部の基材での光線方向が、正面方 向に対してなす角度 7 : X軸に直交しかつ Y軸に平行な平面における、点状光源から第 2の光制御部にThe angle formed by the direction of the light incident on the substrate of the first light control unit with respect to the front direction. 7: From a point light source to the second light control unit on a plane perpendicular to the X axis and parallel to the Y axis
2j 2j
入射して領域 jから出射する光の、第 2の光制御部の基材での光線方向が、正面方 向に対してなす角度 The angle formed by the direction of the light incident on the substrate of the second light control unit with respect to the front direction.
b : X軸に平行かつ Y軸に直交する平面における、領域 iの斜面の長さ b: Length of the slope of region i in a plane parallel to the X axis and perpendicular to the Y axis
li  li
b : X軸に直交しかつ Y軸に平行な平面における、領域 jの斜面の長さ b: Length of slope of region j in a plane perpendicular to X axis and parallel to Y axis
e : X軸に平行かつ Y軸に直交する平面における、点状光源から第 1の光制御部に li e: li from the point light source to the first light control unit in a plane parallel to the X axis and perpendicular to the Y axis
入射して領域 iから出射する光の、第 1の光制御部内部での光線方向に垂直な方向 への領域 iの斜面の射影の長さ。 The length of the projection of the slope of region i in the direction perpendicular to the direction of the light beam inside the first light control unit for the light that enters and exits from region i.
: χ軸に平行かつ Υ軸に直交する平面における、領域 iの斜面の角度が、畝状凸 li  : The angle of the slope of region i in the plane parallel to the χ axis and perpendicular to the Υ axis is
部 1内部での光線方向と垂直な角度に対してなす角度 Angle formed with respect to the angle perpendicular to the ray direction in part 1
:畝状凸部 1における領域 iの斜面の法線と、領域 iの斜面に入射した光線方向と li  : The normal of the slope of region i in the ridge-shaped convex part 1 and the direction of light incident on the slope of region i and li
のなす角度 Angle
Θ : X軸に平行かつ Y軸に直交する平面における、点状光源から第 1の光制御部に 入射して出射面から出射する光の、点状光源からの光線方向が正面方向に対してな す角度  Θ: The light direction from the point light source that is incident on the first light control unit from the point light source and exits from the exit surface on the plane parallel to the X axis and perpendicular to the Y axis is relative to the front direction. Angle
Δ θ : X軸に平行かつ Y軸に直交する平面における、入射角度 Θの光を中心にした 微小範囲が点状光源の中心となす角度  Δ θ: Angle formed by a small area centered on the light with the incident angle Θ on the plane parallel to the X axis and perpendicular to the Y axis.
H' : X軸に平行かつ Y軸に直交する平面における、点状光源から角度( θ - Δ Θ ) で出射した光が通る第 1の光制御部における入射面上の点と、点状光源の中心とを 結ぶ線分を、点状光源と角度 Θで出射した光が通る直線上に射影した長さ(点状光 源から角度 Θで出射した光が通る第 1の光制御部における入射面上の点と、点状光 源の中心との距離にほぼ等しい)  H ′: a point on the incident surface of the first light control unit through which light emitted from the point light source at an angle (θ−ΔΘ) passes in a plane parallel to the X axis and perpendicular to the Y axis, and the point light source The length of the line segment connecting to the center of the projection onto the straight line through which the light emitted from the point light source and the angle Θ passes (incident at the first light control unit through which the light emitted from the point light source at the angle Θ passes. Approximately equal to the distance between a point on the surface and the center of the point light source)
V : X軸に平行かつ Y軸に直交する平面における、点状光源からの入射角度 Θを中 心とする角度範囲 Δ Θの光が通過する第 1の光制御部における入射面上の領域の 長さ  V: In the plane parallel to the X axis and perpendicular to the Y axis, the incident light from the point light source is centered on the incident angle Θ. length
U : X軸に平行かつ Y軸に直交する平面における、点状光源からの入射角度 Θを中 心とする角度範囲 Δ Θの光が通過する第 1の光制御部における入射面上の領域の 、入射角度 Θに垂直な角度への射影 ε : X軸に平行かつ Y軸に直交する平面における、点状光源から第 1の光制御部に 入射して畝状凸部 1の領域 iに向かう光の、畝状凸部 1内での光線方向が、領域 iの 斜面の法線に対してなす角度 U: In the plane parallel to the X-axis and perpendicular to the Y-axis, the incident light from the point light source is centered on the incident angle Θ. Projection to an angle perpendicular to the incident angle Θ ε: Light in the ridge-shaped convex portion 1 of light incident on the first light control unit from the point light source on the plane parallel to the X-axis and perpendicular to the Y-axis toward the region i of the ridge-shaped convex portion 1 The angle formed by the ray direction with respect to the normal of the slope of area i
ω : Χ軸に平行かつ Υ軸に直交する平面における、点状光源から第 1の光制御部に 入射して畝状凸部 1の領域 iに向かう光の、畝状凸部 1から出射する光線方向が、領 域 iの斜面の法線に対してなす角度 ω: Light incident on the first light control unit from the point light source on the plane parallel to the Χ axis and orthogonal to the Υ axis, and emitted from the ridge projection 1 to the region i of the ridge projection 1 Angle formed by ray direction with respect to normal of slope in area i
P : x軸に平行かつ Y軸に直交する平面における、畝状凸部 1の幅  P: Width of bowl-shaped convex part 1 in a plane parallel to the x axis and perpendicular to the Y axis
Δ a : X軸に平行かつ Y軸に直交する平面における、座標 Xより点状光源を見込む 角度  Δ a: Angle at which the point light source is viewed from the coordinate X on a plane parallel to the X axis and perpendicular to the Y axis
L (X) : X軸に沿った 1周期における、面光源素子正面方向の輝度の最小値  L (X): Minimum luminance value in front of the surface light source element in one period along the X axis
L (X) : X軸に沿った 1周期における、面光源素子正面方向の輝度の最大値  L (X): Maximum luminance in the front direction of the surface light source element in one period along the X axis
L (Y) : Y軸に沿った 1周期における、面光源素子正面方向の輝度の最小値  L (Y): Minimum luminance value in front of the surface light source element in one period along the Y axis
L (Y) : Y軸に沿った 1周期における、面光源素子正面方向の輝度の最大値 z :頂点を原点とした場合の、畝状凸部 1または畝状凸部 2の断面形状の、高さ方向 の座標  L (Y): Maximum value of luminance in the front direction of the surface light source element in one cycle along the Y axis z: The cross-sectional shape of the hook-shaped convex part 1 or the hook-shaped convex part 2 when the vertex is the origin, Height coordinate
P:頂部を原点とした場合の、畝状凸部 1または畝状凸部 2の断面形状の、 X軸方向 または Y軸方向の位置座標  P: Position coordinate in the X-axis direction or Y-axis direction of the cross-sectional shape of hook-shaped convex part 1 or hook-shaped convex part 2 when the top is the origin
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明を実施するための最良の形態の一例を図 1に示す。 X軸と、 X軸に直交する Y軸とに平行な X— Y平面の法線の一方を正面方向として、少なくとも、 X— Y平面に 平行な出射面と、複数の点状光源と、 2枚のシート状の光制御部材を備え、前記複 数の点状光源が前記 X— Y平面に平行な仮想平面内に X軸および Y軸方向に周期 的に配置され、前記 X— Y平面に平行な発光面を備え、前記光制御部材が、前記 X Y平面に平行に、かつ、前記複数の点状光源の正面方向に配置され、前記出射 面力 前記光制御部材の正面方向側に配置されている面光源素子であって、前記 2 枚の光制御部材の出射面側に、 X軸方向に直交しかつ Y軸方向に平行な複数の畝 状凸部 1からなる第 1の光制御部を備え、かつ、前記 2枚の光制御部材の出射面側 に、 X軸方向に平行かつ Y軸方向に直交する複数の畝状凸部 2からなる第 2の光制 御部を備えて!/、る面光源素子である。 An example of the best mode for carrying out the present invention is shown in FIG. One of the normals of the X—Y plane parallel to the X axis and the Y axis perpendicular to the X axis is the front direction, and at least an emission surface parallel to the X—Y plane, a plurality of point light sources, 2 A plurality of sheet-like light control members, wherein the plurality of point light sources are periodically arranged in the X-axis and Y-axis directions in a virtual plane parallel to the XY plane, and are arranged on the XY plane. A light emitting surface that is parallel to the light control member, the light control member is disposed in parallel to the XY plane and in front of the plurality of point light sources, and is disposed on the front direction side of the light control member. A first light control unit comprising a plurality of convex protrusions 1 orthogonal to the X-axis direction and parallel to the Y-axis direction on the emission surface side of the two light control members Second light consisting of a plurality of hook-shaped convex portions 2 parallel to the X-axis direction and orthogonal to the Y-axis direction on the emission surface side of the two light control members System It is a surface light source element with a control unit!
[0070] 本発明の点状光源としては特に制限はないが、 LED等を用いることができる。 LED の形態としては、白色 LEDや、赤、青、緑等各色の LED等があるが、白色のみを用 いる、また各色 LEDを周期的に配列することなどが上げられる。また、出射面で要求 する色に応じて、 1周期内に複数の同一色光源を配置しても良い。 [0070] The point light source of the present invention is not particularly limited, but an LED or the like can be used. There are white LED, red, blue, green, and other color LEDs, but only white is used, and each color LED is arranged periodically. In addition, a plurality of light sources having the same color may be arranged within one period depending on the color required on the emission surface.
点状光源の X軸方向および Y軸方向の周期 D 、Dは短いほうが、輝度均一性と色  The shorter the period D and D of the point light source in the X-axis and Y-axis directions, the brightness uniformity and color
1 2  1 2
の均一性とがよぐ高い輝度が得られる為、望ましい。しかし、周期が短すぎると点状 光源の個数が増加し、消費電力の増加、また発熱の問題が発生する。 X軸方向およ び Y軸方向の周期は 7mmから 70mmが望ましい。より望ましくは 15mmから 50mm である。  This is desirable because it provides a high brightness that is not too uniform. However, if the period is too short, the number of point light sources increases, resulting in an increase in power consumption and a problem of heat generation. The period in the X-axis direction and Y-axis direction is preferably 7mm to 70mm. More desirably, it is 15 mm to 50 mm.
[0071] 図 15は点状光源を配列した場合の、 X軸方向に平行かつ Y軸方向に直交する断 面における正面方向への出射光の強度と点状光源の位置を表す図である。ここで示 したように、複数の点状光源 1の配列を備える面光源素子にあっては、正面方向(図 中では上)への出射光の強度は、それぞれの点状光源 1の直上部分と、直上部分と 隣り合う点状光源と点状光源の中間位置部分 (点状光源から斜め上に向かう部分)と では大きく異なる。これは本発明の面光源素子では光制御部材の主に光が入射する 面への入射光の強度が、それぞれの点状光源 1の直上部分と、斜め上の部分とでは 大きく異なることを示している。また、この強度の違いは、 X軸方向に直交しかつ Y軸 方向に平行な断面においても同様である。  FIG. 15 is a diagram showing the intensity of emitted light in the front direction and the position of the point light source in a cross section parallel to the X axis direction and perpendicular to the Y axis direction when the point light sources are arranged. As shown here, in a surface light source element having an array of a plurality of point light sources 1, the intensity of emitted light in the front direction (up in the figure) is the portion directly above each point light source 1. And the point light source adjacent to the directly above portion and the intermediate position portion of the point light source (portion going diagonally upward from the point light source) are greatly different. This indicates that in the surface light source element of the present invention, the intensity of the incident light on the surface on which the light is mainly incident on the light control member is greatly different between the portion directly above the respective point light sources 1 and the obliquely upper portion. ing. The difference in strength is the same in the cross section orthogonal to the X-axis direction and parallel to the Y-axis direction.
[0072] 図 2は図 1の面光源素子の、点状光源の位置と、 X軸方向に平行かつ Y軸方向に 直交する断面における正面方向の出射光の強度との関係を示す図である。 X軸方向 に直交しかつ Y軸方向に平行な断面においても同様の強度分布を示し、このように 本発明の面光源素子では正面方向への出射光の強度分布がほぼ一定となる為、正 面方向の輝度の均一性と、色の均一性が得られる。  FIG. 2 is a diagram showing the relationship between the position of the point light source and the intensity of the emitted light in the front direction in a cross section parallel to the X axis direction and orthogonal to the Y axis direction of the surface light source element of FIG. . A similar intensity distribution is shown even in a cross section orthogonal to the X-axis direction and parallel to the Y-axis direction. Thus, in the surface light source element of the present invention, the intensity distribution of the emitted light in the front direction is almost constant. Uniformity of luminance in the surface direction and uniformity of color can be obtained.
[0073] 図 18は、 X軸方向に平行かつ Y軸方向に直交する断面における、種類の異なる 3 個の点状光源を Y軸方向に 3周期分配置したときの、点状光源の位置と、それぞれ の正面方向への出射光の強度分布を示した図である。それぞれの点状光源の種類 について、 3周期分の総和がほぼ一定となっていれば、高い正面方向の輝度と色の 均一性が得られる。本発明の面光源素子は光制御部材 2によって図 2に示すように、 正面方向への出射光の強度分布がほぼ一定となる為、正面方向の高い輝度の均一 性と、色の均一性とが得られる。 [0073] FIG. 18 shows the position of the point light source when three different types of point light sources in the cross section parallel to the X axis direction and perpendicular to the Y axis direction are arranged for three periods in the Y axis direction. FIG. 6 is a diagram showing the intensity distribution of outgoing light in the respective frontal directions. For each type of point light source, if the sum of the three periods is almost constant, the brightness and color in the high front direction Uniformity is obtained. As shown in FIG. 2, the surface light source element of the present invention has a substantially uniform intensity distribution of the emitted light in the front direction, as shown in FIG. Is obtained.
[0074] 図 8に、 D = 30mmとして X軸方向に点状光源を配列した、本発明の面光源素子 の任意の 1個の点状光源からの光による、正面方向への出射光の、 X軸方向に平行 かつ Y軸方向に直交する断面における分布の一例を示す。 1個の点状光源からの光 による正面方向への出射光は、 X 〜X の範囲となる。図 8に示すような緩やかに [0074] In FIG. 8, the light emitted in the front direction by light from any one point light source of the surface light source element of the present invention in which point light sources are arranged in the X-axis direction with D = 30 mm, An example of the distribution in a cross section parallel to the X axis direction and perpendicular to the Y axis direction is shown. The light emitted in the front direction from the light from one point light source is in the range of X to X. Gently as shown in Figure 8.
mm max  mm max
減衰を示す場合は、例えば f (X)の値が最大値の 1/100となるときの Xの値で代用 することも可能である。 X 、x を定める為の f (X)の値は、それぞれ同一であるこ  In the case of showing attenuation, for example, the value of X when the value of f (X) is 1/100 of the maximum value can be substituted. The values of f (X) for determining X and x must be the same.
mm max 1  mm max 1
とが望ましぐ最大値の 1/20以下であれば問題なぐ 1/100であることが更に望ま しい。図 8では X =— 3D、X = 3Dであり、 f (X ) =f (X )で ( )の最大  If it is less than 1/20 of the desired maximum value, it is more desirable that it is 1/100 of the problem. In Fig. 8, X = — 3D, X = 3D, and f (X) = f (X) and the maximum of ()
mm 1 max 1 1 mm 1 max 1  mm 1 max 1 1 mm 1 max 1
値の 1/100以下である。このような分布から求められる面光源素子の正面方向への 出射光の強度は、厳密には隣接する 3周期分の点状光源の総和のみでは決定され ない為、 g (X)は一定であるよりも、 X=0である中心付近の g (X)が周辺と比較して 少し高いことが望ましい。また同様に、 Y=0である中心付近の g (Y)が周辺と比較し  1/100 or less of the value. Since the intensity of the emitted light in the front direction of the surface light source element obtained from such a distribution is not strictly determined only by the sum of the point light sources for three adjacent periods, g (X) is constant. It is desirable that g (X) near the center where X = 0 is slightly higher than the surroundings. Similarly, g (Y) near the center where Y = 0 is compared with the surroundings.
2  2
て少し高いことが望ましい。  It is desirable to be a little expensive.
[0075] また、 g (X)の最小値である g (X) と、最大値である g (X) の比、 g (X) /g  [0075] The ratio of g (X), which is the minimum value of g (X), to g (X), which is the maximum value, g (X) / g
1 1 mm 1 max 1 mm 1 1 mm 1 max 1 mm
(X) が 0. 8以上であるときに X軸方向に沿って輝度が均一化され、かつ、 g (Y)When (X) is greater than or equal to 0.8, the brightness is uniform along the X-axis direction, and g (Y)
1 max 2 の最小値である g (Y) と、最大値である g (Y) の比、 g (Y) /g (Y) が The ratio of g (Y) which is the minimum value of 1 max 2 and g (Y) which is the maximum value is g (Y) / g (Y)
2 min 2 max 2 mm 2 max ο· 2 min 2 max 2 mm 2 max ο
8以上であるときに Y軸方向に沿って輝度が均一化される為に、輝度の均一性の高 い面光源素子が得られる。 g (X) /g (X) および g (Y) /g (Y) の値は 0 Since the luminance is uniform along the Y-axis direction when it is 8 or more, a surface light source element with high luminance uniformity can be obtained. g (X) / g (X) and g (Y) / g (Y) values are 0
1 mm 1 max 2 mm 2 max  1 mm 1 max 2 mm 2 max
. 85以上がより好適であり、この場合に一層輝度の均一性と色の均一性とが高い面 光源素子を得ることができ、透過型の液晶パネル等を前記面光源素子の出射面の 正面方向に配置し画像表示装置とした場合に高い画面品位を得ることができる。更 により高い画面品位を得るためには、 0. 90以上が望ましい。  More than 85 is more suitable, and in this case, a surface light source element with higher luminance uniformity and color uniformity can be obtained, and a transmissive liquid crystal panel or the like can be provided in front of the exit surface of the surface light source element. When the image display device is arranged in the direction, a high screen quality can be obtained. In order to obtain higher screen quality, 0.90 or higher is desirable.
[0076] 図 9に、図 8の場合と同じく D = 30mmとして X軸方向に点状光源を配列し、別の 光制御部材を用いた本発明の面光源素子における、正面方向への出射光の、 X軸 方向に直交しかつ Y軸方向に平行な断面における分布の一例を示す。この例では X =— D X =Dである。畝状凸部 1の形状によっては、ある入射角度以上の光 mm 1 max 1 In FIG. 9, as in the case of FIG. 8, D = 30 mm and point light sources are arranged in the X-axis direction, and the emitted light in the front direction in the surface light source element of the present invention using another light control member Shows an example of the distribution in a cross section perpendicular to the X-axis direction and parallel to the Y-axis direction. X in this example = — DX = D. Depending on the shape of the ridge-shaped convex part 1, light above a certain incident angle mm 1 max 1
は正面方向に進まないので、このように点状光源からある程度離れた部分で急激に 出射光強度が低下する分布となる。このような分布では正面方向への出射光の強度 分布は隣接する 3周期分の総和で決定されるので、 g (X)が一定であることが最も望 ましい。このとき、 X X の範囲で光は正面方向へ出射し、その分布は f (X)とな  Since the light does not travel in the front direction, the distribution of the intensity of the emitted light suddenly decreases at a portion away from the point light source to some extent. In such a distribution, the intensity distribution of the emitted light in the front direction is determined by the sum of the three adjacent periods, so it is most desirable that g (X) be constant. At this time, light is emitted in the front direction in the range of X X, and its distribution is f (X).
mm max  mm max
る。図 8に示す X =— 3D X = 3Dである場合と、図 9に示す X =—D X The Figure 8 shows X = — 3D X = 3D and Figure 9 shows X = —D X
x 1 mm 1 ma 畝状凸部の幅は限られているので、斜面の傾き角
Figure imgf000031_0001
x 1 mm 1 ma The slope of the ramp is limited because the width of the ridge-shaped projection is limited.
Figure imgf000031_0001
度 Φ の配分により正面方向への出射光の分布が決定される。畝状凸部 1の X軸方 li  The distribution of the outgoing light in the front direction is determined by the distribution of the degree Φ. X-axis direction of hook-shaped convex part 1
向の断面形状が、図 8に示すような遠方より斜め方向から入射するエネルギーの弱 い光を正面に向けるような斜面角度を持つより、図 9に示すような遠方からの光を正 面に向ける角度 Φ は持たずに、 D <X< Dの範囲に入射した光のみを正面に  The cross-sectional shape in the direction has a slope angle that directs light with low energy incident from an oblique direction to the front as shown in Fig. 8. Only the light incident in the range of D <X <D without the angle Φ
li 1 1  li 1 1
向ける角度 Φ で構成される畝状凸部 1が正面輝度は向上する。このように X x  Frontal brightness is improved by the hook-shaped convex part 1 formed by the angle Φ to be directed. X x like this
li mm m の幅を小さくすることは、より強い光を効果的に正面に偏向させることによって正面 ax  Reducing the width of li mm m effectively reduces the front ax by deflecting stronger light to the front effectively.
方向への出射光の割合を増加させる効果を持つ。  This has the effect of increasing the ratio of outgoing light in the direction.
[0077] 一方、 X X の幅を大きくすることは、遠くの点状光源からの光を正面に向ける  [0077] On the other hand, increasing the width of X X directs light from a distant point light source to the front.
min max  min max
ことによって正面方向への出射光の割合を増加させる効果を持つ。従って正面輝度 を高める為には X X の幅が適切な範囲にあることが望ましい。望ましい X  This has the effect of increasing the ratio of outgoing light in the front direction. Therefore, in order to increase the front brightness, it is desirable that the width of XX is in an appropriate range. Desirable X
mm max max mm max max
X の幅は f (X)によって異なる力 例えば出射光の強度が最大値の 1/2以上とな mm 1 The width of X varies depending on f (X) .For example, the intensity of the emitted light is more than half of the maximum value mm 1
る Xの範囲を目安とすることができる。この範囲が大きい場合には、 X x の幅を  The X range can be used as a guide. If this range is large, the width of X x
max mm 比較的大きく取ることが望ましぐ小さい場合小さめに取ることが望ましい。このように X x の幅を好適に定めることによって正面輝度を高めることが可能である。  max mm If it is desirable to take a relatively large value, it is desirable to take a smaller value. Thus, the front brightness can be increased by suitably determining the width of X x.
max mm  max mm
[0078] 図 11は、図 9で f (X)について示した面光源素子の g (X)を示す。既に示したよう に、 g (X)が点状光源の 1周期分である— D /2≤X≤D /2の範囲で一定であれ ば、正面方向に高い輝度と色の均一性が得られ、また、 X X が最適である場合  FIG. 11 shows g (X) of the surface light source element shown for f (X) in FIG. As already shown, g (X) is one period of the point light source—if it is constant in the range D / 2≤X≤D / 2, high brightness and color uniformity are obtained in the front direction. And XX is optimal
mm max  mm max
には、点状光源近傍のエネルギーの高い光を正面に偏向させる為、より正面方向の 輝度は高くなる。  Since the high energy light near the point light source is deflected to the front, the brightness in the front direction becomes higher.
[0079] また畝状凸部 2においても同様に、 g (X)が点状光源の 1周期分である D /2≤  [0079] Similarly, in the saddle-shaped convex part 2, g / 2 (X) is one period of the point light source D / 2≤
2 2  twenty two
Y≤D /2の範囲で一定であれば、正面方向に高い輝度と色の均一性が得られ、ま  If it is constant within the range of Y≤D / 2, high brightness and color uniformity can be obtained in the front direction.
2 た Y 、Υ が最適である場合には、点状光源近傍のエネルギーの高い光を正面に mm max 2 When Y and Υ are optimal, light with high energy near the point light source is
偏向させる為、より正面方向の輝度は高くすることが可能である。 Υ 〜Υ の適切  Since it is deflected, the luminance in the front direction can be increased. Υ ~ の appropriate
mm max な範囲は畝状凸部 1と同じぐ例えば出射光の強度が最大値の 1/2以上となる Yの 範囲を目安とすることができ、この範囲に応じて Υ 〜Υ の範囲を取ることが望まし  The mm max range is the same as that of the ridge-shaped convex part 1, for example, the range of Y where the intensity of the emitted light is 1/2 or more of the maximum value, and the range of Υ to を can be set according to this range. Want to take
min max  min max
い。  Yes.
[0080] 畝状凸部 1において、領域 N〜Nの配列順序が必ずしも X軸に沿っている必要 はない。しかし、この場合、各領域の配列の順序により畝状凸部 1の X軸方向の断面 形状である凸部には変曲点が存在し、角度 α で入射した光を正面に偏向させる角  [0080] In the bowl-shaped convex portion 1, the arrangement order of the regions N to N does not necessarily have to be along the X axis. However, in this case, there is an inflection point in the convex portion having a cross-sectional shape in the X-axis direction of the bowl-shaped convex portion 1 depending on the arrangement order of the regions, and the angle that deflects the light incident at an angle α to the front.
li  li
度 Φ の畝状凸部 1に到達する前に、別の角度の斜面に到達し、屈折或いは反射に li  Before reaching the saddle-shaped convex part 1 of degree Φ, it reaches a slope of another angle, and refraction or reflection is li
よって光線方向が変化し、角度 Φ の斜面に到達しなかったり、望ましくない角度で  Therefore, the direction of the light beam changes and does not reach the slope of angle Φ, or at an undesirable angle.
li  li
角度 Φ の斜面に到達したりすることによって、光の出射方向の制御が困難となり、性 li  Reaching the slope with an angle Φ makes it difficult to control the direction of light emission.
能が不十分となる可能性がある。 - N〜Nの領域力 軸の位置座標の順に並んで いる場合、通常は凸部の形状は変曲点を持たず、凸部全体が略凸状を成す。このよ うな凸部の場合、通常、光が所望の凸部上の領域に到達して反射や屈折によって光 線の方向が変化することがなぐ光線方向の制御が容易となり、有利である。  Performance may be insufficient. -When the area force axes of N to N are arranged in the order of the position coordinates, the shape of the convex part usually has no inflection point, and the entire convex part is substantially convex. Such a convex portion is advantageous in that it is easy to control the direction of the light beam, in which light does not normally reach the region on the desired convex portion and the direction of the light beam changes due to reflection or refraction.
[0081] 畝状凸部 2においても、領域 N〜Nの配列順序が必ずしも X軸に沿っている必 [0081] Also in the hook-shaped convex portion 2, the arrangement order of the regions N to N is not necessarily along the X axis.
2 2  twenty two
要はない。しかし、この場合、各領域の配列の順序により畝状凸部 2の X軸方向の断 面形状である凸部には変曲点が存在し、角度 α で入射した光を正面に偏向させる 角度 Φ の畝状凸部 2に到達する前に、別の角度の斜面に到達し、屈折或いは反射  There is no need. However, in this case, there is an inflection point in the convex part that is a cross-sectional shape in the X-axis direction of the bowl-shaped convex part 2 due to the arrangement order of the regions, and the angle that deflects the incident light at an angle α to the front angle. Before reaching the ridge-shaped convex part 2 of Φ, it reaches a slope of another angle and is refracted or reflected
2j  2j
によって光線方向が変化し、角度 Φ の斜面に到達しなかったり、望ましくない角度  Changes the beam direction and does not reach the slope of angle Φ, or is an undesirable angle
2j  2j
で角度 Φ の斜面に到達したりすることによって、光の出射方向の制御が困難となり、  And reaching the slope of angle Φ, it becomes difficult to control the light emission direction,
2j  2j
性能が不十分となる可能性がある。 - N〜Nの領域力 軸の位置座標の順に並ん  Performance may be insufficient. -N to N area force lines are arranged in order of position coordinates
2 2  twenty two
でいる場合、通常は凸部の形状は変曲点を持たず、凸部全体が略凸状を成す。この ような凸部の場合、通常、光が所望の凸部上の領域に到達して反射や屈折によって 光線の方向が変化することがなぐ光線方向の制御が容易となり、有利である。  In general, the shape of the convex portion does not have an inflection point, and the entire convex portion is substantially convex. In the case of such a convex part, it is easy to control the direction of the light beam, which is usually advantageous because the light reaches the region on the desired convex part and the direction of the light beam does not change due to reflection or refraction.
[0082] また畝状凸部 1の各領域の X軸方向の幅 a 力 (X +T . tan /3 ) - οοβ Φ - cos /3 [0082] Also, the width a force (X + T. Tan / 3)-οοβ Φ-cos / 3 in the X-axis direction of each region of the bowl-shaped convex part 1
li 1 i 1 li li  li 1 i 1 li li
/cos a /αο8 ( Φ - β )に比例することが本発明の面光源素子の特徴であるが li li li li It is a feature of the surface light source element of the present invention that it is proportional to / cos a / αο 8 (Φ-β).
、凸部の底部から表面までの高さの影響によって、好ましい幅が少しずれる場合があ る力 大きな影響はない。畝状凸部 2についても、凸部の底部から表面の高さの影響 は大きくない。 The preferred width may deviate slightly due to the height from the bottom to the surface of the protrusion. There is no significant impact. The effect of the height of the surface from the bottom of the convex part is not significant for the hook-shaped convex part 2 as well.
[0083] 光制御部材の厚さ Tおよび Tは薄いほうが望ましいが、直下方式である本発明の  [0083] Although it is desirable that the thicknesses T and T of the light control member are thin,
1 2  1 2
面光源素子では光源と光制御部材の間に空間が設けられているために、最も光源 側に配置される光制御部材は撓みや変形のないの強度を有する厚さであることが望 ましい。最も光源側に配置される光制御部材は、面光源素子の大きさによって異なる ヽ厚さは 0. 5mmから 5mmが望ましい。これより薄いと光制御部材の撓みや変形を 生じ、点状光源と光制御部材が接触し、外観品位の低下が生じる。またこれより厚い と面光源素子が厚くなり、また重量も増加する。更に望ましくは、 1mmから 4mmであ り、より好ましくは 1. 5mmから 2. 5mmである。この範囲において強度が保たれ、更 に主面面積あたりの使用基材量の増加による製造コストの上昇を抑えることが可能で ある。  In the surface light source element, since a space is provided between the light source and the light control member, it is desirable that the light control member arranged closest to the light source has a thickness that does not bend or deform. . The light control member arranged on the most light source side varies depending on the size of the surface light source element, and the thickness is preferably 0.5 mm to 5 mm. If it is thinner than this, the light control member will bend or deform, the point light source will come into contact with the light control member, and the appearance quality will deteriorate. If it is thicker, the surface light source element becomes thicker and the weight increases. More desirably, the thickness is 1 mm to 4 mm, and more preferably 1.5 mm to 2.5 mm. In this range, the strength is maintained, and it is possible to suppress an increase in manufacturing cost due to an increase in the amount of base material used per main surface area.
[0084] また、畝状凸部 1および畝状凸部 2を分割する領域の個数を決定する Nおよび N  [0084] Also, N and N determine the number of regions into which the ridge-shaped protrusion 1 and the ridge-shaped protrusion 2 are divided.
1 2 は、 2以上であることが望ましい。 Nおよび/または Nが大きい場合、畝状凸部 1の  1 2 is preferably 2 or more. When N and / or N is large,
1 2  1 2
X軸方向の断面形状および/または畝状凸部 2の Y軸方向の断面形状における凸 部は、多くの傾きからなる複雑な形状となる。傾きの数が多いと、正面方向への出射 光の制御を精度良く行うことができ、正面方向への出射光の強度分布の均一性が高 い。精度の面からは Nおよび Nは大きい方がよいが、大きすぎると形状が複雑にな  The convex portion in the cross-sectional shape in the X-axis direction and / or the cross-sectional shape in the Y-axis direction of the bowl-shaped convex portion 2 has a complicated shape having many inclinations. When the number of inclinations is large, the outgoing light in the front direction can be accurately controlled, and the intensity distribution of the outgoing light in the front direction is highly uniform. From the aspect of accuracy, N and N are better, but if it is too large, the shape becomes complicated.
1 2  1 2
り作製が困難となる。作製の容易さの面からは Nおよび N力 以下であることが  Making it difficult. In terms of ease of fabrication, N and N force must be less than
1 2  1 2
望ましく、 10以下であることが更に望ましい。  Desirably, 10 or less is more desirable.
[0085] 畝状凸部 1の X軸方向の断面形状および/または畝状凸部 2の Y軸方向の断面形 状にぉレ、て、凸部を形成する領域の少なくとも 1組の隣接する領域の形状を曲線で 近似しても良い。更に 3つ以上の隣接する領域の形状を曲線で近似しても良ぐ凸部 全体での形状を曲線で近似しても良い。多くの領域の形状を曲線で近似すると、正 面方向への出射光の強度分布や出射光の角度分布を滑らかにする、賦形しゃすい 、破損しにくい等の、隣接する領域の形状を曲線で近似することの効果がより高くなり 、望ましい。曲線への近似法としては、特に制限はなぐ通常良く知られている最小 二乗法、スプライン補間法、ラグランジュ補間法などを用いることが可能である。近似 に用いる点は近似する領域から少なくとも 1点を選び、通常近似する領域の数より多 くとる。例えば、連続する複数の領域の両端と各領域の接点を選択することが可能で ある。また、各領域の中点を近似に用いることもできる。 [0085] At least one pair of regions forming the protrusions is adjacent to the cross-sectional shape in the X-axis direction of the hook-shaped convex portion 1 and / or the cross-sectional shape in the Y-axis direction of the hook-shaped convex portion 2. The shape of the area may be approximated by a curve. Furthermore, the shape of three or more adjacent regions may be approximated by a curve. The shape of the entire convex portion may be approximated by a curve. Approximating the shape of many areas with a curve, curves the shape of adjacent areas such as smoothing the intensity distribution of outgoing light in the front direction and the angular distribution of outgoing light, shaping shading, and preventing damage. The effect of approximating with is more desirable and desirable. As an approximation method to a curve, there are no particular limitations, and the well-known least square method, spline interpolation method, Lagrange interpolation method and the like can be used. Approximation Select at least one point from the approximated area and use it more than the number of approximated areas. For example, it is possible to select both ends of a plurality of continuous regions and contact points of each region. Further, the midpoint of each region can also be used for approximation.
[0086] X軸方向に直交しかつ Y軸方向に平行な断面内において、正面方向に対して角度  [0086] In a cross section perpendicular to the X-axis direction and parallel to the Y-axis direction, an angle with respect to the front direction
30度以内に出射する光の割合が 50%以上であり、かつ、 X軸方向に平行かつ Y軸 方向に直交する断面内において、正面方向に対して角度 30度以内に出射する光の 割合が 50%以上である場合には、正面方向の輝度の高い面光源素子が得られる。 高!/、正面輝度が要求されるパソコンモニタ等の表示装置にお!/、ては、この数値は 60 %以上であればより望ましぐ 80%以上であれば更に望ましい。一方、照明看板等 の広視野角が要求される表示装置については、正面方向への出射の割合が高すぎ ると、正面方向のみに光が向き、視野角が狭く成り望ましくない。従って、照明看板等 に用いる場合には、この数値は 60%〜80%が望ましい。  The ratio of the light emitted within 30 degrees is 50% or more, and the ratio of the light emitted within 30 degrees with respect to the front direction in the cross section parallel to the X axis direction and perpendicular to the Y axis direction is When it is 50% or more, a surface light source element having high luminance in the front direction can be obtained. For display devices such as personal computer monitors that require high front brightness, this value is more desirable if it is 60% or more, and more desirably 80% or more. On the other hand, for a display device that requires a wide viewing angle, such as a lighting signboard, if the ratio of emission in the front direction is too high, light is directed only in the front direction and the viewing angle becomes narrow. Therefore, when used for lighting signs, etc., this value is preferably 60% to 80%.
[0087] 点状光源の発光面と第 1の光制御部との距離 H、および点状光源の発光面と第 2 の光制御部との距離 Hは長いほうが、輝度均一性と色の均一性とが高い為に、望ま  [0087] The longer the distance H between the light emitting surface of the point light source and the first light control unit and the distance H between the light emitting surface of the point light source and the second light control unit, the longer the luminance uniformity and color uniformity. Desirable because of high nature
2  2
しい。しかし、長すぎると、装置全体の厚みが大きくなる為に好ましくない。点状光源 と光制御部材の距離は 5mmから 50mmが好ましい。より望ましくは 10mmから 30m mである。また、点状光源の周期との比、 D /H 、 D /Hは 0. 5〜3であることが望  That's right. However, if the length is too long, the thickness of the entire apparatus increases, which is not preferable. The distance between the point light source and the light control member is preferably 5 to 50 mm. More desirably, it is 10 mm to 30 mm. In addition, the ratio of the period of the point light source, D / H, D / H is expected to be 0.5-3.
1 1 2 2  1 1 2 2
ましぐ;!〜 2であることが更に望ましい。  More preferably, it is! ~ 2.
[0088] 畝状凸部の幅 P、畝状凸部の幅 Pは、 10 111カ、ら500 111カ望ましぃ。 500〃 m [0088] Desirably, the width P of the ridge-shaped protrusions and the width P of the ridge-shaped protrusions are 10 111 and 500 111, respectively. 500〃 m
1 2  1 2
より大きいと出射面からパターンそのものが視認され、外観品位が低下する。また、 1 Ο πιより小さいと回折現象により着色し外観品位の低下を招く。より好ましくは、 20 〃111カ、ら400〃111でぁり、更に望ましくは 40〃 m力、ら 300〃 mである。この範囲では ノ ターンそのものの視認が観察され難ぐまた、作製が容易となり生産性が向上する 。更に、本発明の面光源素子の出射面側に透過型表示装置を設ける画像表示装置 では、 P 、 Pは、透過型表示装置の画素ピッチの 1/100から 1/1. 5の範囲にある If it is larger, the pattern itself is visually recognized from the emission surface, and the appearance quality is lowered. On the other hand, if it is smaller than 1Οπι, it will be colored by the diffraction phenomenon and the appearance quality will be lowered. More preferably, it is 20 mm 111, 400 mm 111, and more preferably 40 mm force, 300 mm. Within this range, the visibility of the pattern itself is difficult to observe, and the production becomes easier and the productivity is improved. Further, in the image display device in which the transmission type display device is provided on the exit surface side of the surface light source element of the present invention, P and P are in the range of 1/100 to 1 / 1.5 of the pixel pitch of the transmission type display device.
1 2 1 2
ことが望まし!/、。これより大き!/、と画素ピッチとの干渉縞が発生し外観品位が低下する I want it! / Larger than this! /, And interference fringes between the pixel pitch occur, and the appearance quality deteriorates.
Yes
[0089] 本発明の光制御部材の製造方法としては、特に制限はないが、押出成型、射出成 型、紫外線硬化樹脂を使用した 2P (Photo Polymerization)成型が挙げられる。しか し、凸部を設ける場合には、凸部の大きさ、凸部の形状、量産性等を考慮して適した 成型方法を選択すればょレ、。主面が大きレ、場合には押出成型が適して!/、る。 [0089] The method for producing the light control member of the present invention is not particularly limited, but may be extrusion molding or injection molding. 2P (Photo Polymerization) molding using mold and UV curable resin. However, when providing convex parts, it is necessary to select an appropriate molding method in consideration of the size of the convex parts, the shape of the convex parts, mass productivity, and the like. If the main surface is large, extrusion molding is suitable!
[0090] また、通常畝状凸部 1および畝状凸部 2はそれぞれ連続して配列する力 S、畝状凸 部 1および/または畝状凸部 2の間に平坦部を設けても良い。平坦部を設けることに より、金型の凸部が変形しにくくなり、凸部の成形上有利である。また、点状光源の直 上での光が正面方向に出射される為、点状光源の直上での輝度のみを向上させる 場合に有効である。逆に、平坦部を設けない場合、第 1の光制御部および/または 第 2の光制御部の出射面全体で光線方向を制御することが可能である為に、正面方 向の出射光の強度分布の均一化が容易である。  [0090] In addition, the normal hook-shaped convex part 1 and the hook-shaped convex part 2 may each be provided with a flat portion between the force S and the hook-shaped convex part 1 and / or the hook-shaped convex part 2 that are continuously arranged. . By providing the flat portion, the convex portion of the mold becomes difficult to be deformed, which is advantageous in forming the convex portion. In addition, since the light directly above the point light source is emitted in the front direction, it is effective in improving only the luminance directly above the point light source. On the other hand, when the flat portion is not provided, the light beam direction can be controlled on the entire emission surface of the first light control unit and / or the second light control unit. It is easy to make the intensity distribution uniform.
[0091] また、第 1の光制御部における畝状凸部 1の X軸方向の断面形状は同じ形状である こと、および、第 2の光制御部における畝状凸部 2の Y軸方向の断面形状は同じ形状 であることが望ましい。光制御部材の光学的性質が一様となる為、厳密な位置合わ せが不要であり、ディスプレイサイズや点状光源の個数や配置の変更にも即座に対 応可能であり、生産性よく面光源素子を製造することができる。  [0091] Further, the cross-sectional shape in the X-axis direction of the hook-shaped convex part 1 in the first light control unit is the same shape, and the Y-axis direction of the hook-shaped convex part 2 in the second light control unit The cross-sectional shape is desirably the same shape. Because the optical properties of the light control member are uniform, exact alignment is not necessary, and it is possible to immediately respond to changes in the display size and the number and arrangement of point light sources, which improves productivity. A light source element can be manufactured.
[0092] 光制御部材の材料としては、通常光学透明材料であれば用いることが可能である。  As the material for the light control member, any optically transparent material can be used.
例えば、メタアクリル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、シクロォレフイン 樹脂、メタアクリル スチレン共重合樹脂、シクロォレフイン アルケン共重合樹脂等 が挙げられる。  Examples thereof include methacrylic resin, polystyrene resin, polycarbonate resin, cycloolefin resin, methacryl styrene copolymer resin, and cycloolefin alkene copolymer resin.
[0093] より多くの光を利用する為に、光源の背面に反射板等を用いてもよい。反射板を用 いることによって、光源から背面方向に出射した光、光制御部材によって背面方向に 出射した光を正面方向に向け、より多くの光を利用することができ、高い輝度を得るこ とが可能である。  In order to use more light, a reflector or the like may be used on the back surface of the light source. By using the reflector, the light emitted from the light source in the back direction and the light emitted from the light control member in the back direction can be directed to the front direction, so that more light can be used and high luminance can be obtained. Is possible.
[0094] 反射板は、光源から背面側に出射した光を正面方向に反射させる機能を持つ。反 射率は 95%以上のものが光の利用効率が高く望ましい。反射板の材質は、アルミ、銀 、ステンレスなどの金属箔ゃ、白色塗装、発泡 PET樹脂などが挙げられる。光の利用 効率を高める為には材質の反射率が高いものが望ましい。これには銀、発泡 PETな ど力 S挙げられる。また、輝度均一性を高める為には材質は拡散反射をするものが望 ましい。これには発泡 PETなどが挙げられる。 The reflecting plate has a function of reflecting light emitted from the light source to the back side in the front direction. A reflectance of 95% or higher is desirable because of high light utilization efficiency. Examples of the material of the reflector include metal foils such as aluminum, silver, and stainless steel, white coating, and foamed PET resin. In order to increase the light utilization efficiency, it is desirable that the material has a high reflectance. This includes power S such as silver and foamed PET. In order to improve brightness uniformity, the material should be diffusely reflected. Good. This includes foamed PET.
[0095] また、より輝度均一性と色の均一性を高める為に、本発明の光制御部材に、光拡散 手段を設けても良い。光拡散手段としては、光制御部材の主面にシボゃエンボスな どのランダムな凹凸を設ける方法、少量の光を拡散させる微粒子を構造物の内部に 設ける方法、拡散シートを光制御部材の入射面側および/または出射面側に設ける 方法、またはこれらの組み合わせた方法が挙げられる。  [0095] Further, in order to further improve luminance uniformity and color uniformity, the light control member of the present invention may be provided with a light diffusion means. As the light diffusing means, a method of providing random irregularities such as embossing on the main surface of the light control member, a method of providing fine particles that diffuse a small amount of light inside the structure, and a diffusion sheet as the incident surface of the light control member And a method of providing them on the side and / or the exit surface side, or a combination thereof.
[0096] ランダムな凹凸は微粒子を分散させた溶液をスプレー等での主面への塗布、微粒 子を分散させた樹脂の押出しによる成形、凹凸の形成された金型からの転写により 実現可能である。凹凸の程度は算術平均粗さ Raが 3 m以下であることが望ましい。 これより大きくなると、拡散効果が大きくなりすぎる為に正面輝度が低下する。  [0096] Random irregularities can be realized by applying a solution in which fine particles are dispersed to the main surface by spraying, molding by extruding a resin in which fine particles are dispersed, and transferring from a mold having irregularities. is there. As for the degree of unevenness, the arithmetic average roughness Ra is desirably 3 m or less. If it is larger than this, the front luminance is lowered because the diffusion effect becomes too large.
[0097] 光を拡散させる微粒子を構造物の内部に設ける場合には、微粒子の濃度は通常 の拡散板と比べて非常に低く抑えることが可能であり、微粒子の基材ゃ粒径は通常 の光拡散材として微粒子拡散板等に用いられているものであれば好適に用いること ができる。好適な微粒子の濃度は材料によって異なる力 例えば、メタアクリル酸メチ ルースチレン共重合体に、シロキサン系重合体粒子を 0. 4重量%分散させることな どが挙げられる。  [0097] When fine particles for diffusing light are provided inside the structure, the concentration of the fine particles can be kept very low compared to a normal diffusion plate. Any light diffusing material used in a fine particle diffusion plate or the like can be suitably used. A suitable concentration of fine particles varies depending on the material. For example, 0.4% by weight of siloxane polymer particles is dispersed in a methyl styrene / methacrylate copolymer.
[0098] 光制御部材が最も光源側に配置されて!/、な!/、場合では、光制御部材自身の強度、 生産性等を考慮して光制御部材の厚さを設定すればよ!/、。通常面光源素子として用 いる際には最も光源側に配置される光制御部材と共に端面付近を固定される為に薄 いシートであっても橈みは生じにくい。従って、最も光源側にない光制御部材は最も 光源側にある場合よりも薄くすることが可能である。最も光源側にない光制御部材は 、装置全体の薄型化の為には、薄いほうが好ましい。面光源素子の大きさによって異 なる力 厚さは 0. 05mmから lmmが望ましい。これより薄くなると、光制御部材自体 の強度が低下し、変形等により品位が低下する。また、これより厚くなると面光源素子 が厚くなり、また重量も増加する。更に光制御部材の熱などによる変形を防ぎ、かつ 押出成形等による高い生産性を得るためには、 0. lmmから 0. 7mmが望ましぐ更 には 0· 2mm力、ら 0. 5mmが望ましい。  [0098] In the case where the light control member is arranged on the most light source side! /, N! /, The thickness of the light control member may be set in consideration of the strength, productivity, etc. of the light control member itself! /. When used as a normal surface light source element, the vicinity of the end surface is fixed together with the light control member arranged closest to the light source, so that even a thin sheet is unlikely to stagnate. Therefore, the light control member that is not closest to the light source can be made thinner than the light control member that is closest to the light source. The light control member that is not closest to the light source is preferably thinner in order to reduce the thickness of the entire apparatus. The force thickness varies depending on the size of the surface light source element. The thickness is preferably 0.05 mm to lmm. If it is thinner than this, the strength of the light control member itself is lowered, and the quality is lowered due to deformation or the like. If it is thicker than this, the surface light source element becomes thick and the weight also increases. Furthermore, in order to prevent deformation of the light control member due to heat, etc., and to obtain high productivity by extrusion molding, etc., 0.1 mm to 0.7 mm is more desirable, and 0.2 mm force, 0.5 mm is more desirable. desirable.
[0099] また、光制御部材の光源側に重ねて、樹脂やガラス等からなる透明な支持基板を 設けても良い。前記支持基板を配することによって、光制御部材を例えば 0. 1mmか ら lmmと薄くしても光制御部材を支持することが可能である。光制御部材を薄くする ことによって、押出成形等による成形が更に容易になり、生産性が向上する。また、 面光源素子が大型化するに従い次第に困難になる光制御部材の支持を容易にする 。前記支持基板の厚さに特に制限は無いが、通常 lmmから 5mmであり、軽量化と 強度の兼ね合いから通常 2mmから 4mmの範囲であることが更に望ましい。前記支 持基板は、内部に光を拡散させる微粒子を分散したり、表面に型押ししたり微粒子を 塗布することによって拡散性を高めても良い。内部に微粒子を分散させる場合や表 面に型押しする場合には、基材は熱可塑性樹脂であることが生産上好ましぐ好適な 材料は光制御部材と同等である。また支持基板は光制御部材と接合されていても良 ぐ例えば透明な接着剤等で接合することができ、これによつて面光源素子の組み立 て工程が簡素化し、更には光制御部材のずれや皺の発生が防止できる。 [0099] Further, a transparent support substrate made of resin, glass or the like is stacked on the light source side of the light control member. It may be provided. By disposing the support substrate, it is possible to support the light control member even if the light control member is made as thin as 0.1 mm to 1 mm, for example. By making the light control member thinner, molding by extrusion molding or the like becomes easier and productivity is improved. In addition, it becomes easier to support a light control member that becomes increasingly difficult as the surface light source element becomes larger. The thickness of the support substrate is not particularly limited, but is usually from 1 mm to 5 mm, and more preferably from 2 mm to 4 mm from the viewpoint of weight reduction and strength. The supporting substrate may be improved in diffusibility by dispersing fine particles for diffusing light therein, embossing on the surface, or applying fine particles. In the case of dispersing fine particles inside or embossing on the surface, a suitable material that is preferable in production that the base material is a thermoplastic resin is equivalent to the light control member. In addition, the support substrate may be bonded to the light control member, for example, it can be bonded with a transparent adhesive or the like, thereby simplifying the process of assembling the surface light source elements and further shifting the light control member. And generation of wrinkles can be prevented.
[0100] 支持基板を用いる場合などで、支持基板と光制御部材と接合されている場合など で、支持基板が屈折率の異なる数種類の板となっても問題ない。この場合、ここまで 示してきた考え方に沿って、式(8)に相当する式を導くことで a を求めることが可能で [0100] There is no problem even if the support substrate is made of several kinds of plates having different refractive indexes, for example, when the support substrate is used and when the support substrate and the light control member are joined. In this case, a can be obtained by deriving an equation corresponding to equation (8), in accordance with the idea presented so far.
li  li
ある。し力もながら屈折率のばらつきが 90%以内である場合、屈折率 n 、n は各板  is there. However, when the refractive index variation is within 90%, the refractive indices n and n are
12 22 厚の比に従って近似することで式(8)を導くことができる。例えば支持基板の部分が 、屈折率が n '、 n ' '、 n' ' 'で板厚がそれぞれ T '、 Τ ' '、 Τ ' ' 'の 3枚の板によって なる場合、 η は(η' Τ ' + η " ·Τ " + η " ' ·Τ " ' ) /Τの値で近似できる。  Equation (8) can be derived by approximating according to the thickness ratio. For example, if the part of the support substrate consists of three plates with refractive indices n ', n' ', n' '' and plate thicknesses T ', Τ' ', Τ' '', η is (η 'Τ' + η "· Τ" + η "'· Τ"') / Τ
12 1 1 1 1  12 1 1 1 1
[0101] また、屈折率の異なる光を拡散させる微粒子が分散されている場合、本発明では 微粒子の使用量が少量である為、この屈折率の影響は考慮しなくても良い。  [0101] When fine particles that diffuse light having different refractive indexes are dispersed, the amount of the fine particles used is small in the present invention, and thus the influence of the refractive index need not be considered.
[0102] また、より輝度の均一性と色の均一性を得る為に拡散シート、高い正面方向の輝度 を得るためにプリズムシートや偏向分離フィルム等を用いてもよい。  [0102] Further, a diffusion sheet may be used in order to obtain more uniform brightness and color uniformity, and a prism sheet, a deflection separation film, or the like may be used in order to obtain high frontal brightness.
[0103] 本発明の光制御部材は、複数の点状光源以外の光源に対しても使用できる。例え ば単一の点状光源に対して用いることによって、より広範な範囲において、均一で高 い輝度を得ることが可能である。また、本発明の光制御部材が備える光制御部は、 X Υ平面に平行な仮想平面内に X軸方向に平行かつ Υ軸に沿って配置された複数 の線状光源、または、 Υ軸方向に平行かつ X軸に沿って配置された複数の線状光源 からの光線方向を制御することが可能であり、高い輝度均一性が実現できる。これら 線状光源として、蛍光灯等や、 LED等の点状光源を狭い間隔で直線状に配列して 構成した線状光源も用いることができる。 [0103] The light control member of the present invention can also be used for light sources other than a plurality of point light sources. For example, uniform and high brightness can be obtained in a wider range by using a single point light source. In addition, the light control unit included in the light control member of the present invention includes a plurality of linear light sources arranged in a virtual plane parallel to the X plane and parallel to the X axis direction and along the vertical axis, or the axial direction Linear light sources arranged along the X axis parallel to the X axis It is possible to control the direction of light rays from the light source, and high luminance uniformity can be realized. As these linear light sources, it is also possible to use a linear light source configured by linearly arranging fluorescent light sources or point light sources such as LEDs at narrow intervals.
[0104] また、本発明の画像表示装置としては、面光源素子上に透過型の表示装置を設け ることにより実現され、表示装置としては透過型の液晶パネル等が上げられる。これ により、表示面の輝度が高ぐ色再現性が良ぐ輝度均一性と色の均一性とに優れる 画像表示装置を得ることができる。 [0104] Further, the image display device of the present invention is realized by providing a transmissive display device on a surface light source element, and a transmissive liquid crystal panel or the like is raised as the display device. As a result, it is possible to obtain an image display device that has high luminance uniformity and color uniformity with high luminance on the display surface and good color reproducibility.
実施例  Example
[0105] 以下、本発明の実施例について説明するが、本発明はこれらに限定されるもので はない。  [0105] Examples of the present invention will be described below, but the present invention is not limited thereto.
本実施例の面光源素子の構成は、図 1の略図で示す通りである。  The configuration of the surface light source element of this example is as shown in the schematic diagram of FIG.
[0106] 本発明の複数の点状光源を得る為に、図 4に示す通り、赤、青、緑のチップ型の LE Dを実施例;!〜 3では D = 10mm D = 25mm、実施例 4 6では D = 10mm D In order to obtain a plurality of point light sources of the present invention, as shown in FIG. 4, red, blue, and green chip-type LEDs are used as examples;! To 3, D = 10 mm D = 25 mm, examples 4 = 6 D = 10mm D
1 2 1 2 1 2 1 2
= 33mm、実施例 7 9では D = 20mm D = 25mmで周期的に配列する。ここで = 33 mm, in Example 79, D = 20 mm, D = 25 mm, and arranged periodically. here
1 2  1 2
いう周期とは、 Dは X軸方向に赤色 LEDが配置されている位置から赤色 LEDが配 置されている位置までの距離であり、 Dは Y軸方向に赤色 LEDが配置されている位  The period is the distance from the position where the red LED is placed in the X-axis direction to the position where the red LED is placed, and D is the place where the red LED is placed in the Y-axis direction.
2  2
置から赤色 LEDが配置されている位置までの距離である。  This is the distance from the position to where the red LED is located.
[0107] 本発明を実施するにあたり、光制御部材は光源の発光面から正面方向に 20mmの 位置に、正面方向に向かって、第 1の光制御部材、第 2の光制御部材の順に配置す る。光源の発光面から第 1の光制御部の入射面までの距離 Hは 20mmであり、光源 の発光面から第 2の光制御部の入射面までの距離 Hは 23mmである。また、光源の [0107] In carrying out the present invention, the light control member is disposed in the order of the first light control member and the second light control member in the front direction at a position 20 mm from the light emitting surface of the light source in the front direction. The The distance H from the light emitting surface of the light source to the incident surface of the first light control unit is 20 mm, and the distance H from the light emitting surface of the light source to the incident surface of the second light control unit is 23 mm. Also, the light source
2  2
背面側には発泡 PET樹脂からなる反射率 95%の反射板を設置する。  A 95% reflective plate made of foamed PET resin is installed on the back side.
[0108] 本発明の光制御部材として、第 1の光制御部を有する光制御部材 1 1 6を、 第 2の光制御部を有する光制御部材 2— ;! 2— 7を、それぞれ以下の方法で作製す As the light control member of the present invention, a light control member 1 1 6 having a first light control unit, a light control member 2— ;! 2-7 having a second light control unit, and Produced by the method
[0109] 本発明の光制御部材における畝状凸部 1を得る為に、切削加工によって幅 60 in の溝状凹部を平行に連続して作製した金型から、紫外線硬化樹脂(屈折率 1. 55) によって厚さ 2mmのポリスチレン樹脂(屈折率 1. 60)基板に畝状凸部を形成し、第 1の光制御部を作製する。また、同様に畝状凸部 2を得る為に、切削加工によって幅 60 11 mの溝状凹部を平行に連続して作製した金型から、紫外線硬化樹脂(屈折率 1 . 55)によって厚さ 0. 5mmのスチレン ブタジエンゴム状共重合体約 10重量0 /0を 分散させたメタクリル酸メチルースチレン共重合体樹脂(屈折率 1. 54)基板に畝状 凸部を形成し、第 2の光制御部を作製する。 [0109] In order to obtain the ridge-shaped convex portion 1 in the light control member of the present invention, an ultraviolet curable resin (refractive index 1.) was obtained from a mold in which groove-shaped concave portions having a width of 60 in were continuously formed by cutting. 55) A 2 mm thick polystyrene resin (refractive index 1.60) substrate is formed with a ridge-shaped convex part. 1 light control unit is produced. Similarly, in order to obtain the ridge-shaped convex part 2, from a mold in which groove-shaped concave parts having a width of 60 11 m are continuously formed in parallel by cutting, the thickness is increased with an ultraviolet curable resin (refractive index 1.55). the ridge-shaped protrusions formed 0. 5 mm of styrene-butadiene rubbery copolymer of about 10 weight 0/0 methyl methacrylate is dispersed-styrene copolymer resin (refractive index 1.54) substrate, the second A light control unit is produced.
[0110] 畝状凸部 1における金型の溝状凹部の形状は、 N = 50とし、表 1に示した、 f (X) 、X 、X によって定められる傾き Φ と X軸方向の幅 a を持つ各領域 N〜Nを min max li li 1 1 [0110] The shape of the groove-shaped concave portion of the mold in the bowl-shaped convex portion 1 is N = 50, and the inclination Φ determined by f (X), X, and X shown in Table 1 and the width a in the X-axis direction a Each region with N ~ N min max li li 1 1
、同じく表 1に示す領域の順序に従って並べて作製する。同様に、畝状凸部 2におけ る金型の溝状凹部の形状は、 N = 50とし、表 1に示した f (Y)、 Y 、 Υ によって Similarly, they are prepared in the order of the regions shown in Table 1. Similarly, the shape of the groove-shaped concave portion of the mold in the ridge-shaped convex portion 2 is N = 50, and f (Y), Y, Υ shown in Table 1
mm max  mm max
定められる傾き Φ と Υ軸方向の幅 a を持つ各領域 N〜Nを、表 1に示す領域の  Each region N to N with a defined slope Φ and width a in the radial direction is defined as the region shown in Table 1.
2j 2j 2 2  2j 2j 2 2
順序に従って並べて作製する。  Prepare according to the order.
[0111] 実施例 2〜9における光制御部材 1 2〜1 6及び光制御部材 2— 2〜2— 7につ いては、畝状凸部 1および畝状凸部 2において、各凸部の全領域を最小二乗法で曲 線に近似している。近似に用いる点としては、凸部の両端部の 2点および各領域の 全ての接点(2Nまたは 2N点)を用いる。  [0111] Regarding the light control members 1 2 to 16 and the light control members 2 2 to 2-7 in Examples 2 to 9, in the hook-shaped protrusions 1 and the hook-shaped protrusions 2, The entire region is approximated to a curve by the least square method. The points used for approximation are the two points on both ends of the convex part and all the contacts (2N or 2N points) in each region.
1 2  1 2
[0112] 実施した構成について、正面方向への出射光の強度分布は、正面輝度の分布を 測定することによって評価する。正面輝度は、輝度計 (株式会社トプコン製 BM— 7) を用いて測定角範囲 0. 2度で、測定距離を一定にして、点状光源が配列している X 軸方向に lmmずつ移動しながら 1周期分測定する。また、 Y軸方向に lmmずつ移 動しながら 1周期分測定する。 X軸方向における輝度の均一性を、 X軸方向に測定し た 1周期での輝度の最小値である L (X) と最大値である L (X) の比 L (X) /  [0112] Regarding the implemented configuration, the intensity distribution of the emitted light in the front direction is evaluated by measuring the distribution of the front luminance. The front brightness is measured by using a luminance meter (Topcon Co., Ltd., BM-7) with a measurement angle range of 0.2 degrees, moving the measurement distance constant, and moving by lmm along the X axis where the point light sources are arranged. Measure for one cycle. Also, measure for one cycle while moving by lmm in the Y-axis direction. Luminance uniformity in the X-axis direction is the ratio of L (X), which is the minimum value of luminance in one cycle measured in the X-axis direction, to L (X), which is the maximum value.
1 mm 1 max 丄 mm 1 mm 1 max 丄 mm
L (X) として算出する。また同様に、 Y軸方向における輝度の均一性を、 Y軸方向Calculated as L (X). Similarly, the brightness uniformity in the Y-axis direction
1 max 1 max
に測定した 1周期での輝度の最小値である L (Y) と最大値である L (Y) の比 L  The ratio of L (Y), which is the minimum value of luminance in one cycle, to L (Y), which is the maximum value,
2 min 2 max 2 2 min 2 max 2
(Y) /L (Y) として算出する。 L (X) /L (X) の値が 1に近い程、 X軸方 mm 2 max 1 mm 1 max Calculate as (Y) / L (Y). The closer the value of L (X) / L (X) is to 1, the more the X axis is mm 2 max 1 mm 1 max
向の輝度の均一性が高ぐ L (Y) /L (Y) の値が 1に近い程、 Υ軸方向の輝度  Uniform brightness uniformity The closer the L (Y) / L (Y) value is to 1, the more the brightness in the radial direction
2 min 2 max  2 min 2 max
の均一性が高い為にこれらの値が面光源素子の輝度均一性の指標となる。  Therefore, these values serve as indicators of the luminance uniformity of the surface light source element.
[0113] また、正面方向への出射する光の割合は、角度毎の輝度の分布を測定し、得られ た輝度をエネルギーに変換して、正面方向から 30度以内に出射したエネルギーの、 全エネルギーに対する割合を算出する。角度毎の輝度の分布は、輝度計 (株式会社 トプコン製 BM— 9)を回転台に取り付け、測定角範囲 0. 2度で、測定距離を一定に して、同一の輝度を測定することによって測定する。 [0113] The ratio of the light emitted in the front direction is determined by measuring the luminance distribution for each angle, converting the obtained luminance into energy, Calculate the percentage of total energy. The luminance distribution for each angle is obtained by measuring the same luminance with a luminance meter (BM-9 manufactured by Topcon Co., Ltd.) attached to the rotating table, with a measurement angle range of 0.2 degrees, and a constant measurement distance. taking measurement.
[0114] 次に、本実施例の面光源素子の出射面の正面方向に透過型の液晶パネルを配置 し、画面品位と、画面の明るさとを観察する。 Next, a transmissive liquid crystal panel is arranged in the front direction of the exit surface of the surface light source element of this embodiment, and the screen quality and the brightness of the screen are observed.
[0115] 実施例および比較例の構成と評価結果を図 20に示す。 [0115] The configurations and evaluation results of Examples and Comparative Examples are shown in FIG.
[0116] 実施例 1から、畝状凸部 1および畝状凸部 2を有した光制御部材を用いることによつ て、出射面において点状光源の像を低減し、正面方向への輝度の均一性と色の均 一性とが向上する。更に、光の利用効率が高ぐ正面方向へ出射する光の割合が増 加している為に、正面方向の輝度が高い。  [0116] By using the light control member having the hook-like convex part 1 and the hook-like convex part 2 from Example 1, the image of the point light source is reduced on the emission surface, and the luminance in the front direction is reduced. The uniformity of color and the uniformity of color are improved. Furthermore, since the ratio of light emitted in the front direction where the light use efficiency is high is increased, the luminance in the front direction is high.
次に、実施例 1の面光源素子の出射面の正面方向に透過型の液晶パネルを配置 して観察すると、複数の点状光源を用いることによって、色再現性が良ぐ更に輝度と 色の均一性の高い、画面品位の良!/、明る!/、画像が得られる。  Next, when a transmissive liquid crystal panel is arranged in the front direction of the exit surface of the surface light source element of Example 1, the use of a plurality of point light sources improves the color reproducibility and further improves the brightness and color. Highly uniform, good screen quality! /, Brightness! /, Images can be obtained.
[0117] 実施例 2〜9から、畝状凸部 1および/または畝状凸部 2において、各凸部の全領 域を曲線で近似することによって、滑らかな角度分布を得ることができる。また、凸部 の各領域の接合部が滑らかな形状となるために、破損が生じに《、各領域の接合部 の破損による光の出射方向の変化や、不必要な散乱が生じにくい為に、更に輝度と 色の均一性が高ぐ正面輝度が高い。  [0117] From Examples 2 to 9, in the hook-like convex portion 1 and / or the hook-like convex portion 2, a smooth angular distribution can be obtained by approximating the entire area of each convex portion with a curve. In addition, since the joints in each area of the convex part have a smooth shape, breakage is caused << because the change in the light emission direction due to the breakage of the joint part in each area and unnecessary scattering are difficult to occur. In addition, brightness and color uniformity are high, and front brightness is high.
[0118] 比較例 1として、通常の微粒子含有の拡散板を使用する場合の評価を実施した。  [0118] As Comparative Example 1, an evaluation was performed in the case of using a normal fine particle-containing diffusion plate.
拡散板は、光を拡散させる微粒子としてシクロへキサン系重合粒子 1. 9重量%を分 散させたメタクリル酸メチルースチレン共重合体樹脂を押出成形することによって作 製した。前記微粒子含有の拡散板の正面方向に拡散シートを配置した場合で評価 を実施した。この場合、光源像が十分に低減されていない為に、輝度の均一性が低 い。更に光の利用効率が低い為に、高い正面輝度が得られていない。また、この面 光源素子の出射面の正面方向に透過型の液晶パネルを配置して観察すると、光源 像が顕著に観察され、画面品位が悪い。また、正面方向へ向かう光が少ない為に、 画面が暗い。  The diffusion plate was produced by extruding a methyl methacrylate-styrene copolymer resin in which 1.9% by weight of cyclohexane-based polymer particles were dispersed as fine particles for diffusing light. Evaluation was carried out when a diffusion sheet was arranged in the front direction of the diffusion plate containing fine particles. In this case, the luminance uniformity is low because the light source image is not sufficiently reduced. Further, since the light utilization efficiency is low, high front luminance is not obtained. In addition, when a transmissive liquid crystal panel is placed in the front direction of the emission surface of the surface light source element and observed, the light source image is remarkably observed and the screen quality is poor. In addition, the screen is dark because there is little light going to the front.
[0119] 比較例 2として、畝状凸部 1および畝状凸部 2として、頂角が 90度の畝状のプリズム を光制御部材の出射面側に配置した場合の評価を実施した。面光源素子の出射面 を正面方向から観察すると、光源の直上部分では輝度の低下が大きぐ輝度の均一 性が悪レ、。更に異なる色の光源に対して輝度が均一化されて!/、な!/、ために色の均一 性が悪い。また、この面光源素子の出射面の正面方向に透過型の液晶パネルを配 置して観察すると、光源像が低減されていない為に、画面品位が悪い。 [0119] As Comparative Example 2, hook-shaped convex part 1 and hook-shaped convex part 2 are hook-shaped prisms having an apex angle of 90 degrees. Was evaluated on the light exit side of the light control member. When the emission surface of the surface light source element is observed from the front, the luminance is greatly reduced in the portion directly above the light source, and the luminance uniformity is poor. In addition, the brightness is uniform for different color light sources! Further, when a transmissive liquid crystal panel is placed in front of the exit surface of the surface light source element and observed, the image quality is poor because the light source image is not reduced.
[0120] 図 12、図 13に、比較例 2として挙げた、頂角 90度のプリズムが行う光制御の原理を 示す。図 12に示すように、プリズム 10に正面方向から入射した光 7は全て全反射して 光源側に戻る為、光源の位置での光線の透過量は 0である。一方で図 13に示すよう に、斜め方向からプリズム 10に入射した光 7はプリズムによって屈折し正面方向付近 に偏向される為に、光線の透過量は多い。従って、比較例 2として挙げたプリズムで は輝度の均一性は得ることができなレ、。  [0120] Figs. 12 and 13 show the principle of light control performed by the prism having a vertex angle of 90 degrees, which is mentioned as Comparative Example 2. As shown in FIG. 12, since all the light 7 incident on the prism 10 from the front direction is totally reflected and returns to the light source side, the amount of transmitted light at the position of the light source is zero. On the other hand, as shown in FIG. 13, since the light 7 incident on the prism 10 from an oblique direction is refracted by the prism and deflected near the front direction, the amount of transmitted light is large. Therefore, the brightness uniformity cannot be obtained with the prism mentioned as Comparative Example 2.
[0121] 比較例 3〜5として、少なくとも 2枚の光制御部材として、第 1の光制御部を有する光 制御部材 1 7、 1 8と、第 2の光制御部を有する光制御部材 2— 8〜2— 10を用い た場合の評価を実施した。光制御部材 1— 7、 1 8では§ (X) /g (X) が 0. 8 [0121] As Comparative Examples 3 to 5, as at least two light control members, light control members 17 and 18 having a first light control unit and light control member 2 having a second light control unit 2- Evaluations were performed using 8-2-10. For light control members 1—7 and 1 8 § (X) / g (X) is 0.8
1 mm 1 max よりも小さいために正面方向から観察すると、 X軸方向に光源の直上では輝度が高く 、輝度の均一性が悪い。また、光制御部材 2— 8〜2— 10では、 g (Y) /g (Y)  When viewed from the front direction because it is smaller than 1 mm 1 max, the luminance is high directly above the light source in the X-axis direction, and the luminance uniformity is poor. For light control members 2-8 to 2-10, g (Y) / g (Y)
2 mm 2 max が 0. 8よりも小さいために正面方向力 観察すると、 Y軸方向に光源の直上では輝 度が高ぐ輝度の均一性が悪い。更に異なる色の光源に対してそれぞれの輝度が均 一化されておらず、各色の光源の場所ではその色が強調され、色の均一性が悪い。 また、この面光源素子の出射面の正面方向に透過型の液晶パネルを配置して観察 すると、輝度と色の均一性が低レ、為に画面品位が悪!/、。  When the frontal force is observed because 2 mm 2 max is smaller than 0.8, the luminance is high and the luminance uniformity is poor just above the light source in the Y-axis direction. Furthermore, the luminance is not uniform for the light sources of different colors, and the color is emphasized at the location of the light source of each color, and the color uniformity is poor. In addition, when a transmissive liquid crystal panel is placed in the front direction of the exit surface of this surface light source element, the luminance and color uniformity are low, so the screen quality is poor!
[0122] 比較例 6として、畝状凸部 1及び畝状凸部 2として断面形状が、式 (31)で表現され る、円弧の一部からなるレンチキュラーレンズを光制御部材の出射面側に配置したレ ンチシート 1を用いた場合の評価を実施した。この場合、光制御部材から出射する光 の方向と、光の量を制御していない為、光源像の低減が十分ではなぐ輝度と色の均 一性が低い。また、この面光源素子の出射面の正面方向に透過型の液晶パネルを 配置して観察すると、光源像が顕著に認識され、輝度と色の均一性が低い為に画面 品位が悪い。
Figure imgf000042_0001
[0122] As Comparative Example 6, a lenticular lens made up of a part of an arc whose cross-sectional shape is expressed by the formula (31) as the ridge-shaped convex portion 1 and the ridge-shaped convex portion 2 is disposed on the light exit surface side of the light control member. An evaluation was conducted when the wrench sheet 1 was used. In this case, since the direction of the light emitted from the light control member and the amount of light are not controlled, the luminance and color uniformity are not sufficient to reduce the light source image sufficiently. Further, when a transmissive liquid crystal panel is placed in front of the exit surface of the surface light source element and observed, the light source image is recognized remarkably, and the screen quality is poor due to low luminance and color uniformity.
Figure imgf000042_0001
z :頂部を原点とした場合の、畝状凸部 1または畝状凸部 2の断面形状の 高さ方向の座標  z: Coordinates in the height direction of the cross-sectional shape of hook-shaped convex part 1 or hook-shaped convex part 2 when the top is the origin
P:頂部を原点とした場合の、畝状凸部 1または畝状凸部 2の断面形状の 、 X軸方向または Y軸方向の位置座標  P: Position coordinate in the X-axis direction or Y-axis direction of the cross-sectional shape of bowl-shaped convex part 1 or bowl-shaped convex part 2 when the top is the origin
比較例 7として、畝状凸部 1及び畝状凸部 2として断面形状が、式 (32)で表現され る、放物線の一部からなるレンチキュラーレンズを光制御部材の出射面側に配置した レンズシート 2を用いた場合の評価を実施した。この場合、光制御部材から出射する 光の方向と、光の量を制御していない為、光源像の低減が十分ではなぐ輝度と色の 均一性が低い。また、この面光源素子の出射面の正面方向に透過型の液晶パネル を配置して観察すると、光源像が顕著に認識され、輝度と色の均一性が低い為に画 面品位が悪い。 As Comparative Example 7, a lens in which a lenticular lens composed of a part of a parabola, the cross-sectional shape of which is represented by the expression (32), as the bowl-shaped convex part 1 and the bowl-shaped convex part 2 is arranged on the light exit surface side of the light control member Evaluation was performed when Sheet 2 was used. In this case, since the direction of the light emitted from the light control member and the amount of light are not controlled, the luminance and color uniformity are not sufficient to reduce the light source image sufficiently. Further, when a transmissive liquid crystal panel is placed in front of the exit surface of the surface light source element and observed, the light source image is recognized remarkably, and the luminance and color uniformity are low, resulting in poor screen quality.
Figure imgf000042_0002
Figure imgf000042_0002
ζ :頂点を原点とした場合の、畝状凸部 1または畝状凸部 2の断面形状 の高さ方向の座標  ζ: Coordinates in the height direction of the cross-sectional shape of hook-like convex part 1 or hook-like convex part 2 when the vertex is the origin
Ρ:頂部を原点とした場合の、畝状凸部 1または畝状凸部 2の断面形状の、 X軸方向または Υ軸方向の位置座標  Ρ: Position coordinate in the X-axis direction or Υ-axis direction of the cross-sectional shape of the ridge-shaped convex part 1 or ridge-shaped convex part 2 when the top is the origin

Claims

請求の範囲 The scope of the claims
X軸と、 X軸に直交する Y軸とに平行な X— Y平面の法線の一方を正面方向として、 少なくとも、 X— Υ平面に平行な出射面と、複数の点状光源と、 2枚のシート状の光制 御部材を備え、  One of the normals of the X—Y plane parallel to the X axis and the Y axis perpendicular to the X axis as the front direction, at least an emission surface parallel to the X—Υ plane, a plurality of point light sources, 2 Sheet-shaped light control member,
前記複数の点状光源が、前記 X— Υ平面に平行な仮想平面内に X軸および Υ軸方 向に周期的に配置され、前記 X— Υ平面に平行な発光面を備え、 The plurality of point light sources are periodically arranged in the X-axis and Υ-axis directions in a virtual plane parallel to the X-Υ plane, and include a light emitting surface parallel to the X-Υ plane,
前記光制御部材が、前記 X— Υ平面に平行に、かつ、前記複数の点状光源の正面 方向に配置され、 The light control member is disposed parallel to the X-— plane and in front of the plurality of point light sources;
前記出射面が、前記光制御部材の正面方向側に配置されている面光源素子であつ て、 The exit surface is a surface light source element disposed on the front direction side of the light control member,
前記 2枚の光制御部材のうち、一方の出射面側に、 X軸方向に直交しかつ Υ軸方向 に平行な複数の畝状凸部 1からなる第 1の光制御部を備え、 Of the two light control members, a first light control unit including a plurality of hook-shaped protrusions 1 orthogonal to the X-axis direction and parallel to the X-axis direction is provided on one emission surface side,
かつ、 And,
前記 2枚の光制御部材のうち、別の一方の出射面側に、 X軸方向に平行かつ Υ軸方 向に直交する複数の畝状凸部 2からなる第 2の光制御部を備えており、 Of the two light control members, a second light control unit comprising a plurality of ridge-shaped convex portions 2 parallel to the X-axis direction and perpendicular to the Υ-axis direction is provided on the other emission surface side. And
前記複数の点状光源の、 X軸に平行に沿った 1周期の長さを D 、 Υ軸に平行に沿つ た 1周期の長さを Dとして、任意に選択した点状光源の中心位置を原点、 X軸方向 The center position of the point light sources arbitrarily selected, where D is the length of one cycle along the X axis and D is the length of one cycle along the Υ axis of the plurality of point light sources. The origin, X-axis direction
2  2
の位置座標を X、 Υ軸方向の位置座標を Υとして、 The position coordinate of X is X and the position coordinate in the Υ axis direction is Υ.
X軸方向に平行かつ Υ軸方向に直交する平面内にお!、て、  In a plane parallel to the X-axis direction and perpendicular to the X-axis direction!
前記選択した点状光源の前記発光面と、前記第 1の光制御部との距離を Η、前記 選択した点状光源から前記第 1の光制御部に入射した光の、 Xにおける出射面の正 面方向への出光強度を表した関数を f (X)とし、 The distance between the light emitting surface of the selected point light source and the first light control unit is set, and the light incident on the first light control unit from the selected point light source is output on the exit surface at X. Let f (X) be a function that expresses the intensity of light emitted in the front direction.
g (X) =f (X-D ) +f (X) +f (X+D )  g (X) = f (X-D) + f (X) + f (X + D)
としたとさ、 And
Di/Z Di / Z
Figure imgf000043_0001
Figure imgf000043_0001
g (X)の最小値である g (X) と、最大値である g (X) の比、 g (X) /g (X)The ratio of g (X), the minimum value of g (X), to g (X), the maximum value, g (X) / g (X)
1 1 mm 1 max 1 mm 1 max が 0. 8以上であり、 1 1 mm 1 max 1 mm 1 max is 0.8 or more,
Xの最小値 X が— 3. OD≤X 0. 5Dの範囲であり、 Xの最大値 X が 0. 5D ≤X ≤3. 0Dの範囲であり The minimum value of X is — 3. OD≤X 0.5. The maximum value of X is in the range of 0.5D ≤X ≤3.0D
max 1 max 1  max 1 max 1
(X および X は、 f (X)の値が x=oである任意に選択した点状光源付近を中心 mm max 1  (X and X are centered around an arbitrarily selected point light source with f (X) value x = o mm max 1
に減衰し、実質 0になる両端の座標)、 , The coordinates of both ends to become 0)
任意の畝状凸部 1の X軸方向の断面形状が、下記の式で表される(2N +1)個の傾 きの異なる領域 N〜Nからなり、 The cross-sectional shape in the X-axis direction of any bowl-shaped convex part 1 is composed of (2N + 1) differently inclined areas N to N represented by the following formula:
δ = (X -X )/(2N +1)  δ = (X -X) / (2N +1)
1 max mm 1  1 max mm 1
X=iX δ  X = iX δ
a =tan_1(X/H ) a = tan _1 (X / H)
li i 1  li i 1
β =sin ( (1/ n ) sin )  β = sin ((1 / n) sin)
li 1 i  li 1 i
γ =sin (1/ n ) sin )  γ = sin (1 / n) sin)
li Is i  li Is i
a ccf (X+T -tan y ) -cosO ecos β /\ ( a ) / cos( a )/ cos(0 ― β li 1 i 1 li li li 1 li li li lia ccf (X + T -tan y) -cosO e cos β / \ (a) / cos (a) / cos (0 ― β li 1 i 1 li li li 1 li li li li
) )
Φ =tan_1((n -sin/3 )/(n 'cos /3 —1)) Φ = tan _1 ((n -sin / 3) / (n 'cos / 3 —1))
li 1 li 1 li  li 1 li 1 li
(ただし、 Ni :自然数 (However, N i: Natural number
i: -N力、ら Nの整数  i: -N force, etc. Integer of N
ni:第 1の光制御部の畝状凸部 1の屈折率 n i : Refractive index of hook-shaped convex part 1 of the first light control part
n :第 1の光制御部の基材の屈折率  n: Refractive index of the base material of the first light control unit
Is  Is
a :領域 iの X軸方向の幅  a: The width of area i in the X-axis direction
li  li
Φ :領域 iの出射面に対する斜面の傾き  Φ: Slope inclination with respect to the exit surface of region i
li  li
τ :第 1の光制御部の入射面から畝状凸部 1の底部までの厚み  τ: thickness from the incident surface of the first light control unit to the bottom of the bowl-shaped convex part 1
I (α ):任意に選択した点状光源力 X軸方向に沿って α の方向へ単位 I (α): arbitrarily selected point light source unit along the X-axis in the direction of α
1 li li 1 li li
角度あたりに放射する光の強度) Intensity of light emitted per angle)
かつ、 And,
X軸方向に直交かつ Y軸方向に平行な平面内にお!、て、  In a plane perpendicular to the X-axis direction and parallel to the Y-axis direction!
前記選択した点状光源の前記発光面と、前記第 2の光制御部との距離を H、前記 The distance between the light emitting surface of the selected point light source and the second light control unit is H,
2  2
選択した点状光源から前記第 2の光制御部に入射した光の、 Y軸方向の位置座標 Y における出射面の正面方向への出光強度を表した関数を f (Y)とし、 A function that expresses the intensity of light incident on the second light control unit from the selected point light source to the front direction of the exit surface at the position coordinate Y in the Y-axis direction is represented by f (Y),
2  2
g (Y) =f (Y-D ) +f (Y) +f (Y + D )  g (Y) = f (Y-D) + f (Y) + f (Y + D)
2 2 2 2 2 2 範囲で、 2 2 2 2 2 2 In a range,
g (Y)の最小値である g (Y) と、最大値である g (Y) の比、 g (Y) /g (Y) が 0. 8以上であり、  The ratio of g (Y) that is the minimum value of g (Y) to g (Y) that is the maximum value, g (Y) / g (Y) is 0.8 or more,
Yの最小値 Y がー 3. OD ≤Y ≤-0. 5Dの範囲であり、  The minimum value of Y is Y 3. OD ≤ Y ≤-0.
Yの最大ィ直丫 が 0. 5D ≤Y ≤3. 0Dの範囲であり  The maximum direct value of Y is in the range 0.5D ≤Y ≤3.0D
(Y および Υ は、 f (Υ)の値が Υ=0である任意に選択した点状光源付近を中心 に減衰し、実質 0になる両端の座標)、  (Y and Υ are the coordinates of both ends where the value of f (Υ) is attenuated around the arbitrarily selected point light source with Υ = 0 and becomes substantially 0),
任意の畝状凸部 2の Y軸方向の断面形状が、下記の式で表される(2N +1)個の傾 きの異なる領域 N〜N力 なることを特徴とする面光源素子 c A surface light source element c in which the cross-sectional shape in the Y-axis direction of an arbitrary ridge-shaped convex part 2 is (2N + 1) differently inclined regions N to N forces represented by the following formula:
6 = (Y Υ )/(2Ν +1)  6 = (Y)) / (2 Ν +1)
γ叫 x δ  γ shout x δ
a =tan_1(Y/H ) a = tan _1 (Y / H)
β =sin ( (1/ n ) sin )  β = sin ((1 / n) sin)
γ =sin (1/ n ) sin )  γ = sin (1 / n) sin)
a ccf (Y +T -tany ) -cosO -cos β cos (a )/ cos (Φ ― β a ccf (Y + T -tany) -cosO -cos β cos (a) / cos (Φ ― β
) )
Φ =tan— ((n -sin/3 )/(n 'cos /3 1))  Φ = tan— ((n -sin / 3) / (n 'cos / 3 1))
(ただし、 N :自然数  (Where N is a natural number
j : -Nから Nの整数  j: integer from -N to N
n :第 2の光制御部の畝状凸部 2の屈折率  n: Refractive index of the ridge-shaped convex part 2 of the second light control part
n :第 2の光制御部の基材の屈折率  n: Refractive index of the base material of the second light control unit
a :領域 jの Y軸方向の幅  a: Width of area j in the Y-axis direction
Φ :領域 jの出射面に対する斜面の傾き  Φ: slope of the slope with respect to the exit surface of region j
T :第 2の光制御部の入射面から畝状凸部 2の底部までの厚み  T: Thickness from the incident surface of the second light control unit to the bottom of the bowl-shaped convex part 2
I (a ):任意に選択した点状光源から第 1の光制御部を通過し、 Y軸方向 に沿って α の方向へ単位角度あたりに放射する光の強度)  I (a): The intensity of light that passes through the first light control unit from an arbitrarily selected point light source and radiates per unit angle in the direction of α along the Y-axis direction)
[2] 請求項 1に記載の面光源素子であって、 前記畝状凸部 1の X軸方向の断面形状を表す領域 ^ Niが、 X軸の位置座標の 順に並んでおり、 [2] The surface light source element according to claim 1, Regions Ni representing the cross-sectional shape in the X-axis direction of the hook-shaped convex portion 1 are arranged in the order of the position coordinates of the X-axis,
かつ、  And,
前記畝状凸部 2の Y軸方向の断面形状を表す領域 N〜N力 Y軸の位置座標の  Region representing the cross-sectional shape in the Y-axis direction of the ridge-shaped convex part 2 N to N force Y-axis position coordinate
2 2  twenty two
順に並んで!/、ることを特徴とする面光源素子。  A surface light source element characterized by being arranged in order! /.
[3] 請求項 1または 2に記載の面光源素子であって、 [3] The surface light source element according to claim 1 or 2,
前記畝状凸部 1の X軸方向の断面形状が、該凸部を形成する(2N + 1)個の傾きの 異なる領域のうち少なくとも 1組の隣接する 2つの領域の形状を曲線で近似した形状 であり、  The cross-sectional shape in the X-axis direction of the ridge-shaped convex portion 1 approximates the shape of at least one pair of two adjacent regions among the (2N + 1) differently inclined regions forming the convex portion by a curve. Shape
かつ、  And,
前記畝状凸部 2の Y軸方向の断面形状が、該凸部を形成する(2N + 1)個の傾きの  The cross-sectional shape in the Y-axis direction of the hook-shaped convex portion 2 has (2N + 1) inclinations forming the convex portion.
2  2
異なる領域のうち少なくとも 1組の隣接する 2つの領域の形状を曲線で近似した形状 であることを特徴とする面光源素子。  A surface light source element having a shape obtained by approximating the shape of at least one pair of two adjacent regions of different regions by a curve.
[4] 請求項;!〜 3のいずれか 1項に記載の面光源素子であって、 [4] Claim: A surface light source element according to any one of! To 3,
前記第 1の光制御部における X軸方向に平行かつ Y軸方向に直交する断面内にお いて、正面方向に対して角度 30度以内に出射する光の割合が全出射光の 50%以 上であり、  In the cross section parallel to the X-axis direction and perpendicular to the Y-axis direction in the first light control unit, the proportion of light emitted within an angle of 30 degrees with respect to the front direction is 50% or more of the total emitted light. And
かつ、  And,
前記第 2の光制御部における X軸方向に直交かつ Y軸方向に平行な断面内におい て、正面方向に対して角度 30度以内に出射する光の割合が全出射光の 50%以上 であることを特徴とする面光源素子。  In the cross section perpendicular to the X-axis direction and parallel to the Y-axis direction in the second light control unit, the proportion of light emitted within an angle of 30 degrees with respect to the front direction is 50% or more of the total emitted light A surface light source element.
[5] 請求項;!〜 4のいずれか 1項に記載の面光源素子が備える、 X軸または Y軸に沿つ て光線方向を制御する光制御手段を有するシート状の光制御部材。 [5] A sheet-like light control member having light control means for controlling a light beam direction along the X-axis or the Y-axis, which is provided in the surface light source element according to any one of Claims! To 4.
[6] 請求項;!〜 4のいずれか 1項に記載の面光源素子の前記正面方向に透過型表示 装置を配置することを特徴とする画像表示装置。 [6] An image display device comprising: a transmissive display device disposed in the front direction of the surface light source element according to any one of [1] to [4].
PCT/JP2007/067490 2006-09-08 2007-09-07 Planar light source element, light control member using the same, and image display device using the same WO2008029911A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008533210A JPWO2008029911A1 (en) 2006-09-08 2007-09-07 Surface light source element, light control member used therefor, and image display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-244177 2006-09-08
JP2006244177 2006-09-08

Publications (1)

Publication Number Publication Date
WO2008029911A1 true WO2008029911A1 (en) 2008-03-13

Family

ID=39157334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067490 WO2008029911A1 (en) 2006-09-08 2007-09-07 Planar light source element, light control member using the same, and image display device using the same

Country Status (3)

Country Link
JP (1) JPWO2008029911A1 (en)
TW (1) TW200834003A (en)
WO (1) WO2008029911A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044941A (en) * 2008-08-12 2010-02-25 Sony Corp Lighting device and display
CN102818193A (en) * 2012-08-20 2012-12-12 创维液晶器件(深圳)有限公司 Direct type LED (light emitting diode) backlight module and display device of direct type LED backlight module
JP2018073668A (en) * 2016-10-31 2018-05-10 株式会社クラレ Surface light source element
US10345647B2 (en) 2015-07-30 2019-07-09 Nichia Corporation Surface light source device and transmission display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407055B (en) * 2008-10-17 2013-09-01 Hon Hai Prec Ind Co Ltd Illumination device
TWI404892B (en) * 2008-10-24 2013-08-11 Hon Hai Prec Ind Co Ltd Illumination device
TWI706209B (en) * 2019-11-12 2020-10-01 茂林光電科技股份有限公司 Light guide plate for facilitating local dimming
WO2023133687A1 (en) * 2022-01-11 2023-07-20 Hefei Raysees Ai Technology Co., Ltd. Backlight module and display device ii

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005148095A (en) * 2003-11-11 2005-06-09 Toppan Printing Co Ltd Optical sheet, and backlight unit and display using optical sheet using the same
JP3114467U (en) * 2005-07-07 2005-10-27 科橋電子股▲ふん▼有限公司 Light guide structure of direct type backlight module
JP2006018261A (en) * 2004-06-30 2006-01-19 Lg Phillips Lcd Co Ltd Backlight unit of liquid crystal display device and liquid crystal display device using same
WO2007000952A1 (en) * 2005-06-26 2007-01-04 Amiteq Co., Ltd. Position sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185357B1 (en) * 1998-09-10 2001-02-06 Honeywell International Inc. Illumination system using edge-illuminated hollow waveguide and lenticular optical structures
JP4413672B2 (en) * 2003-03-31 2010-02-10 シャープ株式会社 Surface illumination device and liquid crystal display device using the same
JP4219287B2 (en) * 2004-02-25 2009-02-04 シャープ株式会社 Light emitting device and display device using the same
KR100586968B1 (en) * 2004-05-28 2006-06-08 삼성전기주식회사 Led package and backlight assembly for lcd device comprising the same
JP2006228576A (en) * 2005-02-17 2006-08-31 Sony Corp Backlight device and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005148095A (en) * 2003-11-11 2005-06-09 Toppan Printing Co Ltd Optical sheet, and backlight unit and display using optical sheet using the same
JP2006018261A (en) * 2004-06-30 2006-01-19 Lg Phillips Lcd Co Ltd Backlight unit of liquid crystal display device and liquid crystal display device using same
WO2007000952A1 (en) * 2005-06-26 2007-01-04 Amiteq Co., Ltd. Position sensor
JP3114467U (en) * 2005-07-07 2005-10-27 科橋電子股▲ふん▼有限公司 Light guide structure of direct type backlight module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044941A (en) * 2008-08-12 2010-02-25 Sony Corp Lighting device and display
CN102818193A (en) * 2012-08-20 2012-12-12 创维液晶器件(深圳)有限公司 Direct type LED (light emitting diode) backlight module and display device of direct type LED backlight module
US10345647B2 (en) 2015-07-30 2019-07-09 Nichia Corporation Surface light source device and transmission display device
US10466537B2 (en) 2015-07-30 2019-11-05 Nichia Corporation Surface light source device and transmission display device
JP2018073668A (en) * 2016-10-31 2018-05-10 株式会社クラレ Surface light source element

Also Published As

Publication number Publication date
TW200834003A (en) 2008-08-16
JPWO2008029911A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP3642381B2 (en) Light guide plate, surface light source device, and reflective liquid crystal display device
TWI352795B (en) Light emitting device and lighting device having t
KR101448047B1 (en) Light control element, surface light source device and liquid crystal display
TWI761599B (en) Grating-coupled light guide, display system, and method employing optical concentration
JP5098413B2 (en) OPTICAL SHEET FOR DISPLAY, BACKLIGHT UNIT, AND DISPLAY DEVICE
US7534024B2 (en) Optical deflector element and light source device
WO2008029911A1 (en) Planar light source element, light control member using the same, and image display device using the same
JP4584133B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
JP4638752B2 (en) Light diffusion plate
US20080123019A1 (en) Light diffuser plate, surface emission light source apparatus and liquid crystal display
KR20140060625A (en) Light emitting device and lighting device having the same
JPWO2008047794A1 (en) LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME
JP2010044921A (en) Plane light source element and light control member used for this as well as image display using this
JP4515374B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
JP2009123397A (en) Illumination device, and image display device using it
JP2001022285A (en) Back light device
JP4522938B2 (en) Light control member provided in illumination device and image display device using the same
JP4689543B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEMBER INCLUDING THE SAME, AND IMAGE DISPLAY DEVICE USING THE SAME
JP4684838B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEASUREMENT STRUCTURE AND IMAGE DISPLAY DEVICE USING THEM
JP4815930B2 (en) Light transmissive film, backlight device, and liquid crystal display device
JP4400867B2 (en) Light deflection element and light source device
JP4522937B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM
JP6679465B2 (en) Surface light source element
JP4684791B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM
JP2007109434A (en) Lighting system, light control member used for it, and image display device using them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008533210

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806931

Country of ref document: EP

Kind code of ref document: A1