US20140276936A1 - Active drive mechanism for simultaneous rotation and translation - Google Patents
Active drive mechanism for simultaneous rotation and translation Download PDFInfo
- Publication number
- US20140276936A1 US20140276936A1 US13/835,136 US201313835136A US2014276936A1 US 20140276936 A1 US20140276936 A1 US 20140276936A1 US 201313835136 A US201313835136 A US 201313835136A US 2014276936 A1 US2014276936 A1 US 2014276936A1
- Authority
- US
- United States
- Prior art keywords
- roller
- drive apparatus
- roller assembly
- elongate member
- motion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A61B19/22—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/301—Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/35—Surgical robots for telesurgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Master-slave robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
Definitions
- Robotic interventional systems and devices are well suited for performing minimally invasive medical procedures as opposed to conventional techniques wherein the patient's body cavity is open to permit the surgeon's hands access to internal organs.
- advances in technology have led to significant changes in the field of medical surgery such that less invasive surgical procedures, in particular, minimally invasive surgery (MIS), are increasingly popular.
- MIS minimally invasive surgery
- MIS is generally defined as surgery that is performed by entering the body through the skin, a body cavity, or an anatomical opening utilizing small incisions rather than large, open incisions in the body. With MIS, it is possible to achieve less operative trauma for the patient, reduced hospitalization time, less pain and scarring, reduced incidence of complications related to surgical trauma, lower costs, and a speedier recovery.
- Special medical equipment may be used to perform MIS procedures.
- a surgeon inserts small tubes or ports into a patient and uses endoscopes or laparoscopes having a fiber optic camera, light source, or miniaturized surgical instruments. Without a traditional large and invasive incision, the surgeon is not able to see directly into the patient. Thus, the video camera serves as the surgeon's eyes.
- the images of the interior of the body are transmitted to an external video monitor to allow a surgeon to analyze the images, make a diagnosis, visually identify internal features, and perform surgical procedures based on the images presented on the monitor.
- MIS devices and techniques have advanced to the point where an insertion and rolling motion of components of an elongated component such as a catheter instrument, e.g., a catheter sheath and associated guidewire, are generally controllable by selectively operating rollers or other mechanisms for generally gripping the component.
- a catheter instrument e.g., a catheter sheath and associated guidewire
- Some known mechanisms use gripping devices capable of infinite motion for translation, e.g., a roller, may require complex catheter component loading procedures, or may not be compatible with replaceable components adapted for a sterile operating environment.
- An exemplary drive apparatus having a roller assembly configured to impart axial motion to the elongate member along a first continuous surface configured to maintain contact with the elongate member during axial motion.
- the drive apparatus may further include a roller support configured to rotate the roller assembly, thereby imparting rotational motion to the elongate member.
- the roller support may be configured to rotate the roller assembly about a second continuous surface configured to maintain contact with the roller support during rotational motion.
- the roller assembly and roller support may be configured to impart axial and rotational motion independently of one another, such that a first one of the roller assembly and the roller support imparts their associated motion regardless of a presence or absence of motion by the other of the roller assembly and the roller support.
- FIG. 1 is an illustration of a robotically controlled surgical system, according to one exemplary illustration
- FIG. 3 is another exemplary illustration of an exemplary catheter assembly of the surgical system of FIG. 1 ;
- FIG. 4 is a rear perspective view of an exemplary drive apparatus for an elongated member, e.g., a guidewire for a catheter;
- FIG. 5 is a front perspective view of the exemplary drive apparatus of FIG. 4 ;
- FIG. 6 is a rear perspective view of the exemplary drive apparatus of FIG. 4 , with a support plate removed;
- FIG. 7 is a rear perspective view of a disposable device for the exemplary drive apparatus of FIG. 4 , with the disposable device in an open position;
- FIG. 8 is a rear perspective view of the split clamp assembly of FIG. 7 , with the disposable device in a closed position;
- FIG. 9 is a front perspective view of the disposable device of FIG. 7 , with the disposable device in an open position and shown without a split housing;
- FIG. 10 is a rear perspective view of a drive mechanism for the exemplary drive apparatus of FIG. 4 ;
- FIG. 12B is a front perspective view of the exemplary roller assembly of FIG. 12A .
- System 100 may include a robotic catheter assembly 102 having a robotic or first or outer steerable complement, otherwise referred to as a sheath instrument 104 (generally referred to as “sheath” or “sheath instrument”) and/or a second or inner steerable component, otherwise referred to as a robotic catheter or guide or catheter instrument 106 (generally referred to as “catheter” or “catheter instrument”).
- Catheter assembly 102 is controllable using a robotic instrument driver 108 (generally referred to as “instrument driver”).
- system 100 includes an operator workstation 112 , an electronics rack 114 and associated bedside electronics box (not shown), a setup joint mounting brace 116 , and instrument driver 108 .
- operator workstation 112 may include a computer monitor to display a three dimensional object, such as a catheter instrument or component thereof, e.g., a guidewire, catheter sheath.
- catheter instrument 502 may be displayed within or relative to a three dimensional space, such as a body cavity or organ, e.g., a chamber of a patient's heart.
- a body cavity or organ e.g., a chamber of a patient's heart.
- an operator uses a computer mouse to move a control point around the display to control the position of catheter instrument.
- System components may be coupled together via a plurality of cables or other suitable connectors 118 to provide for data communication, or one or more components may be equipped with wireless communication components to reduce or eliminate cables 118 . Communication between components may also be implemented over a network or over the interne. In this manner, a surgeon or other operator may control a surgical instrument while being located away from or remotely from radiation sources, thereby decreasing radiation exposure. Because of the option for wireless or networked operation, the surgeon may even be located remotely from the patient in a different room or building.
- the instrument 109 includes a cover 111 and a drive apparatus 400 partially extending out of the cover, as will be described further in regard to FIGS. 4-11 .
- the drive apparatus 400 may include a disposable portion 402 which extends out of the housing 111 , while an associated drive mechanism (not seen in FIG. 3 ) remains within the housing 111 .
- the drive mechanism (not shown in FIG. 3 ) may generally be reused for surgical procedures, while the disposable portion 402 may part of a sterile environment associated with a surgical procedure and may be disposed of afterwards.
- the disposable portion 402 may be formed of relatively cost-effective materials and may be of a generally small relative size, minimizing a length of the elongate member that must be allowed for the drive mechanism 400 to properly “grip” the elongate member, and increasing cost-effectiveness of the system 100 overall.
- the instrument 109 may be used to manipulate an elongate member included in the catheter assembly 102 , e.g., a catheter guidewire (not shown in FIG. 3 ).
- the instrument 109 may be employed to manipulate a catheter sheath (not shown in FIG. 3 ).
- a single instrument 109 is illustrated in FIG. 3
- two instruments 109 may be employed in which a first instrument 109 is used to insert and roll a guidewire, which guidewire is inserted within a central lumen of a second instrument 109 (not shown in FIG. 3 ) such that the two instruments 109 are arranged in a coaxial manner, substantially as described above regarding the instruments 104 , 106 .
- the drive apparatus 400 may include a disposable mechanism 402 for contacting and driving an elongate member, e.g., a guidewire or catheter.
- An associated drive mechanism 404 may generally be configured to be kept separate from the disposable mechanism 402 , at least to an extent allowing the drive mechanism 404 to be kept out of a sterile environment associated with the elongate member and surgical procedure.
- the disposable mechanism 402 may be supported between two idle rollers 421 , 423 , and a driving roller 425 which is configured to rotate the disposable mechanism 402 to impart rotational motion to the elongate member, as will be described further below.
- the idle roller 421 may include a driving gear 422 for selectively imparting axial motion, i.e., insertion or retraction, of an elongate member, as will also be further described below.
- the disposable portion 402 may include a roller assembly, e.g., comprising one or more rollers 483 that are configured to impart axial motion to the elongate member along a first continuous surface.
- a roller 483 a and a second roller 483 b each define generally cylindrical surfaces 485 a , 485 b that are configured to maintain contact with the elongate member during axial motion, i.e., caused by rotation of the rollers 483 .
- the drive apparatus 400 may further include a roller support configured to rotate the roller assembly, i.e., at least one of the rollers 483 , thereby imparting rotational motion to the elongate member.
- the roller assembly and roller support may be configured to impart axial and rotational motion independently of one another, such that a first one of the roller assembly and the roller support imparts their associated motion regardless of a presence or absence of motion by the other of the roller assembly and the roller support.
- the rollers 483 may generally rotate about their respective spindles to provide axial motion, regardless of whether the spindles themselves are being rotated about the axis of the elongate member. It should be noted that while one set of rollers 483 is shown, multiple sets of rollers could be incorporated, e.g., in series, to provide additional traction on the elongate member for axial and rotational movement thereof.
- the disposable drive mechanism 402 may include a left clamp 401 and a right clamp 403 , as best seen in FIG. 7 .
- the left and right clamps 401 , 403 may be connected to each other with a compliant member 482 configured to maintain the left and right clamps 401 , 403 together in an open position as illustrated in FIG. 7 . More specifically, in the open position the left and right clamps 401 , 403 are held together along a lower portion and are spaced apart by a gap G along an upper portion of the clamps 401 , 403 .
- the compliant member 482 includes first and second memory wires 482 a , 482 b , e.g., nitinol wires, which generally act similar to a spring in holding the clamps together in the open configuration shown in FIG. 7 .
- the memory wires 482 a , 482 b may generally provide a locating feature for the roller assembly, thereby generally positioning the rollers 483 a , 483 b within the clamps 401 , 403 , as best seen in FIG. 9 .
- the disposable drive mechanism 402 includes a roller assembly, e.g., having one or more rollers 483 a , 483 b for imparting axial motion to the elongate member.
- a roller assembly e.g., having one or more rollers 483 a , 483 b for imparting axial motion to the elongate member.
- two rollers 483 a , 483 b may be configured to receive an elongate member (not shown in FIG. 9 ) therebetween. More specifically, the rollers 483 may each rotate about corresponding spindles 484 a , 484 b .
- rollers 483 a , 483 b may each have a plurality of geared teeth 478 a , 478 b which are meshingly engaged such that the rotation of the rollers 483 a , 483 b is generally coordinated.
- the rollers 483 a , 483 b may each be generally round, thereby defining respective continuous surfaces 485 a , 485 b about the generally cylindrical rollers 483 for engaging the elongate member. More specifically, an axial movement of any distance may be applied by the rollers 483 a , 483 b , since the rollers 483 a , 483 b may continuously turn about the spindles 484 without limitation.
- axial motion of the elongate member is not limited by any range of motion of any component of the drive apparatus 400 , allowing the drive apparatus 400 to provide an axial movement in either direction of any magnitude while maintaining constant contact with the elongate member, i.e., by way of the generally looped or continuous surfaces 485 a , 485 b of the rollers 483 a , 483 b.
- the roller assembly may be supported in a roller support configured to rotate the rollers about an axis perpendicular to the spindles 484 of the rollers 483 .
- the spindle 484 a of the roller 483 a may be supported in a saddle 474 that is engaged with an interior surface of one of the clamps 401 , 403 (not shown in FIG. 9 ) by way of a plurality of springs 473 .
- the driving mechanism 404 may include a front plate 451 having a channel 490 through which an elongate member may be received during operation.
- the driving mechanism may further include a right idle roll rotational assembly 452 which corresponds to right idle roller 423 (see FIGS. 4-6 ).
- a lever 453 is located on the front plate 451 by way of a pivot shaft 460 , about which the lever 453 may be pivoted by way of a threaded member 454 , which may be a driving screw.
- the driving mechanism 404 may include driving shafts 455 and 456 , which may be received within corresponding drive mechanisms (not shown) associated with the instrument driver 108 supporting the instrument 109 (see FIG. 3 ).
- the drive apparatus 400 may generally integrate a plurality of actuating mechanisms together.
- the drive apparatus 400 may include a mechanism for opening and closing to facilitate loading and unloading of an elongate member, e.g., a guidewire or a catheter.
- the clamps 401 , 403 may generally be opened to allow top loading of an elongate member, and may thereby facilitate loading of the elongate member without requiring threading the elongate member axially through the drive apparatus 400 .
- the drive apparatus may also include a mechanism for inserting and retracting the elongate member, i.e., in an axial direction.
- the drive apparatus 400 also includes a mechanism for imparting rotational motion to the elongate member.
- the drive apparatus 400 may provide axial motion and rotational motion simultaneously, and in an “infinite” manner. More specifically, as will be seen below the insertion and rotational motion is provided by continuous drive surfaces, e.g., the generally round or looped roller surfaces 485 a , 485 b and the toothed gear engagement between the drive pinion 477 and gear halves 426 a , 426 b . Accordingly, a generally continuous axial or rotational motion may be provided without releasing the elongate member during the motion. In other words, the rotational and insertion motions are not limited by any range of motion of the drive apparatus 400 or components thereof. Moreover, the rotational and axial motion may be provided independent of the other, i.e., one of or both of the rotational and axial motion may be applied to the elongate member at any given time.
- the drive apparatus 400 may be in the open position, i.e., where the disposable portion 402 defines a gap G between the clamps 401 , 403 as best seen in FIG. 7 . While the disposable portion 402 is in the open position, the elongate member, e.g., a guidewire or catheter (not shown in FIG. 6 or 7 ), may be placed between the rollers 483 a , 483 b supported from below by the compliant members 482 . An end portion 425 a of driving roller 425 (see FIG.
- the driving roller 425 may selectively open and close the disposable portion 402 . More specifically, when the driving roller 425 is in an upper position as defined by the pivoting of the lever 453 , the disposable portion 402 will be closed, as seen in FIG. 8 . When the driving roller 425 is moved downward to a lower position, the driving roller 425 generally allows the compliant element 482 to urge the clamps 401 , 403 apart at the upper portion, defining the gap G as best seen in FIG. 7 .
- the disposable portion 402 Upon movement of the driving roller 425 upward, the disposable portion 402 is forced to close. For example, an engagement portion 425 b of the driving roller 425 may come into contact with one or both clamps 401 , 403 , thereby forcing the clamps 401 , 403 together at the upper portion, closing the gap G as seen in FIG. 8 .
- the elongate member may be held between the rollers 483 a , 483 b with a force that is generally limited by springs 473 , as best seen in FIG. 9 .
- the springs 483 may generally act upon an inner surface of one of the clamps 401 , 403 (not shown in FIG. 9 ), urging the roller 483 a which is supported in the saddle 474 toward the other roller 483 b . Accordingly, a desired force of the rollers 483 a , 483 b may be adjusted based upon the spring force imparted by the springs 473 .
- the roller 425 may be rotated via the shaft 456 , e.g., though bevel gears 458 and 459 , as best seen in FIG. 10 .
- Rotation of the driving roller 425 in turn rotates the disposable portion 402 via friction between the engagement portion 425 b of the roller 425 and an outer surface 402 a of the disposable portion 402 , as best seen in FIG. 6 .
- Motion may be imparted to the disposable portion via other mechanisms as well.
- motion may be transferred from the roller 425 to the disposable portion 402 with a using corresponding toothed surfaces on the roller 425 and the disposable portion 402 , similar to a geared arrangement.
- FIG. 11 illustrates a cross section of the holders for left idle roller 423 and driving gear 422 (see FIG. 3 ). More specifically, left idle roll 423 is located by bushing 461 and driving gear 422 is located by bushing 463 .
- the bushing 463 may have a driving mechanism (not shown) for selectively rotating the driving gear 422 . Rotation of the driving gear 422 (see FIG. 3 ), which is engaged with an outer toothed surface of gear halves 426 a , 426 b , will thereby rotate the gear halves 426 a , 426 b .
- the gear halves 426 a , 426 b when in the closed position may form a gear that rotates in response to the driving gear 422 (see FIG. 6 ).
- the gear halves 426 a , 426 b in turnactuates gear 477 as best seen in FIGS. 7 and 8 .
- the gear 477 is located on the worm 480 , as illustrated in FIG. 9 .
- Rotation of the worm 480 in turn drives worm gear 479 .
- the worm gear 479 actuates one of the rollers 483 b .
- the other roller 483 a rotates in response to the roller 483 b , as they are connected with the corresponding gears 478 a , 478 b .
- the surfaces 485 a , 485 b of the rollers 483 a , 483 b may generally be designed to ensure substantially slipless contact with the elongate member, such that the turning of the rollers 483 a , 483 b imparts axial motion directly to the elongate member.
- shaft 456 (see FIG. 10 ) and drive gear 422 (see FIG. 6 ) may be driven simultaneously.
- the instrument 109 may include interfaces for the shaft 456 and drive gear 422 that allow for selective rotation of each, facilitating independent axial and rotational motion.
- Rotational speeds of the components of the drive apparatus 400 can be optimized as needed to suit any given application, e.g., by altering the interfaces between the various rotational parts, e.g., by adjusting the geared arrangements to ensure reasonable rotational speeds of the components based upon typical axial and rotational movement for the given application.
- FIGS. 12A and 12B another set of exemplary rollers 783 a , 783 b is illustrated with an elongate member 999 , e.g., a guidewire.
- the rollers 783 a , 783 b may each define generally cylindrical continuous surfaces 785 a , 785 b , and may rotate about spindles 784 a , 784 b , e.g., similar to rollers 483 a , 483 b .
- the rollers 783 a , 783 b may each define a plurality of upper teeth 799 a , 799 b , as well as a plurality of lower teeth 789 a , 798 b .
- the upper teeth 799 a of the roller 783 a may generally mesh with the upper teeth 799 b of the roller 783 b
- the lower teeth 798 a of the roller 783 a may generally mesh with the lower teeth 798 b of the roller 783 b , thereby generally preventing an elongate member received between the rollers 783 a , 783 b , e.g., guidewire 999 , from slipping out between the rollers 783 a , 783 b
- the upper and lower teeth 799 , 798 may still allow for top loading of an elongate member such as the guidewire 999 .
- At least one of the rollers 783 a , 783 b may be supported in a saddle, e.g., as described above regarding roller 483 a , which allows enough lateral displacement of the roller 783 a or 783 b to be moved to temporarily open a gap between the upper teeth 799 through which the elongate member can be laid between the rollers 783 a , 783 b.
- Operator workstation 112 , electronics rack 114 and/or drive apparatus 400 may include a computer or a computer readable storage medium implementing the operation of drive and implementing the various methods and processes described herein, e.g., process 1300 .
- computing systems and/or devices such as the processor and the user input device, may employ any of a number of computer operating systems, including, but by no means limited to, versions and/or varieties of the Microsoft Windows® operating system, the Unix operating system (e.g., the Solaris® operating system distributed by Oracle Corporation of Redwood Shores, Calif.), the AIX UNIX operating system distributed by International Business Machines of Armonk, N.Y., the Linux operating system, the Mac OS X and iOS operating systems distributed by Apple Inc. of Cupertino, Calif., and the Android operating system developed by the Open Handset Alliance.
- Microsoft Windows® operating system e.g., the Solaris® operating system distributed by Oracle Corporation of Redwood Shores, Calif.
- AIX UNIX operating system distributed by International Business Machines of
- Computing devices generally include computer-executable instructions, where the instructions may be executable by one or more computing devices such as those listed above.
- Computer-executable instructions may be compiled or interpreted from computer programs created using a variety of programming languages and/or technologies, including, without limitation, and either alone or in combination, JavaTM, C, C++, Visual Basic, Java Script, Perl, etc.
- a processor e.g., a microprocessor
- receives instructions e.g., from a memory, a computer-readable medium, etc., and executes these instructions, thereby performing one or more processes, including one or more of the processes described herein.
- Such instructions and other data may be stored and transmitted using a variety of computer-readable media.
- a computer-readable medium includes any non-transitory (e.g., tangible) medium that participates in providing data (e.g., instructions) that may be read by a computer (e.g., by a processor of a computer).
- a medium may take many forms, including, but not limited to, non-volatile media and volatile media.
- Non-volatile media may include, for example, optical or magnetic disks and other persistent memory.
- Volatile media may include, for example, dynamic random access memory (DRAM), which typically constitutes a main memory.
- Such instructions may be transmitted by one or more transmission media, including coaxial cables, copper wire and fiber optics, including the wires that comprise a system bus coupled to a processor of a computer.
- Computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EEPROM, any other memory chip or cartridge, or any other medium from which a computer can read.
- Databases, data repositories or other data stores described herein may include various kinds of mechanisms for storing, accessing, and retrieving various kinds of data, including a hierarchical database, a set of files in a file system, an application database in a proprietary format, a relational database management system (RDBMS), etc.
- Each such data store is generally included within a computing device employing a computer operating system such as one of those mentioned above, and are accessed via a network in any one or more of a variety of manners.
- a file system may be accessible from a computer operating system, and may include files stored in various formats.
- An RDBMS generally employs the Structured Query Language (SQL) in addition to a language for creating, storing, editing, and executing stored procedures, such as the PL/SQL language mentioned above.
- SQL Structured Query Language
- system elements may be implemented as computer-readable instructions (e.g., software) on one or more computing devices (e.g., servers, personal computers, etc.), stored on computer readable media associated therewith (e.g., disks, memories, etc.).
- a computer program product may comprise such instructions stored on computer readable media for carrying out the functions described herein.
- the drive apparatus 400 may advantageously use disposable materials in the construction of the disposable mechanism 402 , e.g., an injection molded plastic material. Additionally, the disposable mechanism is relatively short in an axial direction associated with the elongate member, minimizing wasted length, i.e., the portion of the elongate member that must be gripped or held by the drive apparatus 400 during operation. The minimal length of the drive apparatus 400 may generally be due in part to the containment of the driving mechanisms of the disposable portion 402 within the clamps 401 , 403 .
- the drive apparatus employs separate driving mechanisms, e.g., rollers 483 a , 483 b and the toothed gear engagement between the drive pinion 477 and gear halves 426 a , 426 b , that allow for independent control of the axial motion and rotational motion.
- the drive apparatus mechanism 400 provides generally “infinite” motion due to the looped or round surfaces of the rollers 483 a , 483 b and the toothed gear engagement between the drive pinion 477 and gear halves 426 a , 426 b , thereby allowing for application of any magnitude of axial or rotational motion without having to release the elongate member.
- axial and rotational motion of the elongate member are not limited by any range of motion of the drive apparatus 400 .
- the split clamps 401 , 403 of the disposable portion allows for top loading of the elongate member, such that the elongate member need not be threaded through the drive mechanism during installation of the elongate member.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Robotics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Endoscopes (AREA)
- Transmission Devices (AREA)
Abstract
An exemplary drive apparatus is disclosed having a roller assembly configured to impart axial motion to the elongate member along a first continuous surface configured to maintain contact with the elongate member during axial motion. The drive apparatus may further include a roller support configured to rotate the roller assembly, thereby imparting rotational motion to the elongate member. The roller support may be configured to rotate the roller assembly about a second continuous surface configured to maintain contact with the roller support during rotational motion. Moreover, the roller assembly and roller support may be configured to impart axial and rotational motion independently of one another, such that a first one of the roller assembly and the roller support imparts their associated motion regardless of a presence or absence of motion by the other of the roller assembly and the roller support.
Description
- Robotic interventional systems and devices are well suited for performing minimally invasive medical procedures as opposed to conventional techniques wherein the patient's body cavity is open to permit the surgeon's hands access to internal organs. However, advances in technology have led to significant changes in the field of medical surgery such that less invasive surgical procedures, in particular, minimally invasive surgery (MIS), are increasingly popular.
- MIS is generally defined as surgery that is performed by entering the body through the skin, a body cavity, or an anatomical opening utilizing small incisions rather than large, open incisions in the body. With MIS, it is possible to achieve less operative trauma for the patient, reduced hospitalization time, less pain and scarring, reduced incidence of complications related to surgical trauma, lower costs, and a speedier recovery.
- Special medical equipment may be used to perform MIS procedures. Typically, a surgeon inserts small tubes or ports into a patient and uses endoscopes or laparoscopes having a fiber optic camera, light source, or miniaturized surgical instruments. Without a traditional large and invasive incision, the surgeon is not able to see directly into the patient. Thus, the video camera serves as the surgeon's eyes. The images of the interior of the body are transmitted to an external video monitor to allow a surgeon to analyze the images, make a diagnosis, visually identify internal features, and perform surgical procedures based on the images presented on the monitor.
- MIS devices and techniques have advanced to the point where an insertion and rolling motion of components of an elongated component such as a catheter instrument, e.g., a catheter sheath and associated guidewire, are generally controllable by selectively operating rollers or other mechanisms for generally gripping the component. Some known mechanisms use gripping devices capable of infinite motion for translation, e.g., a roller, may require complex catheter component loading procedures, or may not be compatible with replaceable components adapted for a sterile operating environment.
- Accordingly, there is a need in the art for systems and methods for inserting and rolling catheter components that address or solve the above problems.
- An exemplary drive apparatus is disclosed having a roller assembly configured to impart axial motion to the elongate member along a first continuous surface configured to maintain contact with the elongate member during axial motion. The drive apparatus may further include a roller support configured to rotate the roller assembly, thereby imparting rotational motion to the elongate member. The roller support may be configured to rotate the roller assembly about a second continuous surface configured to maintain contact with the roller support during rotational motion. Moreover, the roller assembly and roller support may be configured to impart axial and rotational motion independently of one another, such that a first one of the roller assembly and the roller support imparts their associated motion regardless of a presence or absence of motion by the other of the roller assembly and the roller support.
- While the claims are not limited to the illustrated embodiments, an appreciation of various aspects is best gained through a discussion of various examples thereof. Referring now to the drawings, illustrative embodiments are shown in detail. Although the drawings represent the embodiments, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain an innovative aspect of an embodiment. Further, the embodiments described herein are not intended to be exhaustive or otherwise limiting or restricting to the precise form and configuration shown in the drawings and disclosed in the following detailed description. Exemplary embodiments of the present invention are described in detail by referring to the drawings as follows.
-
FIG. 1 is an illustration of a robotically controlled surgical system, according to one exemplary illustration; -
FIG. 2 is an illustration of an exemplary catheter assembly of the surgical system ofFIG. 1 ; -
FIG. 3 is another exemplary illustration of an exemplary catheter assembly of the surgical system ofFIG. 1 ; -
FIG. 4 is a rear perspective view of an exemplary drive apparatus for an elongated member, e.g., a guidewire for a catheter; -
FIG. 5 is a front perspective view of the exemplary drive apparatus ofFIG. 4 ; -
FIG. 6 is a rear perspective view of the exemplary drive apparatus ofFIG. 4 , with a support plate removed; -
FIG. 7 is a rear perspective view of a disposable device for the exemplary drive apparatus ofFIG. 4 , with the disposable device in an open position; -
FIG. 8 is a rear perspective view of the split clamp assembly ofFIG. 7 , with the disposable device in a closed position; -
FIG. 9 is a front perspective view of the disposable device ofFIG. 7 , with the disposable device in an open position and shown without a split housing; -
FIG. 10 is a rear perspective view of a drive mechanism for the exemplary drive apparatus ofFIG. 4 ; -
FIG. 11 is a section view of the exemplary drive mechanism taken through line 11-11 inFIG. 10 ; -
FIG. 12A is a perspective view of another roller assembly with an elongated member, according to an exemplary illustration; and -
FIG. 12B is a front perspective view of the exemplary roller assembly ofFIG. 12A . - Referring now to the drawings, illustrative embodiments are shown in detail. Although the drawings represent the embodiments, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain an innovative aspect of an embodiment. Further, the embodiments described herein are not intended to be exhaustive or otherwise limit or restrict the invention to the precise form and configuration shown in the drawings and disclosed in the following detailed description.
- Referring to
FIG. 1 , a robotically controlledsurgical system 100 is illustrated in which an apparatus, a system, and/or method may be implemented according to various exemplary illustrations.System 100 may include arobotic catheter assembly 102 having a robotic or first or outer steerable complement, otherwise referred to as a sheath instrument 104 (generally referred to as “sheath” or “sheath instrument”) and/or a second or inner steerable component, otherwise referred to as a robotic catheter or guide or catheter instrument 106 (generally referred to as “catheter” or “catheter instrument”).Catheter assembly 102 is controllable using a robotic instrument driver 108 (generally referred to as “instrument driver”). During use, a patient is positioned on an operating table or surgical bed 110 (generally referred to as “operating table”) to whichrobotic instrument driver 108 may be coupled or mounted. In the illustrated example,system 100 includes anoperator workstation 112, anelectronics rack 114 and associated bedside electronics box (not shown), a setupjoint mounting brace 116, andinstrument driver 108. A surgeon is seated atoperator workstation 112 and can monitor the surgical procedure, patient vitals, and control one or more catheter devices.Operator workstation 112 may include a computer monitor to display a three dimensional object, such as a catheter instrument or component thereof, e.g., a guidewire, catheter sheath. Moreover, catheter instrument 502 may be displayed within or relative to a three dimensional space, such as a body cavity or organ, e.g., a chamber of a patient's heart. In one example, an operator uses a computer mouse to move a control point around the display to control the position of catheter instrument. - System components may be coupled together via a plurality of cables or other
suitable connectors 118 to provide for data communication, or one or more components may be equipped with wireless communication components to reduce or eliminatecables 118. Communication between components may also be implemented over a network or over the interne. In this manner, a surgeon or other operator may control a surgical instrument while being located away from or remotely from radiation sources, thereby decreasing radiation exposure. Because of the option for wireless or networked operation, the surgeon may even be located remotely from the patient in a different room or building. - Referring now to
FIG. 2 , anexemplary instrument assembly 200 is shown, includingsheath instrument 104 and the associated guide orcatheter instrument 106 mounted tomounting plates instrument driver 108. During use,catheter instrument 106 is inserted within a central lumen ofsheath instrument 104 such thatinstruments instruments instrument instrument driver 108 are controlled such that carriages coupled to each of theinstruments 104, 160 may allow theinstruments driver 108, e.g., with mounting plates securing the instruments to thedriver 108 on bearings. As a result, acatheter 300 coupled to guidecatheter instrument 106 andsheath instrument 104 can be controllably manipulated while inserted into the patient, as will be further illustrated.Additional instrument driver 108 motors (not shown inFIG. 2 ) may be activated to control bending of the catheter as well as the orientation of the distal tips thereof, including tools mounted at the distal tip.Sheath catheter instrument 106 is configured to move forward and backward for effecting an axial motion of the catheter, e.g., to insert and withdraw the catheter from a patient, respectively. - Referring now to
FIG. 3 , anotherexemplary instrument 109 is illustrated mounted ontheexemplary instrument driver 108. Theinstrument 109 includes acover 111 and adrive apparatus 400 partially extending out of the cover, as will be described further in regard toFIGS. 4-11 . More specifically, as will be described further, thedrive apparatus 400 may include adisposable portion 402 which extends out of thehousing 111, while an associated drive mechanism (not seen inFIG. 3 ) remains within thehousing 111. Accordingly, the drive mechanism (not shown inFIG. 3 ) may generally be reused for surgical procedures, while thedisposable portion 402 may part of a sterile environment associated with a surgical procedure and may be disposed of afterwards. Moreover, as will be described further below thedisposable portion 402 may be formed of relatively cost-effective materials and may be of a generally small relative size, minimizing a length of the elongate member that must be allowed for thedrive mechanism 400 to properly “grip” the elongate member, and increasing cost-effectiveness of thesystem 100 overall. - During use the
instrument 109 may be used to manipulate an elongate member included in thecatheter assembly 102, e.g., a catheter guidewire (not shown inFIG. 3 ). Alternatively, theinstrument 109 may be employed to manipulate a catheter sheath (not shown inFIG. 3 ). Although asingle instrument 109 is illustrated inFIG. 3 , in another exemplary illustration twoinstruments 109 may be employed in which afirst instrument 109 is used to insert and roll a guidewire, which guidewire is inserted within a central lumen of a second instrument 109 (not shown inFIG. 3 ) such that the twoinstruments 109 are arranged in a coaxial manner, substantially as described above regarding theinstruments instruments 109 may generally insert and rotate the associated elongate member, i.e., the guidewire and catheter sheath, independently, as described above regarding theinstruments instrument 109 may be used for insertion and rotation of any elongate member that is convenient. - Turning now to
FIGS. 4-11 ,exemplary drive apparatus 400 is illustrated in further detail. As noted above, thedrive apparatus 400 may include adisposable mechanism 402 for contacting and driving an elongate member, e.g., a guidewire or catheter. An associateddrive mechanism 404 may generally be configured to be kept separate from thedisposable mechanism 402, at least to an extent allowing thedrive mechanism 404 to be kept out of a sterile environment associated with the elongate member and surgical procedure. As best seen inFIGS. 4-6 , thedisposable mechanism 402 may be supported between twoidle rollers roller 425 which is configured to rotate thedisposable mechanism 402 to impart rotational motion to the elongate member, as will be described further below. Moreover, theidle roller 421 may include adriving gear 422 for selectively imparting axial motion, i.e., insertion or retraction, of an elongate member, as will also be further described below. - The
disposable portion 402 may include a roller assembly, e.g., comprising one or more rollers 483 that are configured to impart axial motion to the elongate member along a first continuous surface. For example, as best seen inFIG. 9 , aroller 483 a and asecond roller 483 b each define generallycylindrical surfaces drive apparatus 400 may further include a roller support configured to rotate the roller assembly, i.e., at least one of the rollers 483, thereby imparting rotational motion to the elongate member. For example, as will be described further below, the rollers 483 may generally be supported within theclamps saddle 474 or by theclamps - Turning now to
FIG. 7 , thedisposable drive mechanism 402 may include aleft clamp 401 and aright clamp 403, as best seen inFIG. 7 . The left andright clamps compliant member 482 configured to maintain the left andright clamps FIG. 7 . More specifically, in the open position the left andright clamps clamps compliant member 482 includes first andsecond memory wires FIG. 7 . Thememory wires rollers clamps FIG. 9 . - Referring now to
FIG. 9 , thedisposable mechanism 402 is illustrated with the left andright clamps 401, 403 (not shown inFIG. 9 ) removed. Thedisposable drive mechanism 402 includes a roller assembly, e.g., having one ormore rollers FIG. 9 , tworollers FIG. 9 ) therebetween. More specifically, the rollers 483 may each rotate about correspondingspindles rollers teeth rollers rollers continuous surfaces rollers rollers drive apparatus 400, allowing thedrive apparatus 400 to provide an axial movement in either direction of any magnitude while maintaining constant contact with the elongate member, i.e., by way of the generally looped orcontinuous surfaces rollers - The roller assembly may be supported in a roller support configured to rotate the rollers about an axis perpendicular to the spindles 484 of the rollers 483. For example, the
spindle 484 a of theroller 483 a may be supported in asaddle 474 that is engaged with an interior surface of one of theclamps 401, 403 (not shown inFIG. 9 ) by way of a plurality ofsprings 473. Radially inward movement of thesaddle 474 away from the interior surface may be limited by stop pins 475, which may engage an interior side of thesaddle 474 to generally limit radially inward movement of thesaddle 474 and theroller 483 a, thereby limiting force applied by theroller 483 a to the elongate member when the elongate member is positioned between therollers spindle 484 b of theother roller 483 b may be supported in the corresponding one of theclamps 401, 403 (not shown inFIG. 9 ). Accordingly, thespindle 484 b may be generally fixed within theclamps spindle 484 a may be movable by way of thesprings 473 to provide a clamping force upon the elongate member. - The
disposable device 402 may further comprisegear halves toothed surface 489 engaging a drive pinion 477 (seeFIGS. 7 and 8 ). Thedrive pinion 477 may be engaged with aworm gear 479 by way ofworm 480, wherein theworm 480 is fixed for rotation with thedrive pinion 477. Alocation shaft 481 may be provided to assist with locating the above components within theclamps compliant element 482 may be provided which generally provides a spring force urging theclamps FIG. 7 . - The
driving mechanism 404, as best seen inFIGS. 10 and 11 , may include afront plate 451 having achannel 490 through which an elongate member may be received during operation. The driving mechanism may further include a right idle rollrotational assembly 452 which corresponds to right idle roller 423 (seeFIGS. 4-6 ). Additionally, alever 453 is located on thefront plate 451 by way of apivot shaft 460, about which thelever 453 may be pivoted by way of a threadedmember 454, which may be a driving screw. Thedriving mechanism 404 may include drivingshafts instrument driver 108 supporting the instrument 109 (seeFIG. 3 ). A driving rollrotational assembly 457 supportsbevel gears shaft 456 to driving roller 425 (seeFIGS. 4 and 5 ). A leftidle roll bushing 461 and drivinggear bushing 463 may be supported in ahousing 462 mounted to thesupport plate 451, as will be described further below. - The
drive apparatus 400 may generally integrate a plurality of actuating mechanisms together. Thedrive apparatus 400 may include a mechanism for opening and closing to facilitate loading and unloading of an elongate member, e.g., a guidewire or a catheter. As will be described further below, theclamps drive apparatus 400. The drive apparatus may also include a mechanism for inserting and retracting the elongate member, i.e., in an axial direction. Moreover, thedrive apparatus 400 also includes a mechanism for imparting rotational motion to the elongate member. Additionally, as will be described further below, thedrive apparatus 400 may provide axial motion and rotational motion simultaneously, and in an “infinite” manner. More specifically, as will be seen below the insertion and rotational motion is provided by continuous drive surfaces, e.g., the generally round or looped roller surfaces 485 a, 485 b and the toothed gear engagement between thedrive pinion 477 andgear halves drive apparatus 400 or components thereof. Moreover, the rotational and axial motion may be provided independent of the other, i.e., one of or both of the rotational and axial motion may be applied to the elongate member at any given time. - Referring now to
FIGS. 6 and 7 , the use and operation of thedrive apparatus 400 will be described in further detail. Initially thedrive apparatus 400 may be in the open position, i.e., where thedisposable portion 402 defines a gap G between theclamps FIG. 7 . While thedisposable portion 402 is in the open position, the elongate member, e.g., a guidewire or catheter (not shown inFIG. 6 or 7), may be placed between therollers compliant members 482. Anend portion 425 a of driving roller 425 (seeFIG. 6 ), may be located in the drivingroll assembly 457 and can be moved up and down by rotation of thelever 453, which rotates about thepivot shaft 460, as best seen inFIG. 7 . Thelever 453 may be actuated by threadedmember 454. Accordingly, the drivingroller 425 may selectively open and close thedisposable portion 402. More specifically, when the drivingroller 425 is in an upper position as defined by the pivoting of thelever 453, thedisposable portion 402 will be closed, as seen inFIG. 8 . When the drivingroller 425 is moved downward to a lower position, the drivingroller 425 generally allows thecompliant element 482 to urge theclamps FIG. 7 . Upon movement of the drivingroller 425 upward, thedisposable portion 402 is forced to close. For example, an engagement portion 425 b of the drivingroller 425 may come into contact with one or bothclamps clamps FIG. 8 . - Upon closure of the
disposable portion 402, the elongate member may be held between therollers springs 473, as best seen inFIG. 9 . More specifically, the springs 483 may generally act upon an inner surface of one of theclamps 401, 403 (not shown inFIG. 9 ), urging theroller 483 a which is supported in thesaddle 474 toward theother roller 483 b. Accordingly, a desired force of therollers springs 473. - Turning now to
FIGS. 6 and 10 , a rotational motion imparted by thedrive apparatus 400 to an elongate member will be described in further detail. Theroller 425 may be rotated via theshaft 456, e.g., thoughbevel gears FIG. 10 . Rotation of the drivingroller 425 in turn rotates thedisposable portion 402 via friction between the engagement portion 425 b of theroller 425 and anouter surface 402 a of thedisposable portion 402, as best seen inFIG. 6 . Motion may be imparted to the disposable portion via other mechanisms as well. Merely as an example, motion may be transferred from theroller 425 to thedisposable portion 402 with a using corresponding toothed surfaces on theroller 425 and thedisposable portion 402, similar to a geared arrangement. - Turning now to
FIGS. 9-11 , the axial motion of thedrive apparatus 400 is described in further detail.FIG. 11 illustrates a cross section of the holders for leftidle roller 423 and driving gear 422 (seeFIG. 3 ). More specifically, leftidle roll 423 is located by bushing 461 and drivinggear 422 is located by bushing 463. Thebushing 463 may have a driving mechanism (not shown) for selectively rotating thedriving gear 422. Rotation of the driving gear 422 (seeFIG. 3 ), which is engaged with an outer toothed surface of gear halves426 a, 426 b, will thereby rotate the gear halves 426 a, 426 b. The gear halves 426 a, 426 b when in the closed position (i.e., as inFIG. 8 ) may form a gear that rotates in response to the driving gear 422 (seeFIG. 6 ). The gear halves 426 a, 426 b inturnactuates gear 477 as best seen inFIGS. 7 and 8 . Thegear 477 is located on theworm 480, as illustrated inFIG. 9 . Rotation of theworm 480 in turn drivesworm gear 479. Theworm gear 479 actuates one of therollers 483 b. Theother roller 483 a rotates in response to theroller 483 b, as they are connected with the corresponding gears478 a, 478 b. The surfaces485 a, 485 b of therollers rollers - To enact simultaneous axial and rotational motion of the elongate member, shaft 456 (see
FIG. 10 ) and drive gear 422 (seeFIG. 6 ) may be driven simultaneously. Moreover, theinstrument 109 may include interfaces for theshaft 456 and drivegear 422 that allow for selective rotation of each, facilitating independent axial and rotational motion. Rotational speeds of the components of thedrive apparatus 400 can be optimized as needed to suit any given application, e.g., by altering the interfaces between the various rotational parts, e.g., by adjusting the geared arrangements to ensure reasonable rotational speeds of the components based upon typical axial and rotational movement for the given application. - Turning now to
FIGS. 12A and 12B , another set ofexemplary rollers elongate member 999, e.g., a guidewire. Therollers continuous surfaces spindles rollers rollers upper teeth lower teeth 789 a, 798 b. Theupper teeth 799 a of theroller 783 a may generally mesh with theupper teeth 799 b of theroller 783 b, and thelower teeth 798 a of theroller 783 a may generally mesh with thelower teeth 798 b of theroller 783 b, thereby generally preventing an elongate member received between therollers rollers guidewire 999. For example, at least one of therollers roller 483 a, which allows enough lateral displacement of theroller rollers -
Operator workstation 112, electronics rack 114 and/or driveapparatus 400 may include a computer or a computer readable storage medium implementing the operation of drive and implementing the various methods and processes described herein, e.g., process 1300. In general, computing systems and/or devices, such as the processor and the user input device, may employ any of a number of computer operating systems, including, but by no means limited to, versions and/or varieties of the Microsoft Windows® operating system, the Unix operating system (e.g., the Solaris® operating system distributed by Oracle Corporation of Redwood Shores, Calif.), the AIX UNIX operating system distributed by International Business Machines of Armonk, N.Y., the Linux operating system, the Mac OS X and iOS operating systems distributed by Apple Inc. of Cupertino, Calif., and the Android operating system developed by the Open Handset Alliance. - Computing devices generally include computer-executable instructions, where the instructions may be executable by one or more computing devices such as those listed above. Computer-executable instructions may be compiled or interpreted from computer programs created using a variety of programming languages and/or technologies, including, without limitation, and either alone or in combination, Java™, C, C++, Visual Basic, Java Script, Perl, etc. In general, a processor (e.g., a microprocessor) receives instructions, e.g., from a memory, a computer-readable medium, etc., and executes these instructions, thereby performing one or more processes, including one or more of the processes described herein. Such instructions and other data may be stored and transmitted using a variety of computer-readable media.
- A computer-readable medium (also referred to as a processor-readable medium) includes any non-transitory (e.g., tangible) medium that participates in providing data (e.g., instructions) that may be read by a computer (e.g., by a processor of a computer). Such a medium may take many forms, including, but not limited to, non-volatile media and volatile media. Non-volatile media may include, for example, optical or magnetic disks and other persistent memory. Volatile media may include, for example, dynamic random access memory (DRAM), which typically constitutes a main memory. Such instructions may be transmitted by one or more transmission media, including coaxial cables, copper wire and fiber optics, including the wires that comprise a system bus coupled to a processor of a computer. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EEPROM, any other memory chip or cartridge, or any other medium from which a computer can read.
- Databases, data repositories or other data stores described herein may include various kinds of mechanisms for storing, accessing, and retrieving various kinds of data, including a hierarchical database, a set of files in a file system, an application database in a proprietary format, a relational database management system (RDBMS), etc. Each such data store is generally included within a computing device employing a computer operating system such as one of those mentioned above, and are accessed via a network in any one or more of a variety of manners. A file system may be accessible from a computer operating system, and may include files stored in various formats. An RDBMS generally employs the Structured Query Language (SQL) in addition to a language for creating, storing, editing, and executing stored procedures, such as the PL/SQL language mentioned above.
- In some examples, system elements may be implemented as computer-readable instructions (e.g., software) on one or more computing devices (e.g., servers, personal computers, etc.), stored on computer readable media associated therewith (e.g., disks, memories, etc.). A computer program product may comprise such instructions stored on computer readable media for carrying out the functions described herein.
- The
drive apparatus 400 may advantageously use disposable materials in the construction of thedisposable mechanism 402, e.g., an injection molded plastic material. Additionally, the disposable mechanism is relatively short in an axial direction associated with the elongate member, minimizing wasted length, i.e., the portion of the elongate member that must be gripped or held by thedrive apparatus 400 during operation. The minimal length of thedrive apparatus 400 may generally be due in part to the containment of the driving mechanisms of thedisposable portion 402 within theclamps rollers drive pinion 477 andgear halves drive apparatus mechanism 400 provides generally “infinite” motion due to the looped or round surfaces of therollers drive pinion 477 andgear halves drive apparatus 400. Finally, the split clamps 401, 403 of the disposable portion allows for top loading of the elongate member, such that the elongate member need not be threaded through the drive mechanism during installation of the elongate member. - The exemplary illustrations are not limited to the previously described examples. Rather, a plurality of variants and modifications are possible, which also make use of the ideas of the exemplary illustrations and therefore fall within the protective scope. Accordingly, it is to be understood that the above description is intended to be illustrative and not restrictive.
- With regard to the processes, systems, methods, heuristics, etc. described herein, it should be understood that, although the steps of such processes, etc. have been described as occurring according to a certain ordered sequence, such processes could be practiced with the described steps performed in an order other than the order described herein. It further should be understood that certain steps could be performed simultaneously, that other steps could be added, or that certain steps described herein could be omitted. In other words, the descriptions of processes herein are provided for the purpose of illustrating certain embodiments, and should in no way be construed so as to limit the claimed invention.
- Accordingly, it is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments and applications other than the examples provided would be upon reading the above description. The scope of the invention should be determined, not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. It is anticipated and intended that future developments will occur in the arts discussed herein, and that the disclosed systems and methods will be incorporated into such future embodiments. In sum, it should be understood that the invention is capable of modification and variation and is limited only by the following claims.
- All terms used in the claims are intended to be given their broadest reasonable constructions and their ordinary meanings as understood by those skilled in the art unless an explicit indication to the contrary in made herein. In particular, use of the singular articles such as “a,” “the,” “the,” etc. should be read to recite one or more of the indicated elements unless a claim recites an explicit limitation to the contrary.
Claims (20)
1. A drive apparatus for an elongated member, comprising:
a roller assembly configured to impart axial motion to the elongate member; and
a roller support configured to rotate the roller assembly, thereby imparting rotational motion to the elongate member;
wherein the roller assembly and roller support are configured to impart axial and rotational motion independently of one another, such that a first one of the roller assembly and the roller support imparts their associated motion regardless of a presence or absence of motion by the other of the roller assembly and the roller support.
2. The drive apparatus of claim 1 , further comprising a first continuous surface defined by a generally cylindrical roller included in the roller assembly.
3. The drive apparatus of claim 2 , wherein the roller support is configured to rotate about a second generally continuous surface.
4. The drive apparatus of claim 1 wherein the roller assembly is configured to maintain continuous grip of the elongate member in the axial and rotational direction.
5. The drive apparatus of claim 1 , further comprising a pair of clamps selectively surrounding the roller assembly and the roller support.
6. The drive apparatus of claim 5 , wherein the clamps selectively open to define a gap along an upper portion of the drive apparatus, allowing the elongate member to be received through the gap and within the rollers in a direction parallel to an axis of rotation of the rollers.
7. The drive apparatus of claim 5 , further comprising a driving roller supported in a support plate defining a channel configured to receive the elongated member when the elongated member is disposed in the roller assembly, the driving roller configured to rotate the clamps.
8. The drive apparatus of claim 5 , further comprising a saddle supporting the roller assembly within a housing defined by the pair of clamps.
9. The drive apparatus of claim 1 , wherein the roller assembly includes a pair of opposing rollers.
10. The drive apparatus of claim 9 , wherein the opposing rollers are engaged via a plurality of mating teeth, thereby coordinating a turning of the opposing rollers.
11. The drive apparatus of claim 5 , further comprising a drive pinion engaged with an inner toothed surface.
12. The drive apparatus of claim 11 , wherein the drive pinion is configured to rotate the first continuous surface about a spindle.
13. The drive apparatus of claim 1 , further comprising a drive mechanism and a disposable portion including the roller assembly and the roller support.
14. The drive apparatus of claim 13 , wherein the drive mechanism defines at least a portion of a sterile barrier with respect to the disposable portion.
15. A drive apparatus for an elongated member, comprising:
a roller assembly configured to impart axial motion to the elongate member along a first continuous surface configured to maintain contact with the elongate member during axial motion;
a roller support configured to rotate the roller assembly, thereby imparting rotational motion to the elongate member, the roller support configured to rotate the roller assembly about a second continuous surface configured to maintain contact with the roller support during rotational motion; and
a pair of clamps selectively surrounding the roller assembly and the roller support;
wherein the roller assembly and roller support are configured to impart axial and rotational motion independently of one another, such that a first one of the roller assembly and the roller support imparts their associated motion regardless of a presence or absence of motion by the other of the roller assembly and the roller support.
16. The drive apparatus of claim 15 , wherein the first continuous surface is defined by a generally cylindrical roller included in the roller assembly.
17. The drive apparatus of claim 15 , wherein the clamps selectively open to define a gap along an upper portion of the drive apparatus, allowing the elongate member to be received through the gap and within the rollers in a direction parallel to an axis of rotation of the rollers.
18. The drive apparatus of claim 15 , further comprising a drive pinion engaged with an inner toothed surface.
19. The drive apparatus of claim 18 , wherein the drive pinion is configured to rotate the first continuous surface about a spindle.
20. The drive apparatus of claim 15 , further comprising a drive mechanism and a disposable portion including the roller assembly and the roller support, wherein the drive mechanism defines at least a portion of a sterile barrier with respect to the disposable portion.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/835,136 US20140276936A1 (en) | 2013-03-15 | 2013-03-15 | Active drive mechanism for simultaneous rotation and translation |
EP14160068.4A EP2777594B1 (en) | 2013-03-15 | 2014-03-14 | Active drive mechanism for simultaneous rotation and translation |
US15/359,886 US10524867B2 (en) | 2013-03-15 | 2016-11-23 | Active drive mechanism for simultaneous rotation and translation |
US16/669,268 US11504195B2 (en) | 2013-03-15 | 2019-10-30 | Active drive mechanism for simultaneous rotation and translation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/835,136 US20140276936A1 (en) | 2013-03-15 | 2013-03-15 | Active drive mechanism for simultaneous rotation and translation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/359,886 Continuation US10524867B2 (en) | 2013-03-15 | 2016-11-23 | Active drive mechanism for simultaneous rotation and translation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140276936A1 true US20140276936A1 (en) | 2014-09-18 |
Family
ID=50277107
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/835,136 Abandoned US20140276936A1 (en) | 2013-03-15 | 2013-03-15 | Active drive mechanism for simultaneous rotation and translation |
US15/359,886 Active 2034-04-02 US10524867B2 (en) | 2013-03-15 | 2016-11-23 | Active drive mechanism for simultaneous rotation and translation |
US16/669,268 Active 2034-08-03 US11504195B2 (en) | 2013-03-15 | 2019-10-30 | Active drive mechanism for simultaneous rotation and translation |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/359,886 Active 2034-04-02 US10524867B2 (en) | 2013-03-15 | 2016-11-23 | Active drive mechanism for simultaneous rotation and translation |
US16/669,268 Active 2034-08-03 US11504195B2 (en) | 2013-03-15 | 2019-10-30 | Active drive mechanism for simultaneous rotation and translation |
Country Status (2)
Country | Link |
---|---|
US (3) | US20140276936A1 (en) |
EP (1) | EP2777594B1 (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9326822B2 (en) | 2013-03-14 | 2016-05-03 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
US9408669B2 (en) | 2013-03-15 | 2016-08-09 | Hansen Medical, Inc. | Active drive mechanism with finite range of motion |
US10046140B2 (en) * | 2014-04-21 | 2018-08-14 | Hansen Medical, Inc. | Devices, systems, and methods for controlling active drive systems |
US10213264B2 (en) | 2013-03-14 | 2019-02-26 | Auris Health, Inc. | Catheter tension sensing |
US10219874B2 (en) | 2013-10-24 | 2019-03-05 | Auris Health, Inc. | Instrument device manipulator with tension sensing apparatus |
US10363103B2 (en) | 2009-04-29 | 2019-07-30 | Auris Health, Inc. | Flexible and steerable elongate instruments with shape control and support elements |
US10376672B2 (en) | 2013-03-15 | 2019-08-13 | Auris Health, Inc. | Catheter insertion system and method of fabrication |
US10398518B2 (en) | 2014-07-01 | 2019-09-03 | Auris Health, Inc. | Articulating flexible endoscopic tool with roll capabilities |
US10454347B2 (en) | 2016-04-29 | 2019-10-22 | Auris Health, Inc. | Compact height torque sensing articulation axis assembly |
US10463439B2 (en) | 2016-08-26 | 2019-11-05 | Auris Health, Inc. | Steerable catheter with shaft load distributions |
US10470830B2 (en) | 2017-12-11 | 2019-11-12 | Auris Health, Inc. | Systems and methods for instrument based insertion architectures |
US10478595B2 (en) | 2013-03-07 | 2019-11-19 | Auris Health, Inc. | Infinitely rotatable tool with finite rotating drive shafts |
US10493239B2 (en) | 2013-03-14 | 2019-12-03 | Auris Health, Inc. | Torque-based catheter articulation |
US10499999B2 (en) | 2014-10-09 | 2019-12-10 | Auris Health, Inc. | Systems and methods for aligning an elongate member with an access site |
US10524867B2 (en) | 2013-03-15 | 2020-01-07 | Auris Health, Inc. | Active drive mechanism for simultaneous rotation and translation |
US10543048B2 (en) | 2016-12-28 | 2020-01-28 | Auris Health, Inc. | Flexible instrument insertion using an adaptive insertion force threshold |
US10543047B2 (en) | 2013-03-15 | 2020-01-28 | Auris Health, Inc. | Remote catheter manipulator |
US10556092B2 (en) | 2013-03-14 | 2020-02-11 | Auris Health, Inc. | Active drives for robotic catheter manipulators |
US10569052B2 (en) | 2014-05-15 | 2020-02-25 | Auris Health, Inc. | Anti-buckling mechanisms for catheters |
US10631949B2 (en) | 2015-09-09 | 2020-04-28 | Auris Health, Inc. | Instrument device manipulator with back-mounted tool attachment mechanism |
US10667720B2 (en) | 2011-07-29 | 2020-06-02 | Auris Health, Inc. | Apparatus and methods for fiber integration and registration |
US10682189B2 (en) | 2016-08-31 | 2020-06-16 | Auris Health, Inc. | Length conservative surgical instrument |
US10695536B2 (en) | 2001-02-15 | 2020-06-30 | Auris Health, Inc. | Catheter driver system |
US10820954B2 (en) | 2018-06-27 | 2020-11-03 | Auris Health, Inc. | Alignment and attachment systems for medical instruments |
US10820947B2 (en) | 2018-09-28 | 2020-11-03 | Auris Health, Inc. | Devices, systems, and methods for manually and robotically driving medical instruments |
US10820952B2 (en) | 2013-03-15 | 2020-11-03 | Auris Heath, Inc. | Rotational support for an elongate member |
US10849702B2 (en) | 2013-03-15 | 2020-12-01 | Auris Health, Inc. | User input devices for controlling manipulation of guidewires and catheters |
US10888386B2 (en) | 2018-01-17 | 2021-01-12 | Auris Health, Inc. | Surgical robotics systems with improved robotic arms |
US11026758B2 (en) | 2017-06-28 | 2021-06-08 | Auris Health, Inc. | Medical robotics systems implementing axis constraints during actuation of one or more motorized joints |
US11147950B2 (en) | 2016-01-07 | 2021-10-19 | Robocath | Robotizable module for driving an elongated flexible medical member, medical robot and system including such a module |
US11147637B2 (en) | 2012-05-25 | 2021-10-19 | Auris Health, Inc. | Low friction instrument driver interface for robotic systems |
US11213363B2 (en) | 2013-03-14 | 2022-01-04 | Auris Health, Inc. | Catheter tension sensing |
US11241559B2 (en) | 2016-08-29 | 2022-02-08 | Auris Health, Inc. | Active drive for guidewire manipulation |
US11382650B2 (en) | 2015-10-30 | 2022-07-12 | Auris Health, Inc. | Object capture with a basket |
US11406461B2 (en) * | 2015-06-23 | 2022-08-09 | Stryker Corporation | Delivery system and method for delivering material to a target site during a medical procedure |
US11439419B2 (en) | 2019-12-31 | 2022-09-13 | Auris Health, Inc. | Advanced basket drive mode |
US11510736B2 (en) | 2017-12-14 | 2022-11-29 | Auris Health, Inc. | System and method for estimating instrument location |
US11534249B2 (en) | 2015-10-30 | 2022-12-27 | Auris Health, Inc. | Process for percutaneous operations |
US11571229B2 (en) | 2015-10-30 | 2023-02-07 | Auris Health, Inc. | Basket apparatus |
US11638618B2 (en) | 2019-03-22 | 2023-05-02 | Auris Health, Inc. | Systems and methods for aligning inputs on medical instruments |
US11737845B2 (en) | 2019-09-30 | 2023-08-29 | Auris Inc. | Medical instrument with a capstan |
US11771309B2 (en) | 2016-12-28 | 2023-10-03 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
US11896330B2 (en) | 2019-08-15 | 2024-02-13 | Auris Health, Inc. | Robotic medical system having multiple medical instruments |
US11950872B2 (en) | 2019-12-31 | 2024-04-09 | Auris Health, Inc. | Dynamic pulley system |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9962229B2 (en) | 2009-10-12 | 2018-05-08 | Corindus, Inc. | System and method for navigating a guide wire |
WO2016090270A1 (en) | 2014-12-05 | 2016-06-09 | Corindus, Inc. | System and method for navigating a guide wire |
EP3417901A1 (en) | 2017-06-20 | 2018-12-26 | Siemens Healthcare GmbH | Autonomous catheterization assembly |
US20200345483A1 (en) * | 2019-05-01 | 2020-11-05 | Twelve, Inc. | Support devices for transcatheter delivery system handles |
CN110353810A (en) * | 2019-07-24 | 2019-10-22 | 曾林旺 | A kind of single aperture directly drives surgical robot system manually |
JP2023503998A (en) | 2019-11-28 | 2023-02-01 | マイクロボット メディカル リミテッド | Robotic manipulation of surgical tool handles |
RU2762486C1 (en) * | 2020-10-29 | 2021-12-21 | Бэйцзин Вемед Медикал Эквипмент Ко., Лтд. | Universal waterproof disinfection box for interventional robot |
CN112245013B (en) * | 2020-11-13 | 2021-10-15 | 南京佗道医疗科技有限公司 | Quick-release mechanism, tail end execution instrument and robot |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5779623A (en) * | 1993-10-08 | 1998-07-14 | Leonard Medical, Inc. | Positioner for medical instruments |
US7615042B2 (en) * | 2004-06-03 | 2009-11-10 | Corindus Ltd. | Transmission for a remote catheterization system |
US20100130987A1 (en) * | 2008-05-06 | 2010-05-27 | Corindus Ltd. | Catheter system |
US20110130718A1 (en) * | 2009-05-25 | 2011-06-02 | Kidd Brian L | Remote Manipulator Device |
US7998020B2 (en) * | 2007-08-21 | 2011-08-16 | Stereotaxis, Inc. | Apparatus for selectively rotating and/or advancing an elongate device |
Family Cites Families (541)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2556601A (en) | 1947-02-10 | 1951-06-12 | Niles Bement Pond Co | Multiple tapping head |
US2566183A (en) | 1947-05-29 | 1951-08-28 | Skilsaw Inc | Portable power-driven tool |
US2623175A (en) | 1949-03-25 | 1952-12-23 | Radiart Corp | Reel antenna |
US2730699A (en) | 1952-02-01 | 1956-01-10 | Gen Dynamics Corp | Telemetering system |
US2884808A (en) | 1957-10-23 | 1959-05-05 | Mueller Co | Drive for drilling machine |
US3294183A (en) | 1964-09-30 | 1966-12-27 | Black & Decker Mfg Co | Power driven tools |
US3472083A (en) | 1967-10-25 | 1969-10-14 | Lawrence S Schnepel | Torque wrench |
US3513724A (en) | 1968-07-17 | 1970-05-26 | Monogram Ind Inc | Speed reduction mechanism |
US3595074A (en) | 1968-10-30 | 1971-07-27 | Clarence Johnson | Torque transducer |
JPS5025234B1 (en) * | 1970-02-20 | 1975-08-21 | ||
CA935059A (en) | 1970-02-27 | 1973-10-09 | Jewett-Ashley Holding Corp. | Catheter device |
JPS4921672Y1 (en) * | 1970-08-21 | 1974-06-10 | ||
GB1372327A (en) | 1971-10-11 | 1974-10-30 | Commissariat Energie Atomique | Articulated manipulator |
US3734207A (en) | 1971-12-27 | 1973-05-22 | M Fishbein | Battery powered orthopedic cutting tool |
US3926386A (en) | 1974-07-09 | 1975-12-16 | Us Air Force | Spool for wire deployment |
US3921536A (en) | 1975-01-30 | 1975-11-25 | Hall Ski Lift Company Inc | Cable grip tester |
DE2524605A1 (en) | 1975-06-03 | 1976-12-23 | Heinz Peter Dipl Brandstetter | DEVICE FOR MEASURING MECHANICAL WORK AND POWER |
SE414272B (en) | 1978-10-17 | 1980-07-21 | Viggo Ab | CANNEL OR CATETER DEVICE |
US4241884A (en) | 1979-03-20 | 1980-12-30 | George Lynch | Powered device for controlling the rotation of a reel |
AT365363B (en) | 1979-09-20 | 1982-01-11 | Philips Nv | RECORDING AND / OR PLAYING DEVICE |
CH643092A5 (en) | 1980-02-18 | 1984-05-15 | Gruenbaum Heinrich Leuzinger | DEVICE FOR MEASURING TORQUE EXTENDED BY AN ELECTRIC MOTOR. |
US4357843A (en) | 1980-10-31 | 1982-11-09 | Peck-O-Matic, Inc. | Tong apparatus for threadedly connecting and disconnecting elongated members |
JPS57144633A (en) | 1981-03-05 | 1982-09-07 | Inoue Japax Res Inc | Wire electrode feeder |
US4507026A (en) | 1982-09-29 | 1985-03-26 | Boeing Aerospace Company | Depth control assembly |
US4555960A (en) | 1983-03-23 | 1985-12-03 | Cae Electronics, Ltd. | Six degree of freedom hand controller |
US4688555A (en) | 1986-04-25 | 1987-08-25 | Circon Corporation | Endoscope with cable compensating mechanism |
US4945305A (en) | 1986-10-09 | 1990-07-31 | Ascension Technology Corporation | Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields |
US4784150A (en) | 1986-11-04 | 1988-11-15 | Research Corporation | Surgical retractor and blood flow monitor |
US4745908A (en) | 1987-05-08 | 1988-05-24 | Circon Corporation | Inspection instrument fexible shaft having deflection compensation means |
US4907168A (en) | 1988-01-11 | 1990-03-06 | Adolph Coors Company | Torque monitoring apparatus |
US4857058A (en) | 1988-07-11 | 1989-08-15 | Payton Hugh W | Support patch for intravenous catheter |
US4945790A (en) | 1989-08-07 | 1990-08-07 | Arthur Golden | Multi-purpose hand tool |
US5078714A (en) | 1990-03-02 | 1992-01-07 | Jefferson Katims | Method and apparatus for placement of a probe in the body and the medical procedure for guiding and locating a catheter or probe in the body |
US5086401A (en) | 1990-05-11 | 1992-02-04 | International Business Machines Corporation | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
US5350101A (en) | 1990-11-20 | 1994-09-27 | Interventional Technologies Inc. | Device for advancing a rotatable tube |
US5186793A (en) | 1990-12-31 | 1993-02-16 | Invacare Corporation | Oxygen concentrator utilizing electrochemical cell |
US5329923A (en) | 1991-02-15 | 1994-07-19 | Lundquist Ingemar H | Torquable catheter |
US5217453A (en) | 1991-03-18 | 1993-06-08 | Wilk Peter J | Automated surgical system and apparatus |
US5339799A (en) | 1991-04-23 | 1994-08-23 | Olympus Optical Co., Ltd. | Medical system for reproducing a state of contact of the treatment section in the operation unit |
US5234428A (en) | 1991-06-11 | 1993-08-10 | Kaufman David I | Disposable electrocautery/cutting instrument with integral continuous smoke evacuation |
US5279309A (en) | 1991-06-13 | 1994-01-18 | International Business Machines Corporation | Signaling device and method for monitoring positions in a surgical operation |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
JPH05146975A (en) | 1991-11-26 | 1993-06-15 | Bridgestone Corp | Multi-shaft automatic nut runner |
US5256150A (en) | 1991-12-13 | 1993-10-26 | Endovascular Technologies, Inc. | Large-diameter expandable sheath and method |
US5891095A (en) | 1993-05-10 | 1999-04-06 | Arthrocare Corporation | Electrosurgical treatment of tissue in electrically conductive fluid |
US5631973A (en) | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
US6963792B1 (en) | 1992-01-21 | 2005-11-08 | Sri International | Surgical method |
US5207128A (en) | 1992-03-23 | 1993-05-04 | Weatherford-Petco, Inc. | Tong with floating jaws |
US5709661A (en) * | 1992-04-14 | 1998-01-20 | Endo Sonics Europe B.V. | Electronic catheter displacement sensor |
US5341807A (en) | 1992-06-30 | 1994-08-30 | American Cardiac Ablation Co., Inc. | Ablation catheter positioning system |
GB2280343A (en) | 1993-07-08 | 1995-01-25 | Innovative Care Ltd | A laser targeting device for use with image intensifiers |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5657429A (en) | 1992-08-10 | 1997-08-12 | Computer Motion, Inc. | Automated endoscope system optimal positioning |
US5524180A (en) | 1992-08-10 | 1996-06-04 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US7074179B2 (en) | 1992-08-10 | 2006-07-11 | Intuitive Surgical Inc | Method and apparatus for performing minimally invasive cardiac procedures |
US5754741A (en) | 1992-08-10 | 1998-05-19 | Computer Motion, Inc. | Automated endoscope for optimal positioning |
US5662108A (en) | 1992-09-23 | 1997-09-02 | Endocardial Solutions, Inc. | Electrophysiology mapping system |
US5368564A (en) | 1992-12-23 | 1994-11-29 | Angeion Corporation | Steerable catheter |
SE9300825D0 (en) | 1993-03-12 | 1993-03-12 | Siemens Elema Ab | DEVICE FOR Saturation of electrical activity at heart |
EP0699053B1 (en) | 1993-05-14 | 1999-03-17 | Sri International | Surgical apparatus |
US5391199A (en) | 1993-07-20 | 1995-02-21 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias |
US5738096A (en) | 1993-07-20 | 1998-04-14 | Biosense, Inc. | Cardiac electromechanics |
US5398691A (en) | 1993-09-03 | 1995-03-21 | University Of Washington | Method and apparatus for three-dimensional translumenal ultrasonic imaging |
US5558091A (en) | 1993-10-06 | 1996-09-24 | Biosense, Inc. | Magnetic determination of position and orientation |
US5575810A (en) | 1993-10-15 | 1996-11-19 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
US5394875A (en) | 1993-10-21 | 1995-03-07 | Lewis; Judith T. | Automatic ultrasonic localization of targets implanted in a portion of the anatomy |
US5876325A (en) | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
JP3476878B2 (en) | 1993-11-15 | 2003-12-10 | オリンパス株式会社 | Surgical manipulator |
US5571216A (en) | 1994-01-19 | 1996-11-05 | The General Hospital Corporation | Methods and apparatus for joining collagen-containing materials |
US5447529A (en) | 1994-01-28 | 1995-09-05 | Philadelphia Heart Institute | Method of using endocardial impedance for determining electrode-tissue contact, appropriate sites for arrhythmia ablation and tissue heating during ablation |
US5598848A (en) | 1994-03-31 | 1997-02-04 | Ep Technologies, Inc. | Systems and methods for positioning multiple electrode structures in electrical contact with the myocardium |
US5600330A (en) | 1994-07-12 | 1997-02-04 | Ascension Technology Corporation | Device for measuring position and orientation using non-dipole magnet IC fields |
US5492131A (en) | 1994-09-06 | 1996-02-20 | Guided Medical Systems, Inc. | Servo-catheter |
US6154000A (en) | 1994-09-07 | 2000-11-28 | Omnitek Research & Development, Inc. | Apparatus for providing a controlled deflection and/or actuator apparatus |
US5559294A (en) | 1994-09-15 | 1996-09-24 | Condux International, Inc. | Torque measuring device |
US5836869A (en) | 1994-12-13 | 1998-11-17 | Olympus Optical Co., Ltd. | Image tracking endoscope system |
US5887121A (en) | 1995-04-21 | 1999-03-23 | International Business Machines Corporation | Method of constrained Cartesian control of robotic mechanisms with active and passive joints |
US5649956A (en) | 1995-06-07 | 1997-07-22 | Sri International | System and method for releasably holding a surgical instrument |
WO1996041654A1 (en) | 1995-06-12 | 1996-12-27 | Cordis Webster, Inc. | Catheter with an electromagnetic guidance sensor |
DE19625850B4 (en) | 1995-06-27 | 2008-01-31 | Matsushita Electric Works, Ltd., Kadoma | planetary gear |
US5784542A (en) | 1995-09-07 | 1998-07-21 | California Institute Of Technology | Decoupled six degree-of-freedom teleoperated robot system |
US5825982A (en) | 1995-09-15 | 1998-10-20 | Wright; James | Head cursor control interface for an automated endoscope system for optimal positioning |
US5722959A (en) | 1995-10-24 | 1998-03-03 | Venetec International, Inc. | Catheter securement device |
US5697377A (en) | 1995-11-22 | 1997-12-16 | Medtronic, Inc. | Catheter mapping system and method |
US6363279B1 (en) | 1996-01-08 | 2002-03-26 | Impulse Dynamics N.V. | Electrical muscle controller |
US5836874A (en) | 1996-04-08 | 1998-11-17 | Ep Technologies, Inc. | Multi-function electrode structures for electrically analyzing and heating body tissue |
EP0891152B1 (en) | 1996-02-15 | 2003-11-26 | Biosense, Inc. | Independently positionable transducers for location system |
EP0932362B1 (en) | 1996-02-15 | 2005-01-26 | Biosense Webster, Inc. | Method for calibrating a probe |
US6203493B1 (en) | 1996-02-15 | 2001-03-20 | Biosense, Inc. | Attachment with one or more sensors for precise position determination of endoscopes |
US5855583A (en) | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US6063095A (en) | 1996-02-20 | 2000-05-16 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US6436107B1 (en) | 1996-02-20 | 2002-08-20 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5842390A (en) | 1996-02-28 | 1998-12-01 | Frank's Casing Crew And Rental Tools Inc. | Dual string backup tong |
US5830224A (en) | 1996-03-15 | 1998-11-03 | Beth Israel Deaconess Medical Center | Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo |
US20030073908A1 (en) | 1996-04-26 | 2003-04-17 | 2000 Injectx, Inc. | Method and apparatus for delivery of genes, enzymes and biological agents to tissue cells |
US5799055A (en) | 1996-05-15 | 1998-08-25 | Northwestern University | Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy |
IL127017A (en) | 1996-05-17 | 2003-07-06 | Biosense Inc | Self-aligning catheter |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5797900A (en) | 1996-05-20 | 1998-08-25 | Intuitive Surgical, Inc. | Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5767840A (en) | 1996-06-28 | 1998-06-16 | International Business Machines Corporation | Six-degrees-of-freedom movement sensor having strain gauge mechanical supports |
US5845646A (en) | 1996-11-05 | 1998-12-08 | Lemelson; Jerome | System and method for treating select tissue in a living being |
AU4720197A (en) | 1996-11-07 | 1998-05-29 | Tomtec Imaging Systems Gmbh | Method and apparatus for ultrasound image reconstruction |
DE19649082C1 (en) | 1996-11-27 | 1998-01-08 | Fraunhofer Ges Forschung | Remote control unit for implement with holder and two hexapods |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US6132368A (en) | 1996-12-12 | 2000-10-17 | Intuitive Surgical, Inc. | Multi-component telepresence system and method |
EP1491139B1 (en) | 1997-01-03 | 2007-08-29 | Biosense Webster, Inc. | Bend-responsive catheter |
AU735196B2 (en) | 1997-01-03 | 2001-07-05 | Biosense, Inc. | Conformal catheter |
JPH10223624A (en) | 1997-02-06 | 1998-08-21 | Nec Yamagata Ltd | Manufacture of semiconductor device |
US6380732B1 (en) | 1997-02-13 | 2002-04-30 | Super Dimension Ltd. | Six-degree of freedom tracking system having a passive transponder on the object being tracked |
AU6534098A (en) | 1997-02-20 | 1998-09-09 | Johns Hopkins University, The | Friction transmission with axial loading and a radiolucent surgical needle driver |
US6580938B1 (en) | 1997-02-25 | 2003-06-17 | Biosense, Inc. | Image-guided thoracic therapy and apparatus therefor |
DK0971636T3 (en) | 1997-04-01 | 2006-03-20 | Axel Muntermann | Apparatus for catheter-tissue contact sensing and tissue interactions with catheter ablation |
US5876373A (en) | 1997-04-04 | 1999-03-02 | Eclipse Surgical Technologies, Inc. | Steerable catheter |
DE19717108A1 (en) | 1997-04-23 | 1998-11-05 | Stm Medtech Starnberg | Inverted hose system |
US6129668A (en) | 1997-05-08 | 2000-10-10 | Lucent Medical Systems, Inc. | System and method to determine the location and orientation of an indwelling medical device |
US6061587A (en) | 1997-05-15 | 2000-05-09 | Regents Of The University Of Minnesota | Method and apparatus for use with MR imaging |
TW403051U (en) | 1997-05-29 | 2000-08-21 | Seiko Epson Corp | Recording medium of control program for printing device and recorded printing device |
US6231565B1 (en) | 1997-06-18 | 2001-05-15 | United States Surgical Corporation | Robotic arm DLUs for performing surgical tasks |
DE19730938C1 (en) | 1997-07-18 | 1999-03-11 | Tomtec Imaging Syst Gmbh | Method and device for taking ultrasound images |
DE19732125C1 (en) | 1997-07-25 | 1999-02-11 | Tomtec Imaging Syst Gmbh | Method for taking ultrasound images of moving objects |
US6200312B1 (en) | 1997-09-11 | 2001-03-13 | Vnus Medical Technologies, Inc. | Expandable vein ligator catheter having multiple electrode leads |
EP2362283B1 (en) | 1997-09-19 | 2015-11-25 | Massachusetts Institute Of Technology | Robotic apparatus |
US5836990A (en) | 1997-09-19 | 1998-11-17 | Medtronic, Inc. | Method and apparatus for determining electrode/tissue contact |
US5951475A (en) | 1997-09-25 | 1999-09-14 | International Business Machines Corporation | Methods and apparatus for registering CT-scan data to multiple fluoroscopic images |
US6086532A (en) | 1997-09-26 | 2000-07-11 | Ep Technologies, Inc. | Systems for recording use of structures deployed in association with heart tissue |
US5953683A (en) | 1997-10-09 | 1999-09-14 | Ascension Technology Corporation | Sourceless orientation sensor |
US6409674B1 (en) | 1998-09-24 | 2002-06-25 | Data Sciences International, Inc. | Implantable sensor with wireless communication |
US20020120200A1 (en) | 1997-10-14 | 2002-08-29 | Brian Brockway | Devices, systems and methods for endocardial pressure measurement |
US5921968A (en) | 1997-11-25 | 1999-07-13 | Merit Medical Systems, Inc. | Valve apparatus with adjustable quick-release mechanism |
WO1999040856A1 (en) | 1998-02-10 | 1999-08-19 | Biosense Inc. | Improved catheter calibration |
GB2334270A (en) | 1998-02-14 | 1999-08-18 | Weatherford Lamb | Apparatus for attachment to pipe handling arm |
US7214230B2 (en) | 1998-02-24 | 2007-05-08 | Hansen Medical, Inc. | Flexible instrument |
US7297142B2 (en) | 1998-02-24 | 2007-11-20 | Hansen Medical, Inc. | Interchangeable surgical instrument |
US20080177285A1 (en) | 1998-02-24 | 2008-07-24 | Hansen Medical, Inc. | Surgical instrument |
US7169141B2 (en) | 1998-02-24 | 2007-01-30 | Hansen Medical, Inc. | Surgical instrument |
IL123646A (en) | 1998-03-11 | 2010-05-31 | Refael Beyar | Remote control catheterization |
JPH11267133A (en) | 1998-03-25 | 1999-10-05 | Olympus Optical Co Ltd | Therapeutic apparatus |
DE69928783T2 (en) | 1998-03-30 | 2006-08-03 | Biosense Webster, Inc., Diamond Bar | THREE-DIMENSIONED MAGNETIC COIL SENSOR |
AU768005B2 (en) | 1998-03-31 | 2003-11-27 | Transvascular, Inc. | Tissue penetrating catheters having integral imaging transducers |
US6233504B1 (en) | 1998-04-16 | 2001-05-15 | California Institute Of Technology | Tool actuation and force feedback on robot-assisted microsurgery system |
US6004271A (en) | 1998-05-07 | 1999-12-21 | Boston Scientific Corporation | Combined motor drive and automated longitudinal position translator for ultrasonic imaging system |
US6096004A (en) | 1998-07-10 | 2000-08-01 | Mitsubishi Electric Information Technology Center America, Inc. (Ita) | Master/slave system for the manipulation of tubular medical tools |
US6375471B1 (en) | 1998-07-10 | 2002-04-23 | Mitsubishi Electric Research Laboratories, Inc. | Actuator for independent axial and rotational actuation of a catheter or similar elongated object |
US6301496B1 (en) | 1998-07-24 | 2001-10-09 | Biosense, Inc. | Vector mapping of three-dimensionally reconstructed intrabody organs and method of display |
WO2000007503A1 (en) | 1998-08-04 | 2000-02-17 | Intuitive Surgical, Inc. | Manipulator positioning linkage for robotic surgery |
DE19838140C1 (en) | 1998-08-21 | 2000-04-20 | Tomtec Imaging Syst Gmbh | Method and device for taking ultrasound images |
US20030074011A1 (en) | 1998-09-24 | 2003-04-17 | Super Dimension Ltd. | System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure |
IL126333A0 (en) | 1998-09-24 | 1999-05-09 | Super Dimension Ltd | System and method of recording and displaying in context of an image a location of at least one point-of-interest in body during an intra-body medical procedure |
US6171234B1 (en) | 1998-09-25 | 2001-01-09 | Scimed Life Systems, Inc. | Imaging gore loading tool |
US6459926B1 (en) | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US6468265B1 (en) | 1998-11-20 | 2002-10-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
US6852107B2 (en) | 2002-01-16 | 2005-02-08 | Computer Motion, Inc. | Minimally invasive surgical training using robotics and tele-collaboration |
US6659939B2 (en) | 1998-11-20 | 2003-12-09 | Intuitive Surgical, Inc. | Cooperative minimally invasive telesurgical system |
US6799065B1 (en) | 1998-12-08 | 2004-09-28 | Intuitive Surgical, Inc. | Image shifting apparatus and method for a telerobotic system |
US6309397B1 (en) | 1999-12-02 | 2001-10-30 | Sri International | Accessories for minimally invasive robotic surgery and methods |
US6493608B1 (en) | 1999-04-07 | 2002-12-10 | Intuitive Surgical, Inc. | Aspects of a control system of a minimally invasive surgical apparatus |
US6620173B2 (en) | 1998-12-08 | 2003-09-16 | Intuitive Surgical, Inc. | Method for introducing an end effector to a surgical site in minimally invasive surgery |
US6394998B1 (en) | 1999-01-22 | 2002-05-28 | Intuitive Surgical, Inc. | Surgical tools for use in minimally invasive telesurgical applications |
DE19903332C2 (en) | 1999-01-28 | 2001-06-07 | Tomtec Imaging Syst Gmbh | Method for motion compensation in ultrasound images of an object |
US6084371A (en) | 1999-02-19 | 2000-07-04 | Lockheed Martin Energy Research Corporation | Apparatus and methods for a human de-amplifier system |
CA2591678C (en) | 1999-03-07 | 2008-05-20 | Active Implants Corporation | Method and apparatus for computerized surgery |
US6289579B1 (en) | 1999-03-23 | 2001-09-18 | Motorola, Inc. | Component alignment and transfer apparatus |
US8944070B2 (en) | 1999-04-07 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Non-force reflecting method for providing tool force information to a user of a telesurgical system |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
US6424885B1 (en) | 1999-04-07 | 2002-07-23 | Intuitive Surgical, Inc. | Camera referenced control in a minimally invasive surgical apparatus |
US6565554B1 (en) | 1999-04-07 | 2003-05-20 | Intuitive Surgical, Inc. | Friction compensation in a minimally invasive surgical apparatus |
JP4657456B2 (en) | 1999-04-09 | 2011-03-23 | イバルブ・インコーポレーテッド | Method and apparatus for heart valve repair |
US7343195B2 (en) | 1999-05-18 | 2008-03-11 | Mediguide Ltd. | Method and apparatus for real time quantitative three-dimensional image reconstruction of a moving organ and intra-body navigation |
US6233476B1 (en) | 1999-05-18 | 2001-05-15 | Mediguide Ltd. | Medical positioning system |
US8442618B2 (en) | 1999-05-18 | 2013-05-14 | Mediguide Ltd. | Method and system for delivering a medical device to a selected position within a lumen |
US7951071B2 (en) | 1999-06-02 | 2011-05-31 | Tyco Healthcare Group Lp | Moisture-detecting shaft for use with an electro-mechanical surgical device |
US6626899B2 (en) | 1999-06-25 | 2003-09-30 | Nidus Medical, Llc | Apparatus and methods for treating tissue |
US6415171B1 (en) | 1999-07-16 | 2002-07-02 | International Business Machines Corporation | System and method for fusing three-dimensional shape data on distorted images without correcting for distortion |
AU7641000A (en) | 1999-08-27 | 2001-03-26 | Helmut Wollschlager | Device for handling a catheter |
US8004229B2 (en) | 2005-05-19 | 2011-08-23 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US8768516B2 (en) | 2009-06-30 | 2014-07-01 | Intuitive Surgical Operations, Inc. | Control of medical robotic system manipulator about kinematic singularities |
US6312435B1 (en) | 1999-10-08 | 2001-11-06 | Intuitive Surgical, Inc. | Surgical instrument with extended reach for use in minimally invasive surgery |
US6493573B1 (en) | 1999-10-28 | 2002-12-10 | Winchester Development Associates | Method and system for navigating a catheter probe in the presence of field-influencing objects |
US6172499B1 (en) | 1999-10-29 | 2001-01-09 | Ascension Technology Corporation | Eddy current error-reduced AC magnetic position measurement system |
US6427783B2 (en) | 2000-01-12 | 2002-08-06 | Baker Hughes Incorporated | Steerable modular drilling assembly |
WO2001051993A1 (en) | 2000-01-14 | 2001-07-19 | Advanced Micro Devices, Inc. | System, method and photomask for compensating aberrations in a photolithography patterning system |
US6615155B2 (en) | 2000-03-09 | 2003-09-02 | Super Dimension Ltd. | Object tracking using a single sensor or a pair of sensors |
US6817973B2 (en) | 2000-03-16 | 2004-11-16 | Immersion Medical, Inc. | Apparatus for controlling force for manipulation of medical instruments |
US8888688B2 (en) | 2000-04-03 | 2014-11-18 | Intuitive Surgical Operations, Inc. | Connector device for a controllable instrument |
US6610007B2 (en) | 2000-04-03 | 2003-08-26 | Neoguide Systems, Inc. | Steerable segmented endoscope and method of insertion |
US6858005B2 (en) | 2000-04-03 | 2005-02-22 | Neo Guide Systems, Inc. | Tendon-driven endoscope and methods of insertion |
US20050165276A1 (en) | 2004-01-28 | 2005-07-28 | Amir Belson | Methods and apparatus for accessing and treating regions of the body |
DE10025285A1 (en) | 2000-05-22 | 2001-12-06 | Siemens Ag | Fully automatic, robot-assisted camera guidance using position sensors for laparoscopic interventions |
US6746443B1 (en) | 2000-07-27 | 2004-06-08 | Intuitive Surgical Inc. | Roll-pitch-roll surgical tool |
US6716166B2 (en) | 2000-08-18 | 2004-04-06 | Biosense, Inc. | Three-dimensional reconstruction using ultrasound |
US6551273B1 (en) | 2000-08-23 | 2003-04-22 | Scimed Life Systems, Inc. | Catheter having a shaft keeper |
US7494494B2 (en) | 2000-08-30 | 2009-02-24 | Johns Hopkins University | Controllable motorized device for percutaneous needle placement in soft tissue target and methods and systems related thereto |
US7225012B1 (en) | 2000-09-18 | 2007-05-29 | The Johns Hopkins University | Methods and systems for image-guided surgical interventions |
US20020100254A1 (en) | 2000-10-12 | 2002-08-01 | Dsd Communications, Inc. | System and method for targeted advertising and marketing |
DE50113363D1 (en) | 2000-10-20 | 2008-01-24 | Deere & Co | operating element |
US6676557B2 (en) | 2001-01-23 | 2004-01-13 | Black & Decker Inc. | First stage clutch |
US6487940B2 (en) | 2001-01-23 | 2002-12-03 | Associated Toolmakers Incorporated | Nut driver |
DE10105822C2 (en) | 2001-02-07 | 2003-02-06 | Aesculap Ag & Co Kg | Method and device for determining the contour of a recess in a piece of material |
US8414505B1 (en) | 2001-02-15 | 2013-04-09 | Hansen Medical, Inc. | Catheter driver system |
US20030135204A1 (en) | 2001-02-15 | 2003-07-17 | Endo Via Medical, Inc. | Robotically controlled medical instrument with a flexible section |
AU2002244016A1 (en) | 2001-02-15 | 2002-10-03 | Cunningham, Robert | Flexible surgical instrument |
US7766894B2 (en) | 2001-02-15 | 2010-08-03 | Hansen Medical, Inc. | Coaxial catheter system |
US6612143B1 (en) | 2001-04-13 | 2003-09-02 | Orametrix, Inc. | Robot and method for bending orthodontic archwires and other medical devices |
US6783524B2 (en) | 2001-04-19 | 2004-08-31 | Intuitive Surgical, Inc. | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
US6533794B2 (en) | 2001-04-19 | 2003-03-18 | The Ohio State University | Simplified stereotactic apparatus and methods |
US6640412B2 (en) | 2001-04-26 | 2003-11-04 | Endovascular Technologies, Inc. | Method for loading a stent using a collapsing machine |
US7766856B2 (en) | 2001-05-06 | 2010-08-03 | Stereotaxis, Inc. | System and methods for advancing a catheter |
US7635342B2 (en) * | 2001-05-06 | 2009-12-22 | Stereotaxis, Inc. | System and methods for medical device advancement and rotation |
ES2314062T3 (en) | 2001-05-06 | 2009-03-16 | Stereotaxis, Inc. | SYSTEM TO ADVANCE A CATETER. |
US7607440B2 (en) | 2001-06-07 | 2009-10-27 | Intuitive Surgical, Inc. | Methods and apparatus for surgical planning |
US20060178556A1 (en) | 2001-06-29 | 2006-08-10 | Intuitive Surgical, Inc. | Articulate and swapable endoscope for a surgical robot |
US6817974B2 (en) | 2001-06-29 | 2004-11-16 | Intuitive Surgical, Inc. | Surgical tool having positively positionable tendon-actuated multi-disk wrist joint |
CA2351993C (en) | 2001-06-29 | 2003-02-18 | New World Technologie Inc. | Torque tool |
US20060199999A1 (en) | 2001-06-29 | 2006-09-07 | Intuitive Surgical Inc. | Cardiac tissue ablation instrument with flexible wrist |
WO2003001987A2 (en) | 2001-06-29 | 2003-01-09 | Intuitive Surgical, Inc. | Platform link wrist mechanism |
US20040243147A1 (en) | 2001-07-03 | 2004-12-02 | Lipow Kenneth I. | Surgical robot and robotic controller |
US6587750B2 (en) | 2001-09-25 | 2003-07-01 | Intuitive Surgical, Inc. | Removable infinite roll master grip handle and touch sensor for robotic surgery |
US7021173B2 (en) | 2002-02-06 | 2006-04-04 | The John Hopkins University | Remote center of motion robotic system and method |
US6741883B2 (en) | 2002-02-28 | 2004-05-25 | Houston Stereotactic Concepts, Inc. | Audible feedback from positional guidance systems |
TW200304608A (en) | 2002-03-06 | 2003-10-01 | Z Kat Inc | System and method for using a haptic device in combination with a computer-assisted surgery system |
US6774624B2 (en) | 2002-03-27 | 2004-08-10 | Ge Medical Systems Global Technology Company, Llc | Magnetic tracking system |
AU2003230845A1 (en) | 2002-04-10 | 2003-10-27 | Stereotaxis, Inc. | Systems and methods for interventional medicine |
JP2005523741A (en) | 2002-04-22 | 2005-08-11 | ザ ジョンズ ホプキンス ユニバーシティ | Device for inserting a medical instrument during a medical imaging process |
WO2003091839A2 (en) | 2002-04-25 | 2003-11-06 | The John Hopkins University | Robot for computed tomography interventions |
US6830545B2 (en) | 2002-05-13 | 2004-12-14 | Everest Vit | Tube gripper integral with controller for endoscope of borescope |
US20040176751A1 (en) | 2002-08-14 | 2004-09-09 | Endovia Medical, Inc. | Robotic medical instrument system |
US20040034365A1 (en) | 2002-08-16 | 2004-02-19 | Lentz David J. | Catheter having articulation system |
US7044936B2 (en) | 2002-08-21 | 2006-05-16 | Arrow International Inc. | Catheter connector with pivot lever spring latch |
US7331967B2 (en) | 2002-09-09 | 2008-02-19 | Hansen Medical, Inc. | Surgical instrument coupling mechanism |
US7404824B1 (en) | 2002-11-15 | 2008-07-29 | Advanced Cardiovascular Systems, Inc. | Valve aptation assist device |
EP2865351B1 (en) | 2002-12-06 | 2018-11-28 | Intuitive Surgical Operations, Inc. | Flexible wrist for surgical tool |
US7660623B2 (en) | 2003-01-30 | 2010-02-09 | Medtronic Navigation, Inc. | Six degree of freedom alignment display for medical procedures |
EP1442720A1 (en) | 2003-01-31 | 2004-08-04 | Tre Esse Progettazione Biomedica S.r.l | Apparatus for the maneuvering of flexible catheters in the human cardiovascular system |
US7246273B2 (en) | 2003-02-28 | 2007-07-17 | Sony Corporation | Method of, apparatus and graphical user interface for automatic diagnostics |
US8882657B2 (en) | 2003-03-07 | 2014-11-11 | Intuitive Surgical Operations, Inc. | Instrument having radio frequency identification systems and methods for use |
AU2004226374B2 (en) | 2003-03-27 | 2009-11-12 | Terumo Kabushiki Kaisha | Methods and apparatus for treatment of patent foramen ovale |
US7972330B2 (en) | 2003-03-27 | 2011-07-05 | Terumo Kabushiki Kaisha | Methods and apparatus for closing a layered tissue defect |
US6939348B2 (en) | 2003-03-27 | 2005-09-06 | Cierra, Inc. | Energy based devices and methods for treatment of patent foramen ovale |
US7101387B2 (en) | 2003-04-30 | 2006-09-05 | Scimed Life Systems, Inc. | Radio frequency ablation cooling shield |
US20040220588A1 (en) | 2003-05-01 | 2004-11-04 | James Kermode | Guide assembly |
WO2005009482A2 (en) | 2003-05-21 | 2005-02-03 | The Johns Hopkins University | Devices, systems and methods for minimally invasive surgery of the throat and other portions of mammalian body |
US20050004579A1 (en) | 2003-06-27 | 2005-01-06 | Schneider M. Bret | Computer-assisted manipulation of catheters and guide wires |
US9002518B2 (en) | 2003-06-30 | 2015-04-07 | Intuitive Surgical Operations, Inc. | Maximum torque driving of robotic surgical tools in robotic surgical systems |
US7280863B2 (en) | 2003-10-20 | 2007-10-09 | Magnetecs, Inc. | System and method for radar-assisted catheter guidance and control |
JP2007513707A (en) | 2003-12-11 | 2007-05-31 | クック・インコーポレイテッド | Hemostatic valve assembly |
EP1691666B1 (en) | 2003-12-12 | 2012-05-30 | University of Washington | Catheterscope 3d guidance and interface system |
US8287584B2 (en) | 2005-11-14 | 2012-10-16 | Sadra Medical, Inc. | Medical implant deployment tool |
US7344494B2 (en) | 2004-02-09 | 2008-03-18 | Karl Storz Development Corp. | Endoscope with variable direction of view module |
US8046049B2 (en) | 2004-02-23 | 2011-10-25 | Biosense Webster, Inc. | Robotically guided catheter |
US7204168B2 (en) | 2004-02-25 | 2007-04-17 | The University Of Manitoba | Hand controller and wrist device |
US8052636B2 (en) | 2004-03-05 | 2011-11-08 | Hansen Medical, Inc. | Robotic catheter system and methods |
WO2005087128A1 (en) | 2004-03-05 | 2005-09-22 | Hansen Medical, Inc. | Robotic catheter system |
US20060100610A1 (en) | 2004-03-05 | 2006-05-11 | Wallace Daniel T | Methods using a robotic catheter system |
DE102004020465B3 (en) | 2004-04-26 | 2005-09-01 | Aumann Gmbh | Wire tension regulator for winding machine has braking wheel which may be driven by electric motor and braked by disk brake applied by moving coil actuator |
US7974674B2 (en) | 2004-05-28 | 2011-07-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for surface modeling |
US10258285B2 (en) | 2004-05-28 | 2019-04-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for automated creation of ablation lesions |
US9782130B2 (en) | 2004-05-28 | 2017-10-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system |
US7543239B2 (en) | 2004-06-04 | 2009-06-02 | Stereotaxis, Inc. | User interface for remote control of medical devices |
US7367975B2 (en) | 2004-06-21 | 2008-05-06 | Cierra, Inc. | Energy based devices and methods for treatment of anatomic tissue defects |
EP1778337A4 (en) | 2004-06-29 | 2008-04-02 | Stereotaxis Inc | Navigation of remotely actuable medical device using control variable and length |
US20060013523A1 (en) | 2004-07-16 | 2006-01-19 | Luna Innovations Incorporated | Fiber optic position and shape sensing device and method relating thereto |
US7781724B2 (en) | 2004-07-16 | 2010-08-24 | Luna Innovations Incorporated | Fiber optic position and shape sensing device and method relating thereto |
US8005537B2 (en) | 2004-07-19 | 2011-08-23 | Hansen Medical, Inc. | Robotically controlled intravascular tissue injection system |
CA2583590C (en) | 2004-10-18 | 2013-05-07 | Tyco Healthcare Group, Lp | Compression anastomosis device and method |
IL166032A0 (en) | 2004-12-28 | 2006-01-15 | Sergey Popov | Catheter placement device |
US20060229641A1 (en) | 2005-01-28 | 2006-10-12 | Rajiv Gupta | Guidance and insertion system |
US8050746B2 (en) | 2005-02-02 | 2011-11-01 | Voyage Medical, Inc. | Tissue visualization device and method variations |
US10064540B2 (en) | 2005-02-02 | 2018-09-04 | Intuitive Surgical Operations, Inc. | Visualization apparatus for transseptal access |
US7314097B2 (en) | 2005-02-24 | 2008-01-01 | Black & Decker Inc. | Hammer drill with a mode changeover mechanism |
US8075498B2 (en) | 2005-03-04 | 2011-12-13 | Endosense Sa | Medical apparatus system having optical fiber load sensing capability |
US8182433B2 (en) | 2005-03-04 | 2012-05-22 | Endosense Sa | Medical apparatus system having optical fiber load sensing capability |
US20060237205A1 (en) | 2005-04-21 | 2006-10-26 | Eastway Fair Company Limited | Mode selector mechanism for an impact driver |
WO2006119495A2 (en) | 2005-05-03 | 2006-11-09 | Hansen Medical, Inc. | Robotic catheter system |
US7789874B2 (en) | 2005-05-03 | 2010-09-07 | Hansen Medical, Inc. | Support assembly for robotic catheter system |
US8235942B2 (en) | 2005-05-04 | 2012-08-07 | Olympus Endo Technology America Inc. | Rotate-to-advance catheterization system |
US8343040B2 (en) | 2005-05-04 | 2013-01-01 | Olympus Endo Technology America Inc. | Rotate-to-advance catheterization system |
DE102005027951A1 (en) | 2005-06-16 | 2007-01-04 | Siemens Ag | Medical system for introducing a catheter into a vessel |
US8104479B2 (en) | 2005-06-23 | 2012-01-31 | Volcano Corporation | Pleated bag for interventional pullback systems |
US8241271B2 (en) | 2005-06-30 | 2012-08-14 | Intuitive Surgical Operations, Inc. | Robotic surgical instruments with a fluid flow control system for irrigation, aspiration, and blowing |
WO2007005976A1 (en) | 2005-07-01 | 2007-01-11 | Hansen Medical, Inc. | Robotic catheter system |
CA2646846C (en) | 2005-07-11 | 2014-03-18 | Catheter Robotics, Inc. | Remotely controlled catheter insertion system |
US20070038181A1 (en) | 2005-08-09 | 2007-02-15 | Alexander Melamud | Method, system and device for delivering a substance to tissue |
JP4763420B2 (en) | 2005-10-27 | 2011-08-31 | オリンパスメディカルシステムズ株式会社 | Endoscope operation assistance device |
JP5121132B2 (en) | 2005-11-02 | 2013-01-16 | オリンパスメディカルシステムズ株式会社 | Endoscope system and operation assist device for endoscope |
US20070149946A1 (en) | 2005-12-07 | 2007-06-28 | Viswanathan Raju R | Advancer system for coaxial medical devices |
US8190238B2 (en) | 2005-12-09 | 2012-05-29 | Hansen Medical, Inc. | Robotic catheter system and methods |
US8498691B2 (en) | 2005-12-09 | 2013-07-30 | Hansen Medical, Inc. | Robotic catheter system and methods |
CN101340852B (en) | 2005-12-20 | 2011-12-28 | 直观外科手术操作公司 | Instrument interface of a robotic surgical system |
US9266239B2 (en) | 2005-12-27 | 2016-02-23 | Intuitive Surgical Operations, Inc. | Constraint based control in a minimally invasive surgical apparatus |
US9962066B2 (en) | 2005-12-30 | 2018-05-08 | Intuitive Surgical Operations, Inc. | Methods and apparatus to shape flexible entry guides for minimally invasive surgery |
US8219178B2 (en) | 2007-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
JP4789000B2 (en) | 2006-02-16 | 2011-10-05 | Smc株式会社 | Automatic reduction ratio switching device |
US8052621B2 (en) | 2006-02-22 | 2011-11-08 | Hansen Medical, Inc. | Method of sensing forces on a working instrument |
US9675375B2 (en) * | 2006-03-29 | 2017-06-13 | Ethicon Llc | Ultrasonic surgical system and method |
US8628520B2 (en) | 2006-05-02 | 2014-01-14 | Biosense Webster, Inc. | Catheter with omni-directional optical lesion evaluation |
US20080140087A1 (en) | 2006-05-17 | 2008-06-12 | Hansen Medical Inc. | Robotic instrument system |
US8048063B2 (en) | 2006-06-09 | 2011-11-01 | Endosense Sa | Catheter having tri-axial force sensor |
EP4018910A1 (en) | 2006-06-13 | 2022-06-29 | Intuitive Surgical Operations, Inc. | Minimally invasive surgical system |
WO2007143859A1 (en) | 2006-06-14 | 2007-12-21 | Macdonald Dettwiler & Associates Inc. | Surgical manipulator with right-angle pulley drive mechanisms |
US8303449B2 (en) | 2006-08-01 | 2012-11-06 | Techtronic Power Tools Technology Limited | Automatic transmission for a power tool |
JP4755047B2 (en) | 2006-08-08 | 2011-08-24 | テルモ株式会社 | Working mechanism and manipulator |
US20080064920A1 (en) | 2006-09-08 | 2008-03-13 | Ethicon Endo-Surgery, Inc. | Medical drive system for providing motion to at least a portion of a medical apparatus |
US7699809B2 (en) | 2006-12-14 | 2010-04-20 | Urmey William F | Catheter positioning system |
IL188262A (en) | 2007-01-10 | 2011-10-31 | Mediguide Ltd | System and method for superimposing a representation of the tip of a catheter on an image acquired by a moving imager |
US20080262480A1 (en) | 2007-02-15 | 2008-10-23 | Stahler Gregory J | Instrument assembly for robotic instrument system |
US20080214925A1 (en) | 2007-03-01 | 2008-09-04 | Civco Medical Instruments Co., Inc. | Device for precision positioning of instruments at a mri scanner |
US7695154B2 (en) | 2007-04-05 | 2010-04-13 | Dpm Associates, Llc | Illuminating footwear accessory |
EP2142071B1 (en) | 2007-04-20 | 2018-04-04 | Cook Medical Technologies LLC | Steerable overtube |
US20120149985A1 (en) | 2007-05-18 | 2012-06-14 | Frassica James J | Rotate-to-advance catheterization system |
US8364312B2 (en) | 2007-06-06 | 2013-01-29 | Cycogs, Llc | Modular rotary multi-sensor sensor ring |
US9096033B2 (en) | 2007-06-13 | 2015-08-04 | Intuitive Surgical Operations, Inc. | Surgical system instrument sterile adapter |
US9468412B2 (en) | 2007-06-22 | 2016-10-18 | General Electric Company | System and method for accuracy verification for image based surgical navigation |
US20090082722A1 (en) | 2007-08-21 | 2009-03-26 | Munger Gareth T | Remote navigation advancer devices and methods of use |
EP2190761B1 (en) | 2007-08-28 | 2013-10-30 | Marel A/S | Gripping device, for example for a robot |
CN100522507C (en) | 2007-10-19 | 2009-08-05 | 哈尔滨工业大学 | Flexible connecting line structure between integrated circuit board in the finger of robot delicacy hand |
JP2009139187A (en) | 2007-12-05 | 2009-06-25 | Sumitomo Heavy Ind Ltd | Torque measuring device |
JP5017076B2 (en) | 2007-12-21 | 2012-09-05 | テルモ株式会社 | Manipulator system and manipulator control method |
US8473031B2 (en) | 2007-12-26 | 2013-06-25 | Intuitive Surgical Operations, Inc. | Medical robotic system with functionality to determine and display a distance indicated by movement of a tool robotically manipulated by an operator |
WO2009092059A2 (en) | 2008-01-16 | 2009-07-23 | Catheter Robotics, Inc. | Remotely controlled catheter insertion system |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US20090221908A1 (en) | 2008-03-01 | 2009-09-03 | Neil David Glossop | System and Method for Alignment of Instrumentation in Image-Guided Intervention |
AP2010005387A0 (en) | 2008-03-07 | 2010-10-31 | Novozymes Adenium Biotech As | Use of defensins against tuberculosis. |
JP5322153B2 (en) | 2008-03-25 | 2013-10-23 | Ntn株式会社 | Drive device for medical linear body |
US8317745B2 (en) | 2008-03-27 | 2012-11-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter rotatable device cartridge |
US7886743B2 (en) | 2008-03-31 | 2011-02-15 | Intuitive Surgical Operations, Inc. | Sterile drape interface for robotic surgical instrument |
US7938809B2 (en) | 2008-04-14 | 2011-05-10 | Merit Medical Systems, Inc. | Quick release hemostasis valve |
CN102007263A (en) | 2008-05-12 | 2011-04-06 | 长年Tm公司 | Open-faced rod spinner |
US20110015650A1 (en) | 2008-06-11 | 2011-01-20 | Seung Wook Choi | Instrument of robot arm for surgery |
US20090318797A1 (en) | 2008-06-19 | 2009-12-24 | Vision-Sciences Inc. | System and method for deflecting endoscopic tools |
JP2010035768A (en) | 2008-08-04 | 2010-02-18 | Olympus Medical Systems Corp | Active drive type medical apparatus |
JP2010046384A (en) | 2008-08-25 | 2010-03-04 | Terumo Corp | Medical manipulator and experimental device |
US8390438B2 (en) | 2008-09-24 | 2013-03-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system including haptic feedback |
US8086298B2 (en) | 2008-09-29 | 2011-12-27 | Civco Medical Instruments Co., Inc. | EM tracking systems for use with ultrasound and other imaging modalities |
US8720448B2 (en) * | 2008-11-07 | 2014-05-13 | Hansen Medical, Inc. | Sterile interface apparatus |
US8095223B2 (en) | 2008-11-26 | 2012-01-10 | B. Braun Medical, Inc. | Apparatus and method for inserting a catheter |
US8602031B2 (en) | 2009-01-12 | 2013-12-10 | Hansen Medical, Inc. | Modular interfaces and drive actuation through barrier |
US8474806B2 (en) | 2009-01-26 | 2013-07-02 | T&T Engineering Services, Inc. | Pipe gripping apparatus |
ITBO20090004U1 (en) | 2009-02-11 | 2010-08-12 | Tre Esse Progettazione Biomedica S R L | ROBOTIC MANIPULATOR FOR DISTANCE MANEUVERING OF STEERABLE CATHETERS IN THE HUMAN CARDIOVASCULAR SYSTEM. |
KR100961661B1 (en) | 2009-02-12 | 2010-06-09 | 주식회사 래보 | Apparatus and method of operating a medical navigation system |
US8694129B2 (en) | 2009-02-13 | 2014-04-08 | Cardiac Pacemakers, Inc. | Deployable sensor platform on the lead system of an implantable device |
US8423182B2 (en) | 2009-03-09 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems |
CN102405022B (en) | 2009-03-14 | 2015-02-04 | 瓦索斯蒂奇股份有限公司 | Vessel access and closure device |
US10004387B2 (en) | 2009-03-26 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Method and system for assisting an operator in endoscopic navigation |
EP2233103B1 (en) | 2009-03-26 | 2017-11-15 | W & H Dentalwerk Bürmoos GmbH | Medical, in particular dental handpiece |
KR101030371B1 (en) | 2009-04-27 | 2011-04-20 | 국립암센터 | Endoscope manipulator for minimal invasive surgery |
US20100280320A1 (en) | 2009-04-29 | 2010-11-04 | Hansen Medical, Inc. | Flexible and steerable elongate instruments with shape control and support elements |
US9254123B2 (en) | 2009-04-29 | 2016-02-09 | Hansen Medical, Inc. | Flexible and steerable elongate instruments with shape control and support elements |
US20100280525A1 (en) | 2009-04-29 | 2010-11-04 | Hansen Medical, Inc. | Flexible and steerable elongate instruments with shape control and support elements |
GB0908368D0 (en) | 2009-05-15 | 2009-06-24 | Univ Leuven Kath | Adjustable remote center of motion positioner |
ES2388029B1 (en) | 2009-05-22 | 2013-08-13 | Universitat Politècnica De Catalunya | ROBOTIC SYSTEM FOR LAPAROSCOPIC SURGERY. |
WO2011005335A1 (en) | 2009-07-10 | 2011-01-13 | Tyco Healthcare Group Lp | Shaft constructions for medical devices with an articulating tip |
US20110015484A1 (en) | 2009-07-16 | 2011-01-20 | Alvarez Jeffrey B | Endoscopic robotic catheter system |
US20110015648A1 (en) | 2009-07-16 | 2011-01-20 | Hansen Medical, Inc. | Endoscopic robotic catheter system |
WO2011028627A2 (en) | 2009-08-26 | 2011-03-10 | The Research Foundation Of State University Of New York | System and method for endovascular telerobotic access |
US8277417B2 (en) | 2009-09-23 | 2012-10-02 | James J. Fedinec | Central venous catheter kit with line gripping and needle localizing devices |
US20110071541A1 (en) | 2009-09-23 | 2011-03-24 | Intuitive Surgical, Inc. | Curved cannula |
WO2011041428A2 (en) | 2009-10-01 | 2011-04-07 | Mako Surgical Corp. | Surgical system for positioning prosthetic component and/or for constraining movement of surgical tool |
JP5770200B2 (en) | 2009-11-12 | 2015-08-26 | コーニンクレッカ フィリップス エヌ ヴェ | Steering system and catheter system |
US20120283747A1 (en) | 2009-11-16 | 2012-11-08 | Koninklijke Philips Electronics N.V. | Human-robot shared control for endoscopic assistant robot |
US8932211B2 (en) | 2012-06-22 | 2015-01-13 | Macroplata, Inc. | Floating, multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment |
DE102010031274B4 (en) | 2009-12-18 | 2023-06-22 | Robert Bosch Gmbh | Hand tool with gear cooling |
US20110152880A1 (en) | 2009-12-23 | 2011-06-23 | Hansen Medical, Inc. | Flexible and steerable elongate instruments with torsion control |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
EP3659661A1 (en) | 2010-03-02 | 2020-06-03 | Corindus Inc. | Robotic catheter system with variable drive mechanism |
US9610133B2 (en) | 2010-03-16 | 2017-04-04 | Covidien Lp | Wireless laparoscopic camera |
US8870849B2 (en) | 2010-04-08 | 2014-10-28 | BiO2 Medical, Inc. | Catheter hub |
US9950139B2 (en) | 2010-05-14 | 2018-04-24 | C. R. Bard, Inc. | Catheter placement device including guidewire and catheter control elements |
DE102010029275A1 (en) | 2010-05-25 | 2011-12-01 | Siemens Aktiengesellschaft | Method for moving an instrument arm of a Laparoskopierobotors in a predetermined relative position to a trocar |
US8672837B2 (en) | 2010-06-24 | 2014-03-18 | Hansen Medical, Inc. | Methods and devices for controlling a shapeable medical device |
US8226580B2 (en) | 2010-06-30 | 2012-07-24 | Biosense Webster (Israel), Ltd. | Pressure sensing for a multi-arm catheter |
WO2012018816A2 (en) | 2010-08-02 | 2012-02-09 | The Johns Hopkins University | Tool exchange interface and control algorithm for cooperative surgical robots |
US9326872B2 (en) | 2010-08-17 | 2016-05-03 | W. L. Gore & Associates, Inc. | Forced deployment sequence handle assembly with independent actuating mechanism |
JP5065538B2 (en) | 2010-09-14 | 2012-11-07 | オリンパスメディカルシステムズ株式会社 | ENDOSCOPE SYSTEM AND METHOD OF OPERATING VISUAL DEFECT JUDGING SYSTEM |
US8827948B2 (en) | 2010-09-17 | 2014-09-09 | Hansen Medical, Inc. | Steerable catheters |
WO2012049623A1 (en) | 2010-10-11 | 2012-04-19 | Ecole Polytechnique Federale De Lausanne (Epfl) | Mechanical manipulator for surgical instruments |
CN201884596U (en) | 2010-11-02 | 2011-06-29 | 李国铭 | Differential mechanism |
JP6063387B2 (en) | 2010-11-15 | 2017-01-18 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Separation of instrument shaft roll and end effector actuation in surgical instruments |
DE102011003118A1 (en) | 2011-01-25 | 2012-07-26 | Krones Aktiengesellschaft | closing |
DE102011011497A1 (en) | 2011-02-17 | 2012-08-23 | Kuka Roboter Gmbh | Surgical instrument |
US20130116705A1 (en) | 2011-05-03 | 2013-05-09 | Amr Salahieh | Steerable Delivery Sheaths |
WO2013009252A2 (en) | 2011-07-11 | 2013-01-17 | Medical Vision Research & Development Ab | Status control for electrically powered surgical tool systems |
US20130030363A1 (en) | 2011-07-29 | 2013-01-31 | Hansen Medical, Inc. | Systems and methods utilizing shape sensing fibers |
JP5931497B2 (en) | 2011-08-04 | 2016-06-08 | オリンパス株式会社 | Surgery support apparatus and assembly method thereof |
CN102973317A (en) | 2011-09-05 | 2013-03-20 | 周宁新 | Arrangement structure for mechanical arm of minimally invasive surgery robot |
FR2979532B1 (en) * | 2011-09-07 | 2015-02-20 | Robocath | MODULE AND METHOD FOR DRIVING LONG SOFT MEDICAL ORGANS AND ASSOCIATED ROBOTIC SYSTEM |
WO2013040498A1 (en) | 2011-09-16 | 2013-03-21 | Translucent Medical, Inc. | System and method for virtually tracking a surgical tool on a movable display |
WO2013043804A1 (en) | 2011-09-20 | 2013-03-28 | Corindus, Inc. | Catheter force measurement apparatus and method |
US9504604B2 (en) | 2011-12-16 | 2016-11-29 | Auris Surgical Robotics, Inc. | Lithotripsy eye treatment |
US20140142591A1 (en) | 2012-04-24 | 2014-05-22 | Auris Surgical Robotics, Inc. | Method, apparatus and a system for robotic assisted surgery |
US10383765B2 (en) | 2012-04-24 | 2019-08-20 | Auris Health, Inc. | Apparatus and method for a global coordinate system for use in robotic surgery |
DE102012207060A1 (en) | 2012-04-27 | 2013-10-31 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Robot assembly for use in medical fields |
US20130317519A1 (en) | 2012-05-25 | 2013-11-28 | Hansen Medical, Inc. | Low friction instrument driver interface for robotic systems |
JP2014004310A (en) | 2012-05-31 | 2014-01-16 | Canon Inc | Medical instrument |
KR102146708B1 (en) | 2012-06-01 | 2020-08-21 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Systems and methods for avoiding collisions between manipulator arms using a null-space |
US9072536B2 (en) | 2012-06-28 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Differential locking arrangements for rotary powered surgical instruments |
CN109009440B (en) | 2012-08-15 | 2021-07-30 | 直观外科手术操作公司 | Movable surgical mounting platform controlled by manual motion of robotic arm |
JP6247296B2 (en) | 2012-08-15 | 2017-12-13 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | User-initiated clutch disengagement of surgical mounting platform |
JP6255401B2 (en) | 2012-08-15 | 2017-12-27 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Phantom freedom for manipulating machine body movement |
EP2906133B1 (en) | 2012-10-12 | 2022-03-23 | Intuitive Surgical Operations, Inc. | Determining position of medical device in branched anatomical structure |
US8894610B2 (en) | 2012-11-28 | 2014-11-25 | Hansen Medical, Inc. | Catheter having unirail pullwire architecture |
US8671817B1 (en) | 2012-11-28 | 2014-03-18 | Hansen Medical, Inc. | Braiding device for catheter having acuately varying pullwires |
JP2014134530A (en) | 2012-12-14 | 2014-07-24 | Panasonic Corp | Force measurement device, force measurement method, force measurement program, force measurement integrated electronic circuit and master-slave device |
FR2999939B1 (en) * | 2012-12-21 | 2015-01-16 | Robocath | CATHETERISM SYSTEM TRAINING MODULE |
US10231867B2 (en) | 2013-01-18 | 2019-03-19 | Auris Health, Inc. | Method, apparatus and system for a water jet |
DE102013002818A1 (en) | 2013-02-19 | 2014-08-21 | Rg Mechatronics Gmbh | Holding device for a surgical instrument and a lock and method for operating a robot with such a holding device |
DE102013002813B4 (en) | 2013-02-19 | 2017-11-09 | Rg Mechatronics Gmbh | Holding device with at least one jaw for a robotic surgical system |
KR20150124446A (en) | 2013-02-26 | 2015-11-05 | 아메트 시난 카박시 | A robotic manipulator system |
FR3002851B1 (en) * | 2013-03-07 | 2015-06-19 | Robocath | ROBOTISE CATHETERISM SYSTEM TRAINING MODULE. |
FR3002852B1 (en) * | 2013-03-07 | 2016-04-01 | Robocath | MEDICAL MEMBER TRAINING MODULE EXTENDED |
US9668814B2 (en) | 2013-03-07 | 2017-06-06 | Hansen Medical, Inc. | Infinitely rotatable tool with finite rotating drive shafts |
US10080576B2 (en) | 2013-03-08 | 2018-09-25 | Auris Health, Inc. | Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment |
US9867635B2 (en) | 2013-03-08 | 2018-01-16 | Auris Surgical Robotics, Inc. | Method, apparatus and system for a water jet |
US10149720B2 (en) | 2013-03-08 | 2018-12-11 | Auris Health, Inc. | Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment |
US20140276389A1 (en) | 2013-03-13 | 2014-09-18 | Sean Walker | Selective grip device for drive mechanism |
US9498601B2 (en) | 2013-03-14 | 2016-11-22 | Hansen Medical, Inc. | Catheter tension sensing |
JP6616281B2 (en) | 2013-03-14 | 2019-12-04 | エスアールアイ インターナショナル | Compact robot wrist |
US9326822B2 (en) | 2013-03-14 | 2016-05-03 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
US20140277334A1 (en) | 2013-03-14 | 2014-09-18 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
US11213363B2 (en) | 2013-03-14 | 2022-01-04 | Auris Health, Inc. | Catheter tension sensing |
US9173713B2 (en) | 2013-03-14 | 2015-11-03 | Hansen Medical, Inc. | Torque-based catheter articulation |
US9918659B2 (en) | 2013-03-15 | 2018-03-20 | Intuitive Surgical Operations, Inc. | Shape sensor systems for tracking interventional instruments and mehods of use |
US9408669B2 (en) | 2013-03-15 | 2016-08-09 | Hansen Medical, Inc. | Active drive mechanism with finite range of motion |
US9452018B2 (en) | 2013-03-15 | 2016-09-27 | Hansen Medical, Inc. | Rotational support for an elongate member |
US20140276936A1 (en) | 2013-03-15 | 2014-09-18 | Hansen Medical, Inc. | Active drive mechanism for simultaneous rotation and translation |
US20140276394A1 (en) | 2013-03-15 | 2014-09-18 | Hansen Medical, Inc. | Input device for controlling a catheter |
US20140276647A1 (en) | 2013-03-15 | 2014-09-18 | Hansen Medical, Inc. | Vascular remote catheter manipulator |
US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
WO2014201165A1 (en) | 2013-06-11 | 2014-12-18 | Auris Surgical Robotics, Inc. | System for robotic assisted cataract surgery |
US20140375784A1 (en) | 2013-06-21 | 2014-12-25 | Omnivision Technologies, Inc. | Image Sensor With Integrated Orientation Indicator |
JP6037964B2 (en) | 2013-07-26 | 2016-12-07 | オリンパス株式会社 | Manipulator system |
US10426661B2 (en) | 2013-08-13 | 2019-10-01 | Auris Health, Inc. | Method and apparatus for laser assisted cataract surgery |
US11166646B2 (en) | 2013-08-15 | 2021-11-09 | Intuitive Surgical Operations Inc. | Systems and methods for medical procedure confirmation |
US9993614B2 (en) | 2013-08-27 | 2018-06-12 | Catheter Precision, Inc. | Components for multiple axis control of a catheter in a catheter positioning system |
US9993313B2 (en) | 2013-10-24 | 2018-06-12 | Auris Health, Inc. | Instrument device manipulator with roll mechanism |
CN105939647B (en) | 2013-10-24 | 2020-01-21 | 奥瑞斯健康公司 | Robotically-assisted endoluminal surgical systems and related methods |
US9962226B2 (en) | 2013-11-28 | 2018-05-08 | Alcon Pharmaceuticals Ltd. | Ophthalmic surgical systems, methods, and devices |
CN103735313B (en) | 2013-12-11 | 2016-08-17 | 中国科学院深圳先进技术研究院 | A kind of operating robot and state monitoring method thereof |
US9539020B2 (en) | 2013-12-27 | 2017-01-10 | Ethicon Endo-Surgery, Llc | Coupling features for ultrasonic surgical instrument |
CN105979882B (en) | 2014-02-07 | 2019-03-26 | 柯惠Lp公司 | Input device assembly for robotic surgical system |
JP6664331B2 (en) | 2014-02-21 | 2020-03-13 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Mechanical joints and related systems and methods |
US10046140B2 (en) | 2014-04-21 | 2018-08-14 | Hansen Medical, Inc. | Devices, systems, and methods for controlling active drive systems |
US10569052B2 (en) | 2014-05-15 | 2020-02-25 | Auris Health, Inc. | Anti-buckling mechanisms for catheters |
US9788910B2 (en) | 2014-07-01 | 2017-10-17 | Auris Surgical Robotics, Inc. | Instrument-mounted tension sensing mechanism for robotically-driven medical instruments |
US10159533B2 (en) | 2014-07-01 | 2018-12-25 | Auris Health, Inc. | Surgical system with configurable rail-mounted mechanical arms |
US10792464B2 (en) | 2014-07-01 | 2020-10-06 | Auris Health, Inc. | Tool and method for using surgical endoscope with spiral lumens |
US9561083B2 (en) | 2014-07-01 | 2017-02-07 | Auris Surgical Robotics, Inc. | Articulating flexible endoscopic tool with roll capabilities |
US20170007337A1 (en) | 2014-07-01 | 2017-01-12 | Auris Surgical Robotics, Inc. | Driver-mounted torque sensing mechanism |
US20160270865A1 (en) | 2014-07-01 | 2016-09-22 | Auris Surgical Robotics, Inc. | Reusable catheter with disposable balloon attachment and tapered tip |
US9744335B2 (en) | 2014-07-01 | 2017-08-29 | Auris Surgical Robotics, Inc. | Apparatuses and methods for monitoring tendons of steerable catheters |
WO2016054256A1 (en) | 2014-09-30 | 2016-04-07 | Auris Surgical Robotics, Inc | Configurable robotic surgical system with virtual rail and flexible endoscope |
US10314463B2 (en) | 2014-10-24 | 2019-06-11 | Auris Health, Inc. | Automated endoscope calibration |
DE102014222293A1 (en) | 2014-10-31 | 2016-05-19 | Siemens Aktiengesellschaft | Method for automatically monitoring the penetration behavior of a trocar held by a robot arm and monitoring system |
US9949719B2 (en) | 2014-12-16 | 2018-04-24 | General Electric Company | Breast imaging method and system |
CN107105967B (en) | 2014-12-19 | 2019-06-25 | 奥林巴斯株式会社 | Plugging auxiliary apparatus and plug householder method |
JP6342794B2 (en) | 2014-12-25 | 2018-06-13 | 新光電気工業株式会社 | Wiring board and method of manufacturing wiring board |
CN107257670B (en) | 2015-02-26 | 2021-03-16 | 柯惠Lp公司 | Robotically controlled remote center of motion using software and catheter |
EP3260051A4 (en) | 2015-03-25 | 2019-01-23 | Sony Corporation | Medical support arm device |
US20160287279A1 (en) | 2015-04-01 | 2016-10-06 | Auris Surgical Robotics, Inc. | Microsurgical tool for robotic applications |
WO2016164824A1 (en) | 2015-04-09 | 2016-10-13 | Auris Surgical Robotics, Inc. | Surgical system with configurable rail-mounted mechanical arms |
US9622827B2 (en) | 2015-05-15 | 2017-04-18 | Auris Surgical Robotics, Inc. | Surgical robotics system |
JP6157792B2 (en) | 2015-06-01 | 2017-07-05 | オリンパス株式会社 | Medical manipulator |
CN105147393B (en) | 2015-08-19 | 2017-06-20 | 哈尔滨工业大学 | A kind of minimally invasive robot holds mirror mechanical arm |
CN114305731A (en) | 2015-08-27 | 2022-04-12 | 福康精准医疗系统公司 | Movable interface between stepper and stabilizer |
EP3346899B1 (en) | 2015-09-09 | 2022-11-09 | Auris Health, Inc. | Instrument device manipulator for a surgical robotics system |
AU2016323982A1 (en) | 2015-09-18 | 2018-04-12 | Auris Health, Inc. | Navigation of tubular networks |
US9955986B2 (en) | 2015-10-30 | 2018-05-01 | Auris Surgical Robotics, Inc. | Basket apparatus |
US9949749B2 (en) | 2015-10-30 | 2018-04-24 | Auris Surgical Robotics, Inc. | Object capture with a basket |
US10639108B2 (en) | 2015-10-30 | 2020-05-05 | Auris Health, Inc. | Process for percutaneous operations |
EP3373839B1 (en) | 2015-11-12 | 2024-09-04 | Covidien LP | Robotic surgical systems for monitoring applied forces |
CN105559850B (en) | 2015-12-17 | 2017-08-25 | 天津工业大学 | It is a kind of to be used for the surgical drill apparatus that robot assisted surgery has power sensing function |
US10932861B2 (en) | 2016-01-14 | 2021-03-02 | Auris Health, Inc. | Electromagnetic tracking surgical system and method of controlling the same |
US10932691B2 (en) | 2016-01-26 | 2021-03-02 | Auris Health, Inc. | Surgical tools having electromagnetic tracking components |
EP3422989A4 (en) | 2016-03-04 | 2019-11-13 | Covidien LP | Electromechanical surgical systems and robotic surgical instruments thereof |
US11324554B2 (en) | 2016-04-08 | 2022-05-10 | Auris Health, Inc. | Floating electromagnetic field generator system and method of controlling the same |
US10454347B2 (en) | 2016-04-29 | 2019-10-22 | Auris Health, Inc. | Compact height torque sensing articulation axis assembly |
US10888428B2 (en) | 2016-05-12 | 2021-01-12 | University Of Notre Dame Du Lac | Additive manufacturing device for biomaterials |
KR102520799B1 (en) | 2016-07-01 | 2023-04-12 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Computer-assisted medical systems and methods |
US11037464B2 (en) | 2016-07-21 | 2021-06-15 | Auris Health, Inc. | System with emulator movement tracking for controlling medical devices |
US10398517B2 (en) | 2016-08-16 | 2019-09-03 | Ethicon Llc | Surgical tool positioning based on sensed parameters |
US10463439B2 (en) | 2016-08-26 | 2019-11-05 | Auris Health, Inc. | Steerable catheter with shaft load distributions |
US11241559B2 (en) | 2016-08-29 | 2022-02-08 | Auris Health, Inc. | Active drive for guidewire manipulation |
WO2018044306A1 (en) | 2016-08-31 | 2018-03-08 | Auris Surgical Robotics, Inc. | Length conservative surgical instrument |
US9931025B1 (en) | 2016-09-30 | 2018-04-03 | Auris Surgical Robotics, Inc. | Automated calibration of endoscopes with pull wires |
CN109715104B (en) | 2016-10-04 | 2022-10-18 | 直观外科手术操作公司 | Computer-assisted teleoperated surgical systems and methods |
US10286556B2 (en) | 2016-10-16 | 2019-05-14 | The Boeing Company | Method and apparatus for compliant robotic end-effector |
US10136959B2 (en) | 2016-12-28 | 2018-11-27 | Auris Health, Inc. | Endolumenal object sizing |
US10543048B2 (en) | 2016-12-28 | 2020-01-28 | Auris Health, Inc. | Flexible instrument insertion using an adaptive insertion force threshold |
US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
US10820951B2 (en) | 2017-03-14 | 2020-11-03 | Verb Surgical Inc. | Techniques for damping vibration in a robotic surgical system |
CN110325138B (en) | 2017-03-22 | 2023-06-06 | 直观外科手术操作公司 | System and method for intelligent seed registration |
WO2018183393A1 (en) | 2017-03-28 | 2018-10-04 | Auris Health, Inc. | Shaft actuating handle |
JP7282685B2 (en) | 2017-03-31 | 2023-05-29 | オーリス ヘルス インコーポレイテッド | A robotic system for navigation of luminal networks with compensation for physiological noise |
US10285574B2 (en) | 2017-04-07 | 2019-05-14 | Auris Health, Inc. | Superelastic medical instrument |
EP3606400B1 (en) | 2017-04-07 | 2022-03-09 | Auris Health, Inc. | Patient introducer alignment |
US11529129B2 (en) | 2017-05-12 | 2022-12-20 | Auris Health, Inc. | Biopsy apparatus and system |
EP3624668A4 (en) | 2017-05-17 | 2021-05-26 | Auris Health, Inc. | Exchangeable working channel |
US10022192B1 (en) | 2017-06-23 | 2018-07-17 | Auris Health, Inc. | Automatically-initialized robotic systems for navigation of luminal networks |
JP7330902B2 (en) | 2017-06-28 | 2023-08-22 | オーリス ヘルス インコーポレイテッド | Electromagnetic distortion detection |
US11832889B2 (en) | 2017-06-28 | 2023-12-05 | Auris Health, Inc. | Electromagnetic field generator alignment |
US11026758B2 (en) | 2017-06-28 | 2021-06-08 | Auris Health, Inc. | Medical robotics systems implementing axis constraints during actuation of one or more motorized joints |
KR102341451B1 (en) | 2017-06-28 | 2021-12-23 | 아우리스 헬스, 인코포레이티드 | Robot system, method and non-trnasitory computer readable storage medium for instrument insertion compensation |
US10426559B2 (en) | 2017-06-30 | 2019-10-01 | Auris Health, Inc. | Systems and methods for medical instrument compression compensation |
US10464209B2 (en) | 2017-10-05 | 2019-11-05 | Auris Health, Inc. | Robotic system with indication of boundary for robotic arm |
US10016900B1 (en) | 2017-10-10 | 2018-07-10 | Auris Health, Inc. | Surgical robotic arm admittance control |
US10145747B1 (en) | 2017-10-10 | 2018-12-04 | Auris Health, Inc. | Detection of undesirable forces on a surgical robotic arm |
US11058493B2 (en) | 2017-10-13 | 2021-07-13 | Auris Health, Inc. | Robotic system configured for navigation path tracing |
US10555778B2 (en) | 2017-10-13 | 2020-02-11 | Auris Health, Inc. | Image-based branch detection and mapping for navigation |
JP7362610B2 (en) | 2017-12-06 | 2023-10-17 | オーリス ヘルス インコーポレイテッド | System and method for correcting uncommanded instrument rotation |
WO2019113391A1 (en) | 2017-12-08 | 2019-06-13 | Auris Health, Inc. | System and method for medical instrument navigation and targeting |
US10850013B2 (en) | 2017-12-08 | 2020-12-01 | Auris Health, Inc. | Directed fluidics |
JP7080986B2 (en) | 2017-12-11 | 2022-06-06 | オーリス ヘルス インコーポレイテッド | Systems and methods for instrument-based insertion architectures |
US11510736B2 (en) | 2017-12-14 | 2022-11-29 | Auris Health, Inc. | System and method for estimating instrument location |
KR20200101334A (en) | 2017-12-18 | 2020-08-27 | 아우리스 헬스, 인코포레이티드 | Method and system for tracking and navigation of instruments in the luminal network |
KR102264368B1 (en) | 2018-01-17 | 2021-06-17 | 아우리스 헬스, 인코포레이티드 | Surgical platform with adjustable arm support |
KR102690164B1 (en) | 2018-02-13 | 2024-08-02 | 아우리스 헬스, 인코포레이티드 | Systems and methods for operating medical devices |
JP2021514761A (en) | 2018-03-01 | 2021-06-17 | オーリス ヘルス インコーポレイテッド | Methods and systems for mapping and navigation |
MX2020010112A (en) | 2018-03-28 | 2020-11-06 | Auris Health Inc | Systems and methods for registration of location sensors. |
US11109920B2 (en) | 2018-03-28 | 2021-09-07 | Auris Health, Inc. | Medical instruments with variable bending stiffness profiles |
US10827913B2 (en) | 2018-03-28 | 2020-11-10 | Auris Health, Inc. | Systems and methods for displaying estimated location of instrument |
WO2019191265A1 (en) | 2018-03-29 | 2019-10-03 | Auris Health, Inc. | Robotically-enabled medical systems with multifunction end effectors having rotational offsets |
WO2019231895A1 (en) | 2018-05-30 | 2019-12-05 | Auris Health, Inc. | Systems and methods for location sensor-based branch prediction |
US11503986B2 (en) | 2018-05-31 | 2022-11-22 | Auris Health, Inc. | Robotic systems and methods for navigation of luminal network that detect physiological noise |
EP3801348B1 (en) | 2018-05-31 | 2024-05-01 | Auris Health, Inc. | Image-based airway analysis and mapping |
US10898286B2 (en) | 2018-05-31 | 2021-01-26 | Auris Health, Inc. | Path-based navigation of tubular networks |
US10744981B2 (en) | 2018-06-06 | 2020-08-18 | Sensata Technologies, Inc. | Electromechanical braking connector |
US10751140B2 (en) | 2018-06-07 | 2020-08-25 | Auris Health, Inc. | Robotic medical systems with high force instruments |
WO2020005370A1 (en) | 2018-06-27 | 2020-01-02 | Auris Health, Inc. | Systems and techniques for providing multiple perspectives during medical procedures |
WO2020005854A1 (en) | 2018-06-28 | 2020-01-02 | Auris Health, Inc. | Medical systems incorporating pulley sharing |
US10898276B2 (en) | 2018-08-07 | 2021-01-26 | Auris Health, Inc. | Combining strain-based shape sensing with catheter control |
EP3806772A4 (en) | 2018-08-15 | 2022-03-30 | Auris Health, Inc. | Medical instruments for tissue cauterization |
WO2020036686A1 (en) | 2018-08-17 | 2020-02-20 | Auris Health, Inc. | Bipolar medical instrument |
CN118662077A (en) | 2018-08-24 | 2024-09-20 | 奥瑞斯健康公司 | Medical instrument capable of being controlled manually and robotically |
CN112770689B (en) | 2018-09-26 | 2024-07-19 | 奥瑞斯健康公司 | Systems and devices for aspiration and irrigation |
EP3813634A4 (en) | 2018-09-26 | 2022-04-06 | Auris Health, Inc. | Articulating medical instruments |
EP3856065A4 (en) | 2018-09-28 | 2022-06-29 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
AU2019347767A1 (en) | 2018-09-28 | 2021-04-08 | Auris Health, Inc. | Systems and methods for docking medical instruments |
EP3856001A4 (en) | 2018-09-28 | 2022-06-22 | Auris Health, Inc. | Devices, systems, and methods for manually and robotically driving medical instruments |
US11576738B2 (en) | 2018-10-08 | 2023-02-14 | Auris Health, Inc. | Systems and instruments for tissue sealing |
WO2020131529A1 (en) | 2018-12-20 | 2020-06-25 | Auris Health, Inc. | Shielding for wristed instruments |
CN113226202A (en) | 2018-12-28 | 2021-08-06 | 奥瑞斯健康公司 | Percutaneous sheath for robotic medical systems and methods |
EP3890645A4 (en) | 2019-02-22 | 2022-09-07 | Auris Health, Inc. | Surgical platform with motorized arms for adjustable arm supports |
-
2013
- 2013-03-15 US US13/835,136 patent/US20140276936A1/en not_active Abandoned
-
2014
- 2014-03-14 EP EP14160068.4A patent/EP2777594B1/en active Active
-
2016
- 2016-11-23 US US15/359,886 patent/US10524867B2/en active Active
-
2019
- 2019-10-30 US US16/669,268 patent/US11504195B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5779623A (en) * | 1993-10-08 | 1998-07-14 | Leonard Medical, Inc. | Positioner for medical instruments |
US7615042B2 (en) * | 2004-06-03 | 2009-11-10 | Corindus Ltd. | Transmission for a remote catheterization system |
US7998020B2 (en) * | 2007-08-21 | 2011-08-16 | Stereotaxis, Inc. | Apparatus for selectively rotating and/or advancing an elongate device |
US20100130987A1 (en) * | 2008-05-06 | 2010-05-27 | Corindus Ltd. | Catheter system |
US20110130718A1 (en) * | 2009-05-25 | 2011-06-02 | Kidd Brian L | Remote Manipulator Device |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10695536B2 (en) | 2001-02-15 | 2020-06-30 | Auris Health, Inc. | Catheter driver system |
US11464586B2 (en) | 2009-04-29 | 2022-10-11 | Auris Health, Inc. | Flexible and steerable elongate instruments with shape control and support elements |
US10363103B2 (en) | 2009-04-29 | 2019-07-30 | Auris Health, Inc. | Flexible and steerable elongate instruments with shape control and support elements |
US11419518B2 (en) | 2011-07-29 | 2022-08-23 | Auris Health, Inc. | Apparatus and methods for fiber integration and registration |
US10667720B2 (en) | 2011-07-29 | 2020-06-02 | Auris Health, Inc. | Apparatus and methods for fiber integration and registration |
US11147637B2 (en) | 2012-05-25 | 2021-10-19 | Auris Health, Inc. | Low friction instrument driver interface for robotic systems |
US10478595B2 (en) | 2013-03-07 | 2019-11-19 | Auris Health, Inc. | Infinitely rotatable tool with finite rotating drive shafts |
US11779414B2 (en) | 2013-03-14 | 2023-10-10 | Auris Health, Inc. | Active drive for robotic catheter manipulators |
US10556092B2 (en) | 2013-03-14 | 2020-02-11 | Auris Health, Inc. | Active drives for robotic catheter manipulators |
US11213363B2 (en) | 2013-03-14 | 2022-01-04 | Auris Health, Inc. | Catheter tension sensing |
US11452844B2 (en) | 2013-03-14 | 2022-09-27 | Auris Health, Inc. | Torque-based catheter articulation |
US10213264B2 (en) | 2013-03-14 | 2019-02-26 | Auris Health, Inc. | Catheter tension sensing |
US10493239B2 (en) | 2013-03-14 | 2019-12-03 | Auris Health, Inc. | Torque-based catheter articulation |
US11517717B2 (en) | 2013-03-14 | 2022-12-06 | Auris Health, Inc. | Active drives for robotic catheter manipulators |
US9326822B2 (en) | 2013-03-14 | 2016-05-03 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
US10687903B2 (en) | 2013-03-14 | 2020-06-23 | Auris Health, Inc. | Active drive for robotic catheter manipulators |
US10543047B2 (en) | 2013-03-15 | 2020-01-28 | Auris Health, Inc. | Remote catheter manipulator |
US9408669B2 (en) | 2013-03-15 | 2016-08-09 | Hansen Medical, Inc. | Active drive mechanism with finite range of motion |
US11376085B2 (en) | 2013-03-15 | 2022-07-05 | Auris Health, Inc. | Remote catheter manipulator |
US11413428B2 (en) | 2013-03-15 | 2022-08-16 | Auris Health, Inc. | Catheter insertion system and method of fabrication |
US10376672B2 (en) | 2013-03-15 | 2019-08-13 | Auris Health, Inc. | Catheter insertion system and method of fabrication |
US12089912B2 (en) | 2013-03-15 | 2024-09-17 | Auris Health, Inc. | User input devices for controlling manipulation of guidewires and catheters |
US12114943B2 (en) | 2013-03-15 | 2024-10-15 | Auris Health, Inc. | Remote catheter manipulator |
US11504195B2 (en) | 2013-03-15 | 2022-11-22 | Auris Health, Inc. | Active drive mechanism for simultaneous rotation and translation |
US11660153B2 (en) | 2013-03-15 | 2023-05-30 | Auris Health, Inc. | Active drive mechanism with finite range of motion |
US10849702B2 (en) | 2013-03-15 | 2020-12-01 | Auris Health, Inc. | User input devices for controlling manipulation of guidewires and catheters |
US10792112B2 (en) | 2013-03-15 | 2020-10-06 | Auris Health, Inc. | Active drive mechanism with finite range of motion |
US10524867B2 (en) | 2013-03-15 | 2020-01-07 | Auris Health, Inc. | Active drive mechanism for simultaneous rotation and translation |
US10820952B2 (en) | 2013-03-15 | 2020-11-03 | Auris Heath, Inc. | Rotational support for an elongate member |
US10219874B2 (en) | 2013-10-24 | 2019-03-05 | Auris Health, Inc. | Instrument device manipulator with tension sensing apparatus |
US10046140B2 (en) * | 2014-04-21 | 2018-08-14 | Hansen Medical, Inc. | Devices, systems, and methods for controlling active drive systems |
US11278703B2 (en) | 2014-04-21 | 2022-03-22 | Auris Health, Inc. | Devices, systems, and methods for controlling active drive systems |
US10569052B2 (en) | 2014-05-15 | 2020-02-25 | Auris Health, Inc. | Anti-buckling mechanisms for catheters |
US11690977B2 (en) | 2014-05-15 | 2023-07-04 | Auris Health, Inc. | Anti-buckling mechanisms for catheters |
US10398518B2 (en) | 2014-07-01 | 2019-09-03 | Auris Health, Inc. | Articulating flexible endoscopic tool with roll capabilities |
US11350998B2 (en) | 2014-07-01 | 2022-06-07 | Auris Health, Inc. | Medical instrument having translatable spool |
US10499999B2 (en) | 2014-10-09 | 2019-12-10 | Auris Health, Inc. | Systems and methods for aligning an elongate member with an access site |
US11344377B2 (en) | 2014-10-09 | 2022-05-31 | Auris Health, Inc. | Systems and methods for aligning an elongate member with an access site |
US11406461B2 (en) * | 2015-06-23 | 2022-08-09 | Stryker Corporation | Delivery system and method for delivering material to a target site during a medical procedure |
US11771521B2 (en) | 2015-09-09 | 2023-10-03 | Auris Health, Inc. | Instrument device manipulator with roll mechanism |
US10631949B2 (en) | 2015-09-09 | 2020-04-28 | Auris Health, Inc. | Instrument device manipulator with back-mounted tool attachment mechanism |
US10786329B2 (en) | 2015-09-09 | 2020-09-29 | Auris Health, Inc. | Instrument device manipulator with roll mechanism |
US11534249B2 (en) | 2015-10-30 | 2022-12-27 | Auris Health, Inc. | Process for percutaneous operations |
US11559360B2 (en) | 2015-10-30 | 2023-01-24 | Auris Health, Inc. | Object removal through a percutaneous suction tube |
US11382650B2 (en) | 2015-10-30 | 2022-07-12 | Auris Health, Inc. | Object capture with a basket |
US11571229B2 (en) | 2015-10-30 | 2023-02-07 | Auris Health, Inc. | Basket apparatus |
US11147950B2 (en) | 2016-01-07 | 2021-10-19 | Robocath | Robotizable module for driving an elongated flexible medical member, medical robot and system including such a module |
US10454347B2 (en) | 2016-04-29 | 2019-10-22 | Auris Health, Inc. | Compact height torque sensing articulation axis assembly |
US10903725B2 (en) | 2016-04-29 | 2021-01-26 | Auris Health, Inc. | Compact height torque sensing articulation axis assembly |
US10463439B2 (en) | 2016-08-26 | 2019-11-05 | Auris Health, Inc. | Steerable catheter with shaft load distributions |
US11701192B2 (en) | 2016-08-26 | 2023-07-18 | Auris Health, Inc. | Steerable catheter with shaft load distributions |
US11241559B2 (en) | 2016-08-29 | 2022-02-08 | Auris Health, Inc. | Active drive for guidewire manipulation |
US10682189B2 (en) | 2016-08-31 | 2020-06-16 | Auris Health, Inc. | Length conservative surgical instrument |
US11564759B2 (en) | 2016-08-31 | 2023-01-31 | Auris Health, Inc. | Length conservative surgical instrument |
US11771309B2 (en) | 2016-12-28 | 2023-10-03 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
US10543048B2 (en) | 2016-12-28 | 2020-01-28 | Auris Health, Inc. | Flexible instrument insertion using an adaptive insertion force threshold |
US11832907B2 (en) | 2017-06-28 | 2023-12-05 | Auris Health, Inc. | Medical robotics systems implementing axis constraints during actuation of one or more motorized joints |
US11026758B2 (en) | 2017-06-28 | 2021-06-08 | Auris Health, Inc. | Medical robotics systems implementing axis constraints during actuation of one or more motorized joints |
US10779898B2 (en) | 2017-12-11 | 2020-09-22 | Auris Health, Inc. | Systems and methods for instrument based insertion architectures |
US10470830B2 (en) | 2017-12-11 | 2019-11-12 | Auris Health, Inc. | Systems and methods for instrument based insertion architectures |
US11839439B2 (en) | 2017-12-11 | 2023-12-12 | Auris Health, Inc. | Systems and methods for instrument based insertion architectures |
US11510736B2 (en) | 2017-12-14 | 2022-11-29 | Auris Health, Inc. | System and method for estimating instrument location |
US10888386B2 (en) | 2018-01-17 | 2021-01-12 | Auris Health, Inc. | Surgical robotics systems with improved robotic arms |
US10820954B2 (en) | 2018-06-27 | 2020-11-03 | Auris Health, Inc. | Alignment and attachment systems for medical instruments |
US10820947B2 (en) | 2018-09-28 | 2020-11-03 | Auris Health, Inc. | Devices, systems, and methods for manually and robotically driving medical instruments |
US11864842B2 (en) | 2018-09-28 | 2024-01-09 | Auris Health, Inc. | Devices, systems, and methods for manually and robotically driving medical instruments |
US11638618B2 (en) | 2019-03-22 | 2023-05-02 | Auris Health, Inc. | Systems and methods for aligning inputs on medical instruments |
US11896330B2 (en) | 2019-08-15 | 2024-02-13 | Auris Health, Inc. | Robotic medical system having multiple medical instruments |
US11737845B2 (en) | 2019-09-30 | 2023-08-29 | Auris Inc. | Medical instrument with a capstan |
US11950872B2 (en) | 2019-12-31 | 2024-04-09 | Auris Health, Inc. | Dynamic pulley system |
US11439419B2 (en) | 2019-12-31 | 2022-09-13 | Auris Health, Inc. | Advanced basket drive mode |
Also Published As
Publication number | Publication date |
---|---|
EP2777594B1 (en) | 2021-11-17 |
US11504195B2 (en) | 2022-11-22 |
US10524867B2 (en) | 2020-01-07 |
EP2777594A2 (en) | 2014-09-17 |
US20170071684A1 (en) | 2017-03-16 |
EP2777594A3 (en) | 2015-03-11 |
US20200129252A1 (en) | 2020-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11504195B2 (en) | Active drive mechanism for simultaneous rotation and translation | |
US11660153B2 (en) | Active drive mechanism with finite range of motion | |
US20210077209A1 (en) | Rotational support for an elongate member | |
US10478595B2 (en) | Infinitely rotatable tool with finite rotating drive shafts | |
US20220072281A1 (en) | Active drive for guidewire manipulation | |
US20140276389A1 (en) | Selective grip device for drive mechanism | |
CN109414294B (en) | Methods, systems, and devices for initializing surgical tools | |
US10307215B2 (en) | Locking articulating robotic surgical tools | |
EP3500206B1 (en) | Control of the rate of actuation of tool mechanism based on inherent parameters | |
CN114191092A (en) | Interventional operation robot slave end delivery device | |
JP2020506768A (en) | Resistance to torque when articulating surgical tools | |
US20240001541A1 (en) | Engagement control of instrument feeder devices | |
US20210068615A1 (en) | Robotic surgical system | |
Geraldes et al. | On the use of discrete steps in robot-aided flexible needle insertion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HANSEN MEDICAL, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOKISH, ARKADY;MACNAMARA, FRANCIS;REEL/FRAME:030623/0676 Effective date: 20130522 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |