US8975512B2 - Tandem photovoltaic cells - Google Patents
Tandem photovoltaic cells Download PDFInfo
- Publication number
- US8975512B2 US8975512B2 US13/920,486 US201313920486A US8975512B2 US 8975512 B2 US8975512 B2 US 8975512B2 US 201313920486 A US201313920486 A US 201313920486A US 8975512 B2 US8975512 B2 US 8975512B2
- Authority
- US
- United States
- Prior art keywords
- layer
- article
- poly
- oxide
- photoactive layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005215 recombination Methods 0.000 claims abstract description 46
- 230000006798 recombination Effects 0.000 claims abstract description 46
- 239000000463 material Substances 0.000 claims description 145
- 239000004065 semiconductor Substances 0.000 claims description 67
- -1 polyphenylenes Polymers 0.000 claims description 64
- 229920000642 polymer Polymers 0.000 claims description 44
- 229920001577 copolymer Polymers 0.000 claims description 17
- 229910044991 metal oxide Inorganic materials 0.000 claims description 17
- 150000004706 metal oxides Chemical class 0.000 claims description 17
- HKNRNTYTYUWGLN-UHFFFAOYSA-N dithieno[3,2-a:2',3'-d]thiophene Chemical compound C1=CSC2=C1SC1=C2C=CS1 HKNRNTYTYUWGLN-UHFFFAOYSA-N 0.000 claims description 16
- 229920000123 polythiophene Polymers 0.000 claims description 16
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 16
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims description 15
- VJYJJHQEVLEOFL-UHFFFAOYSA-N thieno[3,2-b]thiophene Chemical compound S1C=CC2=C1C=CS2 VJYJJHQEVLEOFL-UHFFFAOYSA-N 0.000 claims description 15
- 229920000767 polyaniline Polymers 0.000 claims description 13
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 11
- 229920000265 Polyparaphenylene Polymers 0.000 claims description 11
- 229910003472 fullerene Inorganic materials 0.000 claims description 11
- 239000002105 nanoparticle Substances 0.000 claims description 11
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 claims description 11
- 229920000548 poly(silane) polymer Polymers 0.000 claims description 11
- 230000000903 blocking effect Effects 0.000 claims description 10
- 235000014692 zinc oxide Nutrition 0.000 claims description 9
- 239000002073 nanorod Substances 0.000 claims description 7
- 239000004985 Discotic Liquid Crystal Substance Substances 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 150000004866 oxadiazoles Chemical class 0.000 claims description 6
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims description 5
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 claims description 5
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 4
- 239000005964 Acibenzolar-S-methyl Substances 0.000 claims description 3
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 3
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical class [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 3
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical class [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 claims description 2
- 239000010410 layer Substances 0.000 claims 35
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 claims 2
- 239000002356 single layer Substances 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 19
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 20
- 125000003118 aryl group Chemical group 0.000 description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 16
- 239000004020 conductor Substances 0.000 description 16
- 125000001072 heteroaryl group Chemical group 0.000 description 15
- 238000000576 coating method Methods 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 13
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 12
- 125000003860 C1-C20 alkoxy group Chemical group 0.000 description 11
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 10
- 239000007787 solid Substances 0.000 description 9
- 238000010345 tape casting Methods 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- 230000032258 transport Effects 0.000 description 6
- 125000000753 cycloalkyl group Chemical group 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 5
- 125000005843 halogen group Chemical group 0.000 description 5
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 5
- FNQJDLTXOVEEFB-UHFFFAOYSA-N 1,2,3-benzothiadiazole Chemical group C1=CC=C2SN=NC2=C1 FNQJDLTXOVEEFB-UHFFFAOYSA-N 0.000 description 4
- CSNIZNHTOVFARY-UHFFFAOYSA-N 1,2-benzothiazole Chemical compound C1=CC=C2C=NSC2=C1 CSNIZNHTOVFARY-UHFFFAOYSA-N 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- XREDBMQNKAWFGA-UHFFFAOYSA-N 2,3,3a,4-tetrahydro-1h-isoindole Chemical group C1=CCC2CNCC2=C1 XREDBMQNKAWFGA-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 3
- BDEOXDSSZJCZPE-UHFFFAOYSA-N [1,3]thiazolo[4,5-d][1,3]thiazole Chemical group N1=CSC2=C1N=CS2 BDEOXDSSZJCZPE-UHFFFAOYSA-N 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical group C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 3
- DIXJPGXAQDVTHK-UHFFFAOYSA-N cyclopenta[d]dithiazole Chemical group S1SC2=CC=CC2=N1 DIXJPGXAQDVTHK-UHFFFAOYSA-N 0.000 description 3
- 238000003618 dip coating Methods 0.000 description 3
- 238000007756 gravure coating Methods 0.000 description 3
- 125000002883 imidazolyl group Chemical group 0.000 description 3
- 238000007641 inkjet printing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 125000002971 oxazolyl group Chemical group 0.000 description 3
- 238000013082 photovoltaic technology Methods 0.000 description 3
- 125000000714 pyrimidinyl group Chemical group 0.000 description 3
- 238000007761 roller coating Methods 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 125000000355 1,3-benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical class [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- PBAJOOJQFFMVGM-UHFFFAOYSA-N [Cu]=O.[Sr] Chemical class [Cu]=O.[Sr] PBAJOOJQFFMVGM-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 2
- TWEILHAJXWAJIW-UHFFFAOYSA-N benzo[e][1,2,3]benzothiadiazole Chemical group C1=CC2=CC=CC=C2C2=C1SN=N2 TWEILHAJXWAJIW-UHFFFAOYSA-N 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 238000006880 cross-coupling reaction Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 125000004986 diarylamino group Chemical group 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical group C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- MABNMNVCOAICNO-UHFFFAOYSA-N selenophene Chemical group C=1C=C[se]C=1 MABNMNVCOAICNO-UHFFFAOYSA-N 0.000 description 2
- 150000003967 siloles Chemical group 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- XRFHCHCLSRSSPQ-UHFFFAOYSA-N strontium;oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[O-2].[Ti+4].[Sr+2] XRFHCHCLSRSSPQ-UHFFFAOYSA-N 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- DTDZVQXOCHUQLZ-UHFFFAOYSA-N thiadiazolo[5,4-f]quinoxaline Chemical group C1=CC2=NC=CN=C2C2=C1N=NS2 DTDZVQXOCHUQLZ-UHFFFAOYSA-N 0.000 description 2
- YJSKZIATOGOJEB-UHFFFAOYSA-N thieno[2,3-b]pyrazine Chemical group C1=CN=C2SC=CC2=N1 YJSKZIATOGOJEB-UHFFFAOYSA-N 0.000 description 2
- LWRYDHOHXNQTSK-UHFFFAOYSA-N thiophene oxide Chemical group O=S1C=CC=C1 LWRYDHOHXNQTSK-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- PDQRQJVPEFGVRK-UHFFFAOYSA-N 2,1,3-benzothiadiazole Chemical group C1=CC=CC2=NSN=C21 PDQRQJVPEFGVRK-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 229910000619 316 stainless steel Inorganic materials 0.000 description 1
- 125000004487 4-tetrahydropyranyl group Chemical group [H]C1([H])OC([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical group [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 241000208202 Linaceae Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical group OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- UMHFSEWKWORSLP-UHFFFAOYSA-N thiophene 1,1-dioxide Chemical group O=S1(=O)C=CC=C1 UMHFSEWKWORSLP-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H01L51/4253—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H01L27/302—
-
- H01L51/4226—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/151—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
- H10K30/57—Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
-
- H01L2251/308—
-
- H01L31/0725—
-
- H01L51/0036—
-
- H01L51/0037—
-
- H01L51/0039—
-
- H01L51/0043—
-
- H01L51/0047—
-
- H01L51/441—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/115—Polyfluorene; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/211—Fullerenes, e.g. C60
- H10K85/215—Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the invention relates to tandem photovoltaic cells having a recombination layer, as well as related systems, methods, and components.
- Photovoltaic cells are commonly used to transfer energy in the form of light into energy in the form of electricity.
- a typical photovoltaic cell includes a photoactive material disposed between two electrodes. Generally, light passes through one or both of the electrodes to interact with the photoactive material to generate electricity. As a result, the ability of one or both of the electrodes to transmit light (e.g., light at one or more wavelengths absorbed by a photoactive material) can limit the overall efficiency of a photovoltaic cell.
- a film of semiconductive material e.g., indium tin oxide
- the semiconductive material can transmit more light than many electrically conductive materials.
- Photovoltaic technology is also viewed by many as being an environmentally friendly energy technology.
- the material and manufacturing costs of a photovoltaic system should be recoverable over some reasonable time frame. But, in some instances the costs (e.g., due to materials and/or manufacture) associated with practically designed photovoltaic systems have restricted their availability and use.
- the invention relates to tandem photovoltaic cells having a recombination layer, as well as related systems, methods, and components.
- this invention features a system that includes first and second electrodes, a recombination layer between the first and second electrodes, a first photoactive layer between the first electrode and the recombination layer, and a second photoactive layer between the second electrode and the recombination layer.
- the recombination layer includes a semiconductor material.
- the system is configured as a photovoltaic system.
- this invention features a system that include first and second electrodes, first and second photoactive layers between the first and second electrodes, and a third layer between the first and second photoactive layers.
- the first photoactive layer includes a first semiconductor material and the second photoactive layer includes a second semiconductor material.
- the third layer includes a third semiconductor material different from the first or second semiconductor material.
- the system is configured as a photovoltaic system.
- this invention features a system that includes first and second electrodes, first and second photoactive layers between the first and second electrodes, a third layer including an n-type semiconductor material, and a fourth layer include an p-type semiconductor material.
- the first photoactive layer is between the first electrode and the third layer, which is between the first and second photoactive layers.
- the second photoactive layer is between the second electrode and the fourth layer, which is between the second photoactive layer and the third layer.
- the system is configured as a photovoltaic system.
- this invention features a system that includes first and second electrodes, a recombination layer between the first and second electrodes, a first photoactive layer between the first electrode and the recombination layer, and a second photoactive layer between the second electrode and the recombination layer. At least one of the first and second electrodes includes a mesh electrode.
- the recombination layer includes a semiconductor material.
- the system is configured as a photovoltaic system.
- this invention features a method that includes preparing a photovoltaic system having a recombination layer by a roll-to-roll process.
- Embodiments can include one or more of the following features.
- the semiconductor material in the recombination layer includes a p-type semiconductor material and an n-type semiconductor material.
- the p-type semiconductor material includes a polymer selected from the group consisting of polythiophenes (e.g., poly(3,4-ethylene dioxythiophene) (PEDOT)), polyanilines, polyvinylcarbazoles, polyphenylenes, polyphenylvinylenes, polysilanes, polythienylenevinylenes, polyisothianaphthanenes, polycyclopentadithiophenes, polysilacyclopentadithiophenes, polycyclopentadithiazoles, polythiazolothiazoles, polythiazoles, polybenzothiadiazoles, poly(thiophene oxide)s, poly(cyclopentadithiophene oxide)s, polythiadiazoloquinoxalines, polybenzoisothiazoles, polybenzothiazoles, polythienothiophenes, poly(thienothiophene oxide)s, polydithienothi
- the p-type semiconductor material includes a metal oxide.
- the metal oxide can include an oxide selected from the group consisting of copper oxides, strontium copper oxides, and strontium titanium oxides.
- the p-type semiconductor material includes a p-doped metal oxide (e.g., p-doped zinc oxides or p-doped titanium oxides).
- the n-type semiconductor material includes a metal oxide.
- the metal oxide can include an oxide selected from the group consisting of titanium oxides, zinc oxides, oxides, molybdenum oxides, and combinations thereof.
- the n-type semiconductor material includes a material selected from the group consisting of fullerenes, inorganic nanoparticles, oxadiazoles, discotic liquid crystals, carbon nanorods, inorganic nanorods, polymers containing CN groups, polymers containing CF 3 groups, and combinations thereof.
- the p-type and n-type semiconductor materials are blended into one layer.
- the recombination layer includes two layers, one layer including the p-type semiconductor material and the other layer including the n-type semiconductor material.
- the first or second photoactive layer includes an electron donor material and an electron acceptor material.
- the electron donor material includes a polymer selected from the group consisting of polythiophenes, polyanilines, polyvinylcarbazoles, polyphenylenes, polyphenylvinylenes, polysilanes, polythienylenevinylenes, polyisothianaphthanenes, polycyclopentadithiophenes, polysilacyclopentadithiophenes, polycyclopentadithiazoles, polythiazolothiazoles, polythiazoles, polybenzothiadiazoles, poly(thiophene oxide)s, poly(cyclopentadithiophene oxide)s, polythiadiazoloquinoxaline, polyzoisothiazole, benzoisothiazole, polybenzothiazole, polythienothiophene, poly(thienothiophene oxide), polydithienothiophene, poly(dithienothiophene oxide)s, polyt
- the electron donor material can include a polymer selected from the group consisting of polythiophenes (e.g., poly(3-hexylthiophene) (P3HT)), polycyclopentadithiophenes (e.g., poly(cyclopentadithiophene-co-benzothiadiazole)), and copolymers thereof.
- polythiophenes e.g., poly(3-hexylthiophene) (P3HT)
- P3HT poly(3-hexylthiophene)
- polycyclopentadithiophenes e.g., poly(cyclopentadithiophene-co-benzothiadiazole)
- the electron acceptor material includes a material selected from the group consisting of fullerenes, inorganic nanoparticles, oxadiazoles, discotic liquid crystals, carbon nanorods, inorganic nanorods, polymers containing CN groups, polymers containing CF 3 groups, and combinations thereof.
- the electron acceptor material can include a substituted fullerene (e.g., C61-phenyl-butyric acid methyl ester (PCBM)).
- the first photoactive layer has a first band gap and the second photoactive layer has a second band gap different from the first band gap.
- the system further includes a hole carrier layer between the first photoactive layer and the first electrode.
- the hole carrier layer can include a polymer selected from the group consisting of polythiophenes, polyanilines, polyvinylcarbazoles, polyphenylenes, polyphenylvinylenes, polysilanes, polythienylenevinylenes, polyisothianaphthanenes, and copolymers thereof.
- the system further includes a hole blocking layer between the second photoactive layer and the second electrode.
- the hole blocking layer can include a material selected from the group consisting of LiF, metal oxides, and combinations thereof.
- the system includes a tandem photovoltaic cell.
- the method further includes disposing the recombination layer onto a photoactive layer.
- the disposing can include disposing a first layer containing a first semiconductor material onto the photoactive layer and disposing a second layer containing a second semiconductor material different from the first semiconductor onto the first layer.
- one of the first and second semiconductor materials is an n-type semiconductor material and the other of the first and second semiconductor materials is a p-type semiconductor material.
- the recombination layer is disposed on the photoactive layer using at least one process selected from the group consisting of solution coating, ink jet printing, spin coating, dip coating, knife coating, bar coating, spray coating, roller coating, slot coating, gravure coating, and screen printing.
- Embodiments can provide one or more of the following advantages.
- the recombination layer can be prepared by using a solution process that can be readily used in a continuous roll-to-roll process. Such a process can significantly reduce the cost of preparing a photovoltaic cell.
- the photoactive layer can include a low band gap electron donor material, such as a polymer having an absorption wavelength at the red and near IR regions (e.g., 650-800 nm) of the electromagnetic spectrum, which is not accessible by most other conventional polymers.
- a low band gap electron donor material such as a polymer having an absorption wavelength at the red and near IR regions (e.g., 650-800 nm) of the electromagnetic spectrum, which is not accessible by most other conventional polymers.
- the first and second photoactive layers have different band gaps.
- light not absorbed by one photoactive layer can be absorbed by another photoactive layer, thereby increasing the efficiency of the photovoltaic cell.
- FIG. 1 is a cross-sectional view of an embodiment of a tandem photovoltaic cell.
- FIG. 2 is an elevational view of an embodiment of a mesh electrode.
- FIG. 3 is a cross-sectional view of the mesh electrode of FIG. 2 .
- FIG. 4 is a cross-sectional view of another embodiment of a tandem photovoltaic cell.
- FIG. 1 shows a tandem photovoltaic cell 100 having a cathode 110 , a hole carrier layer 120 , a photoactive layer 130 , a recombination layer 140 , a photoactive layer 150 , a hole blocking layer 160 , an anode 170 , and an external load 180 connected to photovoltaic cell 100 via cathode 110 and anode 170 .
- a recombination layer refers to a layer in a tandem cell where the electrons generated from a first cell recombine with the holes generated from a second cell.
- Recombination layer 140 typically includes a p-type semiconductor material and an n-type semiconductor material.
- n-type semiconductor materials selectively transport electrons and p-type semiconductor materials selectively transport holes.
- electrons generated from the first cell recombine with holes generated from the second cell at the interface of the n-type and p-type semiconductor materials.
- the p-type semiconductor material includes a polymer and/or a metal oxide.
- p-type semiconductor polymers include polythiophenes (e.g., poly(3,4-ethylene dioxythiophene) (PEDOT)), polyanilines, polyvinylcarbazoles, polyphenylenes, polyphenylvinylenes, polysilanes, polythienylenevinylenes, polyisothianaphthanenes, polycyclopentadithiophenes, polysilacyclopentadithiophenes, polycyclopentadithiazoles, polythiazolothiazoles, polythiazoles, polybenzothiadiazoles, poly(thiophene oxide)s, poly(cyclopentadithiophene oxide)s, polythiadiazoloquinoxaline, polybenzoisothiazole, polybenzothiazole, polythienothiophene, poly(thienothiophene oxide),
- the metal oxide can be an intrinsic p-type semiconductor (e.g., copper oxides, strontium copper oxides, or strontium titanium oxides) or a metal oxide that forms a p-type semiconductor after doping with a dopant (e.g., p-doped zinc oxides or p-doped titanium oxides).
- a dopant e.g., p-doped zinc oxides or p-doped titanium oxides.
- dopants includes salts or acids of fluoride, chloride, bromide, and iodide.
- the metal oxide can be used in the form of nanoparticles.
- the n-type semiconductor material includes a metal oxide, such as titanium oxides, zinc oxides, tungsten oxides, molybdenum oxides, and combinations thereof.
- the metal oxide can be used in the form of nanoparticles.
- the n-type semiconductor material includes a material selected from the group consisting of fullerenes, inorganic nanoparticles, oxadiazoles, discotic liquid crystals, carbon nanorods, inorganic nanorods, polymers containing CN groups, polymers containing CF 3 groups, and combinations thereof.
- the p-type and n-type semiconductor materials are blended into one layer.
- the recombination layer includes two layers, one layer including the p-type semiconductor material and the other layer including the n-type semiconductor material.
- recombination layer 140 includes at least about 30 wt % (e.g., at least about 40 wt % or at least about 50 wt %) and/or at most about 70 wt % (e.g., at most about 60 wt % or at most about 50 wt %) of the p-type semiconductor material. In some embodiments, recombination layer 140 includes at least about 30 wt % (e.g., at least about 40 wt % or at least about 50 wt %) and/or at most about 70 wt % (e.g., at most about 60 wt % or at most about 50 wt %) of the n-type semiconductor material.
- Recombination layer 140 generally has a sufficient thickness so that the layers underneath are protected from any solvent applied onto recombination layer 140 .
- recombination layer 140 can have a thickness at least about 10 nm (e.g., at least about 20 nm, at least about 50 nm, or at least about 100 nm) and/or at most about 500 nm (e.g., at most about 200 nm, at most about 150 nm, or at most about 100 nm).
- recombination layer 140 is substantially transparent.
- recombination layer 140 can transmit at least about 70% (e.g., at least about 75%, at least about 80%, at least about 85%, or at least about 90%) of incident light at a wavelength or a range of wavelengths (e.g., from about 350 nm to about 1,000 nm) used during operation of the photovoltaic cell.
- Recombination layer 140 generally has a sufficiently low resistivity. In some embodiments, recombination layer 140 has a resistivity of at most about 1 ⁇ 10 5 ohm/square, (e.g., at most about 2 ⁇ 10 5 ohm/square, at most about 5 ⁇ 10 5 ohm/square, or at most about 1 ⁇ 10 6 ohm/square).
- recombination layer 140 can be considered as a common electrode between two sub-cells (one including cathode 110 , hole carrier layer 120 , and photoactive layer 130 , and the other include photoactive layer 150 , hole blocking layer 160 , and anode 170 ) in photovoltaic cells 100 .
- Cathode 110 is generally formed of an electrically conductive material.
- electrically conductive materials include electrically conductive metals, electrically conductive alloys, and electrically conductive polymers.
- Exemplary electrically conductive metals include gold, silver, copper, aluminum, nickel, palladium, platinum and titanium.
- Exemplary electrically conductive alloys include stainless steel (e.g., 332 stainless steel, 316 stainless steel), alloys of gold, alloys of silver, alloys of copper, alloys of aluminum, alloys of nickel, alloys of palladium, alloys of platinum and alloys of titanium.
- Exemplary electrically conducting polymers include polythiophenes (e.g., PEDOT), polyanilines (e.g., doped polyanilines), polypyrroles (e.g., doped polypyrroles). In some embodiments, combinations of electrically conductive materials are used.
- cathode 110 can include a mesh electrode.
- mesh electrodes are described in commonly owned co-pending U.S. Patent Application Publication Nos. 20040187911 and 20060090791, the contents of which are hereby incorporated by reference.
- FIGS. 2 and 3 shows a mesh cathode 110 that includes solid regions 112 and open regions 114 .
- regions 112 are formed of electrically conducting material so that mesh cathode 110 can allow light to pass therethrough via, regions 114 and conduct electrons via regions 112 .
- the area of mesh cathode 110 occupied by open regions 114 can be selected as desired.
- the open area of mesh cathode 110 is at least about 10% (e.g., at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%) and/or at most about 99% (e.g., at most about 95%, at most about 90%, at most about 85%) of the total area of mesh cathode 110 .
- Mesh cathode 110 can be prepared in various ways.
- mesh cathode 110 is a woven mesh formed by weaving wires of material that form solid regions 112 .
- the wires can be woven using, for example, a plain weave, a Dutch, weave, a twill weave, a Dutch twill weave, or combinations thereof.
- mesh cathode 110 is formed of a welded wire mesh.
- mesh cathode 110 is an expanded mesh formed.
- An expanded metal mesh can be prepared, for example, by removing regions 114 (e.g., via laser removal, via chemical etching, via puncturing) from a sheet of material (e.g., an electrically conductive material, such as a metal), followed by stretching the sheet (e.g., stretching the sheet in two dimensions).
- mesh cathode 110 is a metal sheet formed by removing regions 114 (e.g., via, laser removal, via chemical etching, via, puncturing) without subsequently stretching the sheet.
- solid regions 112 are formed entirely of an electrically conductive material (e.g., regions 112 are formed of a substantially homogeneous material that is electrically conductive), such as those described above. In some embodiments, solid regions 112 can have a resistivity less than about 3 ohm per square.
- solid regions 112 are formed of a first material that is coated with a second material different from the first material (e.g., using metallization, using vapor deposition).
- the first material can be formed of any desired material (e.g., an electrically insulative material, an electrically conductive material, or a semiconductive material), and the second material is an electrically conductive material.
- electrically insulative material from which the first material can be formed include textiles, optical fiber materials, polymeric materials (e.g., a nylon) and natural materials (e.g., flax, cotton, wool, silk).
- electrically conductive materials from which the first material can be formed include the electrically conductive materials disclosed above.
- the first material is in the form of a fiber
- the second material is an electrically conductive material that is coated on the first material.
- the first material is in the form of a mesh (see discussion above) that, after being formed into a mesh, is coated with the second material.
- the first material can be an expanded metal mesh
- the second material can be PEDOT that is coated on the expanded metal mesh.
- the maximum thickness of mesh cathode 110 should be less than the total thickness of hole carrier layer 120 .
- the maximum thickness of mesh cathode 110 is at least 0.1 micron (e.g., at least about 0.2 micron, at least about 0.3 micron, at least about 0.4 micron, at least about 0.5 micron, at least about 0.6 micron, at least about 0.7 micron, at least about 0.8 micron, at least about 0.9 micron, at least about one micron) and/or at most about 10 microns (e.g., at most about nine microns, at most about eight microns, at most about seven microns, at most about six microns, at most about five microns, at most about four microns, at most about three microns, at most about two microns).
- open regions 114 can generally have any desired shape (e.g., square, circle, semicircle, triangle, diamond, ellipse, trapezoid, irregular shape). In some embodiments, different open regions 114 in mesh cathode 110 can have different shapes.
- solid regions 112 can generally have any desired shape (e.g., rectangle, circle, semicircle, triangle, diamond, ellipse, trapezoid, irregular shape).
- different solid regions 112 in mesh cathode 110 can have different shapes.
- the cross-section can have a diameter in the range of about 5 microns to about 200 microns.
- the cross-section can have a height in the range of about 0.1 micron to about 5 microns and a width in the range of about 5 microns to about 200 microns.
- mesh cathode 110 is flexible (e.g., sufficiently flexible to be incorporated in photovoltaic cell 100 using a continuous, roll-to-roll manufacturing process). In certain embodiments, mesh cathode 110 is semi-rigid or inflexible. In some embodiments, different regions of mesh cathode 110 can be flexible, semi-rigid or inflexible (e.g., one or more regions flexible and one or more different regions semi-rigid, one or more regions flexible and one or more different regions inflexible).
- mesh electrode 110 can be disposed on a substrate. In some embodiments, mesh electrode 110 can be partially embedded in the substrate.
- Hole carrier layer 120 is generally formed of a material that, at the thickness used in photovoltaic cell 100 , transports holes to cathode 110 and substantially blocks the transport of electrons to cathode 110 .
- materials from which layer 120 can be formed include polythiophenes (e.g., PEDOT), polyanilines, polyvinylcarbazoles, polyphenylenes, polyphenylvinylenes, polysilanes, polythienylenevinylenes, polyisothianaphthanenes, and copolymers thereof.
- hole carrier layer 120 can include combinations of hole carrier materials.
- the thickness of hole carrier layer 120 (i.e., the distance between the surface of hole carrier layer 120 in contact with first photoactive layer 130 and the surface of cathode 110 in contact with hole carrier layer 120 ) can be varied as desired.
- the thickness of hole carrier layer 120 is at least 0.01 micron (e.g., at least about 0.05 micron, at least about 0.1 micron, at least about 0.2 micron, at least about 0.3 micron, or at least about 0.5 micron) and/or at most about five microns (e.g., at most about three microns, at most about two microns, or at most about one micron).
- the thickness of hole carrier layer 120 is from about 0.01 micron to about 0.5 micron.
- Each of photoactive layers 130 and 150 generally contains an electron acceptor material and an electron donor material.
- electron acceptor materials include fullerenes, oxadiazoles, carbon nanorods, discotic liquid crystals, inorganic nanoparticles (e.g., nanoparticles formed of zinc oxide, tungsten oxide, indium phosphide, cadmium selenide and/or lead sulphide), inorganic nanorods (e.g., nanorods formed of zinc oxide, tungsten oxide, indium phosphide, cadmium selenide and/or lead sulphide), or polymers containing moieties capable of accepting electrons or forming stable anions (e.g., polymers containing CN groups, polymers containing CF 3 groups).
- the electron acceptor material is a substituted fullerene (e.g., PCBM).
- a combination of electron acceptor materials can be used in photoactive layer 130 or 150 .
- electron donor materials include conjugated polymers, such as polythiophenes, polyanilines, polyvinylcarbazoles, polyphenylenes, polyphenylvinylenes, polysilanes, polythienylenevinylenes, polyisothianaphthanenes, polycyclopentadithiophenes, polysilacyclopentadithiophenes, polycyclopentadithiazoles, polythiazolothiazoles, polythiazoles, polybenzothiadiazoles, poly(thiophene oxide)s, poly(cyclopentadithiophene oxide)s, polythiadiazoloquinoxalines, polybenzoisothiazoles, polybenzothiazoles, polythienothiophenes, poly(thienothiophene oxide)s, polydithienothiophenes, poly(dithienothiophene oxide)s, polytetrahydroisoindoles, and
- the electron donor material can be polythiophenes (e.g., poly(3-hexylthiophene)), polycyclopentadithiophenes, and copolymers thereof.
- a combination of electron donor materials can be used in photoactive layer 130 or 150 .
- the electron donor materials or the electron acceptor materials can include a polymer having a first comonomer repeat unit and a second comonomer repeat unit different from the first comonomer repeat unit.
- the first comonomer repeat unit can include a cyclopentadithiophene moiety, a silacyclopentadithiophene moiety, a cyclopentadithiazole moiety, a thiazolothiazole moiety, a thiazole moiety, a benzothiadiazole moiety, a thiophene oxide moiety, a cyclopentadithiophene oxide moiety, a polythiadiazoloquinoxaline moiety, a benzoisothiazole moiety, a benzothiazole moiety, a thienothiophene moiety, a thienothiophene oxide moiety, a dithienothiophene moiety, a dithieno
- the first comonomer repeat unit includes a cyclopentadithiophene moiety.
- the cyclopentadithiophene moiety is substituted with at least one substituent selected from the group consisting of C 1 -C 20 alkyl, C 1 -C 20 alkoxy, C 3 -C 20 cycloalkyl, C 1 -C 20 heterocycloalkyl, aryl, heteroaryl, halo, CN, OR, C(O)R, C(O)OR, and SO 2 R; R being H, C 1 -C 20 alkyl, C 1 -C 20 alkoxy, aryl, heteroaryl, C 3 -C 20 cycloalkyl, or C 1 -C 20 heterocycloalkyl.
- the cyclopentadithiophene moiety can be substituted with hexyl, 2-ethylhexyl, or 3,7-dimethyloctyl.
- the cyclopentadithiophene moiety is substituted at 4-position.
- the first comonomer repeat unit can include a cyclopentadithiophene moiety of formula (1):
- each of R 1 and R 2 independently, can be hexyl, 2-ethylhexyl, or 3,7-dimethyloctyl.
- An alkyl can be saturated or unsaturated and branch or straight chained.
- a C 1 -C 20 alkyl contains 1 to 20 carbon atoms (e.g., one, two, three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 carbon atoms).
- alkyl moieties include —CH 3 , —CH 2 —, —CH ⁇ CH 2 —, —CH 2 —CH ⁇ CH 2 , and branched —C 3 H 7 .
- An alkoxy can be branch or straight chained and saturated or unsaturated.
- An C 1 -C 20 alkoxy contains an oxygen radical and 1 to 20 carbon atoms (e.g., one, two, three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 carbon atoms).
- alkoxy moieties include —OCH 3 and —OCH ⁇ CH—CH 3 .
- a cycloalkyl can be either saturated or unsaturated.
- a C 3 -C 20 cycloalkyl contains 3 to 20 carbon atoms (e.g., three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 carbon atoms).
- cycloalkyl moieties include cyclohexyl and cyclohexen-3-yl.
- a heterocycloalkyl can also be either saturated or unsaturated.
- a C 3 -C 20 heterocycloalkyl contains at least one ring heteroatom (e.g., O, N, and S) and 3 to 20 carbon atoms (e.g., three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 carbon atoms).
- heterocycloalkyl moieties include 4-tetrahydropyranyl and 4-pyranyl.
- An aryl can contain one or more aromatic rings.
- aryl moieties include phenyl, phenylene, naphthyl, naphthylene, pyrenyl, anthryl, and phenanthryl.
- a heteroaryl can contain one or more aromatic rings, at least one of which contains at least one ring heteroatom (e.g., O, N, and S).
- heteroaryl moieties include furyl, furylene, fluorenyl, pyrrolyl, thienyl, oxazolyl, imidazolyl, thiazolyl, pyridyl, pyrimidinyl, quinazolinyl, quinolyl, isoquinolyl, and indolyl.
- Alkyl, alkoxy, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl mentioned herein include both substituted and unsubstituted moieties, unless specified otherwise.
- substituents on cycloalkyl, heterocycloalkyl, aryl, and heteroaryl include C 1 -C 20 alkyl, C 3 -C 20 cycloalkyl, C 1 -C 20 alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, amino, C 1 -C 10 alkylamino, C 1 -C 20 dialkylamino, arylamino, diarylamino, diarylamino, hydroxyl, halogen, thio, C 1 -C 10 alkylthio, arylthio, C 1 -C 10 alkylsulfonyl, arylsulfonyl, cyano, nitro, acyl, acyloxy, carboxyl, and carboxy
- the second comonomer repeat unit can include a benzothiadiazole moiety, a thiadiazoloquinoxaline moiety, a cyclopentadithiophene oxide moiety, a benzoisothiazole moiety, a benzothiazole moiety, a thiophene oxide moiety, a thienothiophene moiety, a thienothiophene oxide moiety, a dithienothiophene moiety, a dithienothiophene oxide moiety, a tetrahydroisoindole moiety, a fluorene moiety, a silole moiety, a cyclopentadithiophene moiety, a fluorenone moiety, a thiazole moiety, a selenophene moiety, a thiazolothiazole moiety, a cyclopentadithiazole moiety, a naphtho
- the second comonomer repeat unit can include a benzothiadiazole moiety of formula (2), a thiadiazoloquinoxaline moiety of formula (3), a cyclopentadithiophene dioxide moiety of formula (4), a cyclopentadithiophene monoxide moiety of formula (5), a benzoisothiazole moiety of formula (6), a benzothiazole moiety of formula (7), a thiophene dioxide moiety of formula (8), a cyclopentadithiophene dioxide moiety of formula (9), a cyclopentadithiophene tetraoxide moiety of formula (10), a thienothiophene moiety of formula (11), a thienothiophene tetraoxide moiety of formula (12), a dithienothiophene moiety of formula (13), a dithienothiophene dioxide moiety of formula (14),
- each of X and Y is CH 2 , O, or S; each of R 5 and R 6 , independently, is H, C 1 -C 20 alkyl, C 1 -C 20 alkoxy, C 3 -C 20 cycloalkyl, C 1 -C 20 heterocycloalkyl, aryl, heteroaryl, halo, CN, OR, C(O)R, C(O)OR, or SO 2 R, in which R is H, C 1 -C 20 alkyl, C 1 -C 20 alkoxy, aryl, heteroaryl, C 3 -C 20 cycloalkyl, or C 1 -C 20 heterocycloalkyl; and each of R 7 and R 8 , independently, is H, C 1 -C 20 alkyl, C 1 -C 20 alkoxy, aryl, heteroaryl, C 3 -C 20 cycloalkyl, or C 3 -C 20 heterocycloalkyl.
- each of R 5 and R 6 independently, is
- the second comonomer repeat unit can include at least three thiophene moieties.
- at least one of the thiophene moieties is substituted with at least one substituent selected from the group consisting of C 1 -C 20 alkyl, C 1 -C 20 alkoxy, aryl, heteroaryl, C 3 -C 20 cycloalkyl, and C 3 -C 20 heterocycloalkyl.
- the second comonomer repeat unit includes five thiophene moieties.
- the polymer can further include a third comonorner repeat unit that contains a thiophene moiety or a fluorene moiety.
- the thiophene or fluorene moiety is substituted with at least one substituent selected from the group consisting of C 1 -C 20 alkyl, C 1 -C 20 alkoxy, aryl, heteroaryl, C 3 -C 20 cycloalkyl, and C 3 -C 20 heterocycloalkyl.
- the polymer can be formed by any combination of the first, second, and third comonomer repeat units. In certain embodiments, the polymer can be a homopolymer containing any of the first, second, and third comonomer repeat units.
- n can be an integer greater than 1.
- the monomers for preparing the polymers mentioned herein may contain a non-aromatic double bond and one or more asymmetric centers. Thus, they can occur as racemates and racemic mixtures, single enantiomers, individual diastereomers, diastereomeric mixtures, and cis- or trans-isomeric forms. All such isomeric forms are contemplated.
- a copolymer can be prepared by methods known in the art, such as those described in commonly owned co-pending U.S. application Ser. No. 11/601,374, the contents of which are hereby incorporated by reference.
- a copolymer can be prepared by a cross-coupling reaction between one or more comonomers containing two alkylstannyl groups and one or more comonomers containing two halo groups in the presence of a transition metal catalyst.
- a copolymer can be prepared by a cross-coupling reaction between one or more comonomers containing two borate groups and one or more comonomers containing two halo groups in the presence of a transition metal catalyst.
- the comonomers can be prepared by the methods described herein or by the methods know in the art, such as those described in U.S. patent application Ser. No. 11/486,536, Coppo et al., Macromolecules 2003, 36, 2705-2711 and Kurt et al., J. Heterocycl. Chem. 1970, 6, 629, the contents of which are hereby incorporated by reference.
- an advantage of the polymers described above is that their absorption wavelengths shift toward the red and near IR regions (e.g., 650-800 nm) of the electromagnetic spectrum, which is not accessible by most other conventional polymers.
- a polymer When such a polymer is incorporated into a photovoltaic cell together with a conventional polymer, it enables the cell to absorb the light in this region of the spectrum, thereby increasing the current and efficiency of the cell.
- photoactive layer 130 has a first band gap and photoactive layer 150 has a second band gap different from the first band gap. In such embodiments, light not absorbed by one photoactive layer can be absorbed by another photoactive layer, thereby increasing the efficiency of photovoltaic cell 100 .
- photoactive layer 130 or 150 is sufficiently thick to be relatively efficient at absorbing photons impinging thereon to form corresponding electrons and holes, and sufficiently thin to be relatively efficient at transporting the holes and electrons.
- photoactive layer 130 or 150 is at least 0.05 micron (e.g., at least about 0.1 micron, at least about 0.2 micron, at least about 0.3 micron) thick and/or at most about one micron (e.g., at most about 0.5 micron, at most about 0.4 micron) thick.
- photoactive layer 130 or 150 is from about 0.1 micron to about 0.2 micron thick.
- photoactive layer 130 or 150 can be formed by using a suitable process, such as solution coating, ink jet printing, spin coating, dip coating, knife coating, bar coating, spray coating, roller coating, slot coating, gravure coating, or screen printing.
- a suitable process such as solution coating, ink jet printing, spin coating, dip coating, knife coating, bar coating, spray coating, roller coating, slot coating, gravure coating, or screen printing.
- Hole blocking layer 160 is generally formed of a material that, at the thickness used in photovoltaic cell 100 , transports electrons to anode 170 and substantially blocks the transport of holes to anode 170 .
- materials from which hole blocking layer 160 can be formed include LiF and metal oxides (e.g., zinc oxide, titanium oxide).
- hole blocking layer 160 is at least 0.02 micron (e.g., at least about 0.03 micron, at least about 0.04 micron, at least about 0.05 micron) thick and/or at most about 0.5 micron (e.g., at most about 0.4 micron, at most about 0.3 micron, at most about 0.2 micron, at most about 0.1 micron) thick.
- Anode 170 is generally formed of an electrically conductive material, such as one or more of the electrically conductive materials noted above. In some embodiments, anode 170 is formed of a combination of electrically conductive materials. In certain embodiments, anode 170 can be formed of a mesh electrode.
- tandem photovoltaic cell 100 achieves the highest efficiency when photoactive layers 130 and 150 generate substantially the same amount of current.
- FIG. 4 shows a tandem photovoltaic cell 400 having a cathode 410 , a hole carrier layer 420 , a photoactive layer 430 , a recombination layer 440 , a photoactive layer 450 , a hole blocking layer 460 , an anode 470 , and an external load 480 connected to photovoltaic cell 400 via cathode 410 and anode 470 .
- Recombination layer 440 includes a layer 442 that contains an an-type semiconductor material and a layer 444 that contains a p-type semiconductor material.
- recombination layer 440 can include a layer of mixed n-type and p-type semiconductor material at the interface of layer 442 and layer 444 .
- a two-layer recombination layer can be prepared by applying a layer of an n-type semiconductor material and a layer of a p-type semiconductor material separately.
- a layer of titanium oxide nanoparticles can be formed by (1) dispersing a precursor (e.g., a titanium salt) in a solvent (e.g., an anhydrous alcohol) to form a dispersion, (2) coating the dispersion on a photoactive layer, (3) hydrolyzing the dispersion to form a titanium oxide layer, and (4) drying the titanium oxide layer.
- a precursor e.g., a titanium salt
- a solvent e.g., an anhydrous alcohol
- a polymer layer can be formed by first dissolving the polymer in a solvent (e.g., an anhydrous alcohol) to form a solution and then coating the solution on a photoactive layer.
- a solvent e.g., an anhydrous alcohol
- a one-layer recombination layer can be prepared by applying a blend of an n-type semiconductor material and a p-type semiconductor material on photoactive layer.
- an n-type semiconductor and a p-type semiconductor can be first dispersed and/or dissolved in a solvent together to form a dispersion or solution and then coated the dispersion or solution on a photoactive layer to form a recombination layer.
- the coating process mentioned above can be achieved by using at least one process selected from the group consisting of solution coating, ink jet printing, spin coating, dip coating, knife coating, bar coating, spray coating, roller coating, slot coating, gravure coating, and screen printing.
- a tandem photovoltaic cell having the structure of ITO/TIO 2 /P3HT:PCBM/PEDOT/TiO2/P3HT:PCBM/PEDOT/Ag was prepared as follows.
- a substrate with ITO having a resistivity of 13 ohm/square
- Tetra-n-butyl-titanate (TYZOR; E. I. du Pont de Nemours and Company, Wilmington, Del.) diluted 1:199 in anhydrous isopropanol was applied onto the ITO via doctor-blading (40 mm/s; 600 ⁇ m slot at 40° C.) and hydrolyzed by distilled water.
- the coating thus obtained was dried for 10 minutes to give a titanium oxide layer having a thickness of 10 ⁇ 5 nm.
- a solution of poly-(3-hexylthiophen) (P3HT):C61-phenyl-butyric acid methyl ester (PCBM) in ortho-xylene (1.5 mg:1.2 mg:100 ⁇ l) was then applied onto the titanium oxide layer via doctor-blading (7.5 minis; 600 mm slot at 65° C.) to give a P3HT:PCBM layer having a thickness of 100 ⁇ 10 nm.
- a solution of PEDOT in isopropanol (1 ml:5 ml) was subsequently coated on the P3HT:PCBM layer via doctor-blading (2 ⁇ 5 mm/s; 150 ⁇ m slot at 85° C.) to give in a PEDOT layer of 30 ⁇ 10 mm.
- the device thus obtained was baked for 10 minutes at 140° C.
- tetra-n-butyl-titanate diluted 1:199 in anhydrous isopropanol was applied onto the PEDOT layer via doctor-blading (40 mm/s; 600 ⁇ m slot at 40° C.). The coating was hydrolyzed and dried for 10 minutes to give a second titanium oxide layer of 10 ⁇ 5 nm.
- the PEDOT layer and the second titanium oxide layer obtained above constituted as the recombination layer in the final tandem photovoltaic cell.
- a solution of P3HT:PCBM in ortho-xylene (1.5 mg:1.2 mg:100 ⁇ l) was then applied onto the second titanium oxide layer via doctor-blading (65 mm/s; 600 ⁇ m slot at 65° C.) to give a second P3HT:PCBM layer having a thickness of 300 ⁇ 30 nm.
- a solution of PEDOT in isopropanol (1 ml:5 ml) was applied onto the second P3HT:PCBM layer via doctor-blading (2 ⁇ 5 mm/s; 150 ⁇ m slot at 85° C.) to give a second PEDOT layer having a thickness of 30 ⁇ 10 nm.
- a 100 nm layer of silver was applied onto the second PEDOT layer via thermal evaporation (0.05-0.5 nm/s at 3 ⁇ 10.6 ⁇ 6 mbar) to give a tandem photovoltaic cell.
- a single photovoltaic cell having the structure of ITO/TiO 2 /P3HT:PCBM/PEDOT/Ag was also prepared.
- the titanium oxide layer, the P3HT:PCBM layer, the PEDOT layer, and the silver layer were prepared using the same methods described in the preceding paragraph.
- the tandem photovoltaic cell and single cell were tested for their properties.
- the open circuit voltage of both cells were measured at zero current using a Source Measurement Unit (SMU) Keithley 2400 when the device was illuminated by a solar simulator (Oriel) at 1 kW/m 2 Air Mass 1.5 global.
- SMU Source Measurement Unit
- Oriel solar simulator
- the results show that the open circuit voltage of the tandem photovoltaic cell was 1.025, twice as much as that of a single photovoltaic cell having the structure of ITO/TiO 2 P3H:PCBM/PEDOT/Ag.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Nanotechnology (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/920,486 US8975512B2 (en) | 2005-12-21 | 2013-06-18 | Tandem photovoltaic cells |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US75260805P | 2005-12-21 | 2005-12-21 | |
US79060606P | 2006-04-11 | 2006-04-11 | |
US79248506P | 2006-04-17 | 2006-04-17 | |
US79263506P | 2006-04-17 | 2006-04-17 | |
US79344206P | 2006-04-20 | 2006-04-20 | |
US79510306P | 2006-04-26 | 2006-04-26 | |
US79788106P | 2006-05-05 | 2006-05-05 | |
US79825806P | 2006-05-05 | 2006-05-05 | |
US11/643,271 US20070181179A1 (en) | 2005-12-21 | 2006-12-21 | Tandem photovoltaic cells |
US13/920,486 US8975512B2 (en) | 2005-12-21 | 2013-06-18 | Tandem photovoltaic cells |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/643,271 Continuation US20070181179A1 (en) | 2005-07-14 | 2006-12-21 | Tandem photovoltaic cells |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130276874A1 US20130276874A1 (en) | 2013-10-24 |
US8975512B2 true US8975512B2 (en) | 2015-03-10 |
Family
ID=38332768
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/643,271 Abandoned US20070181179A1 (en) | 2005-07-14 | 2006-12-21 | Tandem photovoltaic cells |
US13/920,486 Expired - Fee Related US8975512B2 (en) | 2005-12-21 | 2013-06-18 | Tandem photovoltaic cells |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/643,271 Abandoned US20070181179A1 (en) | 2005-07-14 | 2006-12-21 | Tandem photovoltaic cells |
Country Status (1)
Country | Link |
---|---|
US (2) | US20070181179A1 (en) |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7781673B2 (en) * | 2005-07-14 | 2010-08-24 | Konarka Technologies, Inc. | Polymers with low band gaps and high charge mobility |
US7772485B2 (en) * | 2005-07-14 | 2010-08-10 | Konarka Technologies, Inc. | Polymers with low band gaps and high charge mobility |
US20080006324A1 (en) * | 2005-07-14 | 2008-01-10 | Konarka Technologies, Inc. | Tandem Photovoltaic Cells |
US20070267055A1 (en) * | 2005-07-14 | 2007-11-22 | Konarka Technologies, Inc. | Tandem Photovoltaic Cells |
US20070131270A1 (en) * | 2005-07-14 | 2007-06-14 | Russell Gaudiana | Window with photovoltaic cell |
US20070181179A1 (en) | 2005-12-21 | 2007-08-09 | Konarka Technologies, Inc. | Tandem photovoltaic cells |
US8158881B2 (en) * | 2005-07-14 | 2012-04-17 | Konarka Technologies, Inc. | Tandem photovoltaic cells |
US8008424B2 (en) * | 2006-10-11 | 2011-08-30 | Konarka Technologies, Inc. | Photovoltaic cell with thiazole-containing polymer |
US8008421B2 (en) | 2006-10-11 | 2011-08-30 | Konarka Technologies, Inc. | Photovoltaic cell with silole-containing polymer |
US9112447B2 (en) * | 2006-11-03 | 2015-08-18 | Solera Laboratories, Inc. | Nano power cell and method of use |
US8319092B1 (en) | 2006-11-03 | 2012-11-27 | Solera Laboratories, Inc. | Nano power cell and method of use |
US20090139558A1 (en) * | 2007-11-29 | 2009-06-04 | Shunpei Yamazaki | Photoelectric conversion device and manufacturing method thereof |
EP2075850A3 (en) * | 2007-12-28 | 2011-08-24 | Semiconductor Energy Laboratory Co, Ltd. | Photoelectric conversion device and manufacturing method thereof |
EP2258007A2 (en) * | 2008-02-21 | 2010-12-08 | Konarka Technologies, Inc. | Tandem photovoltaic cells |
US20090229667A1 (en) * | 2008-03-14 | 2009-09-17 | Solarmer Energy, Inc. | Translucent solar cell |
US8455606B2 (en) * | 2008-08-07 | 2013-06-04 | Merck Patent Gmbh | Photoactive polymers |
CN102124046A (en) * | 2008-08-18 | 2011-07-13 | 加利福尼亚大学董事会 | Active materials for photoelectric devices and devices that use the materials |
US20100043873A1 (en) * | 2008-08-25 | 2010-02-25 | Yong Hyup Kim | Semiconducting devices and methods of making the same |
US8367798B2 (en) * | 2008-09-29 | 2013-02-05 | The Regents Of The University Of California | Active materials for photoelectric devices and devices that use the materials |
WO2010083161A1 (en) | 2009-01-13 | 2010-07-22 | Konarka Technologies, Inc. | Photovoltaic module |
EP2404333A2 (en) | 2009-03-05 | 2012-01-11 | Konarka Technologies, Inc. | Photovoltaic cell having multiple electron donors |
JP5877149B2 (en) | 2009-03-17 | 2016-03-02 | メルク パテント ゲーエムベーハー | Metal substrate for dye-sensitized photocell |
WO2010122433A2 (en) | 2009-04-22 | 2010-10-28 | Koninklijke Philips Electronics N.V. | Imaging measurement system with a printed organic photodiode array |
US20100276071A1 (en) * | 2009-04-29 | 2010-11-04 | Solarmer Energy, Inc. | Tandem solar cell |
GB0907445D0 (en) * | 2009-04-30 | 2009-06-10 | Cambridge Entpr Ltd | Photoresponsive devices |
WO2010138414A1 (en) | 2009-05-27 | 2010-12-02 | Konarka Technologies, Inc. | Reflective multilayer electrode |
US8440496B2 (en) * | 2009-07-08 | 2013-05-14 | Solarmer Energy, Inc. | Solar cell with conductive material embedded substrate |
US8372945B2 (en) | 2009-07-24 | 2013-02-12 | Solarmer Energy, Inc. | Conjugated polymers with carbonyl substituted thieno[3,4-B]thiophene units for polymer solar cell active layer materials |
US8399889B2 (en) | 2009-11-09 | 2013-03-19 | Solarmer Energy, Inc. | Organic light emitting diode and organic solar cell stack |
WO2011063103A1 (en) * | 2009-11-18 | 2011-05-26 | The Trustees Of Princeton University | Semiconductor coated microporous graphene scaffolds |
WO2011085004A2 (en) | 2010-01-05 | 2011-07-14 | Konarka Technologies, Inc. | Photovoltaic cell with benzodithiophene-containing polymer |
WO2011112701A1 (en) | 2010-03-09 | 2011-09-15 | Konarka Technologies, Inc. | Photovoltaic module containing buffer layer |
EP2599140A1 (en) | 2010-04-06 | 2013-06-05 | Merck Patent GmbH | Novel electrode |
WO2011160021A2 (en) | 2010-06-17 | 2011-12-22 | Konarka Technologies, Inc. | Fullerene derivatives |
EP2611880B1 (en) | 2010-09-02 | 2018-04-25 | Merck Patent GmbH | Novel photoactive polymer and photovoltaic cell containing the same |
US9012772B2 (en) * | 2010-10-22 | 2015-04-21 | Xerox Corporation | Photovoltaic device |
JP2012193338A (en) * | 2011-03-03 | 2012-10-11 | Sumitomo Chemical Co Ltd | Polymer and organic thin film and organic thin film element using the same |
WO2012149189A2 (en) | 2011-04-28 | 2012-11-01 | Konarka Technologies, Inc. | Novel photoactive polymers |
WO2012154557A2 (en) | 2011-05-09 | 2012-11-15 | Konarka Technologies, Inc. | Tandem photovoltaic cells |
JP2013058562A (en) | 2011-09-07 | 2013-03-28 | Semiconductor Energy Lab Co Ltd | Photoelectric conversion device |
US20130263925A1 (en) | 2012-04-05 | 2013-10-10 | Merck Patent Gmbh | Hole Carrier Layer For Organic Photovoltaic Device |
CN103258961B (en) * | 2012-12-26 | 2015-10-28 | 苏州大学 | Application of fullerene derivative with double hydrophobic groups in solar cell |
CN103258962B (en) * | 2013-04-25 | 2016-06-15 | 南昌大学 | A kind of method utilizing the induction organic solar batteries active layer crystallization of interfacial crystallization cushion |
KR20160102534A (en) * | 2013-12-26 | 2016-08-30 | 메르크 파텐트 게엠베하 | Photovoltaic cells |
CN104253222B (en) * | 2014-09-18 | 2017-10-10 | 浙江大学 | The intermediate connecting layer of organic series connection stacked solar cell, cascade solar cell and the efficient solar battery of composition |
DE102015005800A1 (en) * | 2015-05-06 | 2016-11-10 | Merck Patent Gmbh | Thiadiazolochinoxalinderivate |
WO2017057646A1 (en) | 2015-09-30 | 2017-04-06 | 株式会社カネカ | Multi-junction photoelectric conversion device and photoelectric conversion module |
CN109804481B (en) | 2016-10-05 | 2023-09-29 | 天光材料科技股份有限公司 | Organic photodetector |
US20180342631A1 (en) * | 2017-05-23 | 2018-11-29 | Fred A. KINGERY | Solar panel protective film |
EP3790918A4 (en) | 2018-05-05 | 2022-03-16 | Jason D. Azoulay | Open-shell conjugated polymer conductors, composites, and compositions |
US11781986B2 (en) | 2019-12-31 | 2023-10-10 | University Of Southern Mississippi | Methods for detecting analytes using conjugated polymers and the inner filter effect |
CN113526607A (en) * | 2020-04-16 | 2021-10-22 | 中国环境科学研究院 | Organic matter degradation synchronous heavy metal reduction photocatalysis electrode based on carbon dots and application |
US20220131098A1 (en) * | 2020-10-28 | 2022-04-28 | Samsung Electronics Co., Ltd. | Sensor and electronic device |
EP4012793A1 (en) | 2020-12-14 | 2022-06-15 | Raynergy Tek Incorporation | Photodiode |
Citations (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4292092A (en) | 1980-06-02 | 1981-09-29 | Rca Corporation | Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery |
US4416959A (en) | 1980-11-18 | 1983-11-22 | Terje Skotheim | Photoelectrochemical cells for conversion of solar energy to electricity |
US4574160A (en) | 1984-09-28 | 1986-03-04 | The Standard Oil Company | Flexible, rollable photovoltaic cell module |
US4639328A (en) | 1983-11-25 | 1987-01-27 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Thienothiophene derivatives |
US4686323A (en) | 1986-06-30 | 1987-08-11 | The Standard Oil Company | Multiple cell, two terminal photovoltaic device employing conductively adhered cells |
US4746618A (en) | 1987-08-31 | 1988-05-24 | Energy Conversion Devices, Inc. | Method of continuously forming an array of photovoltaic cells electrically connected in series |
US4795687A (en) | 1986-09-12 | 1989-01-03 | Mitsubishi Kasei Corp. | Electrically conductive material and a process for the preparation of same and secondary battery using the electrically conductive material |
US4913744A (en) | 1987-01-13 | 1990-04-03 | Helmut Hoegl | Solar cell arrangement |
US4948436A (en) | 1988-02-05 | 1990-08-14 | Siemens Aktiengesellschaft | Thin-film solar cell arrangement |
JPH0373382A (en) | 1989-08-14 | 1991-03-28 | Oji Paper Co Ltd | Manufacture of thermal recording material |
US5071490A (en) | 1988-03-18 | 1991-12-10 | Sharp Kabushiki Kaisha | Tandem stacked amorphous solar cell device |
JPH0492376A (en) | 1990-08-07 | 1992-03-25 | Japan Storage Battery Co Ltd | Sealed type lead storage battery |
JPH0511841A (en) | 1991-07-05 | 1993-01-22 | Toshiba Corp | Conveyance control method |
WO1993005077A3 (en) | 1991-09-12 | 1993-04-29 | Univ Texas | Substituted cyclopentadithiophene and low bandgap polymers therefrom |
US5221363A (en) | 1991-02-28 | 1993-06-22 | Lockheed Missiles & Space Company, Inc. | Solar cell window fitting |
JPH06166746A (en) | 1992-06-29 | 1994-06-14 | Shin Etsu Chem Co Ltd | Thiophene-silole copolymer and its production |
WO1994014199A1 (en) | 1992-12-14 | 1994-06-23 | United Solar Systems Corporation | Method for the manufacture of improved efficiency tandem photovoltaic device and device manufactured thereby |
JPH06278682A (en) | 1993-03-24 | 1994-10-04 | Osaka Shosen Mitsui Senpaku Kk | Unloading method and device for chip carrier |
US5536808A (en) | 1994-10-05 | 1996-07-16 | The Regents Of The University Of Michigan | Thiazole polymers and method of producing same |
WO1997005184A1 (en) | 1995-07-28 | 1997-02-13 | The Dow Chemical Company | 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers |
US5708130A (en) | 1995-07-28 | 1998-01-13 | The Dow Chemical Company | 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers |
WO2000046321A1 (en) | 1999-02-04 | 2000-08-10 | The Dow Chemical Company | Fluorene copolymers and devices made therefrom |
US6109330A (en) | 1996-10-09 | 2000-08-29 | Peter Butz Gmbh & Co. Verwaltungs-Kg | Blind for motor-vehicle rear window |
WO2000011725A9 (en) | 1998-08-19 | 2000-08-31 | Univ Princeton | Organic photosensitive optoelectronic device |
US6132585A (en) | 1992-07-01 | 2000-10-17 | Canon Kabushiki Kaisha | Semiconductor element and method and apparatus for fabricating the same |
EP1065725A2 (en) | 1999-06-28 | 2001-01-03 | Sel Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing an electro-optical device |
WO2000022682A3 (en) | 1998-10-09 | 2001-02-01 | Univ Columbia | Solid-state photoelectric device |
US6188175B1 (en) | 1995-04-18 | 2001-02-13 | Cambridge Display Technology Limited | Electroluminescent device |
US6198091B1 (en) | 1998-08-19 | 2001-03-06 | The Trustees Of Princeton University | Stacked organic photosensitive optoelectronic devices with a mixed electrical configuration |
US6198092B1 (en) | 1998-08-19 | 2001-03-06 | The Trustees Of Princeton University | Stacked organic photosensitive optoelectronic devices with an electrically parallel configuration |
JP2001060707A (en) | 1999-06-18 | 2001-03-06 | Nippon Sheet Glass Co Ltd | Photoelectric transfer device |
WO2001039276A1 (en) | 1999-11-26 | 2001-05-31 | The Trustees Of Princeton University | Organic photosensitive optoelectronic device with an exciton blocking layer |
US6278055B1 (en) | 1998-08-19 | 2001-08-21 | The Trustees Of Princeton University | Stacked organic photosensitive optoelectronic devices with an electrically series configuration |
US6297495B1 (en) | 1998-08-19 | 2001-10-02 | The Trustees Of Princeton University | Organic photosensitive optoelectronic devices with a top transparent electrode |
US6333458B1 (en) | 1999-11-26 | 2001-12-25 | The Trustees Of Princeton University | Highly efficient multiple reflection photosensitive optoelectronic device with optical concentrator |
US6352777B1 (en) | 1998-08-19 | 2002-03-05 | The Trustees Of Princeton University | Organic photosensitive optoelectronic devices with transparent electrodes |
US20020040728A1 (en) | 2000-08-15 | 2002-04-11 | Masaru Yoshikawa | Photoelectric conversion device and method for producing same |
US20020050289A1 (en) | 2000-10-31 | 2002-05-02 | Kenji Wada | Solar cell substrate, thin-film solar cell, and multi-junction thin-film solar cell |
JP2002141524A (en) | 2000-10-31 | 2002-05-17 | National Institute Of Advanced Industrial & Technology | Multi-bonded thin film solar cell |
US6399224B1 (en) | 2000-02-29 | 2002-06-04 | Canon Kabushiki Kaisha | Conjugated polymers with tunable charge injection ability |
WO2002059121A1 (en) | 2001-01-24 | 2002-08-01 | Cambridge Display Technology Limited | Monomer for use in preparation of a polymer to be used in optical devices |
US20020105005A1 (en) | 2001-02-08 | 2002-08-08 | Satoshi Seo | Light emitting device |
US6440769B2 (en) | 1999-11-26 | 2002-08-27 | The Trustees Of Princeton University | Photovoltaic device with optical concentrator and method of making the same |
US6464762B1 (en) | 1997-10-15 | 2002-10-15 | Canon Kabushiki Kaisha | Aqueous solution for the formation of an indium oxide film by electroless deposition |
WO2002101838A1 (en) | 2001-06-11 | 2002-12-19 | The Trustees Of Princeton University | Organic photovoltaic devices |
US20030008172A1 (en) | 2001-04-10 | 2003-01-09 | Mario Leclerc | Conjugated polycarbazole derivatives in Organic Light Emitting Diodes |
US20030023029A1 (en) | 2000-04-11 | 2003-01-30 | Hailiang Wang | Soluble poly(aryl-oxadiazole) conjugated polymers |
US20030036612A1 (en) | 1999-12-28 | 2003-02-20 | Ilya E. Nifant'ev | Hetero cyclic metallocene compounds and use thereof in catalyst system for producing olefin polymers |
US20030042471A1 (en) | 2001-08-17 | 2003-03-06 | Merck Patent Gmbh | Conjugated copolymers of dithienothiophene with vinylene or acetylene |
US20030102024A1 (en) | 2001-12-05 | 2003-06-05 | Zeira Eitan C. | Photovoltaic solar cell |
EP1318553A2 (en) | 2001-12-05 | 2003-06-11 | Sel Semiconductor Energy Laboratory Co., Ltd. | Organic semicondutor element |
US6580027B2 (en) | 2001-06-11 | 2003-06-17 | Trustees Of Princeton University | Solar cells using fullerenes |
WO2003065462A1 (en) | 2002-01-28 | 2003-08-07 | Kaneka Corporation | Tandem thin-film photoelectric transducer and its manufacturing method |
US20030159729A1 (en) | 2000-04-27 | 2003-08-28 | Sean Shaheen | Photovoltaic cell |
US20030175411A1 (en) | 2001-10-05 | 2003-09-18 | Kodas Toivo T. | Precursor compositions and methods for the deposition of passive electrical components on a substrate |
JP2003264085A (en) | 2001-12-05 | 2003-09-19 | Semiconductor Energy Lab Co Ltd | Organic semiconductor element, organic electroluminescence element and organic solar cell |
US20030189402A1 (en) | 2002-01-25 | 2003-10-09 | Konarka Technologies, Inc. | Displays with integrated photovoltaic cells |
US20030188777A1 (en) | 2002-01-25 | 2003-10-09 | Konarka Technologies, Inc. | Co-sensitizers for dye sensitized solar cells |
US6657378B2 (en) | 2001-09-06 | 2003-12-02 | The Trustees Of Princeton University | Organic photovoltaic devices |
US20030230335A1 (en) | 2002-06-17 | 2003-12-18 | Fuji Photo Film Co., Ltd. | Methods for producing titanium oxide sol and fine titanium oxide particles, and photoelectric conversion device |
WO2004042824A1 (en) | 2002-10-31 | 2004-05-21 | Emcore Corporation | Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell |
US20040118448A1 (en) | 2002-09-05 | 2004-06-24 | Nanosys, Inc. | Nanostructure and nanocomposite based compositions and photovoltaic devices |
US6772817B2 (en) | 2000-12-11 | 2004-08-10 | Tony Lai | Adjustable window blind cord stopper |
US20040187911A1 (en) | 2003-03-24 | 2004-09-30 | Russell Gaudiana | Photovoltaic cell with mesh electrode |
US20040192871A1 (en) | 2003-02-12 | 2004-09-30 | Hailiang Wang | Monomers, conjugated polymers and electronic devices using such polymers |
US20040201018A1 (en) | 2001-09-05 | 2004-10-14 | Motohiro Yamahara | Polymer structure and functional element having the same, and transistor and display using the same |
US6818260B2 (en) | 2001-07-09 | 2004-11-16 | Merck Patent Gmbh | Thienothiophene derivatives |
US20040256615A1 (en) | 2001-07-09 | 2004-12-23 | Henning Sirringhaus | Lamellar polymer architecture |
DE10326547A1 (en) | 2003-06-12 | 2005-01-05 | Siemens Ag | Tandem solar cell with a common organic electrode |
US20050022865A1 (en) | 2003-07-29 | 2005-02-03 | Robeson Lloyd Mahlon | Photovoltaic devices comprising layer(s) of photoactive organics dissolved in high Tg polymers |
EP1507298A1 (en) | 2003-08-14 | 2005-02-16 | Sony International (Europe) GmbH | Carbon nanotubes based solar cells |
US6864333B2 (en) | 1999-12-28 | 2005-03-08 | Basel Polyolefine Gmbh | Process for the preparation of ethylene polymers |
US20050124784A1 (en) | 2003-10-01 | 2005-06-09 | Sotzing Gregory A. | Substituted thieno[3,4-B]thiophene polymers, method of making, and use thereof |
WO2004051756A3 (en) | 2002-11-29 | 2005-06-23 | Konarka Technologies Inc | Photovoltaic component and production method therefor |
EP1562154A1 (en) | 2003-12-29 | 2005-08-10 | Hueck Folien Ges.m.b.H | Substrates comprising electrically conductive polymer layers consisting of polythiophene or its derivatives |
US20050194038A1 (en) | 2002-06-13 | 2005-09-08 | Christoph Brabec | Electrodes for optoelectronic components and the use thereof |
WO2005092947A1 (en) | 2004-03-17 | 2005-10-06 | Dow Global Technologies Inc. | Pentathienyl-fluorene copolymer |
US20050224905A1 (en) | 2004-04-13 | 2005-10-13 | Forrest Stephen R | High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions |
WO2005111045A1 (en) | 2004-05-18 | 2005-11-24 | Merck Patent Gmbh | MONO-, OLIGO- AND POLYTHIENO[3,2-b]THIOPHENES |
US20060022192A1 (en) | 2004-07-29 | 2006-02-02 | Christoph Brabec | Inexpensive organic solar cell and method of producing same |
US20060027834A1 (en) | 2004-08-05 | 2006-02-09 | Stephen Forrest | Stacked organic photosensitive devices |
US20060076050A1 (en) | 2004-09-24 | 2006-04-13 | Plextronics, Inc. | Heteroatomic regioregular poly(3-substitutedthiophenes) for photovoltaic cells |
US20060147748A1 (en) | 2004-12-30 | 2006-07-06 | Au Optronics Corp. | Organic light emitting device |
US20060155106A1 (en) | 2002-09-25 | 2006-07-13 | 3M Innovative Properties Company | Electroactive polymers |
US7095044B2 (en) | 2000-11-28 | 2006-08-22 | Merck Patent Gmbh | Field effect transistors and materials and methods for their manufacture |
US20070014939A1 (en) | 2005-07-14 | 2007-01-18 | Russell Gaudiana | Polymers with low band gaps and high charge mobility |
US20070017571A1 (en) | 2005-07-14 | 2007-01-25 | Russell Gaudiana | Polymers with low band gaps and high charge mobility |
KR100685796B1 (en) | 2006-04-11 | 2007-02-22 | 한국과학기술원 | Method for manufacturing the transparent conductive electrode using carbon nanotube films |
US20070120045A1 (en) | 2005-08-31 | 2007-05-31 | Fuji Photo Film Co., Ltd. | Organic photoelectric conversion device and stack type photoelectric conversion device |
WO2007022226A3 (en) | 2005-08-12 | 2007-06-21 | Cambrios Technologies Corp | Nanowires-based transparent conductors |
WO2007076427A2 (en) | 2005-12-21 | 2007-07-05 | Konarka Technologies, Inc. | Tandem photovoltaic cells |
US20070181179A1 (en) | 2005-12-21 | 2007-08-09 | Konarka Technologies, Inc. | Tandem photovoltaic cells |
US20070193621A1 (en) | 2005-12-21 | 2007-08-23 | Konarka Technologies, Inc. | Photovoltaic cells |
WO2007145482A1 (en) | 2006-06-15 | 2007-12-21 | Lg Chem, Ltd. | Thiazolothiazole derivatives and organic electronic device using the same |
WO2008000664A1 (en) | 2006-06-30 | 2008-01-03 | Ciba Holding Inc. | Diketopyrrolopyrrole polymers as organic semiconductors |
WO2007133705A3 (en) | 2006-05-11 | 2008-01-24 | Univ Northwestern | Silole-based polymers and semiconductor materials prepared from the same |
US20080053518A1 (en) | 2006-09-05 | 2008-03-06 | Pen-Hsiu Chang | Transparent solar cell system |
US7368510B2 (en) | 2004-07-08 | 2008-05-06 | Samsung Electronics Co., Ltd. | Organic semiconductor copolymers containing oligothiophene and n-type heteroaromatic units |
US7375370B2 (en) | 2004-08-05 | 2008-05-20 | The Trustees Of Princeton University | Stacked organic photosensitive devices |
US20080164460A1 (en) | 2004-08-30 | 2008-07-10 | Kyoto University | Organic Semiconductor Light-Emitting Device and Display Using Same |
US7405775B2 (en) | 2003-01-17 | 2008-07-29 | Cbrite Inc. | Display employing organic material |
WO2007121252A3 (en) | 2006-04-11 | 2008-10-23 | Konarka Technologies Inc | Tandem photovoltaic cells |
US20080264488A1 (en) | 2007-04-27 | 2008-10-30 | Srini Balasubramanian | Organic Photovoltaic Cells |
WO2010008672A1 (en) | 2008-07-18 | 2010-01-21 | University Of Chicago | Semiconducting polymers |
-
2006
- 2006-12-21 US US11/643,271 patent/US20070181179A1/en not_active Abandoned
-
2013
- 2013-06-18 US US13/920,486 patent/US8975512B2/en not_active Expired - Fee Related
Patent Citations (122)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4292092A (en) | 1980-06-02 | 1981-09-29 | Rca Corporation | Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery |
DE3121350A1 (en) | 1980-06-02 | 1982-07-08 | RCA Corp., 10020 New York, N.Y. | "METHOD FOR PRODUCING A SUN BATTERY" |
US4416959A (en) | 1980-11-18 | 1983-11-22 | Terje Skotheim | Photoelectrochemical cells for conversion of solar energy to electricity |
US4639328A (en) | 1983-11-25 | 1987-01-27 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Thienothiophene derivatives |
US4574160A (en) | 1984-09-28 | 1986-03-04 | The Standard Oil Company | Flexible, rollable photovoltaic cell module |
EP0251598A2 (en) | 1986-06-30 | 1988-01-07 | The Standard Oil Company | Multiple cell two terminal photovoltaic device employing adhered cells |
US4686323A (en) | 1986-06-30 | 1987-08-11 | The Standard Oil Company | Multiple cell, two terminal photovoltaic device employing conductively adhered cells |
US4795687A (en) | 1986-09-12 | 1989-01-03 | Mitsubishi Kasei Corp. | Electrically conductive material and a process for the preparation of same and secondary battery using the electrically conductive material |
US4913744A (en) | 1987-01-13 | 1990-04-03 | Helmut Hoegl | Solar cell arrangement |
US4746618A (en) | 1987-08-31 | 1988-05-24 | Energy Conversion Devices, Inc. | Method of continuously forming an array of photovoltaic cells electrically connected in series |
US4948436A (en) | 1988-02-05 | 1990-08-14 | Siemens Aktiengesellschaft | Thin-film solar cell arrangement |
US5071490A (en) | 1988-03-18 | 1991-12-10 | Sharp Kabushiki Kaisha | Tandem stacked amorphous solar cell device |
JPH0373382A (en) | 1989-08-14 | 1991-03-28 | Oji Paper Co Ltd | Manufacture of thermal recording material |
JPH0492376A (en) | 1990-08-07 | 1992-03-25 | Japan Storage Battery Co Ltd | Sealed type lead storage battery |
US5221363A (en) | 1991-02-28 | 1993-06-22 | Lockheed Missiles & Space Company, Inc. | Solar cell window fitting |
JPH0511841A (en) | 1991-07-05 | 1993-01-22 | Toshiba Corp | Conveyance control method |
US5274058A (en) | 1991-09-12 | 1993-12-28 | Board Of Regents, The University Of Texas System | Low bandgap polymers rf fused bithiophenes |
US5510438A (en) | 1991-09-12 | 1996-04-23 | Board Of Regents, The University Of Texas System | Low bandgap polymers from fused dithiophene diester |
WO1993005077A3 (en) | 1991-09-12 | 1993-04-29 | Univ Texas | Substituted cyclopentadithiophene and low bandgap polymers therefrom |
JPH06166746A (en) | 1992-06-29 | 1994-06-14 | Shin Etsu Chem Co Ltd | Thiophene-silole copolymer and its production |
US6132585A (en) | 1992-07-01 | 2000-10-17 | Canon Kabushiki Kaisha | Semiconductor element and method and apparatus for fabricating the same |
WO1994014199A1 (en) | 1992-12-14 | 1994-06-23 | United Solar Systems Corporation | Method for the manufacture of improved efficiency tandem photovoltaic device and device manufactured thereby |
DE69330835T2 (en) | 1992-12-14 | 2002-06-13 | United Solar Systems Corp., Troy | Method for producing a tandem photovoltaic device with improved efficiency and device produced thereby |
JPH06278682A (en) | 1993-03-24 | 1994-10-04 | Osaka Shosen Mitsui Senpaku Kk | Unloading method and device for chip carrier |
US5536808A (en) | 1994-10-05 | 1996-07-16 | The Regents Of The University Of Michigan | Thiazole polymers and method of producing same |
US6188175B1 (en) | 1995-04-18 | 2001-02-13 | Cambridge Display Technology Limited | Electroluminescent device |
US5708130A (en) | 1995-07-28 | 1998-01-13 | The Dow Chemical Company | 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers |
WO1997005184A1 (en) | 1995-07-28 | 1997-02-13 | The Dow Chemical Company | 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers |
US6109330A (en) | 1996-10-09 | 2000-08-29 | Peter Butz Gmbh & Co. Verwaltungs-Kg | Blind for motor-vehicle rear window |
US6464762B1 (en) | 1997-10-15 | 2002-10-15 | Canon Kabushiki Kaisha | Aqueous solution for the formation of an indium oxide film by electroless deposition |
US6451415B1 (en) | 1998-08-19 | 2002-09-17 | The Trustees Of Princeton University | Organic photosensitive optoelectronic device with an exciton blocking layer |
US6198091B1 (en) | 1998-08-19 | 2001-03-06 | The Trustees Of Princeton University | Stacked organic photosensitive optoelectronic devices with a mixed electrical configuration |
US6198092B1 (en) | 1998-08-19 | 2001-03-06 | The Trustees Of Princeton University | Stacked organic photosensitive optoelectronic devices with an electrically parallel configuration |
US6278055B1 (en) | 1998-08-19 | 2001-08-21 | The Trustees Of Princeton University | Stacked organic photosensitive optoelectronic devices with an electrically series configuration |
US6297495B1 (en) | 1998-08-19 | 2001-10-02 | The Trustees Of Princeton University | Organic photosensitive optoelectronic devices with a top transparent electrode |
WO2000011725A9 (en) | 1998-08-19 | 2000-08-31 | Univ Princeton | Organic photosensitive optoelectronic device |
US6352777B1 (en) | 1998-08-19 | 2002-03-05 | The Trustees Of Princeton University | Organic photosensitive optoelectronic devices with transparent electrodes |
US6239355B1 (en) | 1998-10-09 | 2001-05-29 | The Trustees Of Columbia University In The City Of New York | Solid-state photoelectric device |
WO2000022682A3 (en) | 1998-10-09 | 2001-02-01 | Univ Columbia | Solid-state photoelectric device |
WO2000046321A1 (en) | 1999-02-04 | 2000-08-10 | The Dow Chemical Company | Fluorene copolymers and devices made therefrom |
US6353083B1 (en) | 1999-02-04 | 2002-03-05 | The Dow Chemical Company | Fluorene copolymers and devices made therefrom |
JP2001060707A (en) | 1999-06-18 | 2001-03-06 | Nippon Sheet Glass Co Ltd | Photoelectric transfer device |
EP1065725A2 (en) | 1999-06-28 | 2001-01-03 | Sel Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing an electro-optical device |
US6440769B2 (en) | 1999-11-26 | 2002-08-27 | The Trustees Of Princeton University | Photovoltaic device with optical concentrator and method of making the same |
US6333458B1 (en) | 1999-11-26 | 2001-12-25 | The Trustees Of Princeton University | Highly efficient multiple reflection photosensitive optoelectronic device with optical concentrator |
WO2001039276A1 (en) | 1999-11-26 | 2001-05-31 | The Trustees Of Princeton University | Organic photosensitive optoelectronic device with an exciton blocking layer |
JP2003515933A (en) | 1999-11-26 | 2003-05-07 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | Organic photosensitive optoelectronic devices with exciton blocking layers |
US6864333B2 (en) | 1999-12-28 | 2005-03-08 | Basel Polyolefine Gmbh | Process for the preparation of ethylene polymers |
US20030036612A1 (en) | 1999-12-28 | 2003-02-20 | Ilya E. Nifant'ev | Hetero cyclic metallocene compounds and use thereof in catalyst system for producing olefin polymers |
US6399224B1 (en) | 2000-02-29 | 2002-06-04 | Canon Kabushiki Kaisha | Conjugated polymers with tunable charge injection ability |
US20030023029A1 (en) | 2000-04-11 | 2003-01-30 | Hailiang Wang | Soluble poly(aryl-oxadiazole) conjugated polymers |
US20030159729A1 (en) | 2000-04-27 | 2003-08-28 | Sean Shaheen | Photovoltaic cell |
US20020040728A1 (en) | 2000-08-15 | 2002-04-11 | Masaru Yoshikawa | Photoelectric conversion device and method for producing same |
US20020050289A1 (en) | 2000-10-31 | 2002-05-02 | Kenji Wada | Solar cell substrate, thin-film solar cell, and multi-junction thin-film solar cell |
JP2002141524A (en) | 2000-10-31 | 2002-05-17 | National Institute Of Advanced Industrial & Technology | Multi-bonded thin film solar cell |
US7095044B2 (en) | 2000-11-28 | 2006-08-22 | Merck Patent Gmbh | Field effect transistors and materials and methods for their manufacture |
US6772817B2 (en) | 2000-12-11 | 2004-08-10 | Tony Lai | Adjustable window blind cord stopper |
WO2002059121A1 (en) | 2001-01-24 | 2002-08-01 | Cambridge Display Technology Limited | Monomer for use in preparation of a polymer to be used in optical devices |
US20020105005A1 (en) | 2001-02-08 | 2002-08-08 | Satoshi Seo | Light emitting device |
US20030008172A1 (en) | 2001-04-10 | 2003-01-09 | Mario Leclerc | Conjugated polycarbazole derivatives in Organic Light Emitting Diodes |
US6580027B2 (en) | 2001-06-11 | 2003-06-17 | Trustees Of Princeton University | Solar cells using fullerenes |
WO2002101838A1 (en) | 2001-06-11 | 2002-12-19 | The Trustees Of Princeton University | Organic photovoltaic devices |
US6818260B2 (en) | 2001-07-09 | 2004-11-16 | Merck Patent Gmbh | Thienothiophene derivatives |
US20040256615A1 (en) | 2001-07-09 | 2004-12-23 | Henning Sirringhaus | Lamellar polymer architecture |
US20030042471A1 (en) | 2001-08-17 | 2003-03-06 | Merck Patent Gmbh | Conjugated copolymers of dithienothiophene with vinylene or acetylene |
US20040201018A1 (en) | 2001-09-05 | 2004-10-14 | Motohiro Yamahara | Polymer structure and functional element having the same, and transistor and display using the same |
US6657378B2 (en) | 2001-09-06 | 2003-12-02 | The Trustees Of Princeton University | Organic photovoltaic devices |
US20030175411A1 (en) | 2001-10-05 | 2003-09-18 | Kodas Toivo T. | Precursor compositions and methods for the deposition of passive electrical components on a substrate |
EP1318553A2 (en) | 2001-12-05 | 2003-06-11 | Sel Semiconductor Energy Laboratory Co., Ltd. | Organic semicondutor element |
US20030127967A1 (en) | 2001-12-05 | 2003-07-10 | Semiconductor Energy Laboratory Co., Ltd. | Organic semiconductor element |
US20030102024A1 (en) | 2001-12-05 | 2003-06-05 | Zeira Eitan C. | Photovoltaic solar cell |
JP2003264085A (en) | 2001-12-05 | 2003-09-19 | Semiconductor Energy Lab Co Ltd | Organic semiconductor element, organic electroluminescence element and organic solar cell |
US20030188777A1 (en) | 2002-01-25 | 2003-10-09 | Konarka Technologies, Inc. | Co-sensitizers for dye sensitized solar cells |
US20030189402A1 (en) | 2002-01-25 | 2003-10-09 | Konarka Technologies, Inc. | Displays with integrated photovoltaic cells |
WO2003065462A1 (en) | 2002-01-28 | 2003-08-07 | Kaneka Corporation | Tandem thin-film photoelectric transducer and its manufacturing method |
US20050145972A1 (en) | 2002-01-28 | 2005-07-07 | Susumu Fukuda | Tandem thin-film photoelectric transducer and its manufacturing method |
US20050194038A1 (en) | 2002-06-13 | 2005-09-08 | Christoph Brabec | Electrodes for optoelectronic components and the use thereof |
US20030230335A1 (en) | 2002-06-17 | 2003-12-18 | Fuji Photo Film Co., Ltd. | Methods for producing titanium oxide sol and fine titanium oxide particles, and photoelectric conversion device |
US20040118448A1 (en) | 2002-09-05 | 2004-06-24 | Nanosys, Inc. | Nanostructure and nanocomposite based compositions and photovoltaic devices |
US20060155106A1 (en) | 2002-09-25 | 2006-07-13 | 3M Innovative Properties Company | Electroactive polymers |
WO2004042824A1 (en) | 2002-10-31 | 2004-05-21 | Emcore Corporation | Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell |
WO2004051756A3 (en) | 2002-11-29 | 2005-06-23 | Konarka Technologies Inc | Photovoltaic component and production method therefor |
US20060141662A1 (en) | 2002-11-29 | 2006-06-29 | Christoph Brabec | Photovoltaic component and production method therefor |
US7405775B2 (en) | 2003-01-17 | 2008-07-29 | Cbrite Inc. | Display employing organic material |
US20040192871A1 (en) | 2003-02-12 | 2004-09-30 | Hailiang Wang | Monomers, conjugated polymers and electronic devices using such polymers |
US20040187911A1 (en) | 2003-03-24 | 2004-09-30 | Russell Gaudiana | Photovoltaic cell with mesh electrode |
DE10326547A1 (en) | 2003-06-12 | 2005-01-05 | Siemens Ag | Tandem solar cell with a common organic electrode |
US20050022865A1 (en) | 2003-07-29 | 2005-02-03 | Robeson Lloyd Mahlon | Photovoltaic devices comprising layer(s) of photoactive organics dissolved in high Tg polymers |
US7309833B2 (en) | 2003-07-29 | 2007-12-18 | Air Products And Chemicals, Inc. | Photovoltaic devices comprising layer(s) of photoactive organics dissolved in high Tg polymers |
EP1507298A1 (en) | 2003-08-14 | 2005-02-16 | Sony International (Europe) GmbH | Carbon nanotubes based solar cells |
US20050124784A1 (en) | 2003-10-01 | 2005-06-09 | Sotzing Gregory A. | Substituted thieno[3,4-B]thiophene polymers, method of making, and use thereof |
US7105237B2 (en) | 2003-10-01 | 2006-09-12 | The University Of Connecticut | Substituted thieno[3,4-B]thiophene polymers, method of making, and use thereof |
EP1562154A1 (en) | 2003-12-29 | 2005-08-10 | Hueck Folien Ges.m.b.H | Substrates comprising electrically conductive polymer layers consisting of polythiophene or its derivatives |
WO2005092947A1 (en) | 2004-03-17 | 2005-10-06 | Dow Global Technologies Inc. | Pentathienyl-fluorene copolymer |
US20050224905A1 (en) | 2004-04-13 | 2005-10-13 | Forrest Stephen R | High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions |
WO2005111045A1 (en) | 2004-05-18 | 2005-11-24 | Merck Patent Gmbh | MONO-, OLIGO- AND POLYTHIENO[3,2-b]THIOPHENES |
US7368510B2 (en) | 2004-07-08 | 2008-05-06 | Samsung Electronics Co., Ltd. | Organic semiconductor copolymers containing oligothiophene and n-type heteroaromatic units |
US20060022192A1 (en) | 2004-07-29 | 2006-02-02 | Christoph Brabec | Inexpensive organic solar cell and method of producing same |
US20060027834A1 (en) | 2004-08-05 | 2006-02-09 | Stephen Forrest | Stacked organic photosensitive devices |
US7375370B2 (en) | 2004-08-05 | 2008-05-20 | The Trustees Of Princeton University | Stacked organic photosensitive devices |
US7196366B2 (en) | 2004-08-05 | 2007-03-27 | The Trustees Of Princeton University | Stacked organic photosensitive devices |
US20080164460A1 (en) | 2004-08-30 | 2008-07-10 | Kyoto University | Organic Semiconductor Light-Emitting Device and Display Using Same |
US20060076050A1 (en) | 2004-09-24 | 2006-04-13 | Plextronics, Inc. | Heteroatomic regioregular poly(3-substitutedthiophenes) for photovoltaic cells |
US20060147748A1 (en) | 2004-12-30 | 2006-07-06 | Au Optronics Corp. | Organic light emitting device |
US20070014939A1 (en) | 2005-07-14 | 2007-01-18 | Russell Gaudiana | Polymers with low band gaps and high charge mobility |
US20070158620A1 (en) | 2005-07-14 | 2007-07-12 | Russell Gaudiana | Polymers with low band gaps and high charge mobility |
US20070020526A1 (en) | 2005-07-14 | 2007-01-25 | Russell Gaudiana | Polymers with low band gaps and high charge mobility |
WO2007011739A2 (en) | 2005-07-14 | 2007-01-25 | Konarka Technologies, Inc. | Polymers with low band gaps and high charge mobility |
US20070017571A1 (en) | 2005-07-14 | 2007-01-25 | Russell Gaudiana | Polymers with low band gaps and high charge mobility |
WO2007022226A3 (en) | 2005-08-12 | 2007-06-21 | Cambrios Technologies Corp | Nanowires-based transparent conductors |
US20070120045A1 (en) | 2005-08-31 | 2007-05-31 | Fuji Photo Film Co., Ltd. | Organic photoelectric conversion device and stack type photoelectric conversion device |
WO2007076427A2 (en) | 2005-12-21 | 2007-07-05 | Konarka Technologies, Inc. | Tandem photovoltaic cells |
US20070181179A1 (en) | 2005-12-21 | 2007-08-09 | Konarka Technologies, Inc. | Tandem photovoltaic cells |
US20070193621A1 (en) | 2005-12-21 | 2007-08-23 | Konarka Technologies, Inc. | Photovoltaic cells |
KR100685796B1 (en) | 2006-04-11 | 2007-02-22 | 한국과학기술원 | Method for manufacturing the transparent conductive electrode using carbon nanotube films |
WO2007121252A3 (en) | 2006-04-11 | 2008-10-23 | Konarka Technologies Inc | Tandem photovoltaic cells |
WO2007133705A3 (en) | 2006-05-11 | 2008-01-24 | Univ Northwestern | Silole-based polymers and semiconductor materials prepared from the same |
WO2007145482A1 (en) | 2006-06-15 | 2007-12-21 | Lg Chem, Ltd. | Thiazolothiazole derivatives and organic electronic device using the same |
WO2008000664A1 (en) | 2006-06-30 | 2008-01-03 | Ciba Holding Inc. | Diketopyrrolopyrrole polymers as organic semiconductors |
US20080053518A1 (en) | 2006-09-05 | 2008-03-06 | Pen-Hsiu Chang | Transparent solar cell system |
US20080264488A1 (en) | 2007-04-27 | 2008-10-30 | Srini Balasubramanian | Organic Photovoltaic Cells |
WO2010008672A1 (en) | 2008-07-18 | 2010-01-21 | University Of Chicago | Semiconducting polymers |
Non-Patent Citations (103)
Also Published As
Publication number | Publication date |
---|---|
US20070181179A1 (en) | 2007-08-09 |
US20130276874A1 (en) | 2013-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8975512B2 (en) | Tandem photovoltaic cells | |
EP1964144B1 (en) | Tandem photovoltaic cells | |
US9184317B2 (en) | Electrode containing a polymer and an additive | |
US20070193621A1 (en) | Photovoltaic cells | |
US8158881B2 (en) | Tandem photovoltaic cells | |
US8242356B2 (en) | Organic photovoltaic cells | |
EP2261980B1 (en) | Tandem photovoltaic cells | |
JP5651606B2 (en) | Photocell having a plurality of electron donors | |
US8178779B2 (en) | Organic photovoltaic cells | |
US20090211633A1 (en) | Tandem Photovoltaic Cells | |
US20070267055A1 (en) | Tandem Photovoltaic Cells | |
JP2014513443A (en) | Multi-junction photovoltaic cell | |
WO2009070534A1 (en) | Organic photovoltaic cells comprising a doped metal oxide buffer layer | |
WO2007104039A9 (en) | Photovoltaic cells | |
ES2352219T3 (en) | PHOTOVOLTAIC CELLS IN TANDEM. | |
WO2010138414A1 (en) | Reflective multilayer electrode | |
WO2009009634A1 (en) | Photovoltaic cells with a diffractive layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230310 |