JP2018073668A - Surface light source element - Google Patents
Surface light source element Download PDFInfo
- Publication number
- JP2018073668A JP2018073668A JP2016213250A JP2016213250A JP2018073668A JP 2018073668 A JP2018073668 A JP 2018073668A JP 2016213250 A JP2016213250 A JP 2016213250A JP 2016213250 A JP2016213250 A JP 2016213250A JP 2018073668 A JP2018073668 A JP 2018073668A
- Authority
- JP
- Japan
- Prior art keywords
- axis direction
- light
- light source
- control member
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims description 11
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 claims description 8
- 230000002238 attenuated effect Effects 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 3
- 229910052727 yttrium Inorganic materials 0.000 abstract description 3
- 230000005855 radiation Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 15
- 239000000758 substrate Substances 0.000 description 11
- 230000014509 gene expression Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- RZJWLSPNMSHOHK-UHFFFAOYSA-N 4-methyl-1-phenylpenta-1,4-dien-3-one Chemical compound CC(=C)C(=O)C=CC1=CC=CC=C1 RZJWLSPNMSHOHK-UHFFFAOYSA-N 0.000 description 1
- 229910000971 Silver steel Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Liquid Crystal (AREA)
- Planar Illumination Modules (AREA)
Abstract
Description
本発明は複数の点状光源とシ−ト状の光制御部材からなる面光源素子に関するものであり、特に大型で、高い正面輝度と輝度均一性が要求される照明看板装置や液晶ディスプレイ装置などに用いられる直下方式の面光源素子に関するものである。 The present invention relates to a surface light source element composed of a plurality of point light sources and a sheet-like light control member, and is particularly large in size, such as a lighting signage device and a liquid crystal display device that require high front luminance and luminance uniformity. The present invention relates to a direct-type surface light source element used in the above.
直下方式の面光源素子に要求される性能には、高い正面輝度、輝度均一性、薄型化、低消費電力化などが挙げられる。その中でも特に輝度均一性は、光源像による画面中の明暗差の解消が挙げられ、画像表示装置、照明看板などの照射面を観察する用途では重要な性能である。
一般的な直下方式の面光源素子は、光源、反射板、拡散板、および拡散シ−トから構成される。光源としては蛍光灯などの線状光源よりも消費電力が低く水銀を使用しない発光ダイオ−ド(LED)などの点状光源を使用し、LEDを平面内に配置した面光源素子として利用する方法が提案されている(非特許文献1)。しかし点状光源を平面内に配置すると、光源像による明暗差は2次元的に生じ、更に、LEDの発光は指向性が強いため、線状光源を用いるよりも高い輝度均一性を得ることは困難となる。これを解決するために様々な提案がされている。
The performance required for the surface light source element of the direct type includes high front luminance, luminance uniformity, thinning, and low power consumption. Among them, the luminance uniformity is particularly important in the application of observing the irradiation surface of an image display device, an illumination signboard, etc., by eliminating the light / dark difference in the screen due to the light source image.
A general direct type surface light source element includes a light source, a reflection plate, a diffusion plate, and a diffusion sheet. A method of using a point light source such as a light emitting diode (LED) which consumes less power than a linear light source such as a fluorescent lamp and does not use mercury as a light source, and uses the LED as a surface light source element arranged in a plane. Has been proposed (Non-Patent Document 1). However, when the point light source is arranged in a plane, the light and dark difference due to the light source image is generated two-dimensionally. Furthermore, since the light emission of the LED is highly directional, it is possible to obtain higher luminance uniformity than using a linear light source. It becomes difficult. Various proposals have been made to solve this problem.
例えば、LEDのパッケ−ジに独自形状を持たせることで発光の指向性を低下させる方法が提案されている(特許文献1)。しかしパッケ−ジを用いると面光源素子の薄型化が阻害されるため好ましくない。 For example, a method has been proposed in which the directivity of light emission is reduced by giving a unique shape to an LED package (Patent Document 1). However, the use of a package is not preferable because the thinning of the surface light source element is hindered.
また、LED光源の発光を均一化するために導光部を設ける方法も提案されている。しかし面光源素子の重量増加や生産性が低下するため好ましくない(特許文献2)。 In addition, a method of providing a light guide unit to make the light emission of the LED light source uniform is also proposed. However, it is not preferable because the weight increase and productivity of the surface light source element are reduced (Patent Document 2).
一方、LED光源の配列に合わせて、光を拡散させる微粒子を分散させた拡散板にパタ−ンを設ける方法も提案されている(特許文献3)。しかし、LED光源との厳密な位置合わせを必要とすることから、生産性が低下するため好ましくない。 On the other hand, a method has also been proposed in which a pattern is provided on a diffusion plate in which fine particles for diffusing light are dispersed in accordance with the arrangement of LED light sources (Patent Document 3). However, since it requires precise alignment with the LED light source, it is not preferable because productivity decreases.
さらには、LED光源の配置周期と、LED光源から拡散板までの距離とから求まるマクロレンズを用いて正面輝度を均一化する方法も提案されている(特許文献4)。しかし、1種類のマイクロレンズを短い周期で規則的に面内に配置すると出射光が回折するため、高い輝度均一性を得ることは困難である。 Furthermore, a method of making the front luminance uniform using a macro lens obtained from the arrangement period of the LED light source and the distance from the LED light source to the diffusion plate has been proposed (Patent Document 4). However, if one type of microlens is regularly arranged in a plane with a short period, the emitted light is diffracted, and it is difficult to obtain high luminance uniformity.
本発明では直下方式の面光源素子であって、薄型化を阻害せず、LED光源との厳密な位置合わせの必要が無く、大型化に伴う光制御部材の光学設計の変更が無く、高く均一な輝度特性が得られるシート状の光制御部材を有する面光源素子を提供することを目的とする。 In the present invention, it is a surface light source element of a direct type, which does not hinder thinning, does not require strict alignment with an LED light source, does not change the optical design of the light control member with an increase in size, and is highly uniform. It is an object of the present invention to provide a surface light source element having a sheet-like light control member that can obtain excellent luminance characteristics.
本発明に係る第1の態様は、
X軸と、X軸に直交するY軸とに平行なX−Y平面の法線の一方をZ軸方向として、少なくとも、複数の点状光源と、1枚のシ−ト状、またはフィルム状の光制御部材と、を備え、
前記複数の点状光源は前記X−Y平面に平行な仮想平面内にX軸及びY軸方向に周期的に配置され、前記光制御部材はX−Y平面に平行に、かつ、前記複数の点状光源のZ軸方向側に配置され、前記光制御部材の主に光が出射する面に複数のレンズがランダムに配置され、前記複数のレンズは少なくとも1種類の基準レンズおよびその相似形状レンズから構成されており、
前記基準レンズは、
前記複数の点状光源の、X軸方向の1周期の長さをDX、Y軸方向の1周期の長さをDYとして、
任意に選択した点状光源の中心位置を原点、X軸方向の位置座標をX、Y軸方向の位置座標をYとした場合、
X軸とZ軸とに平行なX−Z平面に平行な仮想平面内において、
前記選択した点状光源と前記光制御部材との距離をH、前記選択した点状光源から光制御部材に入射した光の位置Xにおける出射面のZ軸方向への出射光強度を表した関数をfX(X)とし、
gX(X)=fX(X−DX)+fX(X)+fX(X+DX)としたとき、
−DX/2≦X≦DX/2の範囲で、
gX(X)の最小値であるgX(X)minと、最大値であるgX(X)maxとの比gX(X)min/gX(X)maxが0.8以上であり、
Xの最小値Xminが−3.0DX≦Xmin≦−0.5DXの範囲であり、Xの最大値Xmaxが0.5DX≦Xmax≦3.0DXの範囲であり、(XminおよびXmaxはfX(X)の値がX=0である任意に選択した点状光源付近を中心に減衰し、実質0になる両端の座標)、
前記基準レンズのX軸方向の断面形状が、下記の式で表される(2NX+1)個の傾きの異なる領域−NX〜NXからなり、
δX=(Xmax−Xmin)/(2NX+1)
Xi=i×δX
αXi=tan−1(Xi/H)
βXi=sin−1{(1/n)sinαXi}
γXi=sin−1{(1/ns)sinαXi}
aXi∝fX(X+T×tanγXi)×cosΦXi×cosβXi/{Ii(αXi)×cos(αXi)×cos(ΦXi−βXi)}
ΦXi=tan−1{(n×sinβXi)/(n×cosβXi−1)}
NX:自然数
i:−NXからNXの整数
n:光制御部材のレンズ部の屈折率
ns:光制御部材の基材の屈折率
aXi:領域iのX軸方向の幅
ΦXi:領域iの出射面に対する傾き
T:光制御部材の入射面からレンズ部の底部までの厚み
Ii(αXi):任意に選択した点状光源からX軸方向に沿ってαXiの方向へ単位角度あたりに放射する光の強度
かつ、
Y軸とZ軸とに平行なY−Z平面に平行な仮想平面内において、前記選択した点状光源から光制御部材に入射した光の位置Yにおける出射面のZ軸方向への出射光強度を表した関数をfY(Y)とし、
gY(Y)=fY(Y−DY)+fY(Y)+fY(Y+DY)としたとき、
−DY/2≦Y≦DY/2の範囲で、
gY(Y)の最小値であるgY(Y)minと、最大値であるgY(X)maxとの比gY(Y)min/gY(Y)maxが0.8以上であり、
Yの最小値Yminが−3.0DY≦Ymin≦−0.5DYの範囲であり、Yの最大値Ymaxが0.5DY≦Ymax≦3.0DYの範囲であり、(YminおよびYmaxはf2(Y)の値がY=0である任意に選択した点状光源付近を中心に減衰し、実質0になる両端の座標)、
前記基準レンズのY軸方向の断面形状が、下記の式で表される(2NY+1)個の傾きの異なる領域−NY〜NYからなることを特徴とする面光源素子である。
δY=(Ymax−Ymin)/(2NY+1)
Yj=j×δY
αYj=tan−1(Yj/H)
βYj=sin−1{(1/n)sinαYj}
γYj=sin−1{(1/ns)sinαYj}
aYj∝fY(Yj+T×tanγYj)×cosΦYj×cosβYj/{Ij(αYj)×cos(αYj)×cos(ΦYj−βYj)}
ΦYj=tan−1{(n×sinβYj)/(n×cosβYj−1)}
NY:自然数
j:−NYからNYの整数
aYj:領域jのY軸方向の幅
ΦYj:領域jの出射面に対する傾き
Ij(αYj)は任意に選択した点状光源からY軸方向に沿ってαYjの方向へ単位角度当たりに放射する光の強度
A first aspect according to the present invention includes:
One of the normal lines of the XY plane parallel to the X axis and the Y axis orthogonal to the X axis is the Z axis direction, and at least a plurality of point light sources and one sheet or film A light control member,
The plurality of point light sources are periodically arranged in the X-axis and Y-axis directions in a virtual plane parallel to the XY plane, the light control member is parallel to the XY plane, and A plurality of lenses are randomly arranged on the surface of the point light source in the Z-axis direction, and the light control member mainly emits light, and the plurality of lenses includes at least one type of reference lens and its similar shape lens. Consists of
The reference lens is
Of the plurality of point light sources, the length D X of one cycle of the X-axis direction, the length of one period of the Y-axis direction D Y,
When the center position of the arbitrarily selected point light source is the origin, the position coordinate in the X-axis direction is X, and the position coordinate in the Y-axis direction is Y,
In a virtual plane parallel to the XZ plane parallel to the X axis and the Z axis,
A function that represents the distance between the selected point light source and the light control member as H, and the intensity of the emitted light in the Z-axis direction of the exit surface at the position X of the light incident on the light control member from the selected point light source. Is fX (X),
g X (X) = f X (X−D X ) + f X (X) + f X (X + D X )
In the range of −D X / 2 ≦ X ≦ D X / 2,
In g X (X) is the minimum value of g X (X) min and the maximum value g X (X) ratio of max g X (X) min / g X (X) max is 0.8 or more Yes,
The minimum value X min of X is in the range of −3.0D X ≦ X min ≦ −0.5D X , and the maximum value X max of X is in the range of 0.5D X ≦ X max ≦ 3.0D X , (X min and X max are the coordinates of both ends where the value of f X (X) is attenuated around the arbitrarily selected point light source where X = 0 and becomes substantially 0),
The cross-sectional shape of the reference lens in the X-axis direction is composed of (2N X +1) different regions −N X to N X represented by the following formula,
δ X = (X max −X min ) / (2N X +1)
X i = i × δ X
α Xi = tan −1 (X i / H)
β Xi = sin −1 {(1 / n) sin α Xi }
γ Xi = sin −1 {(1 / n s ) sin α Xi }
a Xi αf X (X + T × tanγ Xi) × cosΦ Xi × cosβ Xi / {I i (α Xi) × cos (α Xi) × cos (Φ Xi -β Xi)}
Φ Xi = tan −1 {(n × sin β Xi ) / (n × cos β Xi −1)}
N X : natural number
i: integer from -N X to N X
n: Refractive index of the lens portion of the light control member
n s : refractive index of the base material of the light control member
a Xi : width of region i in the X-axis direction
Φ Xi : Inclination with respect to the exit surface of region i
T: Thickness from the incident surface of the light control member to the bottom of the lens unit
I i (α Xi ): intensity of light emitted per unit angle in the direction of α Xi along the X-axis direction from an arbitrarily selected point light source, and
Intensity of emitted light in the Z-axis direction of the exit surface at the position Y of light incident on the light control member from the selected point light source in a virtual plane parallel to the YZ plane parallel to the Y-axis and Z-axis Let f Y (Y) be a function that represents
g Y (Y) = f Y (Y−D Y ) + f Y (Y) + f Y (Y + D Y )
In the range of −D Y / 2 ≦ Y ≦ D Y / 2,
In g Y (Y) g Y ( Y) is the minimum value min and the ratio g Y (Y) and g Y (X) max is the maximum value min / g Y (Y) max is 0.8 or more Yes,
Minimum value Y min Y is in the range of -3.0D Y ≦ Y min ≦ -0.5D Y , maximum value Y max Y is in the range of 0.5 D Y ≦ Y max ≦ 3.0D Y, (Y min and Y max are the coordinates of both ends where the value of f 2 (Y) is attenuated around the arbitrarily selected point light source where Y = 0 and becomes substantially 0),
The surface light source element is characterized in that the cross-sectional shape of the reference lens in the Y-axis direction includes (2N Y +1) different regions −N Y to N Y expressed by the following formula.
δ Y = (Y max −Y min ) / (2N Y +1)
Y j = j × δ Y
α Yj = tan −1 (Y j / H)
β Yj = sin −1 {(1 / n) sin α Yj }
γ Yj = sin −1 {(1 / n s ) sin α Yj }
a Yj αf Y (Y j + T × tanγ Yj) × cosΦ Yj × cosβ Yj / {I j (α Yj) × cos (α Yj) × cos (Φ Yj -β Yj)}
Φ Yj = tan −1 {(n × sin β Yj ) / (n × cos β Yj −1)}
N Y : Natural number
j: integer from -N Y to N Y
a Yj : the width of the region j in the Y-axis direction
Φ Yj : slope of region j with respect to the exit surface
I j (α Yj ) is the intensity of light emitted per unit angle in the direction of αY j along the Y-axis direction from an arbitrarily selected point light source.
本発明に係る第2の態様は、前記第1の態様の面光源素子であって、
前記基準レンズのX軸方向の断面形状を表す領域−NX〜NXがX軸の位置座標順に並んでおり、
かつ、
前記基準レンズのY軸方向の断面形状を表す領域−NY〜NYがY軸の位置座標順に並んでいることを特徴とする面光源素子である。
A second aspect of the present invention is the surface light source element of the first aspect,
Regions −N X to N X representing the cross-sectional shape in the X-axis direction of the reference lens are arranged in the order of the position coordinates of the X-axis,
And,
The surface light source element is characterized in that regions -N Y to N Y representing the cross-sectional shape of the reference lens in the Y-axis direction are arranged in the order of the position coordinates of the Y-axis.
本発明に係る第3の態様は、前記第1又は第2の態様の面光源素子であって、
前記基準レンズのX軸方向の断面形状が(2NX+1)個の傾きの異なる領域のうち少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状であり、
かつ、
前記基準レンズのY軸方向の断面形状が(2NY+1)個の傾きの異なる領域のうち少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状であることを特徴とする面光源素子。
A third aspect according to the present invention is the surface light source element according to the first or second aspect,
The cross-sectional shape of the reference lens in the X-axis direction is a shape that approximates the shape of at least one pair of two adjacent regions out of (2N X +1) different regions with a curve,
And,
A surface light source characterized in that the cross-sectional shape of the reference lens in the Y-axis direction is a shape obtained by approximating the shape of at least one pair of two adjacent regions with a curve among (2N Y +1) different regions of inclination. element.
本発明に係る第4の態様は、前記第1〜3の態様の面光源素子であって、
前記光制御部材におけるX−Z平面内において、Z軸方向に対して角度30度以内に出射する光の割合がX−Z平面内のZ軸方向に出射する光の50%以上であり、
かつ、
前記光制御部材におけるY−Z平面内において、Z軸方向に対して角度30度以内に出射する光の割合がY−Z平面のZ軸方向に出射する光の50%以上であることを特徴とする面光源素子。
The 4th aspect which concerns on this invention is a surface light source element of the said 1st-3rd aspect, Comprising:
In the XZ plane of the light control member, the ratio of the light emitted within an angle of 30 degrees with respect to the Z-axis direction is 50% or more of the light emitted in the Z-axis direction in the XZ plane,
And,
In the YZ plane of the light control member, the ratio of the light emitted within an angle of 30 degrees with respect to the Z-axis direction is 50% or more of the light emitted in the Z-axis direction of the YZ plane. A surface light source element.
本発明に係る第5の態様は、前記第1〜4の態様の面光源素子であって、
前記光制御部材の主に光を出射する側に形成した複数のレンズ以外の平坦部の面積を前記光制御部材の面積で除した空隙率は1.0%以下であることを特徴とする面光源素子。
A fifth aspect according to the present invention is the surface light source element according to the first to fourth aspects,
A surface obtained by dividing an area of a flat portion other than a plurality of lenses formed mainly on a light emitting side of the light control member by an area of the light control member is 1.0% or less. Light source element.
以下に、本発明の効果について詳細に説明する。
本発明では、複数の点状光源の周期と、光源から光制御部材までの距離と、点状光源の単位角度あたりの強度と、光制御部材の基材厚みと、光制御部材の基材の屈折率と、光制御部材のレンズの屈折率とから少なくとも1種類の基準レンズの形状を求める。そして、本発明は、その基準レンズと、当該基準レンズと相似な形状を有する相似形状レンズと、をランダム配置した光制御部材を提供する。基準レンズは、光制御部材の入射面上の全ての点で、入射した光が出射する方向を同様に制御する一様な性質を持たせることで、サイズ変更に有利なだけでなく、光源との位置合わせも不要となる。また、Z軸方向への出射光の強度分布を一定にすることで輝度均一性を得ることができる。更に光制御部材の持つ輝度均一性、輝度向上効果などの複合的な機能により、他の機能性光学フィルムの利用の解消もしくは削減が可能となり、生産性や薄型化にも有利となる。加えてこれらの面光源素子の出射面側に透過型表示装置を配置することによって、高輝度でかつ輝度均一性が高い画像表示装置が得られる。
The effects of the present invention will be described in detail below.
In the present invention, the period of a plurality of point light sources, the distance from the light source to the light control member, the intensity per unit angle of the point light source, the substrate thickness of the light control member, and the substrate of the light control member The shape of at least one kind of reference lens is obtained from the refractive index and the refractive index of the lens of the light control member. And this invention provides the light control member which arrange | positioned the reference | standard lens and the similar shape lens which has a shape similar to the said reference | standard lens at random. The reference lens has a uniform property that similarly controls the direction in which the incident light is emitted at all points on the incident surface of the light control member. It is not necessary to align the position. Further, it is possible to obtain luminance uniformity by making the intensity distribution of the emitted light in the Z-axis direction constant. Furthermore, the combined functions of the light control member, such as brightness uniformity and brightness enhancement effect, make it possible to eliminate or reduce the use of other functional optical films, which is advantageous for productivity and thickness reduction. In addition, an image display device with high luminance and high luminance uniformity can be obtained by arranging a transmissive display device on the exit surface side of these surface light source elements.
本発明の提供する面光源素子は、X−Y平面に平行な出射面を持つ面光源素子であって、当該面光源素子は複数の点状光源と1枚のシート状の光制御部材とを備えており、当該光制御部材によってZ軸方向への高い輝度と輝度均一性を得ることができる。 The surface light source element provided by the present invention is a surface light source element having an emission surface parallel to the XY plane, and the surface light source element includes a plurality of point light sources and a sheet-like light control member. And high luminance and luminance uniformity in the Z-axis direction can be obtained by the light control member.
本発明の提供する面光源素子が備える光制御部材は、出射面におけるZ軸方向への出射光の強度分布をほぼ一定にすることによりZ軸方向への輝度均一性を得る。 The light control member provided in the surface light source element provided by the present invention obtains luminance uniformity in the Z-axis direction by making the intensity distribution of the emitted light in the Z-axis direction substantially constant on the emission surface.
本発明に係る第1の態様は、
複数の点状光源と光制御部材とを平行に配置することによって、当該点状光源から当該光制御部材までの距離が一様となるため、それぞれの点状光源から当該光制御部材に入射する光の強度分布が均等になる。更に点状光源の配置がX軸方向およびY軸方向に沿って周期的であることによって、全体の入射する光の強度分布は、点状光源の配列方向であるX軸方向およびY軸方向に沿って周期的な分布となるため、輝度の均一性の向上が容易である。
A first aspect according to the present invention includes:
By arranging the plurality of point light sources and the light control member in parallel, the distance from the point light source to the light control member becomes uniform, so that each point light source enters the light control member. The light intensity distribution is uniform. Furthermore, since the arrangement of the point light sources is periodic along the X-axis direction and the Y-axis direction, the entire intensity distribution of incident light is in the X-axis direction and the Y-axis direction, which are the arrangement directions of the point light sources. Therefore, it is easy to improve luminance uniformity.
当該光制御部材の主に光が入射する面には、当該複数の点状光源からの光が入射する。当該光制御部材は、当該複数の点状光源の、X軸方向に沿った1周期の長さをDX、任意に選択した点状光源の中心位置を原点、X軸方向の位置座標をX、当該光制御部材の出射面におけるXのZ軸方向への出射光の強度を表した関数をfX(X)とし、
−DX/2≦X≦DX/2の範囲で、
gX(X)の最小値であるgX(X)minとgX(X)の最大値であるgX(X)maxとの比gX(X)min/gX(X)maxが0.8以上であることを特徴とする。
Light from the plurality of point light sources is incident on the surface of the light control member on which light is mainly incident. The light control member has the length of one cycle along the X-axis direction of the plurality of point light sources as D X , the center position of the arbitrarily selected point light source as the origin, and the position coordinates in the X-axis direction as X , A function representing the intensity of the outgoing light in the Z-axis direction of X on the outgoing surface of the light control member is defined as f X (X),
In the range of −D X / 2 ≦ X ≦ D X / 2,
is the minimum value of g X (X) g X ( X) min and g X (X) is the maximum value g X (X) ratio of max g X of (X) min / g X ( X) max is It is 0.8 or more.
また、当該光制御部材は、当該複数の点状光源の、Y軸方向に沿った1周期の長さをDY、任意に選択した点状光源の中心位置を原点、Y軸方向の位置座標をY、当該光制御部材の出射面におけるYのZ軸方向への出射光の強度を表した関数をfY(Y)とし、
−DY/2≦Y≦DY/2の範囲で、
gY(Y)の最小値であるgY(Y)minとgY(Y)の最大値であるgY(X)maxとの比gY(Y)min/gY(Y)maxが0.8以上であることを特徴とする。
Further, the light control member is configured such that the length of one cycle along the Y-axis direction of the plurality of point light sources is D Y , the center position of the arbitrarily selected point light source is the origin, and the position coordinates in the Y-axis direction Is Y, and a function representing the intensity of the emitted light in the Z-axis direction of Y on the exit surface of the light control member is f Y (Y),
In the range of −D Y / 2 ≦ Y ≦ D Y / 2,
g Y (Y) is the minimum value of g Y (Y) min and g Y is the maximum value of (Y) g Y (X) max and the ratio g Y (Y) min / g Y (Y) max is It is 0.8 or more.
当該複数の点状光源に、X軸またはY軸に平行に沿った1周期とは、X軸方向またはY軸方向に繰り返し配列されている光源の配置の単位を指し、X軸方向またはY軸方向に沿っての各光源の強度、相対位置、輝度の均一性に関する全ての要素を含めて、この単位の繰り返しで点状光源の配列が再現される。ただし、X軸方向の配列とY軸方向の配列は互いに独立であっても良い。 One period along the X-axis or Y-axis of the plurality of point light sources refers to a unit of arrangement of light sources arranged repeatedly in the X-axis direction or the Y-axis direction. The X-axis direction or the Y-axis The array of point light sources is reproduced by repeating this unit, including all elements relating to the intensity, relative position, and luminance uniformity of each light source along the direction. However, the arrangement in the X-axis direction and the arrangement in the Y-axis direction may be independent from each other.
当該関数gX(X)、gY(Y)はそれぞれX軸方向、Y軸方向で隣接する点状光源の3周期分のZ軸方向への出射光の強度の和を表す関数であり、同じ種類の点状光源のみが等間隔で配置された構成では、隣接する点状光源3個についての和である。−DX/2≦X≦DX/2の範囲、−DY/2≦Y≦DY/2の範囲は原点となる任意に選択した点状光源を中心としてそれぞれX軸方向、Y軸方向の1周期を表し、点状光源の配列の1周期の範囲において高い輝度を実現することによって、面光源素子の出射面全体においても輝度均一性を得ることが可能である。 The functions g X (X) and g Y (Y) are functions representing the sum of the intensity of emitted light in the Z-axis direction for three periods of adjacent point light sources in the X-axis direction and the Y-axis direction, respectively. In a configuration in which only the same type of point light sources are arranged at equal intervals, the sum is obtained for three adjacent point light sources. The range of −D X / 2 ≦ X ≦ D X / 2 and the range of −D Y / 2 ≦ Y ≦ D Y / 2 are the X-axis direction and Y-axis, respectively, with an arbitrarily selected point light source as the origin. By representing one period of the direction and realizing high luminance in the range of one period of the array of point light sources, it is possible to obtain luminance uniformity over the entire emission surface of the surface light source element.
点状光源の光の強度は距離に反比例するため、離れた光源からの光の影響は小さい。従って、隣接する3周期の点状光源からの出射光の強度のみを考慮した関数gX(X)、gY(Y)を好適な分布とすることによって、Z軸方向の出射光の強度を制御でき、Z軸方向への輝度均一性を得ることができる。gX(X)の最小値であるgX(X)minと最大値であるgX(X)maxとの比gX(X)min/gX(X)maxを0.8以上、かつgY(Y)の最小値であるgY(Y)minと最大値であるgY(Y)maxとの比gY(Y)min/gY(Y)maxを0.8以上とすることによって、面光源素子の出射面の任意の位置についてのZ軸方向への出射光の強度分布がほぼ一定となり、輝度均一性を得ることができる。 Since the light intensity of the point light source is inversely proportional to the distance, the influence of the light from a distant light source is small. Therefore, by setting the functions g X (X) and g Y (Y) taking into consideration only the intensity of the emitted light from the adjacent point light sources having three cycles, the intensity of the emitted light in the Z-axis direction is reduced. It is possible to control and to obtain luminance uniformity in the Z-axis direction. g X is the minimum of (X) g X (X) min and the maximum value g X (X) max and the ratio g X (X) min / g X (X) max of 0.8 or more, and and g Y (Y) g Y ( Y) is the minimum value min and a maximum value g Y (Y) max ratio of g Y (Y) min / g Y (Y) max of at least 0.8 As a result, the intensity distribution of the emitted light in the Z-axis direction at any position on the emission surface of the surface light source element becomes substantially constant, and luminance uniformity can be obtained.
fX(X)とfY(Y)は中心位置を原点とした線対称である必要はなく、また互いに同一の分布である必要はない。 f X (X) and f Y (Y) do not need to be line-symmetric with respect to the origin at the center position, and do not need to have the same distribution.
さらに、Z軸方向への出射光の強度分布をほぼ均一にするための基準レンズの形状の算出方法を見出している。
即ち、本発明では、Xの最小値Xminが−3.0DX≦Xmin≦−0.5DXの範囲であり、最大値Xmaxが、0.5DX≦Xmax≦3.0DXの範囲であり、基準レンズのX軸方向の断面形状が下記の式(3)〜(9)で表される(2NX+1)個の傾きの異なる領域−NX〜NXからなり、かつYの最小値Yminが−3.0DY≦Ymin≦−0.5DYの範囲であり、最大値Ymaxが、0.5DY≦Ymax≦3.0DYの範囲であり、基準レンズのY軸方向の断面形状が、下記の式(10)〜(16)で表される(2NY+1)個の傾きの異なる領域−NY〜NYからなることを特徴とする。
Furthermore, a method for calculating the shape of the reference lens for making the intensity distribution of the emitted light in the Z-axis direction substantially uniform has been found.
That is, in the present invention, the minimum value X min of X is in the range of −3.0D X ≦ X min ≦ −0.5D X , and the maximum value X max is 0.5D X ≦ X max ≦ 3.0D X The cross-sectional shape of the reference lens in the X-axis direction is composed of (2N X +1) different regions −N X to N X represented by the following formulas (3) to (9), and minimum value Y min Y is in the range of -3.0D Y ≦ Y min ≦ -0.5D Y , maximum value Y max is in the range of 0.5 D Y ≦ Y max ≦ 3.0D Y, the reference The cross-sectional shape of the lens in the Y-axis direction is characterized by comprising (2N Y +1) different regions −N Y to N Y expressed by the following formulas (10) to (16).
i:−NXからNXの整数
n:光制御部材の凸部の屈折率
ns:光制御部材の基材の屈折率
aXi:領域iのX軸方向の幅
ΦXi:領域iの出射面に対する傾き
T:光制御部材の入射面から凸部底部までの厚み
Ii(aXi):任意に選択した点状光源からX軸方向に沿ってaXiの方向へ単位角度当たりに放射する光の強度
i: integer from -N X to N X
n: Refractive index of the convex portion of the light control member
n s : refractive index of the base material of the light control member
a Xi : width of region i in the X-axis direction
Φ Xi : Inclination with respect to the exit surface of region i
T: Thickness from the incident surface of the light control member to the bottom of the convex portion
I i (a Xi ): intensity of light emitted per unit angle in the direction of a Xi along the X-axis direction from an arbitrarily selected point light source
j:−NYからNYの整数
aYj:領域jのY軸方向の幅
ΦYj:領域jの出射面に対する傾き
Ij(αYj):任意に選択した点状光源からY軸方向に沿ってαYjの方向へ単位角度当たりに放射する光の強度
ここで、αXi、βXi、γXi、ΦXi、αYj、βYj、γYj、ΦYjなどの角度はいずれも絶対値が90°未満で、基準線に対して、右回りに成す角度を正、左回りに成す角度を負とする。
j: integer from -N Y to N Y
a Yj : the width of the region j in the Y-axis direction
Φ Yj : slope of region j with respect to the exit surface
I j (α Yj): where the intensity of light emitted optionally terms like light source that was selected unit angle per the direction of the alpha Yj along the Y-axis direction, α Xi, β Xi, γ Xi, Φ Xi, Angles such as α Yj , β Yj , γ Yj , and Φ Yj all have absolute values of less than 90 °, and the clockwise angle with respect to the reference line is positive and the counterclockwise angle is negative.
まず、図1を用いて式(8)について説明する。
XminとXmaxは、任意に選択した点状光源の位置座標を原点としたとき、実質fX(X)=0となるときの両端の座標である。Xmin〜Xmaxの間を等分に(2NX+1)分割すると、分割した各要素の幅δXは式(3)で示される。このとき、任意の要素の中心座標Xiは式(4)で示される。X=0の位置にある点状光源から座標Xiの光制御部材への入射角度αXiは、入射面の法線方向に対して式(5)で示される。
First, equation (8) will be described with reference to FIG.
X min and X max are the coordinates of both ends when f X (X) = 0 substantially when the position coordinates of the arbitrarily selected point light source are used as the origin. When X min to X max are equally divided by (2N X +1), the width δ X of each divided element is expressed by Expression (3). At this time, the center coordinate X i of an arbitrary element is expressed by Expression (4). The incident angle α Xi from the point light source at the position of X = 0 to the light control member of the coordinate X i is expressed by the equation (5) with respect to the normal direction of the incident surface.
点状光源から出射した光はX=Xiで光制御部材に入射し、法線方向に対して式(7)で示される角度γXiで屈折して光制御部材内部へ進行する。基準レンズの底部に達すると再び屈折し、式(6)で示される角度βXiで基準レンズの内部へ進行する。なお、光制御部材を構成する基材と基準レンズの屈折率が同じであっても良い。この場合、基準レンズの底部で光は屈折せず、γXi=βXiとなる。基準レンズの内部を進行する光のうち、式(9)で示される出射面に対する傾きΦXiの斜面に到達した光のみがZ軸方向に進行する。 The light emitted from the point light source enters the light control member at X = X i , is refracted at an angle γ Xi represented by Expression (7) with respect to the normal direction, and travels into the light control member. When the bottom of the reference lens is reached, the light is refracted again and proceeds to the inside of the reference lens at an angle β Xi represented by the equation (6). Note that the refractive index of the base material and the reference lens constituting the light control member may be the same. In this case, light is not refracted at the bottom of the reference lens, and γ Xi = β Xi . Of the light traveling inside the reference lens, only the light that has reached the inclined surface with the inclination Φ Xi with respect to the emission surface represented by the equation (9) travels in the Z-axis direction.
傾きΦXiの斜面が占める領域iの斜面の長さをbXiとし、領域iの斜面から基準レンズ内での光線方向に垂直な方向への射影の長さをeXiとすると、X軸方向と基準レンズの主面の法線方向に平行な断面内における領域iの斜面の角度が、基準レンズ内での光線方向と垂直な角度に対して成す角度ξXiはΦXi−βXiとなるので、
また、角度ΦXiの斜面が占める領域iの入射面と平行な面への射影の長さ、即ち領域iのX軸方向の幅をaXiとすると、
式(17)と式(18)から、
ここで基準レンズのX軸方向の幅、即ちaXiの総和をPXとすると、角度αXiで光制御部材の基材に入射して基準レンズに向かう光のうち、領域iに向かう光の割合は、eXi/(PX×cosβXi)となる。
From equation (17) and equation (18),
Here, when the width of the reference lens in the X-axis direction, that is, the sum of a Xi is P X , of the light that is incident on the base material of the light control member at the angle α Xi and is directed to the reference lens, The ratio is e Xi / (P X × cos β Xi ).
ここで図2を用いて光制御部材への入射角度と入射強度の関係について説明する。点状光源から光制御部材への入射角θを中心に微小角度Δθを考慮すると、Δθが十分小さい場合には、式(20)、式(21)、式(22)が成立する。
一方、図3に示すように、座標Xiにおける光源を見込む角度ΔαXiは、cosαXiに比例する。単位面積あたりの入射光の強度はI(θ)×cos2θに比例するため、座標Xiに入射する単位面積、単位角度あたりの光の強度はIX(αXi)×cosαXiに比例する。つまり点状光源からの光がX=0の点で基準レンズに入射する光の単位角度あたりの強度に対し、座標Xiで基準レンズに入射する光の単位角度あたりの強度の割合はIX(αXi)×cosαXiである。
従って、Z軸方向に出射する光は、式(19)より、
IX(αXi)×cosαXi×{eXi/(PX×cosβXi)}
=aXi/cosΦXi×cos(ΦXi−βXi)×IX(αXi)×cosαXi/(PX×cosβXi)
である。
On the other hand, as shown in FIG. 3, the angle Δα Xi in which the light source at the coordinate X i is viewed is proportional to cos α Xi . Since the intensity of incident light per unit area is proportional to I (θ) × cos 2 θ, the intensity of light per unit area and unit angle incident on coordinates X i is proportional to I X (α Xi ) × cos α Xi . To do. That is, the ratio of the intensity per unit angle of the light incident on the reference lens at the coordinate X i with respect to the intensity per unit angle of the light incident on the reference lens at the point where X = 0 from the point light source is I X (Α Xi ) × cos α Xi .
Therefore, the light emitted in the Z-axis direction is
I X (α Xi ) × cos α Xi × {e Xi / (P X × cos β Xi )}
= A Xi / cosΦ Xi × cos (Φ Xi -β Xi) × I X (α Xi) × cosα Xi / (P X × cosβ Xi)
It is.
座標Xiに入射した光は、光制御部材の基材の厚さがTであるとき、座標(Xi+T×tanγXi)に出射するため、そのときのZ軸方向への出射光の強度分布はfX(Xi+T×tanγXi)である。
よって、Z軸方向への出射光強度は、点状光源の発光強度とZ軸方向への出射割合とに比例するため、
従って、
Therefore, the intensity of the emitted light in the Z-axis direction is proportional to the emission intensity of the point light source and the emission ratio in the Z-axis direction.
Therefore,
ここでaXiの総和は、基準レンズの幅をPXとすることが可能であり、
式(25)においてPXは定数であるため式(26)から除くと式(8)が成立する。
基準レンズの断面形状は、式(8)の関係を満足するような幅aXiの領域iからなる形状である。既に知られている通り、比例縮小光学系はほぼ同一の指向特性を示すので、基準レンズの幅は自由に選定することができる。
In the formula (25) P X is the formula (8) is satisfied except the order constant expressions (26).
The cross-sectional shape of the reference lens is a shape composed of a region i having a width a Xi that satisfies the relationship of Expression (8). As already known, since the proportional reduction optical system exhibits almost the same directivity characteristics, the width of the reference lens can be freely selected.
次に式(9)について説明する。
図4に本発明の面光源素子に用いる光制御部材で光をZ軸方向に向ける原理を示す。点状光源から、屈折率nsの光制御部材に角度αXiで入射する光は、光制御部材の入射面で屈折し、光制御部材の内部を通過し、出射面側のレンズで屈折して出射面側に出射する。このとき出射光がZ軸方向に出射するのは、レンズの傾きが望ましい角度ΦXiである場合である。本発明では配置に基づくαXiの分布と入射光の強度を考慮し、角度ΦXiの割合を調節することでZ軸方向への出射光の強度分布を調節できる。
Next, equation (9) will be described.
FIG. 4 shows the principle of directing light in the Z-axis direction by the light control member used in the surface light source element of the present invention. From the point light source, light incident at the light control member at an angle alpha Xi refractive index n s is refracted at the incident surface of the light control member, passes through the interior of the light control member is refracted at the exit surface-side lens And exit to the exit surface side. At this time, the emitted light is emitted in the Z-axis direction when the inclination of the lens is a desirable angle Φ Xi . In the present invention, the intensity distribution of outgoing light in the Z-axis direction can be adjusted by adjusting the ratio of the angle Φ Xi in consideration of the distribution of α Xi based on the arrangement and the intensity of incident light.
光制御部材から出射した光をZ軸方向に偏向させるためのレンズの傾きΦXiは、レンズの屈折率と、光制御部材への光の入射角度によって決定される。入射角度をαXi、入射面で屈折してレンズの内部を通過する光が入射面の法線に対して成す角度をβXi、レンズの内部を進行する光がレンズの出射側斜面の法線に対して成す角度をεXi、光が出射側斜面で屈折し、出射面に向かう光の斜面の法線に対して成す角度をωXi、レンズの屈折率をnとする。このとき、レンズから出射した光がZ軸方向に進むようなレンズの斜面の角度をΦXiとする。 The lens inclination Φ Xi for deflecting the light emitted from the light control member in the Z-axis direction is determined by the refractive index of the lens and the incident angle of the light to the light control member. The incident angle is α Xi , the angle formed by the light that is refracted at the incident surface and passes through the inside of the lens with respect to the normal of the incident surface is β Xi , and the light that travels inside the lens is the normal of the exit side slope of the lens Ε Xi , the light is refracted at the exit slope, ω Xi is the angle formed with respect to the normal of the slope of the light toward the exit surface, and the refractive index of the lens is n. At this time, the angle of the inclined surface of the lens where the light emitted from the lens travels in the Z-axis direction is defined as Φ Xi .
このとき、次の関係が成立する。
αXi、n、ΦXiは式(29)”に示す関係となり、レンズの屈折率nと、レンズの斜面の傾きΦXiによって、入射角αXiの光をZ軸方向に出射させることができる。レンズ部の各領域iについて式(9)を満足することで、角度αXiで光制御部材に入射した光をレンズの領域iからZ軸方向に出射させることができる。 α Xi , n, and Φ Xi have the relationship shown in Expression (29) ″, and light having an incident angle α Xi can be emitted in the Z-axis direction by the refractive index n of the lens and the inclination Φ Xi of the inclined surface of the lens. By satisfying Expression (9) for each region i of the lens portion, light incident on the light control member at an angle α Xi can be emitted from the lens region i in the Z-axis direction.
基準レンズのX軸方向の断面形状とY軸方向の断面形状とは同じ理論が適用可能であるため、式(10)〜式(16)に関しても同様に導出可能である。 Since the same theory can be applied to the cross-sectional shape in the X-axis direction and the cross-sectional shape in the Y-axis direction of the reference lens, equations (10) to (16) can be similarly derived.
基準レンズはX軸方向の断面形状が式(8)と式(9)に従い、かつ、Y軸方向の断面形状が式(15)と式(16)に従う1種類のレンズを用いても良いし、X軸方向のみとY軸方向のみに従う2種類のレンズを基準レンズとしても良い。 As the reference lens, one type of lens whose cross-sectional shape in the X-axis direction conforms to Equations (8) and (9) and whose cross-sectional shape in the Y-axis direction conforms to Equations (15) and (16) may be used. Two types of lenses that follow only the X-axis direction and only the Y-axis direction may be used as the reference lens.
当該光制御部材の出射面に配置する複数のレンズは、少なくとも1種類の基準レンズの相似形状レンズを使用する。既に知られている通り、比例縮小光学系はほぼ同一の指向特性を示すので、基準レンズの相似形状レンズを光制御部材に配置しても基準レンズのみと同じ拡散特性を示す。更に、複数の相似形状レンズを用いることで回折光の影響を軽減することができ、Z軸方向の輝度均一化に有利である。 The plurality of lenses arranged on the light exit surface of the light control member uses at least one kind of reference lens similar in shape. As already known, since the proportional reduction optical system exhibits almost the same directivity characteristic, even if a similar lens of the reference lens is arranged on the light control member, the same diffusion characteristic as that of the reference lens is exhibited. Furthermore, the use of a plurality of similar shaped lenses can reduce the influence of diffracted light, which is advantageous for uniforming the luminance in the Z-axis direction.
当該光制御部材の出射面には、少なくとも1種類の基準レンズの相似形状レンズをランダム配置する。ランダム配置とは、複数種の相似形状レンズを互いに重ならない様に配置した後、各レンズ間の隙間を他の相似形状レンズで埋める配置方法である。レンズの配置に周期性がなくなるため回折光の影響を軽減することができ、Z軸方向の輝度均一化に有利である。 On the light exit surface of the light control member, at least one kind of reference lens having a similar shape is randomly arranged. Random arrangement is an arrangement method in which a plurality of types of similar-shaped lenses are arranged so as not to overlap each other, and then the gaps between the lenses are filled with other similar-shaped lenses. Since there is no periodicity in lens arrangement, the influence of diffracted light can be reduced, which is advantageous for uniforming the luminance in the Z-axis direction.
本発明に係る第2の態様は第1の態様の面光源素子であって、基準レンズのX軸方向の断面形状をあらわす領域−NX〜NXがX軸の位置座標の順に並んでおり、かつ、基準レンズのY軸方向の断面形状をあらわす領域−NY〜NYがY軸の位置座標の順に並んでいることを特徴とする面光源素子である。
このとき基準レンズのX軸方向の断面形状とY軸方向の断面形状には変曲点がなく、基準レンズが略凸状を成す。変曲点が多いと、光が所望の凸部上の領域に到達する前に別の凸部上の領域に到達して、反射や屈折によって光線の方向が変化し、光の出射方向の制御が困難である場合がある。また、変曲点を持たない形状は変曲点を持つ形状と比較して形状が単純であるため、賦形しやすく生産上有利である。
A second aspect according to the present invention is the surface light source element according to the first aspect, in which the regions -N X to N X representing the cross-sectional shape of the reference lens in the X-axis direction are arranged in the order of the X-axis position coordinates. In addition, the surface light source element is characterized in that the areas -N Y to N Y representing the cross-sectional shape of the reference lens in the Y-axis direction are arranged in the order of the position coordinates of the Y-axis.
At this time, there is no inflection point between the cross-sectional shape in the X-axis direction and the cross-sectional shape in the Y-axis direction of the reference lens, and the reference lens is substantially convex. When there are many inflection points, the light reaches the region on another convex part before reaching the region on the desired convex part, and the direction of the light beam is changed by reflection or refraction, and the light emission direction is controlled. May be difficult. Further, since the shape having no inflection point is simpler than the shape having the inflection point, it is easy to shape and is advantageous in production.
本発明に係る第3の態様は第1又は第2の態様の面光源素子であって、基準レンズのX軸方向の断面形状が(2NX+1)個の傾きの異なる領域のうち、少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状であり、かつ、基準レンズのY軸方向の断面形状が(2NY+1)個の傾きの異なる領域のうち、少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状であることを特徴とする面光源素子である。
第1の発明における基準レンズは(2NX+1)個の角度ΦXiの斜面よりなるが、第3の発明における基準レンズは、このうち少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状を示し、また、第1の発明の基準レンズは(2NY+1)個の角度ΦYjの斜面よりなるが、第3の発明の基準レンズは、このうち少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状を示している。
曲線で近似することによって、Z軸方向への出射光の強度分布や出射光の角度分布がより滑らかになるため望ましい。またより賦形がしやすいために生産上有利となり望ましい。更に領域の接合部が鋭い形状ではないことで破損が生じにくいため、領域の接合部の破損による光の出射方向の変化や、不必要な散乱が生じにくく、望ましい。
A third aspect according to the present invention is the surface light source element according to the first or second aspect, wherein the cross-sectional shape in the X-axis direction of the reference lens is at least one of (2N X +1) regions having different inclinations. It is a shape that approximates the shape of two adjacent regions of the set by a curve, and the cross-sectional shape of the reference lens in the Y-axis direction is (2N Y +1) at least one set of adjacent regions having different inclinations The surface light source element is characterized in that the shape of two regions is approximated by a curve.
The reference lens in the first invention is composed of (2N X +1) angle Φ Xi slopes, but the reference lens in the third invention approximates the shape of at least one set of two adjacent regions by a curve. The reference lens of the first invention is composed of (2N Y +1) inclined surfaces with an angle Φ Yj , and the reference lens of the third invention has at least one pair of two adjacent lenses. The shape which approximated the shape of the area | region with the curve is shown.
By approximating with a curve, the intensity distribution of outgoing light in the Z-axis direction and the angular distribution of outgoing light become smoother, which is desirable. In addition, since it is easier to form, it is advantageous in production and desirable. Furthermore, since the joint portion in the region is not sharp, it is difficult for damage to occur. Therefore, a change in the light emission direction due to the breakage of the joint portion in the region and unnecessary scattering are unlikely to occur, which is desirable.
本発明に係る第4の態様は、第1〜3の態様のいずれかの面光源素子であって、当該光制御部材において、X−Z平面内においてZ軸方向に対して角度30度以内に出射する光の割合が、X−Z平面内での全出射光の50%以上であり、Y−Z平面内においてZ軸方向に対して角度30度以内に出射する光の割合が、Y−Z平面内での全出射光の50%以上であることを特徴とする面光源素子である。当該面光源素子は、Z軸方向へ出射する割合が比較的大きいため、テレビやパソコンモニタなど主として正面方向から出射面を観察する用途において、効率良く明るい照明を得ることができる。また当該光制御部材において、X−Z平面の断面内においてZ軸方向に対して角度30度以内の範囲に出射する光の割合と、Y−Z平面の断面内においてZ軸方向に対して角度30度以内の範囲に出射する光の割合とは、基準レンズの斜面の角度で調整することが可能である。当該基準レンズの斜面の角度は、Xmax〜Xminの幅とYmax〜Yminの幅で調整することが可能である。 The 4th aspect which concerns on this invention is a surface light source element in any one of the 1st-3rd aspect, Comprising: In the said light control member, in an XZ plane, within 30 degrees of angles with respect to Z-axis direction The ratio of the emitted light is 50% or more of the total emitted light in the XZ plane, and the ratio of the light emitted within an angle of 30 degrees with respect to the Z-axis direction in the YZ plane is Y−. The surface light source element is characterized by being 50% or more of the total emitted light in the Z plane. Since the surface light source element has a relatively large ratio of emission in the Z-axis direction, it is possible to efficiently obtain bright illumination in applications such as a television and a personal computer monitor that mainly observe the emission surface from the front direction. Further, in the light control member, the ratio of light emitted within a range of an angle of 30 degrees or less with respect to the Z axis direction in the cross section of the XZ plane, and the angle with respect to the Z axis direction in the cross section of the YZ plane. The ratio of the light emitted in the range of 30 degrees or less can be adjusted by the angle of the inclined surface of the reference lens. The angle of the inclined surface of the reference lens can be adjusted by the width of X max to X min and the width of Y max to Y min .
本発明に係る第5の態様は、第1〜4の態様のいずれかの面光源素子であって、基準レンズの相似形状レンズの面積以外の面積を光制御部材の面積で除した空隙率が1.0%以下であることを特徴とする面光源素子である。
光制御部材におけるレンズの空隙率が1.0%以上の場合、Z軸方向に進行する出射光が減少するため輝度均一性の低下に繋がる。そのため、空隙部を少なくすることは輝度均一性の向上に有利である。
A fifth aspect according to the present invention is the surface light source element according to any one of the first to fourth aspects, wherein a void ratio obtained by dividing an area other than the area of the similar lens of the reference lens by the area of the light control member. It is a surface light source element characterized by being 1.0% or less.
When the porosity of the lens in the light control member is 1.0% or more, the emitted light traveling in the Z-axis direction decreases, leading to a decrease in luminance uniformity. Therefore, reducing the gap is advantageous for improving the luminance uniformity.
実施の形態1
以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
本発明の実施の形態1に係る面光源素子の一例を図5に示す。
X軸と、X軸に直交するY軸とに平行なX−Y平面の法線の一方をZ軸方向として、少なくとも、X−Y平面に平行な複数の点状光源1と、1枚のシ−ト状の光制御部材を備え、当該複数の点状光源1がX−Y平面に平行な仮想平面内にX軸およびY軸方向に周期的に配置され、当該光制御部材がX−Y平面に平行に、かつ、当該複数の点状光源1のZ軸方向に配置した面光源素子であって、当該光制御部材の主に光を出射する面に、基準レンズ21の複数の相似形状レンズ21をランダム配置した面光源素子である。
Embodiment 1
Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment. In addition, for clarity of explanation, the following description and drawings are simplified as appropriate.
An example of the surface light source element according to Embodiment 1 of the present invention is shown in FIG.
One of the normal lines of the XY plane parallel to the X axis and the Y axis perpendicular to the X axis is defined as the Z axis direction, and at least a plurality of point light sources 1 parallel to the XY plane and one sheet A sheet-like light control member is provided, the plurality of point light sources 1 are periodically arranged in the X-axis and Y-axis directions in a virtual plane parallel to the XY plane, and the light control member is X- A plurality of similarities of the reference lens 21 is a surface light source element arranged in parallel to the Y plane and in the Z-axis direction of the plurality of point light sources 1 and on the surface of the light control member that mainly emits light. This is a surface light source element in which the shape lenses 21 are randomly arranged.
本発明の点状光源1としては特に制限はないが、LEDなどを用いることができる。LEDの形態としては、白色LED、赤、青、緑等各色のLED等があるが、白色のみを用いる、また各色LEDを周期的に配列することなどが上げられる。また出射面で要求する色に応じて、1周期内に複数の同一色光源を配置しても良い。当該複数の点状光源1のX軸方向およびY軸方向の周期DX、DYは短いほうが、輝度均一性がよく、高い輝度が得られるため望ましい。しかし周期が短すぎると点状光源1の個数が増加し、消費電力の増加、また発熱の問題が発生する。周期DXとDYは7mmから70mmが望ましい。より望ましくは15mmから50mmである。 Although there is no restriction | limiting in particular as the point light source 1 of this invention, LED etc. can be used. Examples of the LED include white LEDs, red, blue, and green LEDs, and the like. For example, only white is used, and each color LED is periodically arranged. In addition, a plurality of light sources having the same color may be arranged within one period according to the color required on the emission surface. The plurality of point light sources 1 X-axis direction and the Y-axis direction of the periodic D X, D Y is shorter is the luminance uniformity is good, since the high brightness obtained desirable. However, if the period is too short, the number of the point light sources 1 increases, resulting in an increase in power consumption and a problem of heat generation. The periods D X and D Y are preferably 7 mm to 70 mm. More desirably, the thickness is 15 mm to 50 mm.
図6は点状光源1を配列した場合の、X−Z平面におけるZ軸方向への出射光の強度と点状光源1の位置を表す図である。ここで示したように、複数の点状光源1の配列を備える面光源素子にあっては、Z軸方向への出射光の強度は、それぞれの点状光源1の直上部分と、直上部分と隣り合う点状光源1と点状光源1の中間位置部分とでは大きく異なる。これは本発明の面光源素子では光制御部材の主に光が入射する面への入射光の強度が、それぞれの点状光源1の直上部分と、斜め上の部分とでは大きく異なることを示している。また、この強度の違いはY−Z平面においても同様である。 FIG. 6 is a diagram showing the intensity of emitted light in the Z-axis direction on the XZ plane and the position of the point light source 1 when the point light sources 1 are arranged. As shown here, in a surface light source element having an array of a plurality of point light sources 1, the intensity of the emitted light in the Z-axis direction is the portion directly above each point light source 1, the portion directly above, The adjacent point light sources 1 and the intermediate position portions of the point light sources 1 are greatly different. This indicates that in the surface light source element of the present invention, the intensity of the incident light on the surface on which the light is mainly incident on the light control member is greatly different between the portion directly above the respective point light sources 1 and the obliquely upper portion. ing. The difference in strength is the same in the YZ plane.
図7は図5に示す面光源素子の、点状光源1の位置と、X−Z平面におけるZ軸方向の出射光の強度との関係を示す図である。Y−Z平面に平行な断面においても同様の強度分布を示し、このように本発明の面光源素子ではZ軸方向への出射光の強度分布がほぼ一定となるため、Z軸方向への輝度均一性が得られる。 FIG. 7 is a diagram showing the relationship between the position of the point light source 1 and the intensity of emitted light in the Z-axis direction on the XZ plane of the surface light source element shown in FIG. A similar intensity distribution is shown even in a cross section parallel to the Y-Z plane. Thus, in the surface light source element of the present invention, the intensity distribution of the emitted light in the Z-axis direction is substantially constant, so that the luminance in the Z-axis direction is Uniformity is obtained.
図8に、DX=30mmとしてX軸方向に点状光源1を配列した、本発明の面光源素子の任意の1個の点状光源1からの光による、X−Z平面におけるZ軸方向への出射光の強度分布の一例を示す。1個の点状光源1からの光によるZ軸方向への出射光は、Xmin〜Xmaxの範囲となる。図8に示すような緩やかに減衰を示す場合は、例えばfX(X)の値が最大値の1/100となるときのXの値で代用することも可能である。Xmin、Xmaxを定めるためのfX(X)の値は、それぞれ同一であることが望ましく、最大値の1/20以下であれば問題なく、1/100であることが更に望ましい。図8ではXmin=−3DX、Xmax=3DXであり、fX(Xmin)=fX(Xmax)でfX(X)の最大値の1/100以下である。このような分布から求められる面光源素子のZ軸方向への出射光の強度は、厳密には隣接する3周期分の点状光源1の総和のみでは決定されないため、gX(X)は一定であるよりも、X=0付近のgX(X)が周辺と比較して少し高いことが望ましい。同様に、Y−Z平面においても、Y=0付近のgY(Y)が周辺と比較して少し高いことが望ましい。 In FIG. 8, Z X direction in the XZ plane by light from any one point light source 1 of the surface light source element of the present invention in which D X = 30 mm and the point light sources 1 are arranged in the X axis direction. An example of intensity distribution of the emitted light to is shown. The outgoing light in the Z-axis direction by the light from one point light source 1 is in the range of X min to X max . In the case of gradually decreasing attenuation as shown in FIG. 8, for example, the value of X when the value of f X (X) is 1/100 of the maximum value can be substituted. The values of f X (X) for determining X min and X max are preferably the same, and if it is 1/20 or less of the maximum value, there is no problem and 1/100 is more desirable. In FIG. 8, X min = −3D X , X max = 3D X , and f X (X min ) = f X (X max ), which is 1/100 or less of the maximum value of f X (X). Since the intensity of the emitted light in the Z-axis direction of the surface light source element obtained from such a distribution is not strictly determined only by the sum of the point light sources 1 for three adjacent periods, g X (X) is constant. It is preferable that g X (X) in the vicinity of X = 0 is slightly higher than that in the vicinity. Similarly, in the YZ plane, it is desirable that g Y (Y) in the vicinity of Y = 0 is slightly higher than that in the vicinity.
また、gX(X)の最小値であるgX(X)minと、最大値であるgX(X)maxとの比、gX(X)min/gX(X)maxが0.8以上であるときにX軸方向に沿って輝度が均一化され、かつ、gY(Y)の最小値であるgY(Y)minと、最大値であるgY(Y)maxとの比、gY(Y)min/gY(Y)maxが0.8以上であるときにY軸方向に沿って輝度が均一化されるために、輝度の均一性の高い面光源素子が得られる。gX(X)min/gX(X)maxおよびgY(Y)min/gY(Y)maxの値は0.85以上がより好適であり、この場合に一層輝度の均一性が高い面光源素子を得ることができ、透過型の液晶パネル等を当該面光源素子の出射面のZ軸方向に配置し画像表示装置とした場合に高い画面品位を得ることができる。更により高い画面品位を得るためには、0.90以上が望ましい。 Further, the g X (X) min is the minimum value of g X (X), the ratio of g X (X) max is the maximum value, g X (X) min / g X (X) max is 0. made uniform brightness along the X-axis direction when 8 or more, and, g Y and g Y (Y) min is the minimum value of (Y), g Y (Y ) and max is the maximum value When the ratio g Y (Y) min / g Y (Y) max is 0.8 or more, the luminance is uniform along the Y-axis direction, so that a surface light source element with high luminance uniformity is obtained. It is done. g X (X) values for min / g X (X) max and g Y (Y) min / g Y (Y) max is more preferably 0.85 or more, a high uniformity of more luminance in this case A surface light source element can be obtained, and when a transmissive liquid crystal panel or the like is arranged in the Z-axis direction of the emission surface of the surface light source element to obtain an image display device, high screen quality can be obtained. In order to obtain a higher screen quality, 0.90 or more is desirable.
図9は図8で示したfX(X)から求まる面光源素子のgX(X)を示す。gX(X)が点状光源1の1周期分である−DX/2≦X≦DX/2の範囲で一定であれば、Z軸方向に高い輝度均一性が得られ、また、Xmin、Xmaxが最適である場合には、点状光源1近傍のエネルギ−の高い光を正面に偏向させるため、よりZ軸方向の輝度は高くなる。Y−Z平面についても同様である。 FIG. 9 shows g X (X) of the surface light source element obtained from f X (X) shown in FIG. If g X (X) is constant in a range of −D X / 2 ≦ X ≦ D X / 2, which is one cycle of the point light source 1, high luminance uniformity can be obtained in the Z-axis direction. When X min and X max are optimum, light with high energy in the vicinity of the point light source 1 is deflected to the front, and therefore the luminance in the Z-axis direction becomes higher. The same applies to the YZ plane.
基準レンズ21において、領域−NX〜NXの配列順序が必ずしもX軸に沿っている必要はない。しかしこの場合、各領域の配列の順序により基準レンズ21のX軸方向の断面形状である凸部には変曲点が存在し、角度αXiで入射した光を正面に偏向させる角度ΦXiの基準レンズ21に到達する前に、別の角度の斜面に到達し、屈折或いは反射によって光線方向が変化し、角度ΦXiの斜面に到達しない、或いは望ましくない角度で角度ΦXiの斜面に到達することによって、光の出射方向の制御が困難となり性能が不十分となる可能性がある。−NX〜NXの領域がX軸の位置座標の順に並んでいる場合、通常は凸部の形状は変曲点を持たず、基準レンズ21全体が略凸状を成す。このような基準レンズ21の場合、通常、光が所望の凸部上の領域に到達して反射や屈折によって光線の方向が変化することがなく、光線方向の制御が容易となり、有利である。 In the reference lens 21, the arrangement order of the regions −N X to N X is not necessarily along the X axis. However, in this case, an inflection point exists in the convex portion having a cross-sectional shape in the X-axis direction of the reference lens 21 depending on the order of arrangement of the regions, and the angle Φ Xi that deflects the light incident at the angle α Xi to the front surface Before reaching the reference lens 21, it reaches a slope of another angle, the light beam direction changes due to refraction or reflection, does not reach the slope of angle Φ Xi , or reaches the slope of angle Φ Xi at an undesired angle. As a result, it is difficult to control the light emission direction, and the performance may be insufficient. When the regions of −N X to N X are arranged in the order of the position coordinates of the X axis, the shape of the convex portion usually has no inflection point, and the entire reference lens 21 has a substantially convex shape. Such a reference lens 21 is advantageous in that light normally does not change due to reflection or refraction when light reaches a region on a desired convex portion, and the light direction can be easily controlled.
基準レンズ21において、領域−NY〜NYの配列順序が必ずしもY軸に沿っている必要はない。しかしこの場合、各領域の配列の順序により基準レンズ21のY軸方向の断面形状である凸部には変曲点が存在し、角度αYjで入射した光を正面に偏向させる角度ΦYjの基準レンズ21に到達する前に、別の角度の斜面に到達し、屈折或いは反射によって光線方向が変化し、角度ΦYjの斜面に到達しない、或いは望ましくない角度で角度ΦYjの斜面に到達することによって、光の出射方向の制御が困難となり、性能が不十分となる可能性がある。−NY〜NYの領域がX軸の位置座標の順に並んでいる場合、通常は凸部の形状は変曲点を持たず、基準レンズ21全体が略凸状を成す。このような基準レンズ21の場合、通常、光が所望の凸部上の領域に到達して反射や屈折によって光線の方向が変化することがなく、光線方向の制御が容易となり、有利である。 In the reference lens 21, the arrangement order of the regions −N Y to N Y is not necessarily along the Y axis. However, in this case, an inflection point exists in the convex portion having a cross-sectional shape in the Y-axis direction of the reference lens 21 depending on the arrangement order of the regions, and the angle Φ Yj that deflects the light incident at the angle α Yj to the front surface before reaching the reference lens 21 to reach the slopes of different angle, refraction or the beam direction changes by the reflection, it does not reach the slant angle [Phi Yj, or angle reaches the slope angle [Phi Yj undesirable As a result, it is difficult to control the light emission direction, and the performance may be insufficient. When the areas of -N Y to N Y are arranged in the order of the position coordinates of the X axis, the shape of the convex portion usually has no inflection point, and the entire reference lens 21 has a substantially convex shape. Such a reference lens 21 is advantageous in that light normally does not change due to reflection or refraction when light reaches a region on a desired convex portion, and the light direction can be easily controlled.
また基準レンズ21の各領域iのX軸方向の幅aXiがfX(Xi+T×tanβXi)×cosΦXi×cosβXi/{cosαXi×cos(ΦXi−βXi)}に比例することが本発明の面光源素子の特徴であるが、レンズ部の底部から表面までの高さの影響によって、好ましい幅が少しずれる場合があるが、大きな影響はない。Y軸方向の幅aYjについても同様である。 The width a Xi in the X-axis direction of each region i of the reference lens 21 is proportional to f X (X i + T × tanβ Xi) × cosΦ Xi × cosβ Xi / {cosα Xi × cos (Φ Xi -β Xi)} This is a feature of the surface light source element of the present invention, but the preferred width may be slightly shifted due to the influence of the height from the bottom of the lens portion to the surface, but there is no significant influence. The same applies to the width a Yj in the Y-axis direction.
光制御部材の基板2の厚さTは薄いほうが望ましいが、直下方式である本発明の面光源素子では光源と光制御部材の間に空間が設けられているために、最も光源側に配置される光制御部材は撓みや変形のない強度を有する厚さであることが望ましい。最も光源側に配置される光制御部材は、面光源素子の大きさによって異なるが、厚さは0.5〜5mmが望ましい。これより薄いと光制御部材の撓みや変形を生じ、点状光源1と光制御部材が接触し、外観品位の低下が生じる。またこれより厚いと面光源素子が厚くなり、また重量も増加する。更に望ましくは、1〜4mmであり、より好ましくは1.5〜2.5mmである。この範囲において強度が保たれ、更に主面面積あたりの使用基材量の増加による製造コストの上昇を抑えることが可能である。 Although it is desirable that the thickness T of the substrate 2 of the light control member is thin, in the surface light source element of the present invention which is a direct type, since a space is provided between the light source and the light control member, it is disposed on the most light source side. It is desirable that the light control member has a thickness that does not cause bending or deformation. The light control member arranged closest to the light source differs depending on the size of the surface light source element, but the thickness is preferably 0.5 to 5 mm. If it is thinner than this, the light control member will be bent or deformed, the point light source 1 will come into contact with the light control member, and the appearance quality will deteriorate. If it is thicker than this, the surface light source element becomes thick and the weight also increases. More desirably, it is 1-4 mm, More preferably, it is 1.5-2.5 mm. In this range, the strength is maintained, and it is possible to suppress an increase in manufacturing cost due to an increase in the amount of base material used per main surface area.
また、基準レンズ21を分割する領域の個数を決定するNXおよびNYは、2以上であることが望ましい。NXおよび/またはNYが大きい場合、基準レンズ21のX軸方向の断面形状および/または基準レンズ21のY軸方向の断面形状における凸部は、多くの傾きからなる複雑な形状となる。傾きの数が多いと、正面方向への出射光の制御を精度良く行うことができ、正面方向への出射光の強度分布の均一性が高い。精度の面からはNXおよびNYは大きい方がよいが、大きすぎると形状が複雑になり作製が困難となる。作製の容易さの面からはNXおよびNYが100以下であることが望ましく、10以下であることが更に望ましい。 Further, N X and N Y that determine the number of regions into which the reference lens 21 is divided are desirably 2 or more. When N X and / or N Y is large, the convex portion of the cross-sectional shape of the reference lens 21 in the X-axis direction and / or the cross-sectional shape of the reference lens 21 in the Y-axis direction has a complicated shape having a large number of inclinations. When the number of inclinations is large, the outgoing light in the front direction can be accurately controlled, and the intensity distribution of the outgoing light in the front direction is highly uniform. From the viewpoint of accuracy, N X and N Y are preferably large, but if they are too large, the shape becomes complicated and it is difficult to manufacture. From the viewpoint of ease of production, N X and N Y are preferably 100 or less, and more preferably 10 or less.
基準レンズ21のX軸方向の断面形状および/または基準レンズ21のY軸方向の断面形状において、凸部を形成する領域の少なくとも1組の隣接する領域の形状を曲線で近似しても良い。更に3つ以上の隣接する領域の形状を曲線で近似しても良く、凸部全体での形状を曲線で近似しても良い。多くの領域の形状を曲線で近似すると、Z軸方向への出射光の強度分布や出射光の角度分布を滑らかにする、賦形しやすい、破損しにくい等の、隣接する領域の形状を曲線で近似することの効果がより高くなり、望ましい。曲線への近似法としては、特に制限はなく、通常良く知られている最小二乗法、スプライン補間法、ラグランジュ補間法などを用いることが可能である。近似に用いる点は近似する領域から少なくとも1点を選び、通常近似する領域の数より多くとる。例えば、連続する複数の領域の両端と各領域の接点を選択することが可能である。また、各領域の中点を近似に用いることもできる。 In the cross-sectional shape of the reference lens 21 in the X-axis direction and / or the cross-sectional shape of the reference lens 21 in the Y-axis direction, the shape of at least one pair of adjacent regions that form the convex portions may be approximated by a curve. Furthermore, the shape of three or more adjacent regions may be approximated by a curve, and the shape of the entire convex portion may be approximated by a curve. When the shape of many areas is approximated by a curve, the shape of adjacent areas such as smoothing the intensity distribution of outgoing light in the Z-axis direction and the angular distribution of outgoing light, being easy to shape, and not easily damaged are curved. The effect of approximating with is more desirable and desirable. The method for approximating the curve is not particularly limited, and the generally well-known least square method, spline interpolation method, Lagrange interpolation method, and the like can be used. For the approximation, at least one point is selected from the approximated areas, and is usually larger than the number of approximated areas. For example, it is possible to select both ends of a plurality of continuous regions and contact points of each region. Further, the midpoint of each region can also be used for approximation.
X―Z平面において、Z軸方向に対して角度30度以内に出射する光の割合がX−Z平面でZ軸方向に出射する光の50%以上であり、かつ、Y−Z平面において、Z軸方向に対して角度30度以内に出射する光の割合がY−Z平面においてZ軸方向に出射する光の50%以上である場合には、Z軸方向の輝度の高い面光源素子が得られる。高い輝度を要求するパソコンモニタ等の表示装置においては、この数値は60%以上であればより望ましく、80%以上であれば更に望ましい。一方、照明看板等の広視野角が要求される表示装置については、Z軸向への出射の割合が高すぎると、Z軸方向のみに光が向き、視野角が狭く成り望ましくない。従って、照明看板等に用いる場合には、この数値は60%〜80%が望ましい。 In the XZ plane, the proportion of light emitted within an angle of 30 degrees with respect to the Z axis direction is 50% or more of the light emitted in the Z axis direction on the XZ plane, and in the YZ plane, When the proportion of light emitted within an angle of 30 degrees with respect to the Z-axis direction is 50% or more of the light emitted in the Z-axis direction on the YZ plane, a surface light source element having high brightness in the Z-axis direction is obtained. can get. In a display device such as a personal computer monitor that requires high luminance, this value is more preferably 60% or more, and more preferably 80% or more. On the other hand, for a display device that requires a wide viewing angle, such as an illumination signboard, if the rate of emission in the Z-axis direction is too high, light is directed only in the Z-axis direction and the viewing angle is not desirable. Therefore, when used for a lighting signboard or the like, this value is desirably 60% to 80%.
点状光源1と光制御部材との距離Hは長いほうが、輝度均一性が高いために望ましい。しかし、長すぎると、装置全体の厚みが大きくなるために好ましくない。点状光源1と光制御部材の距離Hは5mmから50mmが好ましい。より望ましくは10mmから30mmである。また、点状光源1の周期との比、DX/H、DY/Hは0.5〜3であることが望ましく、1〜2であることが更に望ましい。 A longer distance H between the point light source 1 and the light control member is desirable because of high luminance uniformity. However, if the length is too long, the thickness of the entire apparatus increases, which is not preferable. The distance H between the point light source 1 and the light control member is preferably 5 mm to 50 mm. More desirably, the thickness is 10 mm to 30 mm. Further, the ratio of the point light source 1 to the period, D X / H, D Y / H is preferably 0.5 to 3, and more preferably 1 to 2.
基準レンズ21の相似形状レンズ21の幅は1μmから300μmが望ましい。300μmより大きいと出射面からパタ−ンそのものが視認され外観品位が低下する。また1μmより小さいとレンズ形状の形成が困難である。より好ましくは、5μmから100μmである。通常は30μmより小さいと回折現象により外観品位が低下するが、本発明の面光源素子には複数の相似形状レンズ21をランダム配置するため、回折現象による外観品位の低下を抑えることが可能である。 The width of the similar-shaped lens 21 of the reference lens 21 is desirably 1 μm to 300 μm. If it is larger than 300 μm, the pattern itself is visually recognized from the exit surface and the appearance quality is lowered. If it is smaller than 1 μm, it is difficult to form a lens shape. More preferably, it is 5 μm to 100 μm. Usually, when the diameter is smaller than 30 μm, the appearance quality is deteriorated due to the diffraction phenomenon. However, since the plurality of similar shaped lenses 21 are randomly arranged in the surface light source element of the present invention, it is possible to suppress the deterioration of the appearance quality due to the diffraction phenomenon. .
本発明の光制御部材の製造方法としては、特に制限はないが、押出成型、射出成型、紫外線硬化樹脂を使用した成型が挙げられる。しかし、レンズ21を設ける場合には、レンズ21の大きさ、レンズ21の形状、量産性等を考慮して適した成型方法を選択すればよい。主面が大きい場合には押出成型が適している。 Although there is no restriction | limiting in particular as a manufacturing method of the light control member of this invention, The shaping | molding which uses extrusion molding, injection molding, and ultraviolet curable resin is mentioned. However, when the lens 21 is provided, a suitable molding method may be selected in consideration of the size of the lens 21, the shape of the lens 21, mass productivity, and the like. Extrusion molding is suitable when the main surface is large.
光制御部材の材料としては、通常光学透明材料であれば用いることが可能である。例えば、メタアクリル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、シクロオレフィン樹脂、メタアクリル−スチレン共重合樹脂、シクロオレフィン−アルケン共重合樹脂等が挙げられる。 As a material for the light control member, any optically transparent material can be used. For example, methacrylic resin, polystyrene resin, polycarbonate resin, cycloolefin resin, methacryl-styrene copolymer resin, cycloolefin-alkene copolymer resin and the like can be mentioned.
より多くの光を利用するために、光源の−Z軸側に反射板等を用いてもよい。反射板を用いることによって、光源から−Z軸側に出射した光、光制御部材によって−Z軸側に出射した光をZ軸側に向け、より多くの光を利用することができ、高い輝度を得ることが可能である。 In order to use more light, a reflector or the like may be used on the −Z axis side of the light source. By using the reflector, the light emitted from the light source to the −Z-axis side and the light emitted from the light control member to the −Z-axis side can be directed to the Z-axis side, so that more light can be used and the luminance is high. It is possible to obtain
反射板は、光源から−Z軸側に出射した光を正面方向に反射させる機能を持つ。反射率は95%以上のものが光の利用効率が高く望ましい。反射板の材質は、アルミ、銀、ステンレスなどの金属箔や、白色塗装、発泡PET樹脂などが挙げられる。光の利用効率を高めるためには材質の反射率が高いものが望ましい。これには銀、発泡PETなどが挙げられる。また、輝度均一性を高めるためには材質は拡散反射をするものが望ましい。これには発泡PETなどが挙げられる。 The reflecting plate has a function of reflecting light emitted from the light source to the −Z axis side in the front direction. A reflectance of 95% or more is desirable because of high light utilization efficiency. Examples of the material of the reflecting plate include metal foils such as aluminum, silver, and stainless steel, white coating, and foamed PET resin. In order to increase the light utilization efficiency, it is desirable that the material has a high reflectance. This includes silver, foamed PET, and the like. In order to improve luminance uniformity, the material is preferably diffusely reflected. This includes foamed PET and the like.
光制御部材が最も光源側に配置されていない場合では、光制御部材自身の強度、生産性等を考慮して光制御部材の厚さを設定すればよい。通常面光源素子として用いる際には最も光源側に配置される光制御部材と共に端面付近を固定されるために薄いシ−トであっても撓みは生じにくい。従って、最も光源側にない光制御部材は最も光源側にある場合よりも薄くすることが可能である。最も光源側にない光制御部材は、装置全体の薄型化のためには、薄いほうが好ましい。面光源素子の大きさによって異なるが、厚さは0.05mmから1mmが望ましい。これより薄くなると、光制御部材自体の強度が低下し、変形等により品位が低下する。また、これより厚くなると面光源素子が厚くなり、また重量も増加する。更に光制御部材の熱などによる変形を防ぎ、かつ押出成形等による高い生産性を得るためには、0.1mmから0.7mmが望ましく、更には0.2mmから0.5mmが望ましい。 When the light control member is not disposed closest to the light source, the thickness of the light control member may be set in consideration of the strength, productivity, and the like of the light control member itself. When used as a normal surface light source element, the vicinity of the end surface is fixed together with the light control member arranged closest to the light source, so that even a thin sheet is less likely to be bent. Therefore, the light control member that is not closest to the light source can be made thinner than the light control member that is closest to the light source. The light control member that is not closest to the light source is preferably thin in order to reduce the thickness of the entire apparatus. Although the thickness varies depending on the size of the surface light source element, the thickness is preferably 0.05 mm to 1 mm. If it is thinner than this, the strength of the light control member itself is lowered, and the quality is lowered due to deformation or the like. On the other hand, if it is thicker than this, the surface light source element becomes thick and the weight also increases. Furthermore, in order to prevent the light control member from being deformed by heat and to obtain high productivity by extrusion molding or the like, 0.1 mm to 0.7 mm is desirable, and 0.2 mm to 0.5 mm is further desirable.
また、光制御部材の光源側に重ねて、樹脂やガラス等からなる透明な支持基板を設けても良い。当該支持基板を配することによって、光制御部材を例えば0.1mmから1mmと薄くしても光制御部材を支持することが可能である。光制御部材を薄くすることによって、押出成形等による成形が更に容易になり、生産性が向上する。また、面光源素子が大型化するに従い次第に困難になる光制御部材の支持を容易にする。当該支持基板の厚さに特に制限は無いが、通常1mmから5mmであり、軽量化と強度の兼ね合いから通常2mmから4mmの範囲であることが更に望ましい。 In addition, a transparent support substrate made of resin, glass, or the like may be provided on the light source side of the light control member. By disposing the support substrate, the light control member can be supported even if the light control member is thinned, for example, from 0.1 mm to 1 mm. By reducing the thickness of the light control member, molding by extrusion molding or the like is further facilitated, and productivity is improved. In addition, it becomes easy to support the light control member that becomes increasingly difficult as the surface light source element becomes larger. Although there is no restriction | limiting in particular in the thickness of the said support substrate, Usually, it is 1 mm to 5 mm, and it is still more desirable that it is the range of 2 mm to 4 mm normally from the balance of weight reduction and intensity | strength.
支持基板を用いる場合などで、支持基板と光制御部材と接合されている場合などで、支持基板が屈折率の異なる数種類の板となっても問題ない。この場合、ここまで示してきた考え方に沿って、式(8)に相当する式を導くことでaXiを求めることが可能である。
しかしながら屈折率のばらつきが90%以内である場合、屈折率は各板厚の比に従って近似することで式(8)を導くことができる。例えば支持基板の部分が、屈折率がn’、n’’、n’’’で板厚がそれぞれT’、T’’、T’’’の3枚の板によってなる場合、nは(n’×T’+n’’×T’’+n’’’・×T’’’)/Tの値で近似できる。
There is no problem even if the support substrate is made of several kinds of plates having different refractive indexes, for example, when the support substrate is used and when the support substrate and the light control member are joined. In this case, aXi can be obtained by deriving an expression corresponding to Expression (8) in accordance with the idea described so far.
However, when the variation of the refractive index is within 90%, the refractive index can be approximated according to the ratio of the plate thicknesses to derive the equation (8). For example, when the support substrate portion is composed of three plates with refractive indexes n ′, n ″, n ′ ″ and plate thicknesses T ′, T ″, T ′ ″, respectively, n is (n It can be approximated by a value of “× T” + n ″ × T ″ + n ′ ″ · × T ′ ″) / T.
本発明の光制御部材は、複数の点状光源1以外の光源に対しても使用できる。例えば単一の点状光源1に対して用いることによって、より広範な範囲において、均一で高い輝度を得ることが可能である。また、本発明の面光源素子が備える光制御部材は、X−Y平面に平行な仮想平面内にX軸方向に平行かつY軸に沿って配置された複数の線状光源、または、Y軸方向に平行かつX軸に沿って配置された複数の線状光源からの光線方向を制御することが可能であり、高い輝度均一性が実現できる。これら線状光源として、蛍光灯等や、LED等の点状光源1を狭い間隔で直線状に配列して構成した線状光源も用いることができる。 The light control member of the present invention can be used for light sources other than the plurality of point light sources 1. For example, by using it for a single point light source 1, it is possible to obtain uniform and high brightness in a wider range. In addition, the light control member included in the surface light source element of the present invention includes a plurality of linear light sources arranged in a virtual plane parallel to the XY plane, parallel to the X-axis direction and along the Y-axis, or the Y-axis It is possible to control the direction of light rays from a plurality of linear light sources arranged in parallel to the direction and along the X axis, and high luminance uniformity can be realized. As these linear light sources, it is also possible to use a linear light source configured by linearly arranging point light sources 1 such as fluorescent lamps or LEDs at narrow intervals.
また、本発明の画像表示装置としては、面光源素子上に透過型の表示装置を設けることにより実現され、表示装置としては透過型の液晶パネル等が上げられる。これにより、表示面の輝度が高く、輝度均一性に優れた画像表示装置を得ることができる。 Further, the image display device of the present invention is realized by providing a transmissive display device on a surface light source element, and a transmissive liquid crystal panel or the like can be given as the display device. As a result, an image display device having a high luminance on the display surface and excellent luminance uniformity can be obtained.
以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited thereto.
照明設計解析ソフトウェアLightTools(登録商標)を用いて、図5に示す面光源素子の輝度の均一性を解析した。点状光源1は、高さが0.5mm、直径が0.8mmの円柱の上面を発光部として、発光の角度特性をランバーシャン分布とした。点状光源1の座標(X、Y)=(DX/2、DY/2)、(−DX/2、DY/2)、(DX/2、−DY/2)、(−DX/2、DY/2)に設置し、それぞれの光源の上面側がZ軸方向になる様に配置した。点状光源1の下面側には拡散反射する反射板を配置し、反射板から25mm離した位置に光制御部材の入射面を配置した。光制御部材の材質は、屈折率1.5の一般的な光学樹脂を想定した。光制御部材からZ軸方向に出射する光のX軸方向の強度分布fX(X)とY軸方向の強度分布fY(Y)を指定して基準レンズ21の形状を決定した。光制御部材の出射面の−DX/2≦X≦DX/2、−DY、/2≦Y≦DY/2の範囲内に基準レンズ21の相似形状レンズ21をランダムに配置し、Z軸方向への輝度L(X、Y)をシミュレーションで解析した。X軸方向における輝度LXの最大値LXMAXと最小値LXMINから最大輝度と最小輝度の比RX=LXMAX/LXMINを輝度の均一性の指標とした。同様に、Y軸方向における輝度LYの最大値LYMAXと最小値LYMINから最大輝度と最小輝度の比RY=LYMAX/LYMINを輝度の均一性の指標とした。 The brightness uniformity of the surface light source element shown in FIG. 5 was analyzed using lighting design analysis software LightTools (registered trademark). In the point light source 1, the upper surface of a cylinder having a height of 0.5 mm and a diameter of 0.8 mm was used as a light emitting part, and the angular characteristics of light emission were set to Lambertian distribution. The coordinates (X, Y) of the point light source 1 = (D X / 2, D Y / 2), (−D X / 2, D Y / 2), (D X / 2, −D Y / 2), (−D X / 2, D Y / 2), and arranged such that the upper surface side of each light source is in the Z-axis direction. A reflecting plate that diffusely reflects is disposed on the lower surface side of the point light source 1, and an incident surface of the light control member is disposed at a position 25 mm away from the reflecting plate. The light control member is assumed to be a general optical resin having a refractive index of 1.5. The shape of the reference lens 21 was determined by designating the intensity distribution f X (X) in the X-axis direction and the intensity distribution f Y (Y) in the Y-axis direction of the light emitted from the light control member in the Z-axis direction. The similar shape lens 21 of the reference lens 21 is randomly arranged in the range of −D X / 2 ≦ X ≦ D X / 2, −D Y , / 2 ≦ Y ≦ D Y / 2 on the exit surface of the light control member. The luminance L (X, Y) in the Z-axis direction was analyzed by simulation. The ratio of the maximum luminance to the minimum luminance R X = L XMAX / L XMIN from the maximum value L XMAX and minimum value L XMIN of the luminance L X in the X-axis direction was used as an index of luminance uniformity. Similarly, the ratio RY = L YMAX / L YMIN of the maximum luminance and the minimum luminance from the maximum value L YMAX and the minimum value L YMIN of the luminance LY in the Y-axis direction was used as an index of luminance uniformity.
次に、回折光学素子設計解析ソフトウェアDiffractMOD(登録商標)を用いて、複数種の相似形状レンズ21の配置方法をランダム配置と周期配置した際に、回折現象が発生抑えられる効果を解析した。光源は波長550nmのTM偏光を用いて光制御部材の入射面に対して垂直方向に入射した。X−Z平面における出射光の出射角度と強度の関係を求めるため、幅15μmの基準レンズ21と幅7.5μmの相似形状レンズ21の1種をランダム配置した光制御部材に対してシミュレーションで解析した。 Next, using the diffractive optical element design analysis software DiffractMOD (registered trademark), the effect of suppressing the occurrence of the diffraction phenomenon was analyzed when the arrangement method of the plural kinds of similar-shaped lenses 21 was arranged randomly and periodically. The light source was incident in a direction perpendicular to the incident surface of the light control member using TM polarized light having a wavelength of 550 nm. In order to obtain the relationship between the emission angle and intensity of the emitted light in the XZ plane, a light control member in which one type of a reference lens 21 having a width of 15 μm and a similar lens 21 having a width of 7.5 μm is randomly arranged is analyzed by simulation. did.
実施例及び比較例で得られたRXとRYの値と解析条件を表1に示す。
実施例1と比較例1では、光制御部材における基準レンズ21の、X軸方向の断面形状の輪郭線とY軸方向の断面形状の輪郭線とが曲線からなる場合であり、LightToolsによる計算結果ではZ軸方向の輝度均一性はRX=0.92、RY=0.88と高い。一方、配置方法は、実施例1は基準レンズ21の1種とその相似形状レンズ21の1種とをランダム配置したのに対し、比較例1は基準レンズ1種を周期配置した。ここで図10に光制御部材から出射する光の角度に対する強度分布の関係を示す。出射角度0度方向をZ軸方向になる様に定義した。比較例1は−15°、0°、+15°方向に回折光が発生して輝度均一性を低下させたが、実施例1は回折光がほとんど発生していないため、輝度均一性が高いことが分かる。 In Example 1 and Comparative Example 1, the reference lens 21 in the light control member is a case where the contour line of the cross-sectional shape in the X-axis direction and the contour line of the cross-sectional shape in the Y-axis direction are curves, and the calculation result by LightTools Then, the luminance uniformity in the Z-axis direction is as high as R X = 0.92 and R Y = 0.88. On the other hand, in the arrangement method, in Example 1, one type of the reference lens 21 and one type of the similar shape lens 21 were randomly arranged, whereas in Comparative Example 1, one type of reference lens was periodically arranged. FIG. 10 shows the relationship of the intensity distribution with respect to the angle of light emitted from the light control member. The emission angle 0 degree direction was defined to be the Z-axis direction. In Comparative Example 1, diffracted light was generated in the directions of −15 °, 0 °, and + 15 ° to reduce the luminance uniformity. However, since Example 1 hardly generated diffracted light, the luminance uniformity was high. I understand.
実施例2と比較例2では、光制御部材における基準レンズの、X軸方向の断面形状の輪郭線とY軸方向の断面形状の輪郭線とが直線からなる場合である。基準レンズの輪郭線を近似しない場合でも、レンズの配置方法を相似形状レンズでランダム配置することで回折光が発生せず、高い輝度均一性が得られた。 In Example 2 and Comparative Example 2, the X-axis direction cross-sectional outline and the Y-axis cross-sectional outline of the reference lens in the light control member are straight lines. Even when the outline of the reference lens is not approximated, diffracted light is not generated by randomly arranging the lens arrangement method with similar-shaped lenses, and high luminance uniformity is obtained.
比較例3では、基準レンズの輝度均一性が低い場合であり、こちらは複数の相似形状レンズをランダム配置すると回折光は抑制されるが、基準レンズの輝度均一性を著しく上昇する効果は無いため好ましくない。 In Comparative Example 3, the luminance uniformity of the reference lens is low. This is because if a plurality of similar-shaped lenses are randomly arranged, diffracted light is suppressed, but there is no effect of significantly increasing the luminance uniformity of the reference lens. It is not preferable.
1 点状光源
2 光制御部材を構成する基板
21 光制御部材の出射面に配置された基準レンズとその相似形状レンズ
L1 点状光源から光制御部材の位置Xiに入射にする光線
L2 光制御部材のレンズの中を透過する光線
DESCRIPTION OF SYMBOLS 1 Point light source 2 The board | substrate which comprises a light control member 21 The reference | standard lens arrange | positioned at the output surface of the light control member, and its similar shape lens L1 The light ray L2 light control member which makes it inject into the position Xi of a light control member from a point light source Rays passing through the lens of
Claims (5)
前記複数の点状光源は前記X−Y平面に平行な仮想平面内にX軸及びY軸方向に周期的に配置され、前記光制御部材はX−Y平面に平行に、かつ、前記複数の点状光源のZ軸方向側に配置され、前記光制御部材の主に光が出射する面に複数のレンズがランダムに配置され、前記複数のレンズは少なくとも1種類の基準レンズおよびその相似形状レンズから構成されており、
前記基準レンズは、
前記複数の点状光源の、X軸方向の1周期の長さをDX、Y軸方向の1周期の長さをDYとして、
任意に選択した点状光源の中心位置を原点、X軸方向の位置座標をX、Y軸方向の位置座標をYとした場合、
X軸とZ軸とに平行なX−Z平面に平行な仮想平面内において、
前記選択した点状光源と前記光制御部材との距離をH、前記選択した点状光源から光制御部材に入射した光の位置Xにおける出射面のZ軸方向への出射光強度を表した関数をfX(X)とし、
gX(X)=fX(X−DX)+fX(X)+fX(X+DX)としたとき、
−DX/2≦X≦DX/2の範囲で、
gX(X)の最小値であるgX(X)minと、最大値であるgX(X)maxとの比gX(X)min/gX(X)maxが0.8以上であり、
Xの最小値Xminが−3.0DX≦Xmin≦−0.5DXの範囲であり、Xの最大値Xmaxが0.5DX≦Xmax≦3.0DXの範囲であり、(XminおよびXmaxはfX(X)の値がX=0である任意に選択した点状光源付近を中心に減衰し、実質0になる両端の座標)、
前記基準レンズのX軸方向の断面形状が、下記の式で表される(2NX+1)個の傾きの異なる領域−NX〜NXからなり、
δX=(Xmax−Xmin)/(2NX+1)
Xi=i×δX
αXi=tan−1(Xi/H)
βXi=sin−1((1/n)sinαXi)
γXi=sin−1((1/ns)sinαXi)
aXi∝fX(X+T×tanγXi)×cosΦXi×cosβXi/{Ii(αXi)×cos(αXi)×cos(ΦXi−βXi)}
ΦXi=tan−1((n×sinβXi)/(n×cosβXi−1))
(ただし、NX:自然数
i:−NXからNXの整数
n:光制御部材のレンズ部の屈折率
ns:光制御部材の基材の屈折率
aXi:領域iのX軸方向の幅
ΦXi:領域iの出射面に対する傾き
T:光制御部材の入射面からレンズ部の底部までの厚み
Ii(αXi):任意に選択した点状光源からX軸方向に沿ってαXiの方向へ単位角度あたりに放射する光の強度)
かつ、
Y軸とZ軸とに平行なY−Z平面に平行な仮想平面内において、前記選択した点状光源から光制御部材に入射した光の位置Yにおける出射面のZ軸方向への出射光強度を表した関数をfY(Y)とし、
gY(Y)=fY(Y−DY)+fY(Y)+fY(Y+DY)としたとき、
−DY/2≦Y≦DY/2の範囲で、
gY(Y)の最小値であるgY(Y)minと、最大値であるgY(X)maxとの比gY(Y)min/gY(Y)maxが0.8以上であり、
Yの最小値Yminが−3.0DY≦Ymin≦−0.5DYの範囲であり、Yの最大値Ymaxが0.5DY≦Ymax≦3.0DYの範囲であり、(YminおよびYmaxはfY(Y)の値がY=0である任意に選択した点状光源付近を中心に減衰し、実質0になる両端の座標)、
前記基準レンズのY軸方向の断面形状が、下記の式で表される(2NY+1)個の傾きの異なる領域−NY〜NYからなることを特徴とする面光源素子。
δY=(Ymax−Ymin)/(2NY+1)
Yj=j×δY
αYj=tan−1(Yj/H)
βYj=sin−1((1/n)sinαYj)
γYj=sin−1((1/ns)sinαYj)
aYj∝fY(Yj+T×tanγYj)×cosΦYj×cosβYj/{Ij(αYj)×cos(αYj)×cos(ΦYj−βYj)}
ΦYj=tan−1((n×sinβYj)/(n×cosβYj−1))
(ただし、NY:自然数
j:−NYからNYの整数
aYj:領域jのY軸方向の幅
ΦYj:領域jの出射面に対する傾き
Ij(αYj)は任意に選択した点状光源からY軸方向に沿ってαYjの方向へ単位角度当たりに放射する光の強度) One of the normal lines of the XY plane parallel to the X axis and the Y axis orthogonal to the X axis is the Z axis direction, and at least a plurality of point light sources and one sheet or film A light control member,
The plurality of point light sources are periodically arranged in the X-axis and Y-axis directions in a virtual plane parallel to the XY plane, the light control member is parallel to the XY plane, and A plurality of lenses are randomly arranged on the surface of the point light source in the Z-axis direction, and the light control member mainly emits light, and the plurality of lenses includes at least one type of reference lens and its similar shape lens. Consists of
The reference lens is
Of the plurality of point light sources, the length D X of one cycle of the X-axis direction, the length of one period of the Y-axis direction D Y,
When the center position of the arbitrarily selected point light source is the origin, the position coordinate in the X-axis direction is X, and the position coordinate in the Y-axis direction is Y,
In a virtual plane parallel to the XZ plane parallel to the X axis and the Z axis,
A function that represents the distance between the selected point light source and the light control member as H, and the intensity of the emitted light in the Z-axis direction of the exit surface at the position X of the light incident on the light control member from the selected point light source. Is f X (X),
g X (X) = f X (X−D X ) + f X (X) + f X (X + D X )
In the range of −D X / 2 ≦ X ≦ D X / 2,
In g X (X) is the minimum value of g X (X) min and the maximum value g X (X) ratio of max g X (X) min / g X (X) max is 0.8 or more Yes,
The minimum value X min of X is in the range of −3.0D X ≦ X min ≦ −0.5D X , and the maximum value X max of X is in the range of 0.5D X ≦ X max ≦ 3.0D X , (X min and X max are the coordinates of both ends where the value of f X (X) is attenuated around the arbitrarily selected point light source where X = 0 and becomes substantially 0),
The cross-sectional shape of the reference lens in the X-axis direction is composed of (2N X +1) different regions −N X to N X represented by the following formula,
δ X = (X max −X min ) / (2N X +1)
X i = i × δ X
α Xi = tan −1 (X i / H)
β Xi = sin −1 ((1 / n) sin α Xi )
γ Xi = sin −1 ((1 / n s ) sin α Xi )
a Xi αf X (X + T × tanγ Xi) × cosΦ Xi × cosβ Xi / {I i (α Xi) × cos (α Xi) × cos (Φ Xi -β Xi)}
Φ Xi = tan −1 ((n × sin β Xi ) / (n × cos β Xi −1))
(However, N X : natural number
i: integer from -N X to N X
n: Refractive index of the lens portion of the light control member
n s : refractive index of the base material of the light control member
a Xi : width of region i in the X-axis direction
Φ Xi : Inclination with respect to the exit surface of region i
T: Thickness from the incident surface of the light control member to the bottom of the lens unit
I i (α Xi ): intensity of light emitted per unit angle in the direction of α Xi along the X-axis direction from an arbitrarily selected point light source)
And,
Intensity of emitted light in the Z-axis direction of the exit surface at the position Y of light incident on the light control member from the selected point light source in a virtual plane parallel to the YZ plane parallel to the Y-axis and Z-axis Let f Y (Y) be a function that represents
g Y (Y) = f Y (Y−D Y ) + f Y (Y) + f Y (Y + D Y )
In the range of −D Y / 2 ≦ Y ≦ D Y / 2,
In g Y (Y) g Y ( Y) is the minimum value min and the ratio g Y (Y) and g Y (X) max is the maximum value min / g Y (Y) max is 0.8 or more Yes,
Minimum value Y min Y is in the range of -3.0D Y ≦ Y min ≦ -0.5D Y , maximum value Y max Y is in the range of 0.5 D Y ≦ Y max ≦ 3.0D Y, (Y min and Y max are the coordinates of both ends where the value of f Y (Y) is attenuated around the arbitrarily selected point-like light source where Y = 0 and becomes substantially 0),
A surface light source element characterized in that the cross-sectional shape of the reference lens in the Y-axis direction includes (2N Y +1) different regions −N Y to N Y expressed by the following formula.
δ Y = (Y max −Y min ) / (2N Y +1)
Y j = j × δ Y
α Yj = tan −1 (Y j / H)
β Yj = sin −1 ((1 / n) sin α Yj )
γ Yj = sin −1 ((1 / n s ) sin α Yj )
a Yj αf Y (Y j + T × tanγ Yj) × cosΦ Yj × cosβ Yj / {I j (α Yj) × cos (α Yj) × cos (Φ Yj -β Yj)}
Φ Yj = tan −1 ((n × sin β Yj ) / (n × cos β Yj −1))
(However, N Y : natural number
j: integer from -N Y to N Y
a Yj : the width of the region j in the Y-axis direction
Φ Yj : slope of region j with respect to the exit surface
I j (α Yj ) is the intensity of light emitted per unit angle in the direction of α Yj along the Y-axis direction from an arbitrarily selected point light source)
前記基準レンズのX軸方向の断面形状を表す領域−NX〜NXがX軸の位置座標順に並んでおり、
かつ、
前記基準レンズのY軸方向の断面形状を表す領域−NY〜NYがY軸の位置座標順に並んでいることを特徴とする面光源素子。 The surface light source element according to claim 1,
Regions −N X to N X representing the cross-sectional shape in the X-axis direction of the reference lens are arranged in the order of the position coordinates of the X-axis,
And,
A surface light source element, wherein regions -N Y to N Y representing a cross-sectional shape of the reference lens in the Y-axis direction are arranged in the order of the position coordinates of the Y-axis.
前記基準レンズのX軸方向の断面形状が(2NX+1)個の傾きの異なる領域のうち少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状であり、
かつ、
前記基準レンズのY軸方向の断面形状が(2NY+1)個の傾きの異なる領域のうち少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状であることを特徴とする面光源素子。 The surface light source element according to claim 1 or 2,
The cross-sectional shape of the reference lens in the X-axis direction is a shape that approximates the shape of at least one pair of two adjacent regions out of (2N X +1) different regions with a curve,
And,
A surface light source characterized in that the cross-sectional shape of the reference lens in the Y-axis direction is a shape obtained by approximating the shape of at least one pair of two adjacent regions with a curve among (2N Y +1) different regions of inclination. element.
前記光制御部材におけるX−Z平面内において、Z軸方向に対して角度30度以内に出射する光の割合がX−Z平面内のZ軸方向に出射する光の50%以上であり、
かつ、
前記光制御部材におけるY−Z平面内において、Z軸方向に対して角度30度以内に出射する光の割合がY−Z平面のZ軸方向に出射する光の50%以上であることを特徴とする面光源素子。 The surface light source element according to claim 1,
In the XZ plane of the light control member, the ratio of the light emitted within an angle of 30 degrees with respect to the Z-axis direction is 50% or more of the light emitted in the Z-axis direction in the XZ plane,
And,
In the YZ plane of the light control member, the ratio of the light emitted within an angle of 30 degrees with respect to the Z-axis direction is 50% or more of the light emitted in the Z-axis direction of the YZ plane. A surface light source element.
前記光制御部材の主に光を出射する側に形成した複数のレンズ以外の平坦部の面積を前記光制御部材の面積で除した空隙率は1.0%以下であることを特徴とする面光源素子。 The surface light source element according to any one of claims 1 to 4,
A surface obtained by dividing an area of a flat portion other than a plurality of lenses formed mainly on a light emitting side of the light control member by an area of the light control member is 1.0% or less. Light source element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016213250A JP6679465B2 (en) | 2016-10-31 | 2016-10-31 | Surface light source element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016213250A JP6679465B2 (en) | 2016-10-31 | 2016-10-31 | Surface light source element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018073668A true JP2018073668A (en) | 2018-05-10 |
JP6679465B2 JP6679465B2 (en) | 2020-04-15 |
Family
ID=62114409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016213250A Expired - Fee Related JP6679465B2 (en) | 2016-10-31 | 2016-10-31 | Surface light source element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6679465B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023133687A1 (en) * | 2022-01-11 | 2023-07-20 | Hefei Raysees Ai Technology Co., Ltd. | Backlight module and display device ii |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029911A1 (en) * | 2006-09-08 | 2008-03-13 | Kuraray Co., Ltd. | Planar light source element, light control member using the same, and image display device using the same |
JP2008304700A (en) * | 2007-06-07 | 2008-12-18 | Sony Corp | Optical sheet, illumination device and display device |
WO2015155993A1 (en) * | 2014-04-11 | 2015-10-15 | 株式会社クラレ | Method for designing light diffusion pattern, method for manufacturing light diffusion plate, and light diffusion plate |
-
2016
- 2016-10-31 JP JP2016213250A patent/JP6679465B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029911A1 (en) * | 2006-09-08 | 2008-03-13 | Kuraray Co., Ltd. | Planar light source element, light control member using the same, and image display device using the same |
JP2008304700A (en) * | 2007-06-07 | 2008-12-18 | Sony Corp | Optical sheet, illumination device and display device |
WO2015155993A1 (en) * | 2014-04-11 | 2015-10-15 | 株式会社クラレ | Method for designing light diffusion pattern, method for manufacturing light diffusion plate, and light diffusion plate |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023133687A1 (en) * | 2022-01-11 | 2023-07-20 | Hefei Raysees Ai Technology Co., Ltd. | Backlight module and display device ii |
Also Published As
Publication number | Publication date |
---|---|
JP6679465B2 (en) | 2020-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI761599B (en) | Grating-coupled light guide, display system, and method employing optical concentration | |
TWI460503B (en) | Backlight unit | |
KR101419031B1 (en) | Light emitting device and lighting device having the same | |
JPWO2008029911A1 (en) | Surface light source element, light control member used therefor, and image display device using the same | |
JP5699375B2 (en) | Surface light source device, transmissive display device | |
JP2008071657A (en) | Surface light source device, and transmission type display | |
JP4515374B2 (en) | LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME | |
JP2001022285A (en) | Back light device | |
JP6679465B2 (en) | Surface light source element | |
TWM565324U (en) | Direct-edge-lit thin planar light source device | |
JP6238250B2 (en) | Lighting device | |
KR101355815B1 (en) | Light emitting device and lighting device having the same | |
TWI526742B (en) | Curved back light module | |
CN112303594A (en) | Optical lens, light-emitting device and display | |
CN112303593A (en) | Optical lens, light-emitting device and display | |
JP4815930B2 (en) | Light transmissive film, backlight device, and liquid crystal display device | |
US20130003408A1 (en) | Symmetric serrated edge light guide film having circular tip and base segments | |
JP4684838B2 (en) | LIGHTING DEVICE, LIGHT CONTROL MEASUREMENT STRUCTURE AND IMAGE DISPLAY DEVICE USING THEM | |
KR20190075665A (en) | Back light unit for picture generate unit | |
US20100254159A1 (en) | Brightness enhancement film and backlight module | |
JP4684791B2 (en) | LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM | |
JP4522937B2 (en) | LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM | |
JP2010044922A (en) | Plane light source element and light control member used for this as well as image display using it | |
WO2014017488A1 (en) | Illumination device and display device | |
WO2013089172A1 (en) | Light source device, planar light source device, display device, and illumination device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190605 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200318 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6679465 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |