JP2003264085A - Organic semiconductor element, organic electroluminescence element and organic solar cell - Google Patents

Organic semiconductor element, organic electroluminescence element and organic solar cell

Info

Publication number
JP2003264085A
JP2003264085A JP2002352488A JP2002352488A JP2003264085A JP 2003264085 A JP2003264085 A JP 2003264085A JP 2002352488 A JP2002352488 A JP 2002352488A JP 2002352488 A JP2002352488 A JP 2002352488A JP 2003264085 A JP2003264085 A JP 2003264085A
Authority
JP
Japan
Prior art keywords
organic
thin film
film layer
layer
functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002352488A
Other languages
Japanese (ja)
Inventor
Tetsuo Tsutsui
哲夫 筒井
Hiroko Yamazaki
寛子 山崎
Tetsushi Seo
哲史 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2002352488A priority Critical patent/JP2003264085A/en
Publication of JP2003264085A publication Critical patent/JP2003264085A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic semiconductor element higher in reliability and also high in yield without need of using a conventional ultrathin film by introducing a novel concept into the structure of a conventional organic semiconductor element, and to improve the efficiency of a photoelectronic device using an organic semiconductor in particular. <P>SOLUTION: An organic structure obtained by alternately laminating organic thin film layers (functional organic thin film layers) that develop various functions by passing SCLC through them and thin conductor film layers (omic thin conductor film layers) that develop dark conductivity by a technique such as doping of an acceptor or donner is provided between a positive electrode and a negative electrode. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機半導体を用い
たエレクトロニクスデバイスに関する。中でも特に、光
電変換素子やEL素子などのフォトエレクトロニクスデバ
イスに関する。
TECHNICAL FIELD The present invention relates to an electronic device using an organic semiconductor. In particular, it relates to photoelectronic devices such as photoelectric conversion elements and EL elements.

【0002】[0002]

【従来の技術】有機化合物は無機化合物に比べて、材料
系が多様であり、適した分子設計により様々な機能を有
する材料を合成できる可能性がある。また、膜等の形成
物が柔軟性に富み、さらには高分子化することにより加
工性にも優れるという特長もある。これらの利点から、
近年、機能性有機材料を用いたフォトニクスやエレクト
ロニクスに注目が集まっている。
2. Description of the Related Art Organic compounds have a variety of material systems as compared with inorganic compounds, and it is possible to synthesize materials having various functions by appropriate molecular design. In addition, the formed product such as a film is also highly flexible, and further has a feature that it is excellent in processability due to being polymerized. From these advantages,
In recent years, attention has been focused on photonics and electronics using functional organic materials.

【0003】有機材料の光物性を利用したフォトニクス
は、現在の工業技術において既に重要な役割を果たして
いる。例えば、フォトレジストなどの感光材料は、半導
体の微細加工に用いられるフォトリソグラフィ技術にと
って欠かせない材料である。加えて、有機化合物自体、
光の吸収およびそれに伴う発光(蛍光や燐光)という性
質を有しているため、レーザー色素等の発光材料として
の用途も大きい。
Photonics utilizing the optical properties of organic materials have already played an important role in the current industrial technology. For example, a photosensitive material such as a photoresist is an essential material for the photolithography technique used for fine processing of semiconductors. In addition, the organic compound itself,
Since it has properties of absorbing light and emitting light (fluorescence or phosphorescence) accompanying it, it is also widely used as a light emitting material such as a laser dye.

【0004】一方、有機化合物はそれ自身キャリアを持
たない材料であるため、本質的には優れた絶縁性を有す
る。従って、有機材料の電気物性を利用したエレクトロ
ニクスに関しては、旧来は絶縁体としての機能を利用す
ることが主であり、絶縁材料、保護材料、被覆材料とし
て使用されてきた。
On the other hand, since the organic compound itself is a material having no carrier, it essentially has an excellent insulating property. Therefore, with respect to electronics utilizing the electrical properties of organic materials, conventionally, the function as an insulator has been mainly used, and it has been used as an insulating material, a protective material, or a coating material.

【0005】しかしながら、本質的には絶縁体である有
機材料に大量の電流を流す手段は存在し、エレクトロニ
クスの分野でも実用されつつある。この手段は、大きく
分けると二通りに分けられる。
However, there is a means for supplying a large amount of current to an organic material which is essentially an insulator, and it is being put to practical use in the field of electronics. This means can be roughly divided into two types.

【0006】そのうちの一つは、導電性高分子に代表さ
れるように、π共役系有機化合物にアクセプタ(電子受
容体)またはドナー(電子供与体)をドープすることに
より、そのπ共役系有機化合物にキャリアを持たせる手
段である(非特許文献1参照)。ドープ量を増やすこと
によってキャリアはある程度の領域まで増加していくた
め、暗導電率もそれに伴い上昇し、多くの電流が流れる
ようになる。
One of them is, as represented by a conductive polymer, a π-conjugated organic compound by doping an π-conjugated organic compound with an acceptor (electron acceptor) or a donor (electron donor). It is a means for allowing a compound to have a carrier (see Non-Patent Document 1). Since the carriers increase to some extent by increasing the doping amount, the dark conductivity also increases accordingly and a large amount of current flows.

【0007】[0007]

【非特許文献1】Hideki Shirakawa, Edwin J. Louis,
Alan G. MacDiarmid, Chwan K. Chiang,and Alan J. He
eger, "Synthesis of Electrically Conducting Organi
c Polymers : Halogen Derivatives of Polyacetyrene,
(CH)x", Chem. Comm., 1977, 16, 578-580
[Non-Patent Document 1] Hideki Shirakawa, Edwin J. Louis,
Alan G. MacDiarmid, Chwan K. Chiang, and Alan J. He
eger, "Synthesis of Electrically Conducting Organi
c Polymers: Halogen Derivatives of Polyacetyrene,
(CH) x ", Chem. Comm., 1977, 16, 578-580

【0008】その電流量は、通常の半導体かそれ以上の
レベルにまで到達できるため、このような挙動を示す材
料の一群は、有機半導体(場合によっては有機導電体)
と呼ぶことができる。
Since the amount of electric current can reach a level of a normal semiconductor or higher, a group of materials exhibiting such a behavior is an organic semiconductor (or an organic conductor in some cases).
Can be called.

【0009】このように、アクセプタまたはドナーをド
ープすることによって暗導電率を向上させ、有機材料に
電流を流す手段は、一部では既にエレクトロニクスの分
野で応用されている。例えば、ポリアニリンやポリアセ
ンを用いた充電可能な二次電池や、ポリピロールを用い
た電界コンデンサなどがある。
As described above, the means for improving the dark conductivity by doping the acceptor or the donor and passing an electric current through the organic material has already been partially applied in the field of electronics. For example, there are rechargeable secondary batteries using polyaniline or polyacene, and electrolytic capacitors using polypyrrole.

【0010】有機材料に大量の電流を流すもう一つの手
段は、空間電荷制限電流(SCLC;Space Charge Limited
Current)を利用する手段である。SCLCとは、外部から
空間電荷を注入して移動させることにより流れる電流で
あり、その電流密度はチャイルドの法則、すなわち下記
式(1)で表される。Jは電流密度、εは比誘電率、ε0
は真空誘電率、μはキャリア移動度、Vは電圧、dはVが
印加されている電極間の距離(以下、「厚さ」と記す)で
ある。
Another means of supplying a large amount of current to an organic material is Space Charge Limited Current (SCLC).
Current) is a means to use. SCLC is a current that flows by injecting and moving space charge from the outside, and its current density is represented by Child's law, that is, the following equation (1). J is current density, ε is relative permittivity, ε 0
Is a vacuum permittivity, μ is a carrier mobility, V is a voltage, and d is a distance between electrodes to which V is applied (hereinafter referred to as “thickness”).

【0011】[0011]

【数1】J = 9/8・εε0μ・V2/d3 (1)[Equation 1] J = 9/8 · εε 0 μ · V 2 / d 3 (1)

【0012】なお、上記式(1)で表されるSCLCは、SC
LCが流れる際のキャリアのトラップを一切仮定しない式
である。キャリアのトラップによって制限される電流は
TCLC(Trap Charge Limited Current)と呼ばれ、電圧
のべき乗に比例するが、これらはどちらもバルク律速の
電流であるので以下では同様の扱いとする。
The SCLC represented by the above formula (1) is SC
This formula does not assume any carrier trap when the LC flows. The current limited by the carrier trap is
It is called TCLC (Trap Charge Limited Current) and is proportional to the exponentiation of the voltage, but since both are bulk-controlled currents, they will be treated in the same way below.

【0013】ここで、対比のために、オームの法則に従
うオーム電流が流れる際の電流密度を表す式を、下記式
(2)に示す。σは導電率、Eは電界強度である。
For comparison, an equation representing the current density when an ohmic current according to Ohm's law flows is shown in the following equation (2). σ is conductivity and E is electric field strength.

【0014】[0014]

【数2】J = σE = σ・V/d (2)[Equation 2] J = σE = σ ・ V / d (2)

【0015】式(2)中の導電率σは、σ = neμ(nは
キャリア密度、eは電荷)で表されるため、キャリア密
度が流れる電流量の支配因子に含まれる。したがって、
ある程度のキャリア移動度を持つ有機材料に対し、先に
述べたようなドーピングによるキャリア密度の増大を図
らない限り、通常キャリアがほとんど存在しない有機材
料にはオーム電流は流れない。
Since the conductivity σ in the equation (2) is represented by σ = neμ (n is carrier density and e is electric charge), it is included in the controlling factor of the amount of current flowing through the carrier density. Therefore,
For an organic material having a certain degree of carrier mobility, an ohmic current does not normally flow in an organic material in which almost no carriers exist unless the carrier density is increased by doping as described above.

【0016】ところが、式(1)を見てわかるとおり、
SCLCを決定する因子は、誘電率、キャリア移動度、電
圧、および厚さであり、キャリア密度は関係ない。すな
わち、キャリアを持たない絶縁体である有機材料であっ
ても、厚さdを十分薄くし、キャリア移動度μが大きい
材料を選ぶことにより、外部からキャリアを注入して電
流を流すことができるのである。
However, as can be seen from the equation (1),
The factors that determine SCLC are the dielectric constant, carrier mobility, voltage, and thickness, and carrier density is irrelevant. That is, even with an organic material that is an insulator without carriers, it is possible to inject carriers from the outside and pass a current by making the thickness d sufficiently thin and selecting a material having a large carrier mobility μ. Of.

【0017】この手段を用いた場合でも、その電流量
は、通常の半導体かそれ以上のレベルにまで到達できる
ため、キャリア移動度μが大きい有機材料、言い換えれ
ば潜在的にキャリアを輸送できる有機材料は有機半導体
と呼ぶことができる。
Even when this means is used, the amount of current can reach the level of an ordinary semiconductor or higher, so that an organic material having a high carrier mobility μ, in other words, an organic material which can potentially transport carriers. Can be called an organic semiconductor.

【0018】ところで、このようなSCLCを利用した有機
半導体素子の中でも特に、機能性有機材料の光物性・電
気物性の両方を活かしたフォトエレクトロニクスデバイ
スとして、有機エレクトロルミネッセンス素子(以下、
「有機EL素子」と記す)が近年めざましい発展を見せて
いる。
By the way, among such organic semiconductor devices utilizing SCLC, organic electroluminescence devices (hereinafter, referred to as "photoelectronic devices" utilizing both optical and electrical properties of functional organic materials)
"Organic EL element") has made remarkable progress in recent years.

【0019】有機EL素子の最も基本的な構造は、1987年
にC.W.Tang等によって報告されている(非特許文献2参
照)。非特許文献2で報告されている素子は、正孔輸送
性の有機化合物と電子輸送性の有機化合物とを積層させ
た合計約100 nm程度の有機薄膜を電極で挟んだダイオー
ド素子の一種であり、電子輸送性の化合物として発光性
の材料(蛍光材料)を用いている。このような素子に電
圧を印加することにより、発光ダイオードのように発光
を取り出すことができる。
The most basic structure of the organic EL device was reported by CW Tang et al. In 1987 (see Non-Patent Document 2). The element reported in Non-Patent Document 2 is a kind of diode element in which an organic thin film having a total thickness of about 100 nm in which a hole transporting organic compound and an electron transporting organic compound are laminated is sandwiched between electrodes. A light emitting material (fluorescent material) is used as the electron transporting compound. By applying a voltage to such an element, light emission can be extracted like a light emitting diode.

【0020】[0020]

【非特許文献2】C.W.Tang and S.A.Vanslyke, "Organi
c electroluminescent diodes" ,Applied Physics Lett
ers,Vol.51, No.12, 913-915 (1987)
[Non-Patent Document 2] CW Tang and SAVanslyke, "Organi
c electroluminescent diodes ", Applied Physics Lett
ers, Vol.51, No.12, 913-915 (1987)

【0021】その発光機構は、電極で挟んだ有機薄膜に
電圧を加えることにより、電極から注入された正孔およ
び電子が有機薄膜中で再結合して励起状態の分子(以
下、「分子励起子」と記す)を形成し、その分子励起子
が基底状態に戻る際に光が放出されると考えられてい
る。
The light emission mechanism is as follows. When a voltage is applied to an organic thin film sandwiched by electrodes, holes and electrons injected from the electrodes are recombined in the organic thin film and molecules in an excited state (hereinafter, "molecular exciton"). It is believed that light is emitted when the molecular excitons return to the ground state.

【0022】なお、有機化合物が形成する分子励起子の
種類としては一重項励起状態と三重項励起状態が可能で
あり、基底状態は通常一重項状態であるため、一重項励
起状態からの発光は蛍光、三重項励起状態からの発光は
燐光と呼ばれる。本明細書中においては、はどちらの励
起状態が発光に寄与する場合も含むこととする。
The types of molecular excitons formed by an organic compound can be a singlet excited state and a triplet excited state, and since the ground state is usually a singlet state, light emission from the singlet excited state does not occur. The light emission from the fluorescence and triplet excited states is called phosphorescence. In the present specification, includes the case where either excited state contributes to light emission.

【0023】このような有機EL素子において、通常、有
機薄膜は100〜200nm程度の薄膜で形成される。また、有
機EL素子は、有機薄膜そのものが光を放出する自発光型
の素子であるため、従来の液晶ディスプレイに用いられ
ているようなバックライトも必要ない。したがって、有
機EL素子は極めて薄型軽量に作製できることが大きな利
点である。
In such an organic EL device, the organic thin film is usually formed as a thin film of about 100 to 200 nm. Further, since the organic EL element is a self-luminous element in which the organic thin film itself emits light, there is no need for a backlight as used in a conventional liquid crystal display. Therefore, it is a great advantage that the organic EL element can be manufactured to be extremely thin and lightweight.

【0024】また、例えば100〜200nm程度の有機薄膜に
おいて、キャリアを注入してから再結合に至るまでの時
間は、有機薄膜のキャリア移動度を考えると数十ナノ秒
程度であり、キャリアの再結合から発光までの過程を含
めてもマイクロ秒オーダー以内で発光に至る。したがっ
て、非常に応答速度が速いことも特長の一つである。
Further, in an organic thin film of, for example, about 100 to 200 nm, the time from injection of carriers to recombination is about several tens of nanoseconds considering the carrier mobility of the organic thin film. Even if the process from binding to light emission is included, light emission is achieved within microsecond order. Therefore, one of the features is that the response speed is very fast.

【0025】こういった薄型軽量・高速応答性などの特
性から、有機EL素子は次世代のフラットパネルディスプ
レイ素子として注目されている。また、自発光型であり
視野角が広いことから、視認性も比較的良好であり、携
帯機器の表示画面に用いる素子として有効と考えられて
いる。
Due to such characteristics of thinness, light weight and high-speed response, the organic EL element has been attracting attention as a next-generation flat panel display element. In addition, since it is a self-luminous type and has a wide viewing angle, it has relatively good visibility and is considered to be effective as an element used for a display screen of a mobile device.

【0026】また、有機EL素子の他にも、潜在的にキャ
リアを輸送できる、すなわちある程度のキャリア移動度
を有する有機材料(有機半導体)を用いた有機半導体素
子の代表例として、有機太陽電池が挙げられる。
In addition to the organic EL element, an organic solar cell is a typical example of an organic semiconductor element using an organic material (organic semiconductor) capable of potentially transporting carriers, that is, having a certain degree of carrier mobility. Can be mentioned.

【0027】これは言わば、有機EL素子と逆の機構を利
用するものである。すなわち、最も基本的な構成は有機
EL素子と同様であり、二層構造の有機薄膜を電極で挟ん
だ構造である(非特許文献3参照)。光をその有機薄膜
に吸収させることによって生じる光電流を利用し、起電
力を得ることができる。このとき流れる電流は、光によ
って生じたキャリアが有機材料のキャリア移動度を利用
して流れるものと考えてよい。
This is, so to speak, utilizing a mechanism reverse to that of the organic EL element. That is, the most basic structure is organic
Similar to an EL element, it has a structure in which an organic thin film having a two-layer structure is sandwiched by electrodes (see Non-Patent Document 3). An electromotive force can be obtained by utilizing a photocurrent generated by absorbing light in the organic thin film. It can be considered that the current flowing at this time is that carriers generated by light flow by utilizing the carrier mobility of the organic material.

【0028】[0028]

【非特許文献3】C.W.Tang, "Two-layer organic photo
voltaic cell", Applied PhysicsLetters, vol.48, No.
2, 183-185(1986)
[Non-Patent Document 3] CWTang, "Two-layer organic photo
voltaic cell ", Applied Physics Letters, vol.48, No.
2, 183-185 (1986)

【0029】このように、エレクトロニクスの分野にお
いては本来絶縁体としての用途しか考えられなかった有
機材料は、有機半導体をうまく工夫することによって、
様々なエレクトロニクスデバイス、フォトエレクトロニ
クスデバイスの中心的機能を担わせることができるた
め、有機半導体の研究が現在盛んに行われている。
As described above, in the field of electronics, the organic material, which originally had only been considered to be used as an insulator, is
Organic semiconductors are currently being actively researched because they can play a central role in various electronic devices and photoelectronic devices.

【0030】以上では、本質的には絶縁体である有機材
料に電流を流す手段として、有機半導体を用いた二通り
の手法を先に述べた。しかしながら、その二通りの手法
は、いずれもそれぞれ異なる欠点を有している。
In the above, two methods using an organic semiconductor have been described above as means for passing a current through an organic material which is essentially an insulator. However, each of the two methods has different drawbacks.

【0031】まず、有機半導体にアクセプタやドナーを
ドープすることによってキャリア密度を増大させる場
合、確かに導電性は向上するものの、その有機半導体自
身がもともと持っていた固有の物性(光吸収特性、蛍光
特性など)が失われる。例えば、蛍光を発するπ共役系
の高分子材料に対してアクセプタやドナーをドープする
と、導電性は上昇するが発光しなくなるのである。した
がって、導電性という機能を得る代わりに、有機材料が
持っている他の多様な機能は犠牲にされてしまうと言っ
てもよい。
First, when the carrier density is increased by doping an organic semiconductor with an acceptor or a donor, although the conductivity is certainly improved, the physical properties (light absorption characteristics, fluorescence, etc.) inherent to the organic semiconductor itself are originally obtained. Properties, etc.) are lost. For example, when an acceptor or a donor is doped into a π-conjugated polymer material that emits fluorescence, the conductivity is increased but no light is emitted. Therefore, instead of obtaining the function of conductivity, various other functions of the organic material are sacrificed.

【0032】また、アクセプタやドナーのドープ量を調
節することによって様々な導電率を達成できるというメ
リットはあるが、どれほどアクセプタやドナーをドープ
してキャリアを増やしても、金属や金属に準ずる無機化
合物(窒化チタンなどの無機化合物導電体)ほどのキャ
リア密度を安定に得ることは困難である。つまり、導電
率に関して無機材料の導電体を上回ることは幾つかの例
を除いて極めて困難であり、加工性や柔軟性に富むとこ
としかメリットが残らなくなってしまう。
Further, although there is an advantage that various conductivity can be achieved by adjusting the doping amount of the acceptor or the donor, no matter how much the acceptor or the donor is doped to increase the carriers, a metal or an inorganic compound similar to the metal is obtained. It is difficult to obtain a carrier density as stable as (inorganic compound conductor such as titanium nitride). In other words, it is extremely difficult to exceed the electric conductivity of the inorganic material with respect to the electric conductivity except for some examples, and the merit remains only when the workability and flexibility are rich.

【0033】一方、SCLC(以下では光電流も含める)を
有機半導体に流す場合、有機半導体自身がもともと持っ
ていた固有の物性は失われることはない。代表的な例は
まさに有機EL素子であり、電流を流しつつも、蛍光材料
(あるいは燐光材料)の発光を利用している。有機太陽
電池も、有機半導体の光吸収という機能を利用してい
る。
On the other hand, when SCLC (hereinafter also including photocurrent) is passed through the organic semiconductor, the inherent physical properties of the organic semiconductor itself are not lost. A typical example is an organic EL element, which utilizes the light emission of a fluorescent material (or a phosphorescent material) while passing an electric current. Organic solar cells also utilize the function of light absorption of organic semiconductors.

【0034】ところが、式(1)を見てわかるとおり、
SCLCは厚さdの3乗に反比例するため、極めて薄い膜の両
面に電極を挟んだ構造でしか流すことができない。より
具体的には、有機材料の一般的なキャリア移動度を考え
ると、100nm〜200nm程度の超薄膜にしなければならな
い。
However, as can be seen from the equation (1),
Since SCLC is inversely proportional to the cube of the thickness d, it can only flow with a structure in which electrodes are sandwiched on both sides of an extremely thin film. More specifically, considering the general carrier mobility of organic materials, it is necessary to form an ultrathin film of about 100 nm to 200 nm.

【0035】確かに、上記のような超薄膜とすることに
よって、低い電圧で多くのSCLCが流せる。非特許文献2
で述べたような有機EL素子も、有機薄膜の厚みを100nm
程度の均一な超薄膜としたことが成功の要因の一つであ
る。
Certainly, by using the ultra-thin film as described above, many SCLCs can flow at a low voltage. Non-patent document 2
In the organic EL device as described in the section 1, the thickness of the organic thin film is 100 nm
One of the factors of success is that the ultra-thin film of uniform degree is used.

【0036】しかしながら、この厚みdを極めて薄くし
なければならないということ自体が、SCLCを流す際の最
大の問題点となってくる。まず、100nm程度の薄膜で
は、ピンホールなどの欠陥が生じやすく、それを起点に
ショートなどの不良が発生して歩留まりが悪くなる恐れ
がある。また、薄膜の機械的な強度も低くなる上に、超
薄膜であるがゆえに作製プロセスも自ずと限られてきて
しまう。
However, the fact that the thickness d must be made extremely thin is the biggest problem in flowing the SCLC. First, in a thin film with a thickness of about 100 nm, defects such as pinholes are likely to occur, and defects such as short circuits may occur starting from such defects, resulting in poor yield. In addition, the mechanical strength of the thin film is lowered, and since it is an ultrathin film, the manufacturing process is naturally limited.

【0037】また、SCLCを電流として利用する場合、有
機半導体自身がもともと持っていた固有の物性は失われ
ることはなく、様々な機能が発現できることがメリット
であるが、SCLCが流れることによってその有機半導体の
機能の劣化は促進される。例えば有機EL素子を例にとっ
てみれば、初期輝度にほぼ反比例、言い換えれば流す電
流の量に反比例する形で素子寿命(発光輝度の半減期)
が悪くなることが知られている(非特許文献4参照)。
When SCLC is used as an electric current, it is advantageous that the organic semiconductor itself does not lose its original physical properties and various functions can be exhibited. Deterioration of the function of the semiconductor is accelerated. For example, taking an organic EL element as an example, the element life is almost inversely proportional to the initial luminance, in other words, the element life (half-life of emission luminance) in inverse proportion to the amount of current flowing.
Is known to deteriorate (see Non-Patent Document 4).

【0038】[0038]

【非特許文献4】佐藤佳晴、「応用物理学会 有機分子
・バイオエレクトロニクス分科会会誌」、Vol.11, No.1
(2000)、86-99
[Non-Patent Document 4] Yoshiharu Sato, "Journal of the Organic Physics and Bioelectronics Subcommittee of the Japan Society of Applied Physics", Vol. 11, No. 1
(2000), 86-99

【0039】以上で述べたように、アクセプタないしは
ドナーをドープして導電性を発現させるデバイスは、導
電性以外の機能を消失してしまう。また、SCLCを利用し
て導電性を発現させるデバイスは、超薄膜に大量の電流
を流すことが原因で素子の信頼性などに問題点が生じて
いるのである。
As described above, in a device that exhibits conductivity by doping an acceptor or a donor, functions other than conductivity are lost. In addition, devices that develop conductivity using SCLC have problems in device reliability and the like due to the large amount of current flowing through the ultrathin film.

【0040】ところで、有機EL素子や有機太陽電池のよ
うな有機半導体を用いたフォトエレクトロニクスデバイ
スは、その効率にも問題を抱えている。
By the way, a photoelectronic device using an organic semiconductor such as an organic EL element or an organic solar cell has a problem in its efficiency.

【0041】例えば有機EL素子を例にとってみる。有機
EL素子の発光機構は先に述べた通り、注入された正孔と
電子が再結合することで光に変換される。従って理論的
には、一個の正孔および一個の電子の再結合から、最大
で一個のフォトンを取り出すことができることになり、
複数のフォトンを取り出すことはできない。つまり、内
部量子効率(注入されたキャリアの数に対して放出され
るフォトンの数)は最大で1である。
Take an organic EL element as an example. Organic
As described above, the light emitting mechanism of the EL element is converted into light by recombining the injected holes and electrons. Therefore, theoretically, a maximum of one photon can be extracted from the recombination of one hole and one electron,
You cannot extract multiple photons. That is, the internal quantum efficiency (the number of photons emitted with respect to the number of injected carriers) is 1 at the maximum.

【0042】しかしながら現実的には、内部量子効率を
1に近づけることさえ困難である。例えば発光体として
蛍光材料を用いた有機EL素子の場合、一重項励起状態
(S*)と三重項励起状態(T*)の統計的な生成比率が
S*:T*=1:3であると考えられている(非特許文献5参
照)ため、その内部量子効率の理論的限界は0.25とな
る。さらに、その蛍光材料の蛍光量子収率φfが1でな
い限り、内部量子効率は0.25よりもさらに下がる。
However, in reality, it is difficult to bring the internal quantum efficiency close to 1. For example, in the case of an organic EL device using a fluorescent material as a light-emitting body, the statistical production ratio of singlet excited state (S * ) and triplet excited state (T * ) is
Since it is considered that S * : T * = 1: 3 (see Non-Patent Document 5), the theoretical limit of the internal quantum efficiency is 0.25. Furthermore, unless the fluorescence quantum yield φ f of the fluorescent material is 1, the internal quantum efficiency is even lower than 0.25.

【0043】[0043]

【非特許文献5】筒井哲夫、「応用物理学会有機分子・
バイオエレクトロニクス分科会・第3回講習会テキス
ト」、P.31(1993)
[Non-Patent Document 5] Tetsuo Tsutsui, “Organic Molecule of Applied Physics,
Bioelectronics Subcommittee, 3rd Workshop Text ”, P.31 (1993)

【0044】近年は、燐光材料を用いることで三重項励
起状態からの発光を利用し、内部量子効率の理論的限界
を0.75〜1に近づけようという試みがなされており、実
際に蛍光材料を超える効率が達成されている。しかしな
がら、これも燐光材料の燐光量子収率φpが高い材料を
用いなければならないため、材料の選択幅がどうしても
限られてしまう。室温で燐光を放出できる有機化合物
が、極めてまれなためである。
In recent years, it has been attempted to bring the theoretical limit of internal quantum efficiency closer to 0.75 to 1 by utilizing the light emission from the triplet excited state by using a phosphorescent material, which actually exceeds that of a fluorescent material. Efficiency has been achieved. However, this also requires the use of a material having a high phosphorescence quantum yield φ p of the phosphorescent material, so that the selection range of the material is inevitably limited. This is because organic compounds that can emit phosphorescence at room temperature are extremely rare.

【0045】つまり、有機EL素子の電流効率(流した電
流に対して生じる輝度)を向上させる手段を講じること
ができれば、極めて大きな革新になるのである。電流効
率が向上すれば、より少ない電流で多くの輝度を出せ
る。逆に言えば、ある輝度を達成するのに流す電流を少
なくすることができるため、先に述べたような超薄膜に
大量の電流を流すことで生じる劣化も小さくなる。
In other words, if a means for improving the current efficiency of the organic EL element (luminance generated with respect to the flowing current) can be taken, it will be a great innovation. If the current efficiency is improved, more brightness can be produced with less current. In other words, since the amount of current flowing to achieve a certain brightness can be reduced, the deterioration caused by passing a large amount of current through the ultrathin film as described above is also small.

【0046】有機EL素子とは逆の機構、すなわち有機太
陽電池のような光電変換に関しても、効率が悪いのが現
状である。従来の有機半導体を用いた有機太陽電池の場
合、先に述べたように超薄膜を用いなければ電流が流れ
ず、従って起電力も生じない。しかしながら超薄膜にし
てしまうと、光の吸収効率がよくない(光を吸収しきれ
ない)という問題が生じる。このことが効率が悪い大き
な要因であると思われる。
The current situation is that the mechanism opposite to that of the organic EL element, that is, photoelectric conversion such as in an organic solar cell, is inefficient. In the case of a conventional organic solar cell using an organic semiconductor, an electric current does not flow unless an ultrathin film is used as described above, and therefore, no electromotive force is generated. However, the use of an ultrathin film causes a problem that the light absorption efficiency is not good (the light cannot be completely absorbed). This seems to be a major cause of poor efficiency.

【0047】[0047]

【発明が解決しようとする課題】以上のことから、有機
半導体を用いたエレクトロニクスデバイスにおいて、有
機材料固有の物性を活かしつつ大量の電流を流そうとす
ると、信頼性や歩留まりに悪影響を与えてしまうという
欠点がある。さらに、特にフォトエレクトロニクスデバ
イスにおいては、そのデバイスの効率もよくない。これ
らの問題点は基本的に、従来の有機半導体素子の「超薄
膜」構造に由来するものであると言ってもよい。
From the above, in an electronic device using an organic semiconductor, if a large amount of current is applied while making use of the physical properties peculiar to organic materials, the reliability and the yield will be adversely affected. There is a drawback that. Moreover, especially in photoelectronic devices, the efficiency of the device is also poor. It can be said that these problems are basically derived from the “ultra thin film” structure of the conventional organic semiconductor device.

【0048】従って本発明では、従来の有機半導体素子
の構成に新規な概念を導入することで、従来の超薄膜を
用いることなく、より信頼性が高い上に歩留まりも高い
有機半導体素子を提供することを課題とする。また、特
に有機半導体を用いたフォトエレクトロニクスデバイス
においては、その効率も向上させることを課題とする。
Therefore, in the present invention, by introducing a new concept into the structure of the conventional organic semiconductor element, an organic semiconductor element having higher reliability and higher yield can be provided without using the conventional ultrathin film. This is an issue. Another object is to improve the efficiency of a photoelectronic device using an organic semiconductor.

【0049】[0049]

【課題を解決するための手段】本発明者は、鋭意検討を
重ねた結果、アクセプタないしはドナーをドープして導
電性を発現させる有機半導体と、SCLCを利用して導電性
を発現させる有機半導体とを組み合わせることにより、
上記課題を解決できる手段を考案した。その最も基本的
な構成を図1に示す。
Means for Solving the Problems As a result of extensive studies, the present inventor has conducted an organic semiconductor that expresses conductivity by doping an acceptor or a donor, and an organic semiconductor that expresses conductivity by using SCLC. By combining
Means for solving the above problems have been devised. The most basic structure is shown in FIG.

【0050】図1は、SCLCを流すことにより様々な機能
を発現する有機薄膜層(本明細書においては、「機能性
有機薄膜層」と記す)と、アクセプタまたはドナーをド
ープするなどの手法で暗導電性を発現させたフローティ
ング状の導電体薄膜層を交互に積層した有機構造体を、
陽極と陰極との間に設けた有機半導体素子である。
FIG. 1 shows an organic thin film layer (in this specification, referred to as “functional organic thin film layer”) which exhibits various functions by flowing SCLC, and a method of doping an acceptor or a donor. An organic structure in which floating conductive thin film layers expressing dark conductivity are alternately laminated,
It is an organic semiconductor element provided between an anode and a cathode.

【0051】ここで重要なことは、導電体薄膜層は機能
性有機薄膜層に対し、ほぼオーミックに接続できるよう
な構成が好ましいことである(この場合の導電体薄膜層
を特に、「オーミック導電体薄膜層」と記す)。言い換
えれば、導電体薄膜層と機能性有機薄膜層との間の障壁
をなくすか、あるいは極めて小さくするということであ
る。
What is important here is that the conductive thin film layer preferably has a structure capable of being almost ohmic-connected to the functional organic thin film layer (in this case, the conductive thin film layer is particularly referred to as "ohmic conductive film"). Body thin film layer "). In other words, the barrier between the conductor thin film layer and the functional organic thin film layer is eliminated or made extremely small.

【0052】このような構成とすることにより、各オー
ミック導電体薄膜層から各機能性有機薄膜層に対し、正
孔と電子が容易に注入される。例えば、図1でn=2と
した素子における、その概念図を図2に示す。図2にお
いて、陽極と陰極との間に電圧を印加した場合、1番目
のオーミック導電体薄膜層から1番目の機能性有機薄膜
層に対しては電子が、1番目のオーミック導電体薄膜層
から2番目の機能性有機薄膜層に対しては正孔が、容易
に注入される。外部回路から見れば、陽極から陰極に向
かって正孔が、陰極から陽極に向かって正孔が流れてい
る(図2(a))わけだが、オーミック導電体薄膜層から
電子と正孔の両方が逆方向へ向けて流れ出ているという
見方もできる(図2(b))。
With this structure, holes and electrons are easily injected from each ohmic conductor thin film layer into each functional organic thin film layer. For example, a conceptual diagram of an element in which n = 2 in FIG. 1 is shown in FIG. In FIG. 2, when a voltage is applied between the anode and the cathode, electrons are emitted from the first ohmic conductor thin film layer to the first functional organic thin film layer from the first ohmic conductor thin film layer. Holes are easily injected into the second functional organic thin film layer. Seen from the external circuit, holes flow from the anode to the cathode and holes flow from the cathode to the anode (Fig. 2 (a)). However, both electrons and holes flow from the ohmic conductor thin film layer. It can be seen that the water flows in the opposite direction (Fig. 2 (b)).

【0053】ここで、各機能性有機薄膜層を100nm〜200
nm、あるいはそれ以下とすることにより、各機能性有機
薄膜層に注入されたキャリアはSCLCとして流れることが
できる。すなわち、各機能性有機薄膜層においては、有
機材料固有の物性に由来する機能(発光など)を発現す
ることができる。
Here, each functional organic thin film layer is 100 nm to 200 nm thick.
By setting the thickness to nm or less, the carriers injected into each functional organic thin film layer can flow as SCLC. That is, in each functional organic thin film layer, a function (e.g., light emission) derived from the physical properties peculiar to the organic material can be exhibited.

【0054】しかも、本発明の基本構造を適用すれば、
有機構造体をいくらでも厚くすることができるため、極
めて有用である。つまり、従来の素子(陽極301と陰極3
02との間に機能性有機薄膜層303を挟んだ素子)が、あ
る電圧Vをdの膜厚に印加することでJの電流密度を得ら
れるとする(図3(a))。ここで、同様にdの膜厚を持つ
n個の機能性有機薄膜層303とn−1個のオーミック導電体
薄膜層304とを交互に積層した本発明の場合(図3
(b))、これまではdの膜厚(従来であれば100nm〜200n
m)にしかSCLCが流せなかったものが、見かけ上は、nd
の膜厚に対して図3(a)と同様Jの電流密度を持つSCLCを
流しているかのようになる。つまり、見かけ上は図3
(c)のようになるわけだが、これは従来の素子では不可
能なことである(どんなに電圧を印加しても、SCLCは膜
厚が大きくなると急激に流れなくなるため)。
Moreover, if the basic structure of the present invention is applied,
This is extremely useful because the organic structure can be made as thick as desired. That is, conventional elements (anode 301 and cathode 3
It is assumed that a device in which the functional organic thin film layer 303 is sandwiched between 02 and 02) can obtain a current density of J by applying a certain voltage V to a film thickness of d (FIG. 3 (a)). Where the film thickness is d
In the case of the present invention in which n functional organic thin film layers 303 and n-1 ohmic conductor thin film layers 304 are alternately laminated (see FIG. 3).
(b)), so far the film thickness of d (100nm-200n
Although the SCLC could only flow to m), apparently nd
It is as if a SCLC with a current density of J is flowing for the film thickness of 3 as in Fig. 3 (a). In other words, it looks like Figure 3
Although it becomes like (c), this is not possible with conventional devices (no matter how much voltage is applied, SCLC suddenly stops flowing as the film thickness increases).

【0055】無論この場合、単純に考えて、電圧はnVだ
け必要となる。しかしながら、有機半導体を用いたエレ
クトロニクスデバイスにおいて、有機材料固有の物性を
活かしつつ大量の電流を流そうとすると信頼性や歩留ま
りに悪影響を与えてしまうという欠点を、容易に克服す
ることができる。
Of course, in this case, simply thinking, a voltage of nV is required. However, in an electronic device using an organic semiconductor, it is possible to easily overcome the drawback that reliability and yield are adversely affected if a large amount of current is applied while making use of the physical properties inherent to organic materials.

【0056】このように、機能性有機薄膜層と導電体薄
膜層とを交互に積層した有機構造体を陽極と陰極との間
に設けることにより、有機半導体素子において従来より
も厚い膜厚でSCLCを流すことができるという概念は、こ
れまで存在しなかった。この概念は、SCLCを流して発光
を取り出す有機EL素子や、その逆の機構とも言える光電
流を利用する有機太陽電池はもちろんのこと、その他の
有機半導体素子にも広く応用することが可能である。
As described above, by providing the organic structure in which the functional organic thin film layers and the conductive thin film layers are alternately laminated between the anode and the cathode, the SCLC in the organic semiconductor element is thicker than the conventional one. The concept of being able to flush has never existed. This concept can be widely applied not only to organic EL elements that emit light by flowing SCLC and organic solar cells that utilize photocurrent, which is the reverse mechanism, but also to other organic semiconductor elements. .

【0057】そこで本発明では、陽極と陰極との間に、
1番目からn番目(nは2以上の整数)までのn個の機能
性有機薄膜層を順次積層してなる有機構造体が設けられ
た有機半導体素子において、k番目(kは、1≦k≦
(n−1)なる整数)の機能性有機薄膜層とk+1番目
の機能性有機薄膜層との間には全て、フローティング状
の導電体薄膜層が設けられており、前記導電体薄膜層
は、前記機能性有機薄膜層に対してオーム接触している
ことを特徴とする。
Therefore, in the present invention, between the anode and the cathode,
In an organic semiconductor device provided with an organic structure formed by sequentially stacking n functional organic thin film layers from the 1st to the nth (n is an integer of 2 or more), the kth (k is 1 ≦ k ≤
A floating conductor thin film layer is provided between the functional organic thin film layer (n-1) and the (k + 1) th functional organic thin film layer. It is characterized in that it is in ohmic contact with the functional organic thin film layer.

【0058】この場合、前記導電体薄膜層として、金属
や導電性無機化合物を用いるのではなく、有機化合物と
する方が好ましい。特に透明性が必要となるフォトエレ
クトロニクスデバイスの場合は、有機化合物の方が好適
である。
In this case, it is preferable to use an organic compound as the conductor thin film layer instead of using a metal or a conductive inorganic compound. Particularly in the case of a photoelectronic device that requires transparency, organic compounds are more suitable.

【0059】従って本発明では、陽極と陰極との間に、
1番目からn番目(nは2以上の整数)までのn個の機能
性有機薄膜層を順次積層してなる有機構造体が設けられ
た有機半導体素子において、k番目(kは、1≦k≦
(n−1)なる整数)の機能性有機薄膜層とk+1番目
の機能性有機薄膜層との間には全て、有機化合物を含む
フローティング状の導電体薄膜層が設けられており、前
記導電体薄膜層は、前記機能性有機薄膜層に対してオー
ム接触していることを特徴とする。
Therefore, in the present invention, between the anode and the cathode,
In an organic semiconductor device provided with an organic structure formed by sequentially stacking n functional organic thin film layers from the 1st to the nth (n is an integer of 2 or more), the kth (k is 1 ≦ k ≤
A floating conductor thin film layer containing an organic compound is provided between the (n-1) integer functional organic thin film layer and the (k + 1) th functional organic thin film layer. The thin film layer is in ohmic contact with the functional organic thin film layer.

【0060】また、前記導電体薄膜層と機能性有機薄膜
層とをオーミック接触またはそれに近い接触をさせるた
め、先に述べたように、前記導電体薄膜層を有機化合物
で形成し、アクセプタまたはドナーをドープすることが
重要な手段となる。
In order to make ohmic contact between the conductor thin film layer and the functional organic thin film layer or a contact close thereto, as described above, the conductor thin film layer is formed of an organic compound, and an acceptor or a donor is formed. Doping is an important means.

【0061】従って本発明では、陽極と陰極との間に、
1番目からn番目(nは2以上の整数)までのn個の機能
性有機薄膜層を順次積層してなる有機構造体が設けられ
た有機半導体素子において、k番目(kは、1≦k≦
(n−1)なる整数)の機能性有機薄膜層とk+1番目
の機能性有機薄膜層との間には全て、有機化合物を含む
フローティング状の導電体薄膜層が設けられており、前
記導電体薄膜層には、前記有機化合物に対するアクセプ
タまたはドナーの少なくとも一方が含まれていることを
特徴とする。
Therefore, in the present invention, between the anode and the cathode,
In an organic semiconductor device provided with an organic structure formed by sequentially stacking n functional organic thin film layers from the 1st to the nth (n is an integer of 2 or more), the kth (k is 1 ≦ k ≤
A floating conductor thin film layer containing an organic compound is provided between the (n-1) integer functional organic thin film layer and the (k + 1) th functional organic thin film layer. It is characterized in that the thin film layer contains at least one of an acceptor and a donor for the organic compound.

【0062】また本発明では、陽極と陰極との間に、1
番目からn番目(nは2以上の整数)までのn個の機能性
有機薄膜層を順次積層してなる有機構造体が設けられた
有機半導体素子において、k番目(kは、1≦k≦(n
−1)なる整数)の機能性有機薄膜層とk+1番目の機
能性有機薄膜層との間には全て、有機化合物を含むフロ
ーティング状の導電体薄膜層が設けられており、前記導
電体薄膜層には、前記有機化合物に対するアクセプタお
よびドナーの両方が含まれていることを特徴とする。
Further, in the present invention, 1 is provided between the anode and the cathode.
In an organic semiconductor element provided with an organic structure formed by sequentially stacking n functional organic thin film layers from the nth to the nth (n is an integer of 2 or more), the kth (k is 1 ≦ k ≦ (N
-1) integer)), and a floating conductor thin film layer containing an organic compound is provided between the functional organic thin film layer and the (k + 1) th functional organic thin film layer. Contains both an acceptor and a donor for the organic compound.

【0063】なお、導電体薄膜層にアクセプタやドナー
をドープする際、機能性有機薄膜層に用いられている有
機化合物と、導電体薄膜層に用いられている有機化合物
とを同一のもので接続する(つまり、機能性有機薄膜層
に用いている有機化合物を導電体薄膜層に含有させ、導
電体薄膜層にはアクセプタやドナーをドープする)こと
により、より簡単なプロセスで素子を作製することがで
きる。
When the conductor thin film layer is doped with an acceptor or a donor, the same organic compound used for the functional organic thin film layer and the organic compound used for the conductor thin film layer are connected. (That is, by incorporating the organic compound used in the functional organic thin film layer into the conductive thin film layer and doping the conductive thin film layer with an acceptor or a donor), a device can be manufactured by a simpler process. You can

【0064】ところで、導電体薄膜層にアクセプタとド
ナーの両方が含まれる場合、前記導電体薄膜層は、有機
化合物にアクセプタを添加した第一の層と、前記有機化
合物と同一の有機化合物にドナーを添加した第二の層
と、を積層してなる構造であり、前記第一の層が前記第
二の層よりも陰極側に位置する構造が好適である。
By the way, when the conductor thin film layer contains both an acceptor and a donor, the conductor thin film layer includes a first layer in which an acceptor is added to an organic compound and a donor in the same organic compound as the organic compound. A second layer to which is added is laminated, and a structure in which the first layer is located closer to the cathode than the second layer is preferable.

【0065】また、そのような場合も、機能性有機薄膜
層に用いられている有機化合物と、導電体薄膜層に用い
られている有機化合物とを同一のもので接続することが
好ましい。
Also in such a case, it is preferable to connect the organic compound used in the functional organic thin film layer and the organic compound used in the conductor thin film layer with the same one.

【0066】ところで、導電体薄膜層にアクセプタとド
ナーの両方が含まれる場合、前記導電体薄膜層は、第一
の有機化合物にアクセプタを添加した第一の層と、前記
第一の有機化合物とは異なる第二の有機化合物にドナー
を添加した第二の層と、を積層してなる構造であり、前
記第一の層が前記第二の層よりも陰極側に位置する構造
も好適である。
By the way, when both the acceptor and the donor are contained in the conductor thin film layer, the conductor thin film layer includes the first layer obtained by adding the acceptor to the first organic compound, and the first organic compound. Is a structure in which a second layer obtained by adding a donor to a different second organic compound is laminated, and a structure in which the first layer is located closer to the cathode than the second layer is also suitable. .

【0067】この場合も、機能性有機薄膜層に用いられ
ている有機化合物と、前記第一の層に用いられている有
機化合物とを同一のもので接続することが好ましい。ま
た、機能性有機薄膜層に用いられている有機化合物と、
前記第二の層に用いられている有機化合物とを同一のも
ので接続することが好ましい。
Also in this case, it is preferable to connect the organic compound used in the functional organic thin film layer and the organic compound used in the first layer by the same one. In addition, an organic compound used in the functional organic thin film layer,
It is preferable to connect the same organic compound as that used in the second layer.

【0068】機能性有機薄膜層の構成としては、バイポ
ーラ性の有機化合物を用いて作製してもよいし、正孔輸
送層と電子輸送層を積層するなどモノポーラ性の有機化
合物を組み合わせて用いてもよい。
The functional organic thin film layer may be formed using a bipolar organic compound, or may be used in combination with a monopolar organic compound such as stacking a hole transport layer and an electron transport layer. Good.

【0069】以上で述べたような素子構造は、有機半導
体素子の中でも特に、発光や光吸収に関連するフォトエ
レクトロニクスの分野において効率を高めることができ
るため、極めて有用である。つまり、機能性有機薄膜層
を、電流を流すことで発光を呈する有機化合物で構成す
ることで、信頼性が高く、効率のよい有機EL素子とする
ことができる。また、機能性有機薄膜層を、光を吸収す
ることで光電流が生じる(起電力を生じる)有機化合物
で構成することで、信頼性が高く、効率のよい有機太陽
電池とすることができる。
The device structure as described above is extremely useful because it can improve the efficiency particularly in the field of photoelectronics related to light emission and light absorption among organic semiconductor devices. That is, by forming the functional organic thin film layer with an organic compound that emits light when an electric current is applied, a highly reliable and efficient organic EL element can be obtained. In addition, by forming the functional organic thin film layer with an organic compound that produces photocurrent (produces electromotive force) by absorbing light, a highly reliable and efficient organic solar cell can be obtained.

【0070】従って本発明では、以上で述べた機能性有
機薄膜層を、有機EL素子の機能や有機太陽電池の機能を
発現できる構成とした有機半導体素子に関しても、全て
含むものとする。
Therefore, in the present invention, all of the functional organic thin film layers described above are also included in an organic semiconductor element having a structure capable of exhibiting the function of an organic EL element or the function of an organic solar cell.

【0071】なお、特に有機EL素子において、機能性有
機薄膜層をバイポーラ性の有機化合物で構成する場合、
前記バイポーラ性の有機化合物はπ共役系を有する高分
子化合物を含むことが好適である。またその際、導電体
薄膜層に対しても前記π共役系を有する高分子化合物を
用い、アクセプタやドナーをドープして暗導電率を向上
させる手法が好ましい。あるいは、導電体薄膜層とし
て、アクセプタまたはドナーを添加した導電性高分子化
合物を用いてもよい。
In particular, in the organic EL element, when the functional organic thin film layer is composed of a bipolar organic compound,
The bipolar organic compound preferably includes a polymer compound having a π-conjugated system. At that time, it is preferable to use a polymer compound having the π-conjugated system for the conductor thin film layer and dope an acceptor or a donor to improve the dark conductivity. Alternatively, a conductive polymer compound to which an acceptor or a donor is added may be used as the conductor thin film layer.

【0072】また、有機EL素子において、正孔輸送材料
からなる正孔輸送層と電子輸送材料からなる電子輸送層
を積層するなど、モノポーラ性の有機化合物を組み合わ
せて機能性有機薄膜層を構成する場合、導電体薄膜層に
対しても、前記正孔輸送材料または前記電子輸送材料の
うち少なくとも一方を用い、アクセプタやドナーをドー
プして暗導電率を向上させる手法が好ましい。あるい
は、前記正孔輸送材料および前記電子輸送材料の両方を
用いてもよい。具体的には、機能性有機薄膜層に用いて
いる電子輸送材料にドナーをドープした層と、機能性有
機薄膜層に用いている正孔輸送材料にアクセプタをドー
プした層とを積層した構造を、導電体薄膜層として用い
るなどの手法である。
In the organic EL element, a functional organic thin film layer is formed by combining monopolar organic compounds such as stacking a hole transport layer made of a hole transport material and an electron transport layer made of an electron transport material. In this case, it is preferable to use at least one of the hole transport material and the electron transport material for the conductor thin film layer and dope an acceptor or a donor to improve the dark conductivity. Alternatively, both the hole transport material and the electron transport material may be used. Specifically, a structure in which a layer in which an electron transporting material used in a functional organic thin film layer is doped with a donor and a layer in which a hole transporting material used in a functional organic thin film layer is doped with an acceptor are stacked is laminated. , A thin film conductor layer is used.

【0073】機能性有機薄膜層の構成としては、有機太
陽電池においても有機EL素子と同様である。すなわち、
有機太陽電池において、機能性有機薄膜層をバイポーラ
性の有機化合物で構成する場合、前記バイポーラ性の有
機化合物はπ共役系を有する高分子化合物を含むことが
好適である。またその際、導電体薄膜層に対しても前記
π共役系を有する高分子化合物を用い、アクセプタやド
ナーをドープして暗導電率を向上させる手法が好まし
い。あるいは、導電体薄膜層として、アクセプタまたは
ドナーを添加した導電性高分子化合物を用いてもよい。
The structure of the functional organic thin film layer is the same as that of the organic EL element in the organic solar cell. That is,
In the organic solar cell, when the functional organic thin film layer is composed of a bipolar organic compound, the bipolar organic compound preferably contains a polymer compound having a π-conjugated system. At that time, it is preferable to use a polymer compound having the π-conjugated system for the conductor thin film layer and dope an acceptor or a donor to improve the dark conductivity. Alternatively, a conductive polymer compound to which an acceptor or a donor is added may be used as the conductor thin film layer.

【0074】また、有機太陽電池において、正孔輸送材
料からなる層と電子輸送材料からなる層を積層するな
ど、モノポーラ性の有機化合物を組み合わせて機能性有
機薄膜層を構成する場合、導電体薄膜層に対しても、前
記正孔輸送材料または前記電子輸送材料のうち少なくと
も一方を用い、アクセプタやドナーをドープして暗導電
率を向上させる手法が好ましい。あるいは、前記正孔輸
送材料および前記電子輸送材料の両方を用いてもよい。
具体的には、機能性有機薄膜層に用いている電子輸送材
料にドナーをドープした層と、機能性有機薄膜層に用い
ている正孔輸送材料にアクセプタをドープした層とを積
層した構造を、導電体薄膜層として用いるなどの手法で
ある。
In the organic solar cell, when a functional organic thin film layer is formed by combining a monopolar organic compound such as stacking a layer made of a hole transport material and a layer made of an electron transport material, a conductive thin film is formed. Also for the layer, a method of using at least one of the hole transport material and the electron transport material and doping an acceptor or a donor to improve the dark conductivity is preferable. Alternatively, both the hole transport material and the electron transport material may be used.
Specifically, a structure in which a layer in which an electron transporting material used in a functional organic thin film layer is doped with a donor and a layer in which a hole transporting material used in a functional organic thin film layer is doped with an acceptor are stacked is laminated. , A thin film conductor layer is used.

【0075】なお、以上で述べたような全ての導電体薄
膜層(オーミック導電体薄膜層)は、キャリアを注入で
きればよいためシート抵抗を低くする必要はない。従っ
てその導電率は、10-10S/m2以上程度であれば十分であ
る。
It is not necessary to reduce the sheet resistance of all the above-mentioned conductor thin film layers (ohmic conductor thin film layers) as long as carriers can be injected. Therefore, it is sufficient that the conductivity is about 10 -10 S / m 2 or more.

【0076】[0076]

【発明の実施の形態】以下、本発明の実施形態につい
て、有機EL素子や有機太陽電池を例として詳細に説明す
る。なお、有機EL素子は、発光を取り出すために少なく
とも陽極、または陰極の一方が透明であれば良いが、本
実施例の形態では、基板上に透明な陽極を形成し、陽極
側から光を取り出す素子構造を記述する。実際は陰極を
基板上に形成して陰極から光を取りだす構造や、基板と
は逆側から光を取り出す構造、電極の両側から光を取り
出す構造にも適用可能である。有機太陽電池について
も、光を吸収させるため、素子の両面のうちどちらか一
方が透明であればよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail by taking an organic EL element or an organic solar cell as an example. Note that in the organic EL element, at least one of the anode and the cathode is transparent in order to extract light emission, but in this embodiment, a transparent anode is formed on the substrate and light is extracted from the anode side. Describe the device structure. Actually, it is also applicable to a structure in which a cathode is formed on a substrate to take out light from the cathode, a structure to take out light from the side opposite to the substrate, and a structure to take out light from both sides of the electrode. As for the organic solar cell, in order to absorb light, either one of both sides of the element may be transparent.

【0077】まず、有機EL素子において、超薄膜に由来
する信頼性の悪さを克服し、さらには流れる電流に対し
て放出される光の割合(すなわち電流効率)を向上させ
る手段として、単純なデバイス構造の観点からは、例え
ば有機EL素子を直列に接続すればよい。このことは以下
のように説明される。
First, in the organic EL element, a simple device is used as a means for overcoming the poor reliability derived from the ultrathin film and for improving the ratio of the light emitted to the flowing current (that is, the current efficiency). From the viewpoint of structure, for example, organic EL elements may be connected in series. This is explained as follows.

【0078】図4(a)に示すように、ある電圧V1を印加
することによってJ1の電流密度を有する電流が流れ、単
位面積当たりL1の光エネルギー(あるエネルギーをもっ
たフォトンが放出されたとして、そのエネルギーとフォ
トン数との積に相当する)で発光する有機EL素子D1
あるとする。この時のパワー効率φe1(与えられた電気
エネルギー(電力)に対する発光のエネルギーのことで
あり、エネルギー変換効率と同義である)は、以下の式
で与えられる。
As shown in FIG. 4 (a), when a certain voltage V 1 is applied, a current having a current density of J 1 flows, and light energy of L 1 per unit area (photons having a certain energy are emitted. Then, it is assumed that there is an organic EL element D 1 that emits light with the energy multiplied by the number of photons. The power efficiency φe 1 at this time (which is the energy of light emission for a given electric energy (electric power) and is synonymous with the energy conversion efficiency) is given by the following formula.

【0079】[0079]

【数3】 φe1 = L1/(J1・V1) (3)[Equation 3] φe 1 = L 1 / (J 1 · V 1 ) (3)

【0080】次に、このD1と全く等価な有機EL素子D2
を、D1と直列に繋いだ場合を考える(図4(b))。な
お、この時の接点C1は、D1とD2とをオーミックに接続し
ているものとする。
Next, an organic EL element D 2 which is completely equivalent to this D 1
Consider the case where is connected in series with D 1 (Fig. 4 (b)). Note that the contact C 1 at this time is assumed to be an ohmic connection between D 1 and D 2 .

【0081】ここで、素子全体(すなわちD1とD2とを接
続した構造を有する素子Dall)に、図4(a)で印加した
電圧に比べて2倍の電圧V2(=2V1)を印加したとす
る。すると、D1とD2とが等価であるため、図4(b)に示
したようにD1およびD2にはそれぞれV1ずつの電圧が印加
され、共通の電流密度J1の電流が流れる。従って、D1
よびD2はそれぞれL1ずつの光エネルギーで発光するた
め、素子全体Dallからは2倍の光エネルギー2L1を得る
ことができるのである。
Here, a voltage V 2 (= 2V 1 ) twice as high as the voltage applied in FIG. 4A is applied to the entire device (that is, the device D all having a structure in which D 1 and D 2 are connected). ) Is applied. Then, since D 1 and D 2 are equivalent, as shown in FIG. 4 (b), a voltage of V 1 is applied to each of D 1 and D 2 , and a current of common current density J 1 is generated. Flowing. Therefore, D 1 and D 2 emit light with the light energy of L 1, respectively, and thus double the light energy 2L 1 can be obtained from the entire device D all .

【0082】この時のパワー効率φe2は、以下の式で与
えられる。
The power efficiency φe 2 at this time is given by the following equation.

【数4】 φe2 = 2L1/(J1・2V1) = L1/(J1・V1) (4)[Equation 4] φe 2 = 2L 1 / (J 1・ 2V 1 ) = L 1 / (J 1・ V 1 ) (4)

【0083】上記式(3)と上記式(4)を比較してわ
かるとおり、パワー効率で考えれば図4(a)と図4(b)で
は変化はなく、V1とJ1からL1に変換されるというエネル
ギー保存則は守られている。しかしながら電流効率は、
見かけ上2倍、すなわちL1/J1から2 L1/J1に増加す
る。これは有機EL素子にとって重要な意味を持つ。つ
まり、直列に接続する有機EL素子を増やし、その数を
増やした分だけ電圧をより多く印加し、電流密度は一定
に保っておくことで、電流効率は高めることができるの
である。
As can be seen by comparing the above equations (3) and (4), there is no change between FIG. 4 (a) and FIG. 4 (b) in terms of power efficiency, and V 1 and J 1 to L 1 The energy conservation law of being converted into is protected. However, the current efficiency is
Apparently doubled, that is, increased from L 1 / J 1 to 2 L 1 / J 1 . This has an important meaning for the organic EL device. In other words, the current efficiency can be increased by increasing the number of organic EL elements connected in series, applying more voltage by the increased number, and keeping the current density constant.

【0084】この概念をより一般化すると、全く等価な
有機EL素子をn個直列にオーミック接続した場合、電
流密度を一定に保ったまま、電圧をn倍にすることでn倍
の輝度を得ることができる。この性質は、有機EL素子に
おいて輝度と電流密度が比例関係にあることに起因して
いる。
If this concept is further generalized, when n completely equivalent organic EL elements are ohmic-connected in series, n times the luminance is obtained by increasing the voltage by n times while keeping the current density constant. be able to. This property is due to the fact that the luminance and the current density are in a proportional relationship in the organic EL element.

【0085】もちろん、異なる有機EL素子を直列に接
続した場合でも、各々の有機EL素子から放出される輝
度は異なるが、電圧を多く印加することで一つの有機E
L素子よりは多くの輝度を取り出すことができる。その
概念図を図5に示す。
Of course, even when different organic EL elements are connected in series, the brightness emitted from each organic EL element is different, but one organic EL element can be obtained by applying a large voltage.
It is possible to extract more luminance than the L element. The conceptual diagram is shown in FIG.

【0086】図5で示したとおり、異なる有機EL素子
D1とD2を直列に接続し、一つの有機EL素子(D1ないし
はD2)にJ1の電流を流すのに必要な電圧(V1ないしは
V2)よりも高い電圧V1+V2を印加すると、J1の電流でL1+
L2(>L1, L2)の輝度を取り出すことができる。
As shown in FIG. 5, different organic EL devices
D 1 and D 2 are connected in series, and the voltage (V 1 or D 1 ) required to flow the current of J 1 to one organic EL element (D 1 or D 2 ).
Applying a voltage V 1 + V 2 higher than V 2 ), the current in J 1 is L 1 +
The brightness of L 2 (> L 1 , L 2 ) can be extracted.

【0087】このとき、例えばD1を青色発光素子、D2
黄色発光素子とすることで、混色できれば白色発光とな
るので、従来よりも電流効率の高い、ひいては素子の寿
命も長い白色発光素子も可能となる。
At this time, for example, a blue light emitting element is used for D 1 and a yellow light emitting element is used for D 2 , so that white light emission is obtained if the colors can be mixed. Will also be possible.

【0088】このように、素子を直列にオーミック接続
させることで、見かけの電流効率を向上させ、より少な
い電流で大きな輝度を得ることができる。このことはす
なわち、同じ輝度の光を放出させるのに必要な電流を、
従来よりも小さくすることができることを意味する。し
かも、電圧さえ多く印加してもよいのであればいくらで
も有機EL素子を接続することができ、全体の膜厚は厚
くすることができる。
As described above, by ohmic-connecting the elements in series, the apparent current efficiency can be improved and a large luminance can be obtained with a smaller current. This means that the current required to emit light of the same brightness is
This means that it can be made smaller than before. Moreover, as long as a large voltage can be applied, any number of organic EL elements can be connected, and the overall film thickness can be increased.

【0089】しかしながら、上記のように、単純に有機
EL素子を直列に接続する場合にも、問題点が存在す
る。これは有機EL素子の電極および素子構造に由来す
る問題であるが、図6を用いて説明する。図6(a)は図
4(a)の有機EL素子D1の断面図、図6(b)は図4(b)の
素子全体Dallの断面図を模式的に表したものである。
However, there is a problem even when the organic EL elements are simply connected in series as described above. This is a problem caused by the electrodes and element structure of the organic EL element, which will be described with reference to FIG. FIG. 6A is a cross-sectional view of the organic EL element D 1 of FIG. 4A, and FIG. 6B is a schematic cross-sectional view of the entire element D all of FIG. 4B.

【0090】通常の有機EL素子の基本構造(図6
(a))は、基板601上に透明電極602(ここでは陽極であ
り、一般にはITOなどが用いられる)を設け、電流を流
すことで発光を呈する機能性有機薄膜層(以下、「有機
EL層」と記す)604を成膜し、陰極603を形成することで
作製されている。この場合、光は透明電極(陽極)602
から取り出される。陰極603は、通常仕事関数の低い金
属電極、あるいは電子注入を補助する陰極バッファ層と
金属導電膜(アルミニウムなど)を併用したものを用い
る。
The basic structure of an ordinary organic EL device (see FIG. 6)
(a)) is a functional organic thin film layer (hereinafter referred to as “organic organic thin film layer”) which is provided with a transparent electrode 602 (here, an anode, generally ITO is used) on a substrate 601, and emits light when an electric current is applied.
(Hereinafter referred to as “EL layer”) 604, and the cathode 603 is formed. In this case, the light is transparent electrode (anode) 602.
Taken from. As the cathode 603, a metal electrode having a low work function is usually used, or a cathode buffer layer for assisting electron injection and a metal conductive film (such as aluminum) are used together.

【0091】このような有機EL素子を単純に二つ直列に
接続する場合(図6(b))、一番目の透明電極(陽極)6
02a上に一番目の有機EL層604a、一番目の陰極603a、二
番目の透明電極(陽極)602b、二番目の有機EL層604b、
二番目の陰極603bが順次積層される構造になる。する
と、二番目の有機EL層604bで放出される光は、一番目の
陰極603aが金属であるために透過できず、素子の外に取
り出すことができない。したがって、上下の有機EL素子
の発光を混色し、白色光にするなどの工夫もできなくな
る。
When two such organic EL elements are simply connected in series (FIG. 6 (b)), the first transparent electrode (anode) 6
On 02a, the first organic EL layer 604a, the first cathode 603a, the second transparent electrode (anode) 602b, the second organic EL layer 604b,
The structure is such that the second cathode 603b is sequentially stacked. Then, the light emitted from the second organic EL layer 604b cannot be transmitted because the first cathode 603a is a metal, and cannot be taken out of the device. Therefore, it is impossible to mix the light emission of the upper and lower organic EL elements to obtain white light.

【0092】例えば、陽極、陰極両方に透明電極である
ITOを用いる技術も報告されている(非特許文献6:G.
Parthasarathy, P. E. Burrows, V. Khalfin, V. G. Ko
zlov, and S. R. Forrest, "A metal-free cathode for
organic semiconductor devices", J. Appl. Phys., 7
2, 2138-2140 (1998))。これを用いれば第一の陰極603
aを透明にできるため、第二の有機EL層604bから放出さ
れる光を取り出すこともできる。しかしながら、ITOは
主としてスパッタリングによって形成されるため、有機
EL層604aに対するダメージが懸念される。また、プロセ
ス的にも、蒸着による有機EL層の成膜とスパッタリング
によるITOの成膜を繰り返さなければならず、煩雑にな
ってしまう。
For example, transparent electrodes are used for both the anode and the cathode.
Techniques using ITO have also been reported (Non-Patent Document 6: G.
Parthasarathy, PE Burrows, V. Khalfin, VG Ko
zlov, and SR Forrest, "A metal-free cathode for
organic semiconductor devices ", J. Appl. Phys., 7
2, 2138-2140 (1998)). With this, the first cathode 603
Since a can be made transparent, the light emitted from the second organic EL layer 604b can also be extracted. However, since ITO is mainly formed by sputtering,
There is concern about damage to the EL layer 604a. Further, in terms of process, the film formation of the organic EL layer by vapor deposition and the film formation of ITO by sputtering must be repeated, which is complicated.

【0093】そこで、直列に素子を接続することで電流
効率を向上できるという概念と同様に電流効率を向上で
きる上に、素子の透明性も問題なくクリアできるより好
ましい形態は、例えば図7のような構成である。
Therefore, a more preferable form in which the current efficiency can be improved similarly to the concept that the current efficiency can be improved by connecting the elements in series and the transparency of the element can be cleared without any problem is, for example, as shown in FIG. It is a simple structure.

【0094】図7は、基板701に設けた透明電極(陽
極)702上に、一番目の有機EL層704a、一番目の導電体
薄膜層705a、二番目の有機EL層704b、陰極703が順次積
層された構造である。この場合、一番目の導電体薄膜層
705aは、有機半導体にアクセプタやドナーをドープした
ものを適用することにより、有機EL層とほぼオーミック
に接続できる(正孔・電子両キャリアを注入できる)上
に、透明性もほぼ維持できる。したがって、二番目の有
機EL層703bで生じる発光も取り出すことができ、単純に
は電圧を二倍にすることで電流効率を二倍にすることが
できる。
In FIG. 7, a first organic EL layer 704a, a first conductor thin film layer 705a, a second organic EL layer 704b, and a cathode 703 are sequentially arranged on a transparent electrode (anode) 702 provided on a substrate 701. It is a laminated structure. In this case, the first conductor thin film layer
By applying an acceptor or a donor doped to an organic semiconductor, the 705a can be almost ohmic-connected to the organic EL layer (can inject both hole and electron carriers), and can also substantially maintain transparency. Therefore, the light emission generated in the second organic EL layer 703b can also be extracted, and the current efficiency can be doubled simply by doubling the voltage.

【0095】しかも、プロセスは全て一貫(例えば、低
分子を用いるのであれば真空蒸着のようなドライプロセ
ス、高分子を用いるのであればスピンコートのような湿
式プロセス)で作製できるため、煩雑さは存在しない。
Moreover, since all the processes can be manufactured by a consistent process (for example, a dry process such as vacuum deposition when a low molecular weight is used, a wet process such as spin coating when a high molecular weight is used), it is not complicated. not exist.

【0096】なお、図7では二つの有機EL層を設けた構
造であるが、先に述べたとおり、電圧さえ多く印加して
もよいのであれば、多層とすることができる(無論、各
有機EL層と有機EL層との間は、導電体薄膜層が挿入され
ている)。したがって、超薄膜に由来する有機半導体素
子の信頼性の悪さを克服できる。
Although FIG. 7 shows a structure in which two organic EL layers are provided, as described above, a multi-layer structure can be used as long as even a large voltage can be applied (of course, each organic A conductive thin film layer is inserted between the EL layer and the organic EL layer). Therefore, it is possible to overcome the poor reliability of the organic semiconductor element derived from the ultrathin film.

【0097】この思想は、有機EL素子と逆の機構とも言
える有機太陽電池にも、当然当てはまる。このことは以
下のように説明される。
This idea naturally applies to an organic solar cell which can be said to have a mechanism reverse to that of an organic EL element. This is explained as follows.

【0098】ある光エネルギーL1により電流密度J1の光
電流が生じ、V1の起電力が生じる有機太陽電池S1があっ
たとする。このS1をn個直列にオーミック接続し、そこ
にnL1の光エネルギーを照射した時、もし仮に、n個全て
の太陽電池S1に対して等価な光エネルギー(=nL1/n=
L1)を供給することができれば、n倍の起電力(=nV1
を得ることができる。要は、直列に繋いだ複数の有機太
陽電池がどれも光吸収できるのであれば、その分起電力
は増えるのである。
It is assumed that there is an organic solar cell S 1 in which a photocurrent having a current density J 1 is generated by a certain light energy L 1 and an electromotive force of V 1 is generated. When n pieces of this S 1 are ohmic-connected in series and the light energy of nL 1 is applied to them, if, for example, all n pieces of solar cells S 1 have equivalent light energy (= nL 1 / n =
If L 1 ) can be supplied, electromotive force n times (= nV 1 )
Can be obtained. In short, if all the organic solar cells connected in series can absorb light, the electromotive force will increase accordingly.

【0099】例えば、二つの有機太陽電池を直列に繋ぐ
ことで、起電力が向上する報告がある(非特許文献7:
Masahiro HIRAMOTO, Minoru SUEZAKI, and Masaaki YOK
OYAMA, "Effect of Thin Gold Interstitial-layer on
the Photovoltaic Properties of Tandem Organic Sola
r Cell", Chemistry Letters, pp.327-330, 1990)。非
特許文献7では、二つの有機太陽電池(front cellおよ
びback cell)の間に金の薄膜を挿入することにより、
光照射による起電力が向上する結果を得ている。
For example, there is a report that electromotive force is improved by connecting two organic solar cells in series (Non-Patent Document 7:
Masahiro HIRAMOTO, Minoru SUEZAKI, and Masaaki YOK
OYAMA, "Effect of Thin Gold Interstitial-layer on
the Photovoltaic Properties of Tandem Organic Sola
r Cell ", Chemistry Letters, pp.327-330, 1990). In Non-Patent Document 7, by inserting a thin film of gold between two organic solar cells (front cell and back cell),
The result is that the electromotive force due to light irradiation is improved.

【0100】しかしながら、非特許文献7においても、
光の透過性の観点から金の薄膜の厚みは3nm以下として
いる。すなわち、金を光が透過できるほどの超薄膜と
し、back cellまで光が到達できるよう設計しなければ
ならないのである。しかも、数nmオーダーの超薄膜で
は、その再現性にも問題がある。
However, even in Non-Patent Document 7,
From the viewpoint of light transmission, the thickness of the gold thin film is set to 3 nm or less. In other words, gold must be designed as an ultrathin film that allows light to pass therethrough, and designed so that light can reach the back cell. In addition, the reproducibility of ultra-thin films of the order of several nm has a problem.

【0101】このような問題点も、本発明を適用するこ
とにより解決することができる。すなわち、非特許文献
7のような有機太陽電池の構造において、金の薄膜の部
分に、本発明を適用すればよいのである。そうすること
により、二つの素子を直列に繋ぐのではなく、従来より
も膜厚の厚い上に効率の高い、一つの有機太陽電池とし
て利用することができる。
Such a problem can also be solved by applying the present invention. That is, in the structure of the organic solar cell as in Non-Patent Document 7, the present invention may be applied to the gold thin film portion. By doing so, rather than connecting two elements in series, it can be used as one organic solar cell having a larger film thickness and higher efficiency than conventional ones.

【0102】以上では、有機EL素子および有機太陽電池
を例に、本発明の基本的な概念および構成を述べた。以
下では、本発明に用いる導電体薄膜層の構成として好ま
しいものを列挙する。ただし、本発明はこれらに限定さ
れない。
In the above, the basic concept and constitution of the present invention have been described by taking the organic EL element and the organic solar cell as an example. Below, preferable examples of the constitution of the conductor thin film layer used in the present invention are listed. However, the present invention is not limited to these.

【0103】まず、導電性を有する、すなわち多数のキ
ャリアを有するという観点から、種々の金属薄膜を用い
ることができる。具体的には、Au、Al、Pt、Cu、Niなど
が挙げられる。なお、これらの金属を導電体薄膜層とし
て適用する場合には、可視光を透過できる程度の超薄膜
(数nm〜数十nm程度)であることが好ましい。
First, from the viewpoint of having conductivity, that is, having a large number of carriers, various metal thin films can be used. Specifically, Au, Al, Pt, Cu, Ni and the like can be mentioned. When these metals are used as the conductor thin film layer, it is preferably an ultrathin film (several nm to several tens of nm) that can transmit visible light.

【0104】また、特に可視光透過性の観点からは、種
々の金属酸化物薄膜を用いることができる。具体的に
は、ITO、ZnO、CuO、SnO2、BeO、酸化コバルト、酸化ジ
ルコニウム、酸化チタン、酸化ニオブ、酸化ニッケル、
酸化ネオジウム、酸化バナジウム、酸化ビスマス、酸化
ベルリウムアルミニウム、酸化ホウ素、酸化マグネシウ
ム、酸化モリブデン、酸化ランタン、酸化リチウム、酸
化ルテニウム、などが挙げられる。また、化合物半導体
薄膜を用いることも可能であり、ZnS、ZnSe、GaN、AlGa
N、CdSなどがある。
Various metal oxide thin films can be used, particularly from the viewpoint of visible light transmittance. Specifically, ITO, ZnO, CuO, SnO 2 , BeO, cobalt oxide, zirconium oxide, titanium oxide, niobium oxide, nickel oxide,
Examples thereof include neodymium oxide, vanadium oxide, bismuth oxide, beryllium aluminum oxide, boron oxide, magnesium oxide, molybdenum oxide, lanthanum oxide, lithium oxide, and ruthenium oxide. It is also possible to use a compound semiconductor thin film, and ZnS, ZnSe, GaN, AlGa
N, CdS, etc.

【0105】本発明では特に、導電体薄膜層を有機化合
物で構成できることが特徴的である。例えば、p型有機
半導体とn型有機半導体を混合し、導電体薄膜層を形成
する手法がある。
The present invention is particularly characterized in that the conductor thin film layer can be composed of an organic compound. For example, there is a method of forming a conductor thin film layer by mixing a p-type organic semiconductor and an n-type organic semiconductor.

【0106】p型有機半導体の代表例としては、下記式
(1)で表されるCuPcの他、他の金属フタロシアニンや
無金属フタロシアニン(下記式(2))が挙げられる。
また、TTF(下記式(3))、TTT(下記式(4))、メ
チルフェノチアジン(下記式(5))、N−イソプロピ
ルカルバゾール(下記式(6))などもp型有機半導体
として利用可能である。さらに、TPD(下記式
(7))、α−NPD(下記式(8))、CBP(下記式
(9))といったような、有機EL等で用いられる正孔
輸送材料を適用してもよい。
Typical examples of the p-type organic semiconductor include CuPc represented by the following formula (1), other metal phthalocyanines and metal-free phthalocyanines (the following formula (2)).
In addition, TTF (the following formula (3)), TTT (the following formula (4)), methylphenothiazine (the following formula (5)), N-isopropylcarbazole (the following formula (6)), etc. can also be used as p-type organic semiconductors. Is. Furthermore, hole transport materials used in organic EL or the like, such as TPD (the following formula (7)), α-NPD (the following formula (8)), and CBP (the following formula (9)), may be applied. .

【0107】[0107]

【化1】 [Chemical 1]

【化2】 [Chemical 2]

【化3】 [Chemical 3]

【化4】 [Chemical 4]

【化5】 [Chemical 5]

【化6】 [Chemical 6]

【化7】 [Chemical 7]

【化8】 [Chemical 8]

【化9】 [Chemical 9]

【0108】n型有機半導体の代表例としては、下記式
(10)で表されるF16-CuPcの他、PV(下記式(1
1))、Me−PTC(下記式(12))、PTCDA(下記式
(13))のような3,4,9,10−ペリレンテトラ
カルボン酸誘導体や、ナフタレンカルボン酸無水物(下
記式(14))、ナフタレンカルボン酸時イミド(下記
式(15))などが挙げられる。また、TCNQ(下記式
(16)、TCE(下記式(17))、ベンゾキノン(下
記式(18))、2,6−ナフトキノン(下記式(1
9))、DDQ(下記式(20))、p−フルオラニル
(下記式(21))、テトラクロロジフェノキノン(下
記式(22))、ニッケルビスジフェニルグルオキシム
(下記式(23))などもn型有機半導体として利用可
能である。さらに、Alq3(下記式(24))、BCP(下
記式(25))、PBD(下記式(26))といったよう
な、有機EL等で用いられる電子輸送材料を適用しても
よい。
Typical examples of the n-type organic semiconductor include F 16 -CuPc represented by the following formula (10) and PV (the following formula (1
1)), Me-PTC (the following formula (12)), PTCDA (the following formula (13)), a 3,4,9,10-perylenetetracarboxylic acid derivative, or a naphthalenecarboxylic acid anhydride (the following formula (12)). 14)), naphthenenecarboxylic acid imide (the following formula (15)), and the like. In addition, TCNQ (the following formula (16), TCE (the following formula (17)), benzoquinone (the following formula (18)), 2,6-naphthoquinone (the following formula (1
9)), DDQ (the following formula (20)), p-fluoranil (the following formula (21)), tetrachlorodiphenoquinone (the following formula (22)), nickel bisdiphenylguloxime (the following formula (23)), etc. Can also be used as an n-type organic semiconductor. Further, an electron transport material used in an organic EL or the like such as Alq 3 (the following formula (24)), BCP (the following formula (25)), PBD (the following formula (26)) may be applied.

【0109】[0109]

【化10】 [Chemical 10]

【化11】 [Chemical 11]

【化12】 [Chemical 12]

【化13】 [Chemical 13]

【化14】 [Chemical 14]

【化15】 [Chemical 15]

【化16】 [Chemical 16]

【化17】 [Chemical 17]

【化18】 [Chemical 18]

【化19】 [Chemical 19]

【化20】 [Chemical 20]

【化21】 [Chemical 21]

【化22】 [Chemical formula 22]

【化23】 [Chemical formula 23]

【化24】 [Chemical formula 24]

【化25】 [Chemical 25]

【化26】 [Chemical formula 26]

【0110】また特に、有機化合物のアクセプタ(電子
受容体)と有機化合物のドナー(電子供与体)を混合
し、電荷移動錯体を形成することにより導電性を持た
せ、導電体薄膜層とする手法が好ましい。電荷移動錯体
は、結晶化しやすく成膜性の悪いものもあるが、本発明
の導電体薄膜層は薄層ないしはクラスター状に形成され
てもよい(キャリアが注入できればよい)ので、大きな
問題は生じない。
Further, in particular, a method in which an acceptor (electron acceptor) of an organic compound and a donor (electron donor) of an organic compound are mixed and a charge transfer complex is formed so as to have conductivity to form a conductive thin film layer. Is preferred. Although some charge transfer complexes are likely to crystallize and have poor film-forming properties, the conductor thin film layer of the present invention may be formed in a thin layer or in a cluster shape (if carriers can be injected), so that a big problem occurs. Absent.

【0111】電荷移動錯体の組み合わせとしては、下記
式(27)で表されるTTF−TCNQを始め、K−TCNQやCu−
TCNQなどの金属−有機アクセプタ系が代表的である。そ
の他、[BEDT-TTF]−TCNQ(下記式(28))、(Me)2P−
C18TCNQ(下記式(29))、BIPA−TCNQ(下記式(3
0))、Q−TCNQ(下記式(31))などがある。な
お、これらの電荷移動錯体薄膜は、蒸着膜、スピンコー
ト膜、LB膜、ポリマーバインダーに分散させた膜など、
いずれも用いることができる。
Examples of the combination of charge transfer complexes include TTF-TCNQ represented by the following formula (27), K-TCNQ and Cu-
A metal-organic acceptor system such as TCNQ is typical. In addition, [BEDT-TTF] -TCNQ (the following formula (28)), (Me) 2 P-
C 18 TCNQ (the following formula (29)), BIPA-TCNQ (the following formula (3)
0)), Q-TCNQ (the following formula (31)) and the like. Note that these charge transfer complex thin films are vapor-deposited films, spin-coated films, LB films, films dispersed in polymer binders, etc.
Either can be used.

【0112】[0112]

【化27】 [Chemical 27]

【化28】 [Chemical 28]

【化29】 [Chemical 29]

【化30】 [Chemical 30]

【化31】 [Chemical 31]

【0113】さらに導電体薄膜層の構成例として、有機
半導体にアクセプタやドナーをドープして暗導電性を持
たせる手法が好適である。有機半導体としては導電性高
分子などに代表されるような、π共役系を有する有機化
合物を用いればよい。導電性高分子の例としては、ポリ
(エチレンジオキシチオフェン)(略称:PEDOT)、ポ
リアニリン、ポリピロールのように実用化されている材
料の他、ポリフェニレン誘導体、ポリチオフェン誘導
体、ポリ(パラフェニレンビニレン)誘導体などがあ
る。
Further, as a constitutional example of the conductor thin film layer, a method of doping an organic semiconductor with an acceptor or a donor so as to have dark conductivity is preferable. As the organic semiconductor, an organic compound having a π-conjugated system such as a conductive polymer may be used. Examples of the conductive polymer include commercially available materials such as poly (ethylenedioxythiophene) (abbreviation: PEDOT), polyaniline, and polypyrrole, as well as polyphenylene derivatives, polythiophene derivatives, and poly (paraphenylenevinylene) derivatives. and so on.

【0114】また、アクセプタをドープする場合、有機
半導体としてはp型の材料を用いることが好ましい。p型
有機半導体の例は、上述の化学式(1)〜(9)などが
挙げられる。この時、アクセプタとしては、FeCl3(II
I)、AlCl3、AlBr3、AsF6やハロゲン化合物のようなルイ
ス酸(強酸性のドーパント)を用いればよい(ルイス酸
はアクセプタとして作用できる)。
When the acceptor is doped, it is preferable to use a p-type material as the organic semiconductor. Examples of the p-type organic semiconductor include the chemical formulas (1) to (9) described above. At this time, FeCl 3 (II
A Lewis acid (strongly acidic dopant) such as I), AlCl 3 , AlBr 3 , AsF 6 or a halogen compound may be used (the Lewis acid can act as an acceptor).

【0115】また、ドナーをドープする場合、有機半導
体としてはn型の材料を用いることが好ましい。n型有機
半導体の例は、上述の化学式(10)〜(26)などが
挙げられる。この時、ドナーとしては、Li、K、Ca、Cs
などに代表されるアルカリ金属やアルカリ土類金属のよ
うなルイス塩基を用いればよい(ルイス塩基はドナーと
して作用できる)。
When the donor is doped, it is preferable to use an n-type material as the organic semiconductor. Examples of the n-type organic semiconductor include the chemical formulas (10) to (26) described above. At this time, as donors, Li, K, Ca, Cs
A Lewis base such as an alkali metal or an alkaline earth metal represented by, for example, may be used (the Lewis base can act as a donor).

【0116】さらに好ましい形態としては、以上で述べ
たいくつかの構成を組み合わせて導電体薄膜層とするこ
ともできる。すなわち、例えば、上述の金属薄膜・金属
酸化物薄膜・化合物半導体薄膜のような無機薄膜の片側
あるいは両側に、p型有機半導体とn型有機半導体を混合
した薄膜、あるいは電荷移動錯体薄膜、あるいはドープ
された導電性高分子薄膜、あるいはアクセプタがドープ
されたp型有機半導体薄膜、あるいはドナーがドープさ
れたn型有機半導体薄膜を形成した構造が好適である。
この時、無機薄膜の替わりに、電荷移動錯体薄膜を用い
ることも有効である。
As a more preferable form, a conductor thin film layer may be formed by combining some of the above-mentioned constitutions. That is, for example, on one or both sides of an inorganic thin film such as the above-mentioned metal thin film, metal oxide thin film, compound semiconductor thin film, a thin film in which a p-type organic semiconductor and an n-type organic semiconductor are mixed, a charge transfer complex thin film, or a doped film. A conductive polymer thin film, a p-type organic semiconductor thin film doped with an acceptor, or an n-type organic semiconductor thin film doped with a donor is preferably formed.
At this time, it is also effective to use a charge transfer complex thin film instead of the inorganic thin film.

【0117】また特に、ドナーがドープされたn型有機
半導体薄膜と、アクセプタがドープされたp型有機半導
体薄膜とを積層させて導電体薄膜層とすることにより、
正孔および電子両方を効率よく機能性有機薄膜層に注入
できる構成になるため、非常に有効である。さらには、
p型有機半導体とn型有機半導体を混合した薄膜の片側
あるいは両側に、ドナーがドープされたn型有機半導体
薄膜、あるいはアクセプタがドープされたp型有機半導
体薄膜を積層させて導電体薄膜層とする手法も考えられ
る。
In particular, by stacking a donor-doped n-type organic semiconductor thin film and an acceptor-doped p-type organic semiconductor thin film to form a conductor thin film layer,
This is very effective because both holes and electrons can be efficiently injected into the functional organic thin film layer. Moreover,
An n-type organic semiconductor thin film doped with a donor or a p-type organic semiconductor thin film doped with an acceptor is laminated on one side or both sides of a thin film in which a p-type organic semiconductor and an n-type organic semiconductor are mixed to form a conductor thin film layer. A method of doing is also possible.

【0118】なお、上述の導電体薄膜層の構成として挙
げている各種薄膜は全て、膜状に形成する必要はなく、
島状(アイランド状)に形成されたものでもよい。
It is not necessary to form all the thin films mentioned above as the structure of the conductor thin film layer into a film shape.
It may be formed in an island shape.

【0119】上記のような導電体薄膜層を本発明に適用
することで、信頼性が高い上に歩留まりもよい有機半導
体素子を作製することができる。
By applying the above-described conductor thin film layer to the present invention, an organic semiconductor element having high reliability and high yield can be manufactured.

【0120】例えば、本発明における有機薄膜層を、電
流を流すことで発光が得られる構成とすることで有機EL
素子が得られるが、本発明の有機EL素子は効率も向上さ
せることができるため有効である。
For example, when the organic thin film layer in the present invention is configured to emit light by passing an electric current, the organic EL
Although an element can be obtained, the organic EL element of the present invention is effective because it can also improve efficiency.

【0121】その際の有機薄膜層(すなわち有機EL層)
の構造としては、一般的に利用されている有機EL素子の
有機EL層の構造および構成材料を利用すればよい。具体
的には、非特許文献2で述べられているような正孔輸送
層と電子輸送層の積層構造や、高分子化合物を用いた単
層構造、三重項励起状態からの発光を利用した高効率素
子など、バリエーションは多岐にわたる。また、先に述
べたように、各有機EL層を異なる発光色として混色する
ことにより、高効率で素子寿命の長い白色発光素子とす
る、といったような応用も可能である。
Organic thin film layer (that is, organic EL layer) in that case
As the structure of, the structure and constituent materials of the organic EL layer of a commonly used organic EL element may be used. Specifically, as described in Non-Patent Document 2, a laminated structure of a hole transport layer and an electron transport layer, a single layer structure using a polymer compound, and a high level utilizing light emission from a triplet excited state. There are many variations such as efficiency elements. Further, as described above, by mixing the respective organic EL layers with different emission colors, a white light emitting device having high efficiency and a long device life can be applied.

【0122】有機EL素子の陽極に関しては,陽極から光
を取り出すのであれば、ITO(インジウム錫酸化物)やI
ZO(インジウム亜鉛酸化物)などの透明導電性無機化合
物がよく用いられる。金などの超薄膜も可能である。非
透明でよい場合(陰極側から光を取り出す場合)は、光
を透過しないものの仕事関数がある程度大きい金属・合
金や導電体を用いてもよく、W、Ti、TiNなどが挙げられ
る。
Regarding the anode of the organic EL element, ITO (indium tin oxide) or I
Transparent conductive inorganic compounds such as ZO (indium zinc oxide) are often used. Ultra thin films such as gold are also possible. When nontransparent is acceptable (when light is extracted from the cathode side), a metal / alloy or a conductor which does not transmit light but has a large work function to some extent may be used, and examples thereof include W, Ti, and TiN.

【0123】有機EL素子の陰極は、通常仕事関数の小さ
い金属あるいは合金が用いられ、アルカリ金属やアルカ
リ土類金属、あるいは希土類金属が用いられ、それら金
属元素を含む合金なども利用される。例としては、Mg:A
g合金、Al:Li合金、Ba、Ca、Yb、Erなどが利用できる。
また、陰極から光を取り出す場合は、これら金属・合金
の超薄膜を適用すればよい。
For the cathode of the organic EL element, a metal or alloy having a small work function is usually used, an alkali metal, an alkaline earth metal or a rare earth metal is used, and an alloy containing these metal elements is also used. For example, Mg: A
g alloy, Al: Li alloy, Ba, Ca, Yb, Er, etc. can be used.
Further, when extracting light from the cathode, an ultrathin film of these metals / alloys may be applied.

【0124】また、例えば、本発明における有機薄膜層
を、光を吸収することで起電力を生じる構成とすること
で有機太陽電池が得られるが、本発明の有機太陽電池は
効率も向上させることができるため有効である。
Further, for example, an organic solar cell can be obtained by forming the organic thin film layer in the present invention so as to generate electromotive force by absorbing light, but the organic solar cell of the present invention also improves efficiency. It is effective because it can

【0125】その際の機能性有機薄膜層の構造として
は、一般的に利用されている有機太陽電池の機能性有機
薄膜層の構造および構成材料を利用すればよい。具体的
には、非特許文献3で述べられているようなp型有機半
導体とn型有機半導体の積層構造などが挙げられる。
As the structure of the functional organic thin film layer at that time, the structure and constituent materials of the functional organic thin film layer of the generally used organic solar cell may be used. Specific examples include a laminated structure of a p-type organic semiconductor and an n-type organic semiconductor as described in Non-Patent Document 3.

【0126】[0126]

【実施例】[実施例1]本実施例では、導電体薄膜層とし
て電荷移動錯体を用いた本発明の有機EL素子を、具体的
に例示する。その素子構造を図8に示す。
EXAMPLES Example 1 In this example, an organic EL device of the present invention using a charge transfer complex as a conductor thin film layer will be specifically illustrated. The element structure is shown in FIG.

【0127】まず、陽極802であるITOを100 nm程度成膜
したガラス基板801に、正孔輸送材料であるN, N'−ビス
(3−メチルフェニル)−N, N'−ジフェニル−ベンジ
ジン(略称:TPD)を50 nm蒸着し、正孔輸送層804aとす
る。次に、電子輸送性発光材料であるトリス(8−キノ
リノラト)アルミニウム(略称:Alq)を50nm蒸着し、
電子輸送層兼発光層805aとする。
First, a glass substrate 801 on which ITO, which is an anode 802, is formed to a thickness of about 100 nm is formed on a glass substrate 801 which is a hole-transporting material by N, N′-bis (3-methylphenyl) -N, N′-diphenyl-benzidine ( Abbreviation: TPD) is vapor-deposited with a thickness of 50 nm to form the hole transport layer 804a. Next, tris (8-quinolinolato) aluminum (abbreviation: Alq), which is an electron-transporting light-emitting material, is deposited to a thickness of 50 nm,
The electron-transporting and light-emitting layer 805a is used.

【0128】このようにして、1番目の有機EL層810aを
形成したあと、導電体薄膜層806としてTTFとTCNQとを1:
1の比率になるよう共蒸着し、この層を10 nmとする。
After the first organic EL layer 810a is formed in this manner, TTF and TCNQ are made 1: 2 as the conductor thin film layer 806.
Co-evaporate to a ratio of 1 and make this layer 10 nm.

【0129】その後、また正孔輸送層804bとしてTPDを5
0 nm蒸着し、その上に電子輸送層兼発光層805bとしてAl
qを50 nm蒸着する。こうして、2番目の有機EL層810bが
形成される。
After that, as the hole transport layer 804b, TPD 5
0 nm is vapor-deposited, and Al is used as an electron transport layer and a light emitting layer 805b on it.
q is deposited to 50 nm. Thus, the second organic EL layer 810b is formed.

【0130】最後に、陰極803としてMgとAgを原子比が1
0:1になるように共蒸着を行い、陰極803を150 nm成膜す
ることで、本発明の有機EL素子が得られる。
Finally, as the cathode 803, the atomic ratio of Mg and Ag is 1
The organic EL device of the present invention is obtained by performing co-evaporation so that the ratio becomes 0: 1 and forming a film of the cathode 803 with a thickness of 150 nm.

【0131】[実施例2]本実施例では、有機EL層で用い
る有機半導体と同じものを導電体薄膜層に含有させ、ア
クセプタおよびドナーをドープすることで導電性を持た
せた本発明の有機EL素子を、具体的に例示する。その素
子構造を図9に示す。
Example 2 In this example, the same organic semiconductor used in the organic EL layer was contained in the conductive thin film layer, and the organic compound of the present invention was made conductive by doping the acceptor and the donor. The EL element will be specifically exemplified. The element structure is shown in FIG.

【0132】まず、陽極902であるITOを100 nm程度成膜
したガラス基板901に、正孔輸送材料であるTPDを50 nm
蒸着し、正孔輸送層904aとする。次に、電子輸送性発光
材料であるAlqを50nm蒸着し、電子輸送層兼発光層905a
とする。
First, TPD, which is a hole transporting material, is deposited to 50 nm on a glass substrate 901 on which ITO, which is an anode 902, is deposited to a thickness of about 100 nm.
Evaporation is performed to form a hole transport layer 904a. Next, 50 nm of Alq, which is an electron-transporting light-emitting material, is deposited to form an electron-transporting layer / light-emitting layer 905a.
And

【0133】このようにして、1番目の有機EL層910aを
形成したあと、ドナーであるTTFが2mol %の比率になる
ようにAlqと共蒸着した層906を5 nm蒸着する。その後、
アクセプタであるTCNQが2 mol %の比率になるようにTPD
と共蒸着した層907を5nm蒸着することにより、導電体薄
膜層911とする。
After forming the first organic EL layer 910a in this manner, a layer 906 co-deposited with Alq is vapor-deposited with a thickness of 5 nm so that the donor TTF has a ratio of 2 mol%. afterwards,
TPD is adjusted so that the acceptor TCNQ has a ratio of 2 mol%.
The conductive thin film layer 911 is obtained by vapor-depositing the layer 907 co-deposited with

【0134】その後、また正孔輸送層904bとしてTPDを5
0 nm蒸着し、その上に電子輸送層兼発光層905bとしてAl
qを50 nm蒸着する。こうして、2番目の有機EL層910bが
形成される。
After that, as the hole transport layer 904b, TPD 5
Evaporated to a thickness of 0 nm, and formed Al as the electron transport layer and light emitting layer 905b on it.
q is deposited to 50 nm. Thus, the second organic EL layer 910b is formed.

【0135】最後に、陰極903としてMgとAgを原子比が1
0:1になるように共蒸着を行い、陰極903を150 nm成膜す
ることで、本発明の有機EL素子が得られる。この素子
は、導電体薄膜層の構成材料として、有機EL層に用いて
いる有機半導体をそのまま適用し、ドナーやアクセプタ
を混合するだけで作製できるため、非常に簡便で有効で
ある。
Finally, as the cathode 903, Mg and Ag have an atomic ratio of 1
The organic EL element of the present invention is obtained by performing co-evaporation so that the ratio becomes 0: 1 and forming a film of the cathode 903 with a thickness of 150 nm. This element is very simple and effective because it can be manufactured by simply applying the organic semiconductor used for the organic EL layer as a constituent material of the conductor thin film layer and mixing a donor and an acceptor.

【0136】[実施例3]本実施例では、有機EL層に電気
発光性のポリマーを用い、導電体薄膜層を導電性ポリマ
ーで形成するような、湿式法の有機EL素子を具体的に例
示する。素子構造を図10に示す。
Example 3 In this example, a wet method organic EL element in which an electroluminescent polymer is used for an organic EL layer and a conductive thin film layer is formed of a conductive polymer is specifically exemplified. To do. The device structure is shown in FIG.

【0137】まず、陽極1002であるITOを100 nm程度成
膜したガラス基板1001に、スピンコートによりポリエチ
レンジオキシチオフェン/ポリスチレンスルホン酸(略
称:PEDOT/PSS)の混合水溶液を塗布し、水分を蒸発さ
せることで、正孔注入層1004を30 nm成膜する。次に、
ポリ(2−メトキシ−5−(2'−エチル−ヘキソキ
シ)−1,4−フェニレンビニレン)(略称:MEH-PP
V)をスピンコートで100 nm成膜し、発光層1005aとす
る。
First, a mixed solution of polyethylenedioxythiophene / polystyrenesulfonic acid (abbreviation: PEDOT / PSS) was applied by spin coating to a glass substrate 1001 on which ITO, which was the anode 1002, was formed to a thickness of about 100 nm, and water was evaporated By doing so, the hole injection layer 1004 is formed in a thickness of 30 nm. next,
Poly (2-methoxy-5- (2'-ethyl-hexoxy) -1,4-phenylenevinylene) (abbreviation: MEH-PP
V) is spin-coated to a thickness of 100 nm to form a light emitting layer 1005a.

【0138】このようにして1番目の有機EL層1010aを
形成したあと、導電体薄膜層1006として、PEDOT/PSSを
スピンコートで30 nm成膜する。
After the first organic EL layer 1010a is formed in this way, PEDOT / PSS is spin-coated to a thickness of 30 nm as the conductor thin film layer 1006.

【0139】その後また、発光層1005bとして、MEH-PPV
をスピンコートで100 nm成膜する。なお、導電体薄膜層
が正孔注入層と同じ材料であるため、この2番目の有機
EL層1010bは正孔注入層を形成する必要がない。したが
って、もし3番目、4番目と有機EL層を積層していく場
合も、非常に簡単な操作で、導電体薄膜層のPEDOT/PSS
と発光層のMEH-PPVとを交互に重ねていくだけである。
After that, MEH-PPV was used as the light emitting layer 1005b.
Is spin-coated to form a 100 nm film. Since the conductor thin film layer is made of the same material as the hole injection layer,
The EL layer 1010b does not need to form a hole injection layer. Therefore, even if the 3rd and 4th layers and the organic EL layer are stacked, the PEDOT / PSS of the conductor thin film layer can be performed with a very simple operation.
And the MEH-PPV of the light emitting layer are alternately stacked.

【0140】最後に陰極としてCaを150 nm蒸着を行い、
その上にCaの酸化を防ぐためキャップとしてAlを150 nm
蒸着する。
Finally, Ca was deposited to a thickness of 150 nm as a cathode,
On top of that, 150 nm of Al is used as a cap to prevent Ca oxidation.
Vapor deposition.

【0141】[実施例4]本実施例では、導電体薄膜層と
して、p型有機半導体とn型有機半導体を混合したものを
適用した、本発明の有機太陽電池を具体的に例示する。
Example 4 In this example, an organic solar cell of the present invention to which a mixture of a p-type organic semiconductor and an n-type organic semiconductor is applied as a conductor thin film layer will be specifically exemplified.

【0142】まず、透明電極であるITOを100 nm程度成
膜したガラス基板に、p型の有機半導体であるCuPcを30
nm蒸着する。次に、n型の有機半導体であるPVを50 nm蒸
着し、CuPcとPVを用いて有機半導体におけるp-n接合を
つくる。これが1番目の機能性有機薄膜層となる。
First, on a glass substrate on which ITO, which is a transparent electrode, is deposited to a thickness of about 100 nm, CuPc, which is a p-type organic semiconductor, is deposited on the glass substrate.
nm vapor deposition. Next, PV, which is an n-type organic semiconductor, is evaporated to a thickness of 50 nm, and a pn junction is formed in the organic semiconductor by using CuPc and PV. This is the first functional organic thin film layer.

【0143】その後、導電体薄膜層として、CuPcとPVが
1:1の比率になるよう共蒸着し、10nm形成する。さら
に、CuPcを30 nm蒸着し、その上にPVを50 nm蒸着するこ
とで、2番目の機能性有機薄膜層とする。
Then, CuPc and PV were used as a conductor thin film layer.
Co-deposit at a ratio of 1: 1 to form 10 nm. Furthermore, CuPc is vapor-deposited with a thickness of 30 nm and PV is vapor-deposited with a thickness of 50 nm to form a second functional organic thin film layer.

【0144】最後に電極としてAuを150 nm成膜する。こ
のようにして構成された有機太陽電池は、有機化合物と
して最終的に二種類を用いるだけで本発明を実現できる
ため、非常に有効である。
Finally, Au is deposited to a thickness of 150 nm as an electrode. The organic solar cell configured in this manner is extremely effective because the present invention can be realized by finally using two kinds of organic compounds.

【0145】[0145]

【発明の効果】本発明を実施することで、従来の超薄膜
を用いることなく、より信頼性が高い上に歩留まりも高
い有機半導体素子を提供することができる。また、特に
有機半導体を用いたフォトエレクトロニクスデバイスに
おいては、その効率も向上させることができる。
By implementing the present invention, it is possible to provide an organic semiconductor device having higher reliability and higher yield without using a conventional ultrathin film. Further, especially in a photoelectronic device using an organic semiconductor, its efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本的構成を示す図。FIG. 1 is a diagram showing a basic configuration of the present invention.

【図2】本発明の概念を示す図。FIG. 2 is a diagram showing the concept of the present invention.

【図3】本発明の効果を示す図。FIG. 3 is a diagram showing an effect of the present invention.

【図4】電流効率が向上する理論を示す図。FIG. 4 is a diagram showing a theory of improving current efficiency.

【図5】電流効率が向上する理論を示す図。FIG. 5 is a diagram showing a theory of improving current efficiency.

【図6】従来の有機EL素子を示す図。FIG. 6 is a diagram showing a conventional organic EL element.

【図7】本発明の有機EL素子を示す図。FIG. 7 is a diagram showing an organic EL element of the present invention.

【図8】本発明の有機EL素子の具体例を示す図。FIG. 8 is a diagram showing a specific example of the organic EL element of the present invention.

【図9】本発明の有機EL素子の具体例を示す図。FIG. 9 is a diagram showing a specific example of the organic EL element of the present invention.

【図10】本発明の有機EL素子の具体例を示す図。FIG. 10 is a diagram showing a specific example of the organic EL element of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05B 33/22 H01L 29/28 33/26 31/04 D Fターム(参考) 3K007 AB03 AB04 AB11 DA06 DB03 FA01 5F051 AA11 BA17 CB13 CB18 DA03 DA17 FA04 FA06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H05B 33/22 H01L 29/28 33/26 31/04 DF term (reference) 3K007 AB03 AB04 AB11 DA06 DB03 FA01 5F051 AA11 BA17 CB13 CB18 DA03 DA17 FA04 FA06

Claims (47)

【特許請求の範囲】[Claims] 【請求項1】二つの電極の間に、1番目からn番目(nは
2以上の整数)までのn個の機能性有機薄膜層を順次積
層してなる有機構造体が設けられた有機半導体素子にお
いて、k番目(kは、1≦k≦(n−1)なる整数)の
機能性有機薄膜層とk+1番目の機能性有機薄膜層との
間には全て、フローティング状の導電体薄膜層が設けら
れており、前記導電体薄膜層は、前記機能性有機薄膜層
に対してオーム接触していることを特徴とする有機半導
体素子。
1. An organic semiconductor in which an organic structure formed by sequentially stacking n functional organic thin film layers from the first to the n-th (n is an integer of 2 or more) is provided between two electrodes. In the device, all the floating conductive thin film layers are located between the k-th (k is an integer 1 ≦ k ≦ (n−1)) functional organic thin film layer and the k + 1-th functional organic thin film layer. Is provided, and the conductor thin film layer is in ohmic contact with the functional organic thin film layer.
【請求項2】二つの電極の間に、1番目からn番目(nは
2以上の整数)までのn個の機能性有機薄膜層を順次積
層してなる有機構造体が設けられた有機半導体素子にお
いて、k番目(kは、1≦k≦(n−1)なる整数)の
機能性有機薄膜層とk+1番目の機能性有機薄膜層との
間には全て、有機化合物を含むフローティング状の導電
体薄膜層が設けられており、前記導電体薄膜層は、前記
機能性有機薄膜層に対してオーム接触していることを特
徴とする有機半導体素子。
2. An organic semiconductor having an organic structure in which n functional organic thin film layers from the 1st to the nth (n is an integer of 2 or more) are sequentially laminated between two electrodes. In the element, all of the k-th (k is an integer 1 ≦ k ≦ (n−1)) functional organic thin film layer and the k + 1-th functional organic thin film layer are in a floating state containing an organic compound. An organic semiconductor element, wherein a conductor thin film layer is provided, and the conductor thin film layer is in ohmic contact with the functional organic thin film layer.
【請求項3】二つの電極の間に、1番目からn番目(nは
2以上の整数)までのn個の機能性有機薄膜層を順次積
層してなる有機構造体が設けられた有機半導体素子にお
いて、k番目(kは、1≦k≦(n−1)なる整数)の
機能性有機薄膜層とk+1番目の機能性有機薄膜層との
間には全て、有機化合物を含むフローティング状の導電
体薄膜層が設けられており、前記導電体薄膜層には、前
記有機化合物に対するアクセプタまたはドナーの少なく
とも一方が含まれていることを特徴とする有機半導体素
子。
3. An organic semiconductor in which an organic structure is provided between two electrodes, in which n functional organic thin film layers from 1st to nth (n is an integer of 2 or more) are sequentially stacked. In the element, all of the k-th (k is an integer 1 ≦ k ≦ (n−1)) functional organic thin film layer and the k + 1-th functional organic thin film layer are in a floating state containing an organic compound. An organic semiconductor element, wherein a conductor thin film layer is provided, and the conductor thin film layer contains at least one of an acceptor and a donor for the organic compound.
【請求項4】二つ電極の間に、1番目からn番目(nは2
以上の整数)までのn個の機能性有機薄膜層を順次積層
してなる有機構造体が設けられた有機半導体素子におい
て、k番目(kは、1≦k≦(n−1)なる整数)の機
能性有機薄膜層とk+1番目の機能性有機薄膜層との間
には全て、有機化合物を含むフローティング状の導電体
薄膜層が設けられており、前記導電体薄膜層には、前記
有機化合物に対するアクセプタまたはドナーの両方が含
まれていることを特徴とする有機半導体素子。
4. The first to nth electrodes (n is 2) between two electrodes.
In the organic semiconductor element provided with the organic structure formed by sequentially stacking n functional organic thin film layers up to the above integer), k-th (k is an integer 1 ≦ k ≦ (n−1)) Between the functional organic thin film layer and the (k + 1) th functional organic thin film layer, a floating conductor thin film layer containing an organic compound is provided, and the conductor thin film layer includes the organic compound. An organic semiconductor device characterized by containing both an acceptor or a donor.
【請求項5】請求項3または請求項4に記載の有機半導
体素子において、前記機能性有機薄膜層の前記導電体薄
膜層に接している領域は、前記有機化合物と同一の有機
化合物を含むことを特徴とする有機半導体素子。
5. The organic semiconductor element according to claim 3, wherein a region of the functional organic thin film layer in contact with the conductor thin film layer contains the same organic compound as the organic compound. An organic semiconductor device characterized by:
【請求項6】請求項4に記載の有機半導体素子におい
て、前記導電体薄膜層は、前記有機化合物にアクセプタ
を添加した第一の層と、前記有機化合物と同一の有機化
合物にドナーを添加した第二の層と、を積層してなる構
造であり、前記第一の層が前記第二の層よりも陰極側に
位置することを特徴とする有機半導体素子。
6. The organic semiconductor device according to claim 4, wherein the conductor thin film layer includes a first layer obtained by adding an acceptor to the organic compound and a donor added to the same organic compound as the organic compound. An organic semiconductor device having a structure in which a second layer is laminated, wherein the first layer is located closer to the cathode than the second layer.
【請求項7】請求項6に記載の有機半導体素子におい
て、前記機能性有機薄膜層の前記導電体薄膜層に接して
いる領域は、前記有機化合物と同一の有機化合物を含む
ことを特徴とする有機半導体素子。
7. The organic semiconductor device according to claim 6, wherein the region of the functional organic thin film layer in contact with the conductor thin film layer contains the same organic compound as the organic compound. Organic semiconductor device.
【請求項8】請求項4に記載の有機半導体素子におい
て、前記導電体薄膜層は、第一の有機化合物にアクセプ
タを添加した第一の層と、前記第一の有機化合物とは異
なる第二の有機化合物にドナーを添加した第二の層と、
を積層してなる構造であり、前記第一の層が前記第二の
層よりも陰極側に位置することを特徴とする有機半導体
素子。
8. The organic semiconductor element according to claim 4, wherein the conductor thin film layer is different from the first layer in which an acceptor is added to the first organic compound and the second layer different from the first organic compound. A second layer in which a donor is added to the organic compound of
An organic semiconductor device having a structure in which the first layer is located closer to the cathode than the second layer.
【請求項9】請求項8に記載の有機半導体素子におい
て、前記機能性有機薄膜層の前記第一の層に接している
領域は、前記第一の有機化合物と同一の有機化合物を含
むことを特徴とする有機半導体素子。
9. The organic semiconductor device according to claim 8, wherein the region of the functional organic thin film layer in contact with the first layer contains the same organic compound as the first organic compound. Characteristic organic semiconductor device.
【請求項10】請求項8に記載の有機半導体素子におい
て、前記機能性有機薄膜層の前記第二の層に接している
領域は、前記第二の有機化合物と同一の有機化合物を含
むことを特徴とする有機半導体素子。
10. The organic semiconductor device according to claim 8, wherein a region of the functional organic thin film layer in contact with the second layer contains the same organic compound as the second organic compound. Characteristic organic semiconductor device.
【請求項11】請求項1乃至請求項10のいずれか一項
に記載の有機半導体素子において、前記機能性有機薄膜
層はバイポーラ性の有機化合物からなることを特徴とす
る有機半導体素子。
11. The organic semiconductor device according to claim 1, wherein the functional organic thin film layer is made of a bipolar organic compound.
【請求項12】請求項1乃至請求項10のいずれか一項
に記載の有機半導体素子において、前記機能性有機薄膜
層は、正孔輸送材料からなる少なくとも一つの正孔輸送
層と電子輸送材料からなる少なくとも一つの電子輸送層
を有し、前記正孔輸送層は前記電子輸送層よりも陽極側
に位置していることを特徴とする有機半導体素子。
12. The organic semiconductor device according to claim 1, wherein the functional organic thin film layer is at least one hole transport layer made of a hole transport material and an electron transport material. 2. An organic semiconductor device having at least one electron-transporting layer consisting of, wherein the hole-transporting layer is located closer to the anode than the electron-transporting layer.
【請求項13】陽極と陰極との間に、電流を流すことで
発光を呈する1番目からn番目(nは2以上の整数)まで
のn個の機能性有機薄膜層を順次積層してなる有機構造
体が設けられた有機エレクトロルミネッセンス素子にお
いて、k番目(kは、1≦k≦(n−1)なる整数)の
機能性有機薄膜層とk+1番目の機能性有機薄膜層との
間には全て、フローティング状の導電体薄膜層が設けら
れており、前記導電体薄膜層は、前記機能性有機薄膜層
に対してオーム接触していることを特徴とする有機エレ
クトロルミネッセンス素子。
13. An n-th functional organic thin film layer from the 1st to the n-th (n is an integer of 2 or more) which emits light when an electric current is passed between the anode and the cathode. In the organic electroluminescence element provided with the organic structure, between the k-th (k is an integer 1 ≦ k ≦ (n−1)) functional organic thin film layer and the k + 1-th functional organic thin film layer. Are all provided with a floating conductive thin film layer, and the conductive thin film layer is in ohmic contact with the functional organic thin film layer.
【請求項14】陽極と陰極との間に、電流を流すことで
発光を呈する1番目からn番目(nは2以上の整数)まで
のn個の機能性有機薄膜層を順次積層してなる有機構造
体が設けられた有機エレクトロルミネッセンス素子にお
いて、k番目(kは、1≦k≦(n−1)なる整数)の
機能性有機薄膜層とk+1番目の機能性有機薄膜層との
間には全て、有機化合物を含むフローティング状の導電
体薄膜層が設けられており、前記導電体薄膜層は、前記
機能性有機薄膜層に対してオーム接触していることを特
徴とする有機エレクトロルミネッセンス素子。
14. An n-th functional organic thin film layer from the first to the n-th (n is an integer of 2 or more), which emits light when a current is applied, is sequentially laminated between an anode and a cathode. In the organic electroluminescence element provided with the organic structure, between the k-th (k is an integer 1 ≦ k ≦ (n−1)) functional organic thin film layer and the k + 1-th functional organic thin film layer. Are provided with a floating conductor thin film layer containing an organic compound, and the conductor thin film layer is in ohmic contact with the functional organic thin film layer. .
【請求項15】陽極と陰極との間に、電流を流すことで
発光を呈する1番目からn番目(nは2以上の整数)まで
のn個の機能性有機薄膜層を順次積層してなる有機構造
体が設けられた有機エレクトロルミネッセンス素子にお
いて、k番目(kは、1≦k≦(n−1)なる整数)の
機能性有機薄膜層とk+1番目の有機薄膜層との間には
全て、有機化合物を含むフローティング状の導電体薄膜
層が設けられており、前記導電体薄膜層には、前記有機
化合物に対するアクセプタまたはドナーの少なくとも一
方が含まれていることを特徴とする有機エレクトロルミ
ネッセンス素子。
15. An n-th functional organic thin film layer from the first to the n-th (n is an integer of 2 or more) that emits light when an electric current is applied is sequentially laminated between an anode and a cathode. In the organic electroluminescent element provided with the organic structure, all are provided between the k-th (k is an integer of 1 ≦ k ≦ (n−1)) functional organic thin film layer and the k + 1-th organic thin film layer. An organic electroluminescence device is characterized in that a floating conductor thin film layer containing an organic compound is provided, and the conductor thin film layer contains at least one of an acceptor or a donor for the organic compound. .
【請求項16】陽極と陰極との間に、電流を流すことで
発光を呈する1番目からn番目(nは2以上の整数)まで
のn個の機能性有機薄膜層を順次積層してなる有機構造
体が設けられた有機エレクトロルミネッセンス素子にお
いて、k番目(kは、1≦k≦(n−1)なる整数)の
機能性有機薄膜層とk+1番目の機能性有機薄膜層との
間には全て、有機化合物を含むフローティング状の導電
体薄膜層が設けられており、前記導電体薄膜層には、前
記有機化合物に対するアクセプタまたはドナーの両方が
含まれていることを特徴とする有機エレクトロルミネッ
センス素子。
16. An n-th functional organic thin film layer from the 1st to the nth (n is an integer of 2 or more) which emits light when an electric current is applied is sequentially laminated between an anode and a cathode. In the organic electroluminescence element provided with the organic structure, between the k-th (k is an integer 1 ≦ k ≦ (n−1)) functional organic thin film layer and the k + 1-th functional organic thin film layer. Are all provided with a floating conductor thin film layer containing an organic compound, wherein the conductor thin film layer contains both an acceptor or a donor for the organic compound. element.
【請求項17】請求項15または請求項16に記載の有
機エレクトロルミネッセンス素子において、前記機能性
有機薄膜層の前記導電体薄膜層に接している領域は、前
記有機化合物と同一の有機化合物を含むことを特徴とす
る有機エレクトロルミネッセンス素子。
17. The organic electroluminescent element according to claim 15 or 16, wherein the region of the functional organic thin film layer in contact with the conductor thin film layer contains the same organic compound as the organic compound. An organic electroluminescence device characterized by the above.
【請求項18】請求項16に記載の有機エレクトロルミ
ネッセンス素子において、前記導電体薄膜層は、前記有
機化合物にアクセプタを添加した第一の層と、前記有機
化合物と同一の有機化合物にドナーを添加した第二の層
と、を積層してなる構造であり、前記第一の層が前記第
二の層よりも陰極側に位置することを特徴とする有機エ
レクトロルミネッセンス素子。
18. The organic electroluminescence device according to claim 16, wherein the conductive thin film layer is a first layer in which an acceptor is added to the organic compound, and a donor is added to the same organic compound as the organic compound. And a second layer formed by stacking the second layer, wherein the first layer is located closer to the cathode than the second layer is.
【請求項19】請求項18に記載の有機エレクトロルミ
ネッセンス素子において、前記機能性有機薄膜層の前記
導電体薄膜層に接している領域は、前記有機化合物と同
一の有機化合物を含むことを特徴とする有機エレクトロ
ルミネッセンス素子。
19. The organic electroluminescence device according to claim 18, wherein the region of the functional organic thin film layer in contact with the conductor thin film layer contains the same organic compound as the organic compound. An organic electroluminescence device that does.
【請求項20】請求項16に記載の有機エレクトロルミ
ネッセンス素子において、前記導電体薄膜層は、第一の
有機化合物にアクセプタを添加した第一の層と、前記第
一の有機化合物とは異なる第二の有機化合物にドナーを
添加した第二の層と、を積層してなる構造であり、前記
第一の層が前記第二の層よりも陰極側に位置することを
特徴とする有機エレクトロルミネッセンス素子。
20. The organic electroluminescence device according to claim 16, wherein the conductive thin film layer is different from the first layer in which an acceptor is added to the first organic compound and the first organic compound. A second layer in which a donor is added to the second organic compound, and a structure formed by stacking, wherein the first layer is located on the cathode side of the second layer, the organic electroluminescence. element.
【請求項21】請求項20に記載の有機エレクトロルミ
ネッセンス素子において、前記機能性有機薄膜層の前記
第一の層に接している領域は、前記第一の有機化合物と
同一の有機化合物を含むことを特徴とする有機エレクト
ロルミネッセンス素子。
21. The organic electroluminescence device according to claim 20, wherein the region of the functional organic thin film layer in contact with the first layer contains the same organic compound as the first organic compound. An organic electroluminescence device characterized by:
【請求項22】請求項20に記載の有機エレクトロルミ
ネッセンス素子において、前記機能性有機薄膜層の前記
第二の層に接している領域は、前記第二の有機化合物と
同一の有機化合物を含むことを特徴とする有機エレクト
ロルミネッセンス素子。
22. The organic electroluminescence device according to claim 20, wherein the region of the functional organic thin film layer in contact with the second layer contains the same organic compound as the second organic compound. An organic electroluminescence device characterized by:
【請求項23】請求項13乃至請求項22のいずれか一
項に記載の有機エレクトロルミネッセンス素子におい
て、前記機能性有機薄膜層はバイポーラ性の有機化合物
から成ることを特徴とする有機エレクトロルミネッセン
ス素子。
23. The organic electroluminescence device according to claim 13, wherein the functional organic thin film layer is made of a bipolar organic compound.
【請求項24】請求項13乃至請求項22のいずれか一
項に記載の有機エレクトロルミネッセンス素子におい
て、前記機能性有機薄膜層は、正孔輸送材料からなる少
なくとも一つの正孔輸送層と電子輸送材料からなる少な
くとも一つの電子輸送層を有し、前記正孔輸送層は前記
電子輸送層よりも陽極側に位置していることを特徴とす
る有機エレクトロルミネッセンス素子。
24. The organic electroluminescence device according to claim 13, wherein the functional organic thin film layer comprises at least one hole transport layer made of a hole transport material and an electron transport layer. An organic electroluminescence device comprising at least one electron transport layer made of a material, wherein the hole transport layer is located closer to the anode than the electron transport layer.
【請求項25】請求項23に記載の有機エレクトロルミ
ネッセンス素子において、前記バイポーラ性の有機化合
物はπ共役系を有する高分子化合物を含むことを特徴と
する有機エレクトロルミネッセンス素子。
25. The organic electroluminescent device according to claim 23, wherein the bipolar organic compound includes a polymer compound having a π-conjugated system.
【請求項26】請求項23に記載の有機エレクトロルミ
ネッセンス素子において、前記バイポーラ性の有機化合
物はπ共役系を有する高分子化合物を含み、かつ、前記
導電体薄膜層は前記π共役系を有する高分子化合物を含
むことを特徴とする有機エレクトロルミネッセンス素
子。
26. The organic electroluminescent device according to claim 23, wherein the bipolar organic compound includes a polymer compound having a π-conjugated system, and the conductor thin film layer has a high π-conjugated system. An organic electroluminescence device comprising a molecular compound.
【請求項27】請求項23に記載の有機エレクトロルミ
ネッセンス素子において、前記バイポーラ性の有機化合
物はπ共役系を有する高分子化合物を含み、かつ、前記
導電体薄膜層は、アクセプタまたはドナーを添加した導
電性高分子化合物を含むことを特徴とする有機エレクト
ロルミネッセンス素子。
27. The organic electroluminescent device according to claim 23, wherein the bipolar organic compound contains a polymer compound having a π-conjugated system, and the conductor thin film layer is doped with an acceptor or a donor. An organic electroluminescence device comprising a conductive polymer compound.
【請求項28】請求項24に記載の有機エレクトロルミ
ネッセンス素子において、前記導電体薄膜層は、前記正
孔輸送材料または前記電子輸送材料のうち少なくとも一
方を含むことを特徴とする有機エレクトロルミネッセン
ス素子。
28. The organic electroluminescent device according to claim 24, wherein the conductor thin film layer contains at least one of the hole transport material and the electron transport material.
【請求項29】請求項24に記載の有機エレクトロルミ
ネッセンス素子において、前記導電体薄膜層は、前記正
孔輸送材料および前記電子輸送材料の両方を含むことを
特徴とする有機エレクトロルミネッセンス素子。
29. The organic electroluminescence device according to claim 24, wherein the conductor thin film layer contains both the hole transport material and the electron transport material.
【請求項30】二つの電極の間に、光を吸収することで
起電力を生じる1番目からn番目(nは2以上の整数)ま
でのn個の機能性有機薄膜層を順次積層してなる有機構
造体が設けられた有機太陽電池において、k番目(k
は、1≦k≦(n−1)なる整数)の機能性有機薄膜層
とk+1番目の機能性有機薄膜層との間には全て、フロ
ーティング状の導電体薄膜層が設けられており、前記導
電体薄膜層は、前記機能性有機薄膜層に対してオーム接
触していることを特徴とする有機太陽電池。
30. Between the two electrodes, n functional organic thin film layers from 1st to nth (n is an integer of 2 or more) sequentially generating electromotive force by absorbing light are sequentially laminated. In the organic solar cell provided with the organic structure
Is an integer of 1 ≦ k ≦ (n−1)), and a floating conductor thin film layer is provided between the functional organic thin film layer and the (k + 1) th functional organic thin film layer. An organic solar cell, wherein the conductor thin film layer is in ohmic contact with the functional organic thin film layer.
【請求項31】二つの電極の間に、光を吸収することで
起電力を生じる1番目からn番目(nは2以上の整数)ま
でのn個の機能性有機薄膜層を順次積層してなる有機構
造体が設けられた有機太陽電池において、k番目(k
は、1≦k≦(n−1)なる整数)の機能性有機薄膜層
とk+1番目の機能性有機薄膜層との間には全て、有機
化合物を含むフローティング状の導電体薄膜層が設けら
れており、前記導電体薄膜層は、前記機能性有機薄膜層
に対してオーム接触していることを特徴とする有機太陽
電池。
31. Between the two electrodes, n functional organic thin film layers from the 1st to the nth (n is an integer of 2 or more) sequentially generating electromotive force by absorbing light are sequentially laminated. In the organic solar cell provided with the organic structure
Is an integer of 1≤k≤ (n-1)) and a floating conductor thin film layer containing an organic compound is provided between the functional organic thin film layer and the (k + 1) th functional organic thin film layer. The organic thin film layer is characterized in that the conductive thin film layer is in ohmic contact with the functional organic thin film layer.
【請求項32】二つの電極の間に、光を吸収することで
起電力を生じる1番目からn番目(nは2以上の整数)ま
でのn個の機能性有機薄膜層を順次積層してなる有機構
造体が設けられた有機太陽電池において、k番目(k
は、1≦k≦(n−1)なる整数)の機能性有機薄膜層
とk+1番目の機能性有機薄膜層との間には全て、有機
化合物を含むフローティング状の導電体薄膜層が設けら
れており、前記導電体薄膜層には、前記有機化合物に対
するアクセプタまたはドナーの少なくとも一方が含まれ
ていることを特徴とする有機太陽電池。
32. Between the two electrodes, n functional organic thin film layers from the 1st to the nth (n is an integer of 2 or more) sequentially generating electromotive force by absorbing light are sequentially laminated. In the organic solar cell provided with the organic structure
Is an integer of 1≤k≤ (n-1)) and a floating conductor thin film layer containing an organic compound is provided between the functional organic thin film layer and the (k + 1) th functional organic thin film layer. In the organic solar cell, the conductor thin film layer contains at least one of an acceptor and a donor for the organic compound.
【請求項33】二つの電極の間に、光を吸収することで
起電力を生じる1番目からn番目(nは2以上の整数)ま
でのn個の機能性有機薄膜層を順次積層してなる有機構
造体が設けられた有機太陽電池において、k番目(k
は、1≦k≦(n−1)なる整数)の機能性有機薄膜層
とk+1番目の機能性有機薄膜層との間には全て、有機
化合物を含むフローティング状の導電体薄膜層が設けら
れており、前記導電体薄膜層には、前記有機化合物に対
するアクセプタまたはドナーの両方が含まれていること
を特徴とする有機太陽電池。
33. Between the two electrodes, n functional organic thin film layers from 1st to nth (n is an integer of 2 or more) sequentially generating electromotive force by absorbing light are sequentially laminated. In the organic solar cell provided with the organic structure
Is an integer of 1≤k≤ (n-1)) and a floating conductor thin film layer containing an organic compound is provided between the functional organic thin film layer and the (k + 1) th functional organic thin film layer. In addition, the conductor thin film layer contains both an acceptor and a donor for the organic compound.
【請求項34】請求項32または請求項33に記載の有
機太陽電池において、前記機能性有機薄膜層の前記導電
体薄膜層に接している領域は、前記有機化合物と同一の
有機化合物を含むことを特徴とする有機太陽電池。
34. The organic solar cell according to claim 32 or 33, wherein a region of the functional organic thin film layer in contact with the conductor thin film layer contains the same organic compound as the organic compound. An organic solar cell characterized by.
【請求項35】請求項33に記載の有機太陽電池におい
て、前記導電体薄膜層は、前記有機化合物にアクセプタ
を添加した第一の層と、前記有機化合物と同一の有機化
合物にドナーを添加した第二の層と、を積層してなる構
造であり、前記第一の層が前記第二の層よりも陰極側に
位置することを特徴とする有機太陽電池。
35. The organic solar cell according to claim 33, wherein the conductor thin film layer comprises a first layer obtained by adding an acceptor to the organic compound, and a donor added to the same organic compound as the organic compound. An organic solar cell having a structure in which a second layer is laminated, wherein the first layer is located closer to the cathode than the second layer.
【請求項36】請求項35に記載の有機太陽電池におい
て、前記機能性有機薄膜層の前記導電体薄膜層に接して
いる領域は、前記有機化合物と同一の有機化合物を含む
ことを特徴とする有機太陽電池。
36. The organic solar cell according to claim 35, wherein a region of the functional organic thin film layer in contact with the conductor thin film layer contains the same organic compound as the organic compound. Organic solar cells.
【請求項37】請求項33に記載の有機太陽電池におい
て、前記導電体薄膜層は、第一の有機化合物にアクセプ
タを添加した第一の層と、前記第一の有機化合物とは異
なる第二の有機化合物にドナーを添加した第二の層と、
を積層してなる構造であり、前記第一の層が前記第二の
層よりも陰極側に位置することを特徴とする有機太陽電
池。
37. The organic solar cell according to claim 33, wherein the conductor thin film layer is different from the first organic compound in the first layer and the second layer different from the first organic compound. A second layer in which a donor is added to the organic compound of
An organic solar cell having a structure in which the first layer is located closer to the cathode than the second layer.
【請求項38】請求項37に記載の有機太陽電池におい
て、前記機能性有機薄膜層の前記第一の層に接している
領域は、前記第一の有機化合物と同一の有機化合物を含
むことを特徴とする有機太陽電池。
38. The organic solar cell according to claim 37, wherein the region of the functional organic thin film layer in contact with the first layer contains the same organic compound as the first organic compound. Characteristic organic solar cell.
【請求項39】請求項37に記載の有機太陽電池におい
て、前記機能性有機薄膜層の前記第二の層に接している
領域は、前記第二の有機化合物と同一の有機化合物を含
むことを特徴とする有機太陽電池。
39. The organic solar cell according to claim 37, wherein the region of the functional organic thin film layer in contact with the second layer contains the same organic compound as the second organic compound. Characteristic organic solar cell.
【請求項40】請求項30乃至請求項39のいずれか一
項に記載の有機太陽電池において、前記機能性有機薄膜
層はバイポーラ性の有機化合物から成ることを特徴とす
る有機太陽電池。
40. The organic solar cell according to any one of claims 30 to 39, wherein the functional organic thin film layer is made of a bipolar organic compound.
【請求項41】請求項30乃至請求項39のいずれか一
項に記載の有機太陽電池において、前記機能性有機薄膜
層は、少なくとも一つの正孔輸送層と少なくとも一つの
電子輸送層を有し、前記正孔輸送層は前記電子輸送層よ
りも陽極側に位置していることを特徴とする有機太陽電
池。
41. The organic solar cell according to any one of claims 30 to 39, wherein the functional organic thin film layer has at least one hole transport layer and at least one electron transport layer. The organic solar cell, wherein the hole transport layer is located closer to the anode than the electron transport layer.
【請求項42】請求項40に記載の有機太陽電池におい
て、前記バイポーラ性の有機化合物はπ共役系を有する
高分子化合物を含むことを特徴とする有機太陽電池。
42. The organic solar cell according to claim 40, wherein the bipolar organic compound includes a polymer compound having a π-conjugated system.
【請求項43】請求項40に記載の有機太陽電池におい
て、前記バイポーラ性の有機化合物はπ共役系を有する
高分子化合物を含み、かつ、前記導電体薄膜層は前記π
共役系を有する高分子化合物を含むことを特徴とする有
機太陽電池。
43. The organic solar cell according to claim 40, wherein the bipolar organic compound includes a polymer compound having a π-conjugated system, and the conductor thin film layer has the π-conjugated system.
An organic solar cell comprising a polymer compound having a conjugated system.
【請求項44】請求項40に記載の有機太陽電池におい
て、前記バイポーラ性の有機化合物はπ共役系を有する
高分子化合物を含み、かつ、前記導電体薄膜層は、アク
セプタまたはドナーを添加した導電性高分子化合物を含
むことを特徴とする有機太陽電池。
44. The organic solar cell according to claim 40, wherein the bipolar organic compound includes a polymer compound having a π-conjugated system, and the conductive thin film layer is a conductive layer containing an acceptor or a donor. An organic solar cell comprising a high-molecular compound.
【請求項45】請求項41に記載の有機太陽電池におい
て、前記導電体薄膜層は、前記正孔輸送材料または前記
電子輸送材料のうち少なくとも一方を含むことを特徴と
する有機太陽電池。
45. The organic solar cell according to claim 41, wherein the conductor thin film layer contains at least one of the hole transport material and the electron transport material.
【請求項46】請求項41に記載の有機太陽電池におい
て、前記導電体薄膜層は、前記正孔輸送材料および前記
電子輸送材料の両方を含むことを特徴とする有機太陽電
池。
46. The organic solar cell according to claim 41, wherein the conductor thin film layer contains both the hole transport material and the electron transport material.
【請求項47】請求項1乃至請求項37のいずれか一項
に記載の有機半導体素子または有機エレクトロルミネッ
センス素子または有機太陽電池において、前記導電体薄
膜層の導電率は、10-10S/m2以上であることを特徴とす
る有機半導体素子または有機エレクトロルミネッセンス
素子または有機太陽電池。
47. The organic semiconductor device, the organic electroluminescence device or the organic solar cell according to claim 1, wherein the electric conductivity of the conductor thin film layer is 10 −10 S / m. An organic semiconductor element, an organic electroluminescence element, or an organic solar cell, which is characterized by being 2 or more.
JP2002352488A 2001-12-05 2002-12-04 Organic semiconductor element, organic electroluminescence element and organic solar cell Withdrawn JP2003264085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352488A JP2003264085A (en) 2001-12-05 2002-12-04 Organic semiconductor element, organic electroluminescence element and organic solar cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-370980 2001-12-05
JP2001370980 2001-12-05
JP2002352488A JP2003264085A (en) 2001-12-05 2002-12-04 Organic semiconductor element, organic electroluminescence element and organic solar cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004360375A Division JP2005123208A (en) 2001-12-05 2004-12-13 Organic solar battery

Publications (1)

Publication Number Publication Date
JP2003264085A true JP2003264085A (en) 2003-09-19

Family

ID=29217701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352488A Withdrawn JP2003264085A (en) 2001-12-05 2002-12-04 Organic semiconductor element, organic electroluminescence element and organic solar cell

Country Status (1)

Country Link
JP (1) JP2003264085A (en)

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329749A (en) * 1998-05-12 1999-11-30 Tdk Corp Organic el display device and its manufacture
JPH11329748A (en) * 1998-05-20 1999-11-30 Idemitsu Kosan Co Ltd Organic el(electroluminescent) element and light emitting device using it
JP2003272860A (en) * 2002-03-26 2003-09-26 Junji Kido Organic electroluminescent element
JP2004039617A (en) * 2002-02-15 2004-02-05 Eastman Kodak Co Stacked organic electroluminescent device
JP2004342614A (en) * 2003-05-13 2004-12-02 Eastman Kodak Co Cascade type organic electroluminescent device
JP2005135600A (en) * 2003-10-28 2005-05-26 Idemitsu Kosan Co Ltd Organic electroluminescent element
JP2005166637A (en) * 2003-11-10 2005-06-23 Junji Kido Organic element, organic el element, organic solar cell, organic fet structure and manufacturing method of organic element
JP2005183213A (en) * 2003-12-19 2005-07-07 Tohoku Pioneer Corp Organic el element and its forming method
JP2005251529A (en) * 2004-03-03 2005-09-15 Seiko Epson Corp Manufacturing method of laminated organic electroluminescent element and display device
WO2005076753A3 (en) * 2004-02-18 2005-10-06 Sony Corp Display element
WO2005107330A1 (en) * 2004-04-28 2005-11-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and method of manufacturing the same, and light-emitting device using the light-emitting element
JP2005339823A (en) * 2004-05-24 2005-12-08 Sony Corp Display element
JP2006005340A (en) * 2004-05-20 2006-01-05 Semiconductor Energy Lab Co Ltd Light-emitting device and display apparatus
JP2006012793A (en) * 2004-05-21 2006-01-12 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device using the same
WO2006013990A1 (en) * 2004-08-03 2006-02-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
WO2006022194A1 (en) * 2004-08-23 2006-03-02 Semiconductor Energy Laboratory Co., Ltd. Electron injecting composition, and light emitting element and light emitting device using the electron injecting composition
JP2006066707A (en) * 2004-08-27 2006-03-09 Sony Corp Photoelectric conversion apparatus
JP2006074022A (en) * 2004-08-04 2006-03-16 Semiconductor Energy Lab Co Ltd Light emitting element, display and electronic apparatus
JP2006073484A (en) * 2004-09-06 2006-03-16 Fuji Electric Holdings Co Ltd Organic el element
WO2006035973A1 (en) * 2004-09-30 2006-04-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
JP2006135145A (en) * 2004-11-08 2006-05-25 Sony Corp Organic material for display element and display element
WO2006062177A1 (en) * 2004-12-06 2006-06-15 Semiconductor Energy Laboratory Co., Ltd. Composite material including organic compound and inorganic compound, light-emitting element and light-emitting device using the composite compound, and manufacturing method of the light-emitting element
JP2006172762A (en) * 2004-12-13 2006-06-29 Toyota Industries Corp Organic el element
JP2006179869A (en) * 2004-11-05 2006-07-06 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device using the same
JP2006190995A (en) * 2004-12-06 2006-07-20 Semiconductor Energy Lab Co Ltd Composite material comprising organic compound and inorganic compound, light emitting element and light emitting device employing the composite material as well as manufacturing method of the light emitting element
JP2006520533A (en) * 2003-03-19 2006-09-07 テヒニッシェ・ウニヴェルジテート・ドレスデン Photoactive components with organic layers
WO2006093275A1 (en) * 2005-03-04 2006-09-08 Matsushita Electric Works, Ltd. Multilayer organic solar cell
WO2006109554A1 (en) * 2005-03-30 2006-10-19 Pioneer Corporation Display panel and display
JP2006527490A (en) * 2003-06-12 2006-11-30 コナルカ テクノロジーズ インコーポレイテッド Tandem solar cell with shared organic electrode
JP2006344606A (en) * 2006-07-31 2006-12-21 Idemitsu Kosan Co Ltd Organic el element and light emitting device using it
JP2007013123A (en) * 2005-06-03 2007-01-18 Fujifilm Corp Device and film for photoelectric conversion, image pickup device, and method for applying electric field thereto
WO2007013478A1 (en) * 2005-07-25 2007-02-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic appliance
JP2007027141A (en) * 2001-12-05 2007-02-01 Semiconductor Energy Lab Co Ltd Manufacturing method of organic semiconductor element
JP2007059517A (en) * 2005-08-23 2007-03-08 Fujifilm Corp Photoelectric conversion film, photoelectric conversion element, image pickup element and method of applying electric field to them
JP2007141822A (en) * 2005-10-17 2007-06-07 Semiconductor Energy Lab Co Ltd Lighting system
WO2007091548A1 (en) * 2006-02-07 2007-08-16 Sumitomo Chemical Company, Limited Organic electroluminescent element
JP2007242733A (en) * 2006-03-06 2007-09-20 Fujifilm Corp Organic electroluminescent device
JPWO2005009087A1 (en) * 2003-07-02 2007-09-20 出光興産株式会社 Organic electroluminescence element and display device using the same
JP2007288161A (en) * 2006-03-20 2007-11-01 Matsushita Electric Works Ltd Organic thin film solar cell
JP2008514013A (en) * 2004-09-22 2008-05-01 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photosensitive element
JP2008117798A (en) * 2006-10-31 2008-05-22 Stanley Electric Co Ltd Organic thin-film element and tandem type photoelectric conversion element
JP2008234885A (en) * 2007-03-19 2008-10-02 Semiconductor Energy Lab Co Ltd Light emitting element
JP2009081442A (en) * 2004-11-05 2009-04-16 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting device, and electronic instrument
JP2009117800A (en) * 2007-10-18 2009-05-28 Mitsubishi Chemicals Corp Charge transport film, and organic electroluminescent element
JP2009259852A (en) * 2009-08-12 2009-11-05 Idemitsu Kosan Co Ltd Organic electroluminescent light emitting element
JP2010021554A (en) * 2003-12-04 2010-01-28 Novaled Ag Use of organic mesomeric compound, organic semiconductor material, and electronic component
JP2010034164A (en) * 2008-07-25 2010-02-12 Panasonic Electric Works Co Ltd Organic electroluminescent device and method for manufacturing organic electroluminescent device
US7671852B2 (en) 2005-10-17 2010-03-02 Pioneer Corporation Display device, display method, and computer product
WO2010045308A2 (en) * 2008-10-14 2010-04-22 Drexel University Polymer dispersed liquid crystal photovoltaic device and method for making
US7781673B2 (en) 2005-07-14 2010-08-24 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
JP2011501422A (en) * 2007-10-15 2011-01-06 ノヴァレッド・アクチエンゲゼルシャフト Organic electroluminescence device
JP2011014548A (en) * 2004-05-20 2011-01-20 Semiconductor Energy Lab Co Ltd Light-emitting element and display device
WO2011010696A1 (en) 2009-07-23 2011-01-27 株式会社カネカ Organic electroluminescent element
JP2011029229A (en) * 2009-07-21 2011-02-10 National Institute Of Advanced Industrial Science & Technology Organic photoelectric conversion device
US7919783B2 (en) 2006-11-30 2011-04-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device employing the same
JP2011086442A (en) * 2009-10-14 2011-04-28 Konica Minolta Holdings Inc Organic electroluminescent element and lighting system
JP2011119266A (en) * 2004-09-13 2011-06-16 Semiconductor Energy Lab Co Ltd Lighting system
US7964891B2 (en) 2004-08-04 2011-06-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, and electronic appliance
US8008424B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with thiazole-containing polymer
US8008421B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with silole-containing polymer
JP2011253824A (en) * 2005-10-17 2011-12-15 Semiconductor Energy Lab Co Ltd Illuminating device
JP2012014905A (en) * 2010-06-30 2012-01-19 Konica Minolta Holdings Inc Organic electroluminescence element, illumination device, display device, and method of manufacturing organic electroluminescence element
JP2012043817A (en) * 2004-02-06 2012-03-01 Global Oled Technology Llc Full-color organic display having improved blue emission
US8158881B2 (en) 2005-07-14 2012-04-17 Konarka Technologies, Inc. Tandem photovoltaic cells
JP2012178597A (en) * 2003-12-26 2012-09-13 Semiconductor Energy Lab Co Ltd Light-emitting element
JP2012527089A (en) * 2009-05-13 2012-11-01 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー Internal connectors for organic electronic devices
WO2012169150A1 (en) * 2011-06-07 2012-12-13 エイソンテクノロジー株式会社 Organic electroluminescent element
US8339037B2 (en) * 2004-03-26 2012-12-25 Panasonic Corporation Organic light emitting device with reduced angle dependency
KR101215287B1 (en) 2004-05-21 2012-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 The lighting device
JP2013033706A (en) * 2011-03-10 2013-02-14 Rohm Co Ltd Organic el device
US8455606B2 (en) 2008-08-07 2013-06-04 Merck Patent Gmbh Photoactive polymers
JP2013239460A (en) * 2004-05-21 2013-11-28 Semiconductor Energy Lab Co Ltd Display device
US8629429B2 (en) 2003-08-25 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Electrode device for organic device and electronic device having the same
JP2014075347A (en) * 2013-11-05 2014-04-24 Konica Minolta Inc Organic electroluminescent element and lighting system
JP2014511133A (en) * 2010-12-27 2014-05-08 ヘリアテク ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic components with doped layers
US8796543B2 (en) 2005-03-28 2014-08-05 Dai Nippon Printing Co., Ltd. Organic thin-film solar cell element
JP5673799B2 (en) * 2011-03-25 2015-02-18 富士通株式会社 Method for manufacturing photoelectric conversion element and photoelectric conversion element
US8975512B2 (en) 2005-12-21 2015-03-10 Merck Patent Gmbh Tandem photovoltaic cells
US8987726B2 (en) 2009-07-23 2015-03-24 Kaneka Corporation Organic electroluminescent element
JP2015097215A (en) * 2015-01-21 2015-05-21 コニカミノルタ株式会社 Organic electroluminescence element
JP2016054316A (en) * 2001-12-05 2016-04-14 株式会社半導体エネルギー研究所 Organic solar cell
US9379347B2 (en) 2012-08-27 2016-06-28 Konica Minolta, Inc. Organic electroluminescence element
JP2017022063A (en) * 2015-07-15 2017-01-26 コニカミノルタ株式会社 Manufacturing method of organic thin film laminate, and manufacturing method of organic electroluminescent element
WO2017134905A1 (en) * 2016-02-04 2017-08-10 日立化成株式会社 Organic light emission element
CN111316459A (en) * 2017-11-08 2020-06-19 索尼公司 Photoelectric conversion element and imaging device
CN112670422A (en) * 2020-12-04 2021-04-16 昆山国显光电有限公司 Display panel and evaporation method of display panel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192376A (en) * 1990-11-22 1992-07-10 Sekisui Chem Co Ltd Tandem organic solar battery
JPH0628278A (en) * 1992-07-10 1994-02-04 Daikin Ind Ltd Method and device for outputting screen data of data processor
JPH06318725A (en) * 1993-05-10 1994-11-15 Ricoh Co Ltd Photovoltaic element and its manufacture
JPH11251067A (en) * 1998-03-02 1999-09-17 Junji Kido Organic electroluminescence element
JPH11329748A (en) * 1998-05-20 1999-11-30 Idemitsu Kosan Co Ltd Organic el(electroluminescent) element and light emitting device using it
WO2001039276A1 (en) * 1999-11-26 2001-05-31 The Trustees Of Princeton University Organic photosensitive optoelectronic device with an exciton blocking layer
JP2003045676A (en) * 2001-07-26 2003-02-14 Junji Kido Organic electroluminescent element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192376A (en) * 1990-11-22 1992-07-10 Sekisui Chem Co Ltd Tandem organic solar battery
JPH0628278A (en) * 1992-07-10 1994-02-04 Daikin Ind Ltd Method and device for outputting screen data of data processor
JPH06318725A (en) * 1993-05-10 1994-11-15 Ricoh Co Ltd Photovoltaic element and its manufacture
JPH11251067A (en) * 1998-03-02 1999-09-17 Junji Kido Organic electroluminescence element
JPH11329748A (en) * 1998-05-20 1999-11-30 Idemitsu Kosan Co Ltd Organic el(electroluminescent) element and light emitting device using it
WO2001039276A1 (en) * 1999-11-26 2001-05-31 The Trustees Of Princeton University Organic photosensitive optoelectronic device with an exciton blocking layer
JP2003515933A (en) * 1999-11-26 2003-05-07 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photosensitive optoelectronic devices with exciton blocking layers
JP2003045676A (en) * 2001-07-26 2003-02-14 Junji Kido Organic electroluminescent element

Cited By (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329749A (en) * 1998-05-12 1999-11-30 Tdk Corp Organic el display device and its manufacture
JPH11329748A (en) * 1998-05-20 1999-11-30 Idemitsu Kosan Co Ltd Organic el(electroluminescent) element and light emitting device using it
JP2016054316A (en) * 2001-12-05 2016-04-14 株式会社半導体エネルギー研究所 Organic solar cell
JP2007027141A (en) * 2001-12-05 2007-02-01 Semiconductor Energy Lab Co Ltd Manufacturing method of organic semiconductor element
US11217764B2 (en) 2001-12-05 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
JP4570014B2 (en) * 2002-02-15 2010-10-27 グローバル オーエルイーディー テクノロジー リミティド ライアビリティ カンパニー Stacked organic electroluminescent device
KR100911555B1 (en) 2002-02-15 2009-08-10 이스트맨 코닥 캄파니 An organic electroluminescent device having stacked electroluminescent units
JP2004039617A (en) * 2002-02-15 2004-02-05 Eastman Kodak Co Stacked organic electroluminescent device
US10998527B2 (en) 2002-03-26 2021-05-04 Rohm Co., Ltd. Organic electroluminescent device
US10319949B2 (en) 2002-03-26 2019-06-11 Rohm Co., Ltd. Organic electroluminescent device
US10217967B2 (en) 2002-03-26 2019-02-26 Rohm Co., Ltd. Organic electroluminescent device
JP2003272860A (en) * 2002-03-26 2003-09-26 Junji Kido Organic electroluminescent element
US10312474B2 (en) 2002-03-26 2019-06-04 Rohm Co., Ltd. Organic electroluminescent device comprising a plurality of light emissive units
JP2006520533A (en) * 2003-03-19 2006-09-07 テヒニッシェ・ウニヴェルジテート・ドレスデン Photoactive components with organic layers
JP2011228752A (en) * 2003-03-19 2011-11-10 Heliatek Gmbh Photoactive component with organic layer
JP2014090218A (en) * 2003-03-19 2014-05-15 Heliatek Gmbh Photoactive component with organic layer
JP2004342614A (en) * 2003-05-13 2004-12-02 Eastman Kodak Co Cascade type organic electroluminescent device
JP2011119282A (en) * 2003-05-13 2011-06-16 Global Oled Technology Llc Cascaded organic electroluminescent device
JP2006527490A (en) * 2003-06-12 2006-11-30 コナルカ テクノロジーズ インコーポレイテッド Tandem solar cell with shared organic electrode
JPWO2005009087A1 (en) * 2003-07-02 2007-09-20 出光興産株式会社 Organic electroluminescence element and display device using the same
JP4499039B2 (en) * 2003-07-02 2010-07-07 出光興産株式会社 Organic electroluminescence element and display device using the same
US8629429B2 (en) 2003-08-25 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Electrode device for organic device and electronic device having the same
JP2005135600A (en) * 2003-10-28 2005-05-26 Idemitsu Kosan Co Ltd Organic electroluminescent element
JP2005166637A (en) * 2003-11-10 2005-06-23 Junji Kido Organic element, organic el element, organic solar cell, organic fet structure and manufacturing method of organic element
US9196850B2 (en) 2003-11-10 2015-11-24 Junji Kido Organic devices, organic electroluminescent devices, organic solar cells, organic FET structures and production method of organic devices
KR100880878B1 (en) * 2003-11-10 2009-01-30 미츠비시 쥬고교 가부시키가이샤 Organic devices, organic electroluminescent devices, organic solar cells, organic FET structures and production method of organic devices
JP2010021554A (en) * 2003-12-04 2010-01-28 Novaled Ag Use of organic mesomeric compound, organic semiconductor material, and electronic component
JP2005183213A (en) * 2003-12-19 2005-07-07 Tohoku Pioneer Corp Organic el element and its forming method
JP2015179876A (en) * 2003-12-26 2015-10-08 株式会社半導体エネルギー研究所 light-emitting element
JP2014197692A (en) * 2003-12-26 2014-10-16 株式会社半導体エネルギー研究所 Light-emitting element
US10886497B2 (en) 2003-12-26 2021-01-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US8796670B2 (en) 2003-12-26 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
JP2016184769A (en) * 2003-12-26 2016-10-20 株式会社半導体エネルギー研究所 Light-emitting element
JP2013211582A (en) * 2003-12-26 2013-10-10 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device and electrical appliance
US9570697B2 (en) 2003-12-26 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
JP2012178597A (en) * 2003-12-26 2012-09-13 Semiconductor Energy Lab Co Ltd Light-emitting element
JP2012178596A (en) * 2003-12-26 2012-09-13 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and electric appliance
JP2017175159A (en) * 2003-12-26 2017-09-28 株式会社半導体エネルギー研究所 Light-emitting element
JP2012043817A (en) * 2004-02-06 2012-03-01 Global Oled Technology Llc Full-color organic display having improved blue emission
JP2006173550A (en) * 2004-02-18 2006-06-29 Sony Corp Display element
US7736754B2 (en) 2004-02-18 2010-06-15 Sony Corporation Display device
WO2005076753A3 (en) * 2004-02-18 2005-10-06 Sony Corp Display element
JP2005251529A (en) * 2004-03-03 2005-09-15 Seiko Epson Corp Manufacturing method of laminated organic electroluminescent element and display device
US9018834B2 (en) 2004-03-26 2015-04-28 Panasonic Corporation Organic light emitting device
US8339037B2 (en) * 2004-03-26 2012-12-25 Panasonic Corporation Organic light emitting device with reduced angle dependency
US7772596B2 (en) 2004-04-28 2010-08-10 Semiconductor Energy Laboratory Co., Ltd Light-emitting element and method of manufacturing the same, and light-emitting device using the light-emitting element
WO2005107330A1 (en) * 2004-04-28 2005-11-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and method of manufacturing the same, and light-emitting device using the light-emitting element
US8643270B2 (en) 2004-05-20 2014-02-04 Semiconductor Energy Laboratory Co., Inc. Light-emitting element and display device
US8339039B2 (en) 2004-05-20 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including intermediate conductive layer having an electron-injection layer with an island-like structure
US8018152B2 (en) 2004-05-20 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including intermediate conductive layer having a hole-injection layer with an island-like structure
KR101252026B1 (en) 2004-05-20 2013-04-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element and display device
JP4731996B2 (en) * 2004-05-20 2011-07-27 株式会社半導体エネルギー研究所 Light emitting element and display device
KR101161722B1 (en) * 2004-05-20 2012-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element and display device
JP2013152949A (en) * 2004-05-20 2013-08-08 Semiconductor Energy Lab Co Ltd Light-emitting element
JP2012160471A (en) * 2004-05-20 2012-08-23 Semiconductor Energy Lab Co Ltd Light-emitting element
JP2011014548A (en) * 2004-05-20 2011-01-20 Semiconductor Energy Lab Co Ltd Light-emitting element and display device
JP2006005340A (en) * 2004-05-20 2006-01-05 Semiconductor Energy Lab Co Ltd Light-emitting device and display apparatus
JP2019061971A (en) * 2004-05-21 2019-04-18 株式会社半導体エネルギー研究所 Light-emitting device
JP2018113269A (en) * 2004-05-21 2018-07-19 株式会社半導体エネルギー研究所 Light-emitting method
JP2019061973A (en) * 2004-05-21 2019-04-18 株式会社半導体エネルギー研究所 Light-emitting device
US8076671B2 (en) 2004-05-21 2011-12-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the element
US8922116B2 (en) 2004-05-21 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
JP2015065176A (en) * 2004-05-21 2015-04-09 株式会社半導体エネルギー研究所 Light-emitting device
JP2011233536A (en) * 2004-05-21 2011-11-17 Semiconductor Energy Lab Co Ltd Light-emitting device
JP2019057502A (en) * 2004-05-21 2019-04-11 株式会社半導体エネルギー研究所 Light-emitting device, and television
JP2006012793A (en) * 2004-05-21 2006-01-12 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device using the same
JP2020174052A (en) * 2004-05-21 2020-10-22 株式会社半導体エネルギー研究所 Light-emitting device
JP7065911B2 (en) 2004-05-21 2022-05-12 株式会社半導体エネルギー研究所 Light emitting device
JP2013254748A (en) * 2004-05-21 2013-12-19 Semiconductor Energy Lab Co Ltd Light emitting device
JP2017168452A (en) * 2004-05-21 2017-09-21 株式会社半導体エネルギー研究所 Light-emitting element
KR101215287B1 (en) 2004-05-21 2012-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 The lighting device
US8536569B2 (en) 2004-05-21 2013-09-17 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the element
JP2013232442A (en) * 2004-05-21 2013-11-14 Semiconductor Energy Lab Co Ltd Light-emitting device
JP2013239460A (en) * 2004-05-21 2013-11-28 Semiconductor Energy Lab Co Ltd Display device
US7663140B2 (en) 2004-05-21 2010-02-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the element
JP2016028394A (en) * 2004-05-21 2016-02-25 株式会社半導体エネルギー研究所 Light-emitting device
JP2012015127A (en) * 2004-05-21 2012-01-19 Semiconductor Energy Lab Co Ltd Light-emitting device
JP2016028395A (en) * 2004-05-21 2016-02-25 株式会社半導体エネルギー研究所 Light-emitting element
KR101215860B1 (en) 2004-05-21 2012-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting element and light emitting device using the element
JP2005339823A (en) * 2004-05-24 2005-12-08 Sony Corp Display element
US7781073B2 (en) 2004-05-24 2010-08-24 Sony Corporation Organic electroluminescence element and display device constructed therefrom
US8008651B2 (en) 2004-08-03 2011-08-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
US8502210B2 (en) 2004-08-03 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
CN100534247C (en) * 2004-08-03 2009-08-26 株式会社半导体能源研究所 Light emitting element and light emitting device
WO2006013990A1 (en) * 2004-08-03 2006-02-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
US8618574B2 (en) 2004-08-04 2013-12-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, and electronic appliance
JP2006074022A (en) * 2004-08-04 2006-03-16 Semiconductor Energy Lab Co Ltd Light emitting element, display and electronic apparatus
US7964891B2 (en) 2004-08-04 2011-06-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, and electronic appliance
JP4684042B2 (en) * 2004-08-04 2011-05-18 株式会社半導体エネルギー研究所 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE
WO2006022194A1 (en) * 2004-08-23 2006-03-02 Semiconductor Energy Laboratory Co., Ltd. Electron injecting composition, and light emitting element and light emitting device using the electron injecting composition
JP2006066707A (en) * 2004-08-27 2006-03-09 Sony Corp Photoelectric conversion apparatus
JP2006073484A (en) * 2004-09-06 2006-03-16 Fuji Electric Holdings Co Ltd Organic el element
JP4513060B2 (en) * 2004-09-06 2010-07-28 富士電機ホールディングス株式会社 Organic EL device
US8487530B2 (en) 2004-09-13 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. Lighting device having plural light emitting layers which are separated
US8912718B2 (en) 2004-09-13 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device with a plurality of circuits connected in parallel
JP2011119266A (en) * 2004-09-13 2011-06-16 Semiconductor Energy Lab Co Ltd Lighting system
US8487529B2 (en) 2004-09-13 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. Lighting device with plural light emitting elements
US8436531B2 (en) 2004-09-13 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Lighting device having plural light emitting layers with carrier generation layer therebetween
US8436532B2 (en) 2004-09-13 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Lighting device with plural light emitting elements
KR101418124B1 (en) 2004-09-22 2014-07-10 더 트러스티즈 오브 프린스턴 유니버시티 Organic photosensitive devices
JP2008514013A (en) * 2004-09-22 2008-05-01 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photosensitive element
US8878159B2 (en) 2004-09-30 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
US10497894B2 (en) 2004-09-30 2019-12-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
WO2006035973A1 (en) * 2004-09-30 2006-04-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
US7964864B2 (en) 2004-09-30 2011-06-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
JP2009081442A (en) * 2004-11-05 2009-04-16 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting device, and electronic instrument
JP2012049559A (en) * 2004-11-05 2012-03-08 Semiconductor Energy Lab Co Ltd Light-emitting element and illumination apparatus
US8455114B2 (en) 2004-11-05 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US8202630B2 (en) 2004-11-05 2012-06-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
JP2006179869A (en) * 2004-11-05 2006-07-06 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device using the same
KR101210858B1 (en) 2004-11-05 2012-12-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting element and light emitting device using the same
JP2006135145A (en) * 2004-11-08 2006-05-25 Sony Corp Organic material for display element and display element
JP2006190995A (en) * 2004-12-06 2006-07-20 Semiconductor Energy Lab Co Ltd Composite material comprising organic compound and inorganic compound, light emitting element and light emitting device employing the composite material as well as manufacturing method of the light emitting element
WO2006062177A1 (en) * 2004-12-06 2006-06-15 Semiconductor Energy Laboratory Co., Ltd. Composite material including organic compound and inorganic compound, light-emitting element and light-emitting device using the composite compound, and manufacturing method of the light-emitting element
JP2006172762A (en) * 2004-12-13 2006-06-29 Toyota Industries Corp Organic el element
JP4496948B2 (en) * 2004-12-13 2010-07-07 株式会社豊田自動織機 Organic EL device
US8237048B2 (en) 2005-03-04 2012-08-07 Panasonic Corporation Multilayer organic solar cell
WO2006093275A1 (en) * 2005-03-04 2006-09-08 Matsushita Electric Works, Ltd. Multilayer organic solar cell
US8796543B2 (en) 2005-03-28 2014-08-05 Dai Nippon Printing Co., Ltd. Organic thin-film solar cell element
WO2006109554A1 (en) * 2005-03-30 2006-10-19 Pioneer Corporation Display panel and display
JP2007013123A (en) * 2005-06-03 2007-01-18 Fujifilm Corp Device and film for photoelectric conversion, image pickup device, and method for applying electric field thereto
US8158881B2 (en) 2005-07-14 2012-04-17 Konarka Technologies, Inc. Tandem photovoltaic cells
US7781673B2 (en) 2005-07-14 2010-08-24 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
US8058550B2 (en) 2005-07-14 2011-11-15 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
US8227982B2 (en) 2005-07-25 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic appliance
WO2007013478A1 (en) * 2005-07-25 2007-02-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic appliance
US9224968B2 (en) 2005-07-25 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic appliance
JP2007059517A (en) * 2005-08-23 2007-03-08 Fujifilm Corp Photoelectric conversion film, photoelectric conversion element, image pickup element and method of applying electric field to them
US8154192B2 (en) 2005-10-17 2012-04-10 Semiconductor Energy Laboratory Co., Ltd. Lighting system
JP2007141822A (en) * 2005-10-17 2007-06-07 Semiconductor Energy Lab Co Ltd Lighting system
JP2011253824A (en) * 2005-10-17 2011-12-15 Semiconductor Energy Lab Co Ltd Illuminating device
US7671852B2 (en) 2005-10-17 2010-03-02 Pioneer Corporation Display device, display method, and computer product
US8441184B2 (en) 2005-10-17 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Lighting system
US8975512B2 (en) 2005-12-21 2015-03-10 Merck Patent Gmbh Tandem photovoltaic cells
WO2007091548A1 (en) * 2006-02-07 2007-08-16 Sumitomo Chemical Company, Limited Organic electroluminescent element
US8698392B2 (en) 2006-02-07 2014-04-15 Sumitomo Chemical Company, Limited Organic electroluminescent element
JP2007242733A (en) * 2006-03-06 2007-09-20 Fujifilm Corp Organic electroluminescent device
JP2007288161A (en) * 2006-03-20 2007-11-01 Matsushita Electric Works Ltd Organic thin film solar cell
JP2006344606A (en) * 2006-07-31 2006-12-21 Idemitsu Kosan Co Ltd Organic el element and light emitting device using it
US8008421B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with silole-containing polymer
US8563678B2 (en) 2006-10-11 2013-10-22 Merck Patent Gmbh Photovoltaic cell with thiazole-containing polymer
US8962783B2 (en) 2006-10-11 2015-02-24 Merck Patent Gmbh Photovoltaic cell with silole-containing polymer
US8008424B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with thiazole-containing polymer
US9123895B2 (en) 2006-10-11 2015-09-01 Merck Patent Gmbh Photovoltaic cell with thiazole-containing polymer
JP2008117798A (en) * 2006-10-31 2008-05-22 Stanley Electric Co Ltd Organic thin-film element and tandem type photoelectric conversion element
US8436346B2 (en) 2006-11-30 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device employing the same
US7919783B2 (en) 2006-11-30 2011-04-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device employing the same
JP2008234885A (en) * 2007-03-19 2008-10-02 Semiconductor Energy Lab Co Ltd Light emitting element
US8466453B2 (en) 2007-10-15 2013-06-18 Novaled Ag Organic electroluminescent component
JP2011501422A (en) * 2007-10-15 2011-01-06 ノヴァレッド・アクチエンゲゼルシャフト Organic electroluminescence device
JP2009117800A (en) * 2007-10-18 2009-05-28 Mitsubishi Chemicals Corp Charge transport film, and organic electroluminescent element
JP2010034164A (en) * 2008-07-25 2010-02-12 Panasonic Electric Works Co Ltd Organic electroluminescent device and method for manufacturing organic electroluminescent device
US8455606B2 (en) 2008-08-07 2013-06-04 Merck Patent Gmbh Photoactive polymers
WO2010045308A2 (en) * 2008-10-14 2010-04-22 Drexel University Polymer dispersed liquid crystal photovoltaic device and method for making
US9140923B2 (en) 2008-10-14 2015-09-22 Drexel University Polymer dispersed liquid crystal photovoltaic device and method for making
WO2010045308A3 (en) * 2008-10-14 2010-07-22 Drexel University Polymer dispersed liquid crystal photovoltaic device and method for making
JP2012527089A (en) * 2009-05-13 2012-11-01 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー Internal connectors for organic electronic devices
JP2011029229A (en) * 2009-07-21 2011-02-10 National Institute Of Advanced Industrial Science & Technology Organic photoelectric conversion device
US8664647B2 (en) 2009-07-23 2014-03-04 Kaneka Corporation Organic electroluminescent element
US8987726B2 (en) 2009-07-23 2015-03-24 Kaneka Corporation Organic electroluminescent element
WO2011010696A1 (en) 2009-07-23 2011-01-27 株式会社カネカ Organic electroluminescent element
JP2009259852A (en) * 2009-08-12 2009-11-05 Idemitsu Kosan Co Ltd Organic electroluminescent light emitting element
JP2011086442A (en) * 2009-10-14 2011-04-28 Konica Minolta Holdings Inc Organic electroluminescent element and lighting system
JP2012014905A (en) * 2010-06-30 2012-01-19 Konica Minolta Holdings Inc Organic electroluminescence element, illumination device, display device, and method of manufacturing organic electroluminescence element
KR101934129B1 (en) * 2010-12-27 2018-12-31 헬리아텍 게엠베하 Optoelectronic component having doped layers and use of dopants of compound in optoelectronic component
JP2014511133A (en) * 2010-12-27 2014-05-08 ヘリアテク ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic components with doped layers
JP2013033706A (en) * 2011-03-10 2013-02-14 Rohm Co Ltd Organic el device
JP5673799B2 (en) * 2011-03-25 2015-02-18 富士通株式会社 Method for manufacturing photoelectric conversion element and photoelectric conversion element
JPWO2012169150A1 (en) * 2011-06-07 2015-02-23 エイソンテクノロジー株式会社 Organic electroluminescent device
WO2012169150A1 (en) * 2011-06-07 2012-12-13 エイソンテクノロジー株式会社 Organic electroluminescent element
US9379347B2 (en) 2012-08-27 2016-06-28 Konica Minolta, Inc. Organic electroluminescence element
JP2014075347A (en) * 2013-11-05 2014-04-24 Konica Minolta Inc Organic electroluminescent element and lighting system
JP2015097215A (en) * 2015-01-21 2015-05-21 コニカミノルタ株式会社 Organic electroluminescence element
JP2017022063A (en) * 2015-07-15 2017-01-26 コニカミノルタ株式会社 Manufacturing method of organic thin film laminate, and manufacturing method of organic electroluminescent element
WO2017134905A1 (en) * 2016-02-04 2017-08-10 日立化成株式会社 Organic light emission element
JP2017139342A (en) * 2016-02-04 2017-08-10 日立化成株式会社 Organic light-emitting element
CN111316459A (en) * 2017-11-08 2020-06-19 索尼公司 Photoelectric conversion element and imaging device
CN112670422A (en) * 2020-12-04 2021-04-16 昆山国显光电有限公司 Display panel and evaporation method of display panel

Similar Documents

Publication Publication Date Title
JP6189401B2 (en) Organic solar cells
JP2003264085A (en) Organic semiconductor element, organic electroluminescence element and organic solar cell
JP2005123208A (en) Organic solar battery
JP2007027141A (en) Manufacturing method of organic semiconductor element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050830

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051111

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060501