US20060280770A1 - Coating for implantable devices and a method of forming the same - Google Patents
Coating for implantable devices and a method of forming the same Download PDFInfo
- Publication number
- US20060280770A1 US20060280770A1 US11/506,656 US50665606A US2006280770A1 US 20060280770 A1 US20060280770 A1 US 20060280770A1 US 50665606 A US50665606 A US 50665606A US 2006280770 A1 US2006280770 A1 US 2006280770A1
- Authority
- US
- United States
- Prior art keywords
- polymers
- stents
- implantable device
- stent
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/30—Inorganic materials
- A61L27/306—Other specific inorganic materials not covered by A61L27/303 - A61L27/32
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/08—Materials for coatings
- A61L29/085—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L33/00—Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
- A61L33/0005—Use of materials characterised by their function or physical properties
- A61L33/0011—Anticoagulant, e.g. heparin, platelet aggregation inhibitor, fibrinolytic agent, other than enzymes, attached to the substrate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/416—Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/602—Type of release, e.g. controlled, sustained, slow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/606—Coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/606—Coatings
- A61L2300/608—Coatings having two or more layers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2420/00—Materials or methods for coatings medical devices
- A61L2420/02—Methods for coating medical devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2420/00—Materials or methods for coatings medical devices
- A61L2420/08—Coatings comprising two or more layers
Definitions
- the invention relates to coatings and methods of forming the coatings on implantable devices or endoluminal prostheses, such as stents.
- Percutaneous transluminal coronary angioplasty is a procedure for treating heart disease.
- a catheter assembly having a balloon portion is introduced percutaneously into the cardiovascular system of a patient via the brachial or femoral artery.
- the catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion.
- the balloon is inflated to a predetermined size to radially press against the atherosclerotic plaque of the lesion for remodeling of the vessel wall.
- the balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature.
- a problem associated with the above procedure includes formation of intimal flaps or torn arterial linings which can collapse and occlude the conduit after the balloon is deflated. Vasospasms and recoil of the vessel wall also threaten vessel closure. Moreover, thrombosis and restenosis of the artery may develop over several months after the procedure, which may require another angioplasty procedure or a surgical by-pass operation. To reduce the partial or total occlusion of the artery by the collapse of arterial lining, and to reduce the chance of the development of thrombosis and restenosis, an expandable, intraluminal prosthesis, one example of which includes a stent, is implanted in the lumen to maintain the vascular patency.
- Stents are used not only as a mechanical intervention but also as a vehicle for providing biological therapy.
- stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway.
- stents are capable of being compressed, so that they can be inserted through small cavities via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in the patent literature disclosing stents which have been successfully applied in PTCA procedures include stents illustrated in U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco, and U.S. Pat. No. 4,886,062 issued to Wiktor.
- restenosis is still a significant clinical problem with rates ranging from 20-40%.
- restenosis does occur in the stented segment, its treatment can be challenging, as clinical options are more limited as compared to lesions that were treated solely with a balloon.
- Biological therapy can be achieved by medicating the stents.
- Medicated stents provide for the local administration of a therapeutic substance at the diseased site.
- systemic administration of such medication often produces adverse or toxic side effects for the patient.
- Local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more favorable results.
- One proposed method for medicating stents disclosed seeding the stents with endothelial cells (Dichek, D. A. et al. Seeding of Intravascular Stents With Genetically Engineered Endothelial Cells; Circulation 1989; 80: 1347-1353). Briefly, endothelial cells were seeded onto stainless steel stents and grown until the stents were covered. The cells were therefore able to be delivered to the vascular wall where they provided therapeutic proteins.
- Another proposed method of providing a therapeutic substance to the vascular wall included use of a heparin-coated metallic stent, whereby a heparin coating was ionically or covalently bonded to the stent.
- stents where immersed in the solution 12 to 15 times or sprayed 20 times.
- the evaporation of the solvent provided a white coating.
- a white coloration is generally indicative of a brittle coating.
- a brittle coating is an undesirable characteristic, since portions of the coating typically become detached during stent expansion. Detachment of the coating causes the quantity of the therapeutic substance to fall below a threshold level sufficient for the effective treatment of a patient.
- the concentration of the therapeutic substance may also be advantageous to maintain the concentration of the therapeutic substance at a therapeutically acceptable level for a prolonged duration of time.
- the therapeutic substance may be required to be released at the target site for an extended duration of time. Accordingly, it is desirable to provide a coating which can maintain the residence time of a substance at a therapeutically useful concentration for an effective duration of time.
- a prosthesis such as a balloon-expandable stent or a self-expandable stent, which includes a coating having a reservoir region carrying an active ingredient, e.g., actinomycin D or taxol.
- a primer region free from any active ingredients, can be disposed between the reservoir region and the surface of the prosthesis.
- the primer can act as an intermediary tie layer between the surface of the prosthesis and the reservoir region.
- the primer and reservoir regions can be made form the same polymeric material or different polymeric materials.
- the prosthesis can additionally include a barrier region disposed on a selected portion of the reservoir region for reducing the rate at which the active ingredient is released. In one embodiment, the barrier layer contains inorganic particles.
- suitable polymeric materials for the primer layer include polyisocyanates, unsaturated polymers, amine content polymers, acrylates, polymers containing a high content of hydrogen bonding groups, and inorganic polymers.
- Biocompatible polymers can be used not only for the primer region, but also for the reservoir region.
- One examples of a biocompatible polymer includes ethylene vinyl alcohol copolymer.
- a method for forming a coating for an implantable device comprising forming a primer on at lease a selected portion of a surface of the implantable device and forming a reservoir region containing an active ingredient on at least a selected portion of the primer.
- the primer can provide an adhesive tie layer between the surface of the implantable device and the reservoir region.
- the method can additionally include forming a barrier layer on at lease a selected portion of the reservoir region for reducing the rate at which the active ingredient is released from the reservoir region.
- the act of forming the primer comprises applying a composition to a selected portion of the surface of the implantable device wherein the composition includes a thermoplastic polymer added to a solvent, and heating the composition applied to the implantable device to a temperature greater than about the glass transition temperature and less than about the melting temperature of the polymer.
- the act of forming the primer comprises applying a composition to a selected portion of the surface of the implantable device, wherein the composition comprises an inorganic polymer added to a solvent, and significantly removing the solvent to form the primer.
- the act of forming the primer comprises applying a composition to a selected portion of the surface of the implantable device, wherein the composition comprises a polymer added to a solvent, and heating the composition applied to the selected portion of the surface of the implantable device to a temperature above the glass transition temperature of the polymer.
- the act of forming the primer comprises applying a composition to a selected portion of the surface of the implantable device, wherein the composition comprises a prepolymer and an initiator, e.g., a free radical or UV initiator.
- the composition is then exposed to a condition such as UV radiation or heat to polymerize the prepolymer.
- a coating for a stent containing a first active ingredient and a second active ingredient, wherein the rate of release of the first active ingredient is slower than the rate of release of the second active ingredient.
- the coating can be made from a polymeric material such as an ethylene vinyl alcohol copolymer.
- the coating can include a first region containing the first and second active ingredients, and a second region, free from any active ingredients, located between the first region and the surface of the stent. The second region increases the ability of the coating to be retained by the stent.
- FIG. 1A illustrates a fluid on a solid substrate having a contact angle ⁇ 1 ;
- FIG. 1B illustrates a fluid on a solid substrate having a contact angle ⁇ 2 ;
- FIGS. 2A-2E illustrate a coating in accordance with some of the embodiment of the present invention
- FIG. 3A and 3B illustrate a coating having different layers
- FIG. 4 graphically illustrates elution profiles for stents with a coating of ethylene vinyl alcohol copolymer impregnated with vinblastine made according to Example 4;
- FIG. 5 graphically illustrates in vitro experimental data, in accordance with Example 15, showing affects of actinomycin D, mitomycin, and docetaxel on smooth muscle cell proliferation;
- FIG. 6A is a picture of a histology slide of a coronary vessel from the control group in accordance with Example 16;
- FIG. 6B is a picture of a histology slide of a coronary vessel from the actinomycin D group in accordance with Example 16
- FIG. 7A is a picture of a histology slide of a coronary vessel from the control group in accordance with Example 26;
- FIG. 7B is a picture of a histology slide of a coronary vessel from the actinomycin D group in ⁇ accordance with Example 26.
- compositions for a primer layer are prepared by conventional methods wherein all components are combined, then blended. More particularly, in accordance to one embodiment, a predetermined amount of a polymer or a prepolymer is added to a predetermined amount of a solvent or a combination of solvents.
- the mixture can be prepared in ambient pressure and under anhydrous atmosphere. If necessary, a free radical or UV initiator can be added to the composition for initiating the curing or cross-linking of the prepolymer. Heating and stirring and/or mixing can be employed to effect dissolution of the polymer into the solvent.
- Polymer “poly,” and “polymeric” are defined as compounds that are the product of a polymerization reaction and are inclusive of homopolymers, copolymers, terpolymers etc., including random, alternating, block, and graft variations thereof.
- the polymers should have a high capacity of adherence to the surface of an implantable device, such as a metallic surface of a stent.
- Stainless steel such as 316L, is a commonly used material for the manufacturing of a stent.
- Stainless steel includes a chromium oxide surface layer which makes the stent corrosion resistant and confers, in large part, biocompatibility properties to the stent.
- the chromium oxide layer presents oxide, anionic groups, and hydroxyl moieties, which are polar. Consequently, polymeric materials with polar substituents and cationic groups can adhere to the surface.
- suitable polymeric material include polyisocyanates, unsaturated polymers, high amine content polymers, acrylates, polymers with high content of hydrogen bonding groups, silane coupling agents, titanates and zirconates.
- polyisocyanates include triisocyanurate, alphatic polyisocyanate resins based on hexamethylene diisocyanate, aromatic polyisocyanate prepolymers based on diphenylmethane diisocyanate, polyisocyanate polyether polyurethanes based on diphenylmethane diisocyanate, polymeric isocyanates based on toluene diisocyanate, polymethylene polyphenyl isocyanate, and polyester polyurethanes.
- unsaturated polymers include polyester diacrylates, polycaprolactone diacrylates, polyester diacrylates, polytetramethylene glycol diacrylate, polyacrylates with at least two acrylate groups, polyacrylated polyurethanes, and triacrylates.
- unsaturated prepolymers a free radical or UV initiator can be added to the composition for the thermal or UV curing or cross-linking process.
- examples of free radicals initiators are benzoyl peroxide; bis(2,4-dichlorobenzoyl) peroxide; dicumyl peroxide; 2,5-bis(tert-butyl peroxy)-2,5-dimethyl hexane; ammonium persulfate, and 2,2′-azobisisobutyronitrile.
- each initiator requires a different temperature to induce decomposition.
- examples of initiators include 2,2-dimethoxy-2-phenylacetophenone; 1-hydroxycyclohexyl phenyl ketone; benzoin ethyl ether; and benzophenone. These initators can be activated by illumination with a medium pressure Hg bulb that contains wavelengths between 250 and 350 nm.
- high amine content polymers include polyethyleneamine, polyallylamine, and polylysine.
- acrylates include copolymers of ethyl acrylate, methyl acrylate, butyl methacrylate, methacrylic acid, acrylic acid, and cyanoacrylates.
- high content of hydrogen bonding group polymers include polyethylene-co-polyvinyl alcohol, epoxy polymers based on the diglycidylether of bisphenol A with amine crosslinking agents, epoxy polymers cured by polyols and lewis acid catalysts, epoxy phenolics, epoxy-polysulfides, ethylene vinyl acetate, melamine formaldehydes, polyvinylalcohol-co-vinyl acetate polymers, resorcinol-formaldehydes, urea-formaldehydes, polyvinylbutyral, polyvinylacetate, alkyd polyester resins, acrylic acid modified ethylene vinyl acetate polymers, methacrylic acid modified ethylene vinyl acetate polymers, acrylic acid modified ethylene acrylate polymers, methacrylic acid modified ethylene acrylate polymers, anhydride modified ethylene acrylate copolymers, and anhydride modified ethylene vinyl acetate polymers.
- silane coupling agents include 3-aminopropyltriethoxysilane and (3-glydidoxypropyl) methyldiethoxysilane.
- titanates include tetra-iso-propyl titanate and tetra-n-butyl titanate.
- zirconates include n-propyl zirconate and n-butyl zirconate.
- Biocompatible polymers can also be used for the primer material.
- biocompatible primers include poly(hydroxyvalerate), poly(L-lactic acid), polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoesters, polyanhydrides, poly(glycolic acid), poly(D,L-lactic acid), poly(glycolic acid-co-trimethylene carbonate), polyphosphoesters, polyphosphoester urethanes, poly(amino acids), cyanoacrylates, poly(trimethylene carbonates), poly(iminocarbonate), copoly(ether-esters) (e.g.
- polyalkylene oxalates polyphosphazenes and biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid.
- polyurethanes, silicones, and polyesters could be used and other polymers could also be used if they can be dissolved and cured or polymerized on the stent such as polyolefins, polyisobutylene and ethylene-alphaolefin copolymers; acrylic polymers and copolymers, vinyl halide polymers and copolymers, such as polyvinyl chloride; polyvinyl ethers, such as polyvinyl methyl ether; polyvinylidene halides, such as polyvinylidene fluoride and polyvinylidene chloride; polyacrylonitrile; polyvinyl ketones; polyvinyl aromatics, such as polystyrene; polyvinyl esters, such as polyvinyl acetate; copoly
- Ethylene vinyl alcohol is functionally a very suitable choice of polymer.
- Ethylene vinyl alcohol copolymer commonly known by the generic name EVOH or by the trade name EVOH, refers to copolymers comprising residues of both ethylene and vinyl alcohol monomers.
- ethylene vinyl alcohol copolymer may also be a terpolymer so as to include small amounts of additional monomers, for example less than about five (5) mole percentage of styrenes, propylene, or other suitable monomers.
- the copolymer comprises a mole percent of ethylene of from about 27% to about 47%. Typically, 44 mole percent ethylene is suitable.
- Ethylene vinyl alcohol copolymers are available commercially from companies such as Aldrich Chemical Company, Milwaukee, Wis., or EVOH Company of America, Lisle, Ill., or can be prepared by conventional polymerization procedures that are well known to one of ordinary skill in the art.
- the copolymer possesses good adhesive qualities to the surface of a stent, particularly stainless steel surfaces, and has illustrated the ability to expand with a stent without any significant detachment of the copolymer from the surface of the stent.
- the solvent should be mutually compatible with the polymer and should be capable of placing the polymer into solution at the concentration desired in the solution.
- Useful solvents should also be able to expand the chains of the polymer for maximum interaction with the surface of the device, such as a metallic surface of a stent.
- solvent examples include, but are not limited to, dimethylsulfoxide (DMSO), chloroform, acetone, water (buffered saline), xylene, acetone, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, ethyl acetate, methylethylketone, propylene glycol monomethylether, isopropanol, N-methyl pyrrolidinone, toluene and mixtures thereof.
- DMSO dimethylsulfoxide
- chloroform acetone
- acetone water (buffered saline)
- xylene acetone
- methanol ethanol
- ethanol 1-propanol
- tetrahydrofuran 1-butanone
- dimethylformamide dimethylacetamide
- cyclohexanone ethyl acetate
- the polymer can comprise from about 0.1% to about 35%, more narrowly about 2% to about 20% by weight of the total weight of the composition, and the solvent can comprise from about 65% to about 99.9%, more narrowly about 80% to about 98% by weight of the total weight of the composition.
- a specific weight ratio is dependent on factors such as the material from which the implantable device is made and the geometrical structure of the device.
- a fluid can be added to the composition to enhance the wetting of the composition for a more uniform coating application.
- a suitable fluid typically has a high capillary permeation.
- Capillary permeation or wetting is the movement of a fluid on a solid substrate driven by interfacial energetics.
- Capillary permeation is quantitated by a contact angle, defined as an angle at the tangent of a droplet in a fluid phase that has taken an equilibrium shape on a solid surface.
- a low contact angle means a higher wetting liquid.
- a suitably high capillary permeation corresponds to a contact angle less than about 90°.
- FIG. 1A illustrates a fluid droplet 10 A on a solid substrate 12 , for example a stainless steel surface.
- Fluid droplet 10 A has a high capillary permeation that corresponds to a contact angle ⁇ 1 which is less than about 90°.
- FIG. 1B illustrates a fluid droplet 10 B on solid substrate 12 , having a low capillary permeation that corresponds to a contact angle ⁇ 2 , which is greater than about 90°.
- the wetting fluid typically, should have a viscosity not greater than about 50 centipoise, narrowly about 0.3 to about 5 centipoise, more narrowly about 0.4 to about 2.5 centipoise. The wetting fluid, accordingly, when added to the composition, reduces the viscosity of composition.
- the wetting fluid should be mutually compatible with the polymer and the solvent and should not precipitate the polymer.
- the wetting fluid can also act as the solvent.
- Useful examples of the wetting fluid include, but are not limited to, tetrahydrofuran (THF), dimethylformamide (DMF), 1-butanol, n-butyl acetate, dimethyl acetamide (DMAC), and mixtures and combinations thereof.
- the polymer can comprise from about 0.1% to about 35%, more narrowly from about 2% to about 20% by weight of the total weight of the composition;
- the solvent can comprise from about 19.9% to about 98.9%, more narrowly from about 58% to about 84% by weight of the total weight of the composition;
- the wetting fluid can comprise from about 1% to about 80%, more narrowly from about 5% to about 40% by weight of the total weight of the composition.
- the specific weight ratio of the wetting fluid depends on the type of wetting fluid employed and type of and the weight ratio of the polymer and the solvent.
- tetrahydrofuran used as the wetting fluid can comprise, for example, from about 1% to about 44%, more narrowly about 21% by weight of the total weight of the solution.
- Dimethylformamide used as the wetting fluid can comprise, for example, from about 1% to about 80%, more narrowly about 8% by weight of the total weight of the solution.
- 1-butanol used as the wetting fluid can comprise, for example, from about 1% to about 33%, more narrowly about 9% by weight of the total weight of the solution.
- N-butyl acetate used as the wetting fluid can comprise, for example, from about 1% to about 34%, more narrowly about 14% by weight of the total weight of the solution.
- Dimethyl acetamide used as the wetting fluid can comprise, for example, from about 1% to about 40%, more narrowly about 20% by weight of the total weight of the solution.
- the presence of an active ingredient in a polymeric matrix typically interferes with the ability of the matrix to adhere effectively to the surface of the device.
- An increase in the quantity of the active ingredient reduces the effectiveness of the adhesion.
- High drug loadings of, for example, 10-40% by weight in the coating significantly hinder the retention of the coating on the surface of the device.
- the primer layer serves as a functionally useful intermediary layer between the surface of the device and an active ingredient-containing or reservoir coating.
- the primer layer provides for an adhesive tie between the reservoir coating and the device—which, in effect, would also allow for the quantity of the active ingredient in the reservoir coating to be increased without compromising the ability of the reservoir coating to be effectively contained on the device during delivery and, if applicable, expansion of the device.
- Ethylene vinyl alcohol copolymer adheres well to metallic surfaces, particularly devices made from stainless steel.
- the copolymer has illustrated good elastic qualities, which allow the copolymer to be delivered and, if applicable, expanded with the device without any significant detachment of the copolymer form the surface of the device.
- Table 1 illustrates some examples of suitable combinations for the primer composition: TABLE 1 Wetting Polymer Solvent Fluid Initiators EVOH DMSO — — EVOH DMSO THF — polyester polyurethanes dimethylformamide — — polyester polyurethanes dimethylformamide DMAC — polycaprolactone chloroform n-butyl acetate polyacrylate polyurethane ethyl acetate — benzophenone polyacrylated polyurethane ethyl acetate — 1- hydroxycyclohexyl phenyl ketone polyethyleneamine H 2 O — — methacrylic acid THF — — copolymer ethylene vinylacetate methylethylketone — — (e.g., 40% vinyl acetate content) aminopropyltriethoxysilane ethanol/water — — 95/5 blend (w/w) (3-glydidoxypropyl) toluene — — methyldiethoxys
- compositions for an active ingredient-containing or reservoir layer are prepared by conventional methods wherein all components are combined, then blended. More particularly, in accordance to one embodiment, a predetermined amount of a polymeric compound is added to a predetermined amount of a mutually compatible solvent or combination of solvents.
- the polymeric compound can be added at ambient pressure and under anhydrous atmosphere. If necessary, gentle heating and stirring and/or mixing can be employed to effect dissolution of the polymer into the solvent, for example 12 hours in a water bath at about 60° C.
- the polymer chosen must be a polymer that is biocompatible and minimizes irritation to the vessel wall when the device is implanted.
- the polymer may be either a biostable or a bioabsorbable polymer.
- Bioabsorbable polymers that could be used include poly(hydroxyvalerate), poly(L-lactic acid), polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoesters, polyanhydrides, poly(glycolic acid), poly(D,L-lactic acid), poly(glycolic acid-co-trimethylene carbonate), polyphosphoesters, polyphosphoester urethanes, poly(amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), copoly(ether-esters) (e.g.
- polyalkylene oxalates polyphosphazenes and biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid.
- biostable polymers with a relatively low chronic tissue response such as polyurethanes, silicones, and polyesters could be used and other polymers could also be used if they can be dissolved and cured or polymerized on the stent such as polyolefins, polyisobutylene and ethylene-alphaolefin copolymers; acrylic polymers and copolymers, vinyl halide polymers and copolymers, such as polyvinyl chloride; polyvinyl ethers, such as polyvinyl methyl ether; polyvinylidene halides, such as polyvinylidene fluoride and polyvinylidene chloride; polyacrylonitrile; polyvinyl ketones; polyvinyl aromatics, such as polystyrene; polyvinyl esters, such as polyvin
- Ethylene vinyl alcohol is functionally a very suitable choice of polymer.
- the copolymer allows for good control capabilities over the release rate of the active ingredient.
- an increase in the amount of the ethylene comonomer content decreases the rate that the active ingredient is released from the copolymer matrix.
- the release rate of the active ingredient typically decreases as the hydrophilicity of the copolymer decreases.
- An increase in the amount of the ethylene comonomer content increases the overall hydrophobicity of the copolymer, especially as the content of vinyl alcohol is concomitantly reduced.
- the release rate and the cumulative amount of the active ingredient that is released is directly proportional to the total initial content of the ingredient in the copolymer matrix. Accordingly, a wide spectrum of release rates can be achieved by modifying the ethylene comonomer content and the initial amount of the active ingredient.
- the choice of polymer for the reservoir layer can be the same as or different from the selected polymer for the primer layer.
- the use of the same polymer significantly reduces or eliminates any interfacial incompatibilities, such as lack of an adhesive tie or bond, which may exist with the employment of two different polymeric layers. In effect, it can be said that the use of the same polymeric material for the primer layer and the reservoir layer results in the formation of a single-layered coating.
- the solvent should be capable of placing the polymer into solution at the concentration desired in the solution.
- solvent can include, but are not limited to, DMSO, chloroform, acetone, water (buffered saline), xylene, acetone, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, and N-methyl pyrrolidinone.
- a suitable choice of solvent is iso-propylalcohol (IPA) admixed with water.
- an active ingredient is dispersed in the blended composition of the polymer and the solvent.
- the active ingredient should be in true solution or saturated in the blended composition. If the active ingredient is not completely soluble in the composition, operations including mixing, stirring, and/or agitation can be employed to effect homogeneity of the residues.
- the active ingredient may be added so that the dispersion is in fine particles.
- the mixing of the active ingredient can be conducted in an anhydrous atmosphere, at ambient pressure, and at room temperature such that supersaturating the active ingredient is not desired.
- the active ingredient should inhibit the activity of vascular smooth muscle cells. More specifically, the active ingredient is aimed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells.
- Smooth muscle cells include those cells derived from the medial and adventitial layers of the vessel which proliferate in intimal hyperplastic vascular sites following vascular trauma or injury. Under light microscopic examination, characteristics of smooth muscle cells include a histological morphology of a spindle shape with an oblong nucleus located centrally in the cell with nucleoli present and myofibrils in the sarcoplasm. Under electron microscopic examination, smooth muscle cells have long slender mitochondria in the juxtanuclear sarcoplasm, a few tubular elements of granular endoplasmic reticulum, and numerous clusters of free ribosomes. A small Golgi complex may also be located near one pole of the nucleus.
- “Migration” of smooth muscle cells means movement of these cells in vivo from the medial layers of a vessel into the intima, such as may also be studied in vitro by following the motion of a cell from one location to another, e.g., using time-lapse cinematography or a video recorder and manual counting of smooth muscle cell migration out of a defined area in the tissue culture over time.
- “Abnormal” or “inappropriate” proliferation means division, growth or migration of cells occurring more rapidly or to a significantly greater extent than typically occurs in a normally functioning cell of the same type, i.e., hyper-proliferation.
- “Inhibiting” cellular activity means reducing, delaying or eliminating smooth muscle cell hyperplasia, restenosis, and vascular occlusions, particularly following biologically or mechanically mediated vascular injury or trauma or under conditions that would predispose a mammal to suffer such a vascular injury or trauma.
- the term “reducing” means decreasing the intimal thickening that results from stimulation of smooth muscle cell proliferation.
- “Delaying” means retarding the progression of the hyper-proliferative vascular disease or delaying the time until onset of visible intimal hyperplasia, as observed, for example, by histological or angiographic examination.
- “Elimination” of restenosis following vascular trauma or injury means completely “reducing” and/or completely “delaying” intimal hyperplasia in a patient to an extent which makes it no longer necessary to surgically intervene, i.e., to re-establish a suitable blood flow through the vessel by, for example, repeat angioplasty, atherectomy, or coronary artery bypass surgery.
- the effects of reducing, delaying, or eliminating restenosis may be determined by methods known to one of ordinary skill in the art, including, but not limited to, angiography, intravascular ultrasound, fluoroscopic imaging, fiber optic visualization, optical coherence tomography, intravascular MRI, or biopsy and histology.
- Biologically mediated vascular injury includes, but is not limited to, injury caused by or attributed to autoimmune disorders, alloimmune related disorders, infectious disorders including endotoxins and herpes viruses such as cytomegalovirus, metabolic disorders such as atherosclerosis, and vascular injury resulting from hypothermia and irradiation.
- Mechanically mediated vascular injury includes, but is not limited to, vascular injury caused by catheterization procedures or vascular scraping procedures such as percutaneous transluminal coronary angioplasty, vascular surgery, stent placement, transplantation surgery, laser treatment, and other invasive procedures which disrupted the integrity of the vascular intima or endothelium.
- the active ingredient of the invention is not restricted in use for therapy following vascular injury or trauma; rather, the usefulness of the active ingredient will also be determined by the ingredient's ability to inhibit cellular activity of smooth muscle cells or inhibit the development of restenosis.
- the active ingredient also includes any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention as well as having positive pharmacological effects on the expression of the extracellular matrix.
- the active ingredient can also be for enhancing wound healing in a vascular site and improving the structural and elastic properties of the vascular site.
- active ingredients include antiproliferative substances as well as antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antioxidant, and combinations thereof.
- a suitable example of an antiproliferative substance includes actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck).
- actinomycin D Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin II, actinomycin X 1 , and actinomycin C 1 .
- suitable antineoplastics include paclitaxel and docetaxel.
- antiplatelets examples include sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogs, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudin, thrombin inhibitor (available from Biogen), and 7E-3B® (an antiplatelet drug from Centocore).
- sodium heparin low molecular weight heparin
- hirudin argatroban
- argatroban forskolin
- vapiprost vapiprost
- prostacyclin and prostacyclin analogs dextran
- D-phe-pro-arg-chloromethylketone synthetic antithrombin
- dipyridamole dipyridamole
- Suitable antimitotic agents include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, adriamycin, and mutamycin.
- suitable cytostatic or antiproliferative agents include angiopeptin (a somatostatin analog from Ibsen), angiotensin converting enzyme inhibitors such as CAPTOPRIL (available from Squibb), CILAZAPRIL (available from Hoffman-LaRoche), or LISINOPRIL (available from Merck); calcium channel blockers (such as Nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonist, LOVASTATIN (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug from Merck), monoclonal antibodies (such as PDGF receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor (available form Glazo), Seramin (a
- compositions which may be appropriate include alpha-interferon, genetically engineered epithelial cells, and dexamethasone. Exposure of the composition to the active ingredient is not permitted to adversely alter the active ingredient's composition or characteristic. Accordingly, the particular active ingredient is selected for mutual compatibility with the blended composition.
- the dosage or concentration of the active ingredient required to produce a favorable therapeutic effect should be less than the level at which the active ingredient produces toxic effects and greater than the level at which non-therapeutic results are obtained.
- the dosage or concentration of the active ingredient required to inhibit the desired cellular activity of the vascular region can depend upon factors such as the particular circumstances of the patient; the nature of the trauma; the nature of the therapy desired; the time over which the ingredient administered resides at the vascular site; and if other bioactive substances are employed, the nature and type of the substance or combination of substances.
- Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.
- the polymer can comprise from about 0.1% to about 35%, more narrowly from about 2% to about 20% by weight of the total weight of the composition
- the solvent can comprise from about 59.9% to about 99.8%, more narrowly from about 79% to about 87% by weight of the total weight of the composition
- the active ingredient can comprise from about 0.1% to about 40%, more narrowly from about 1% to about 9% by weight of the total weight of the composition. More than 9% by weight of the active ingredient could adversely affect characteristics that are desirable in the polymeric coating, such as adhesion of the coating to the device. With the use of the primer layer, weight ratios of more than 9% for the active ingredient are achievable.
- Selection of a specific weight ratio of the polymer and solvent is dependent on factors such as, but not limited to, the material from which the device is made, the geometrical structure of the device, and the type and amount of the active ingredient employed.
- the particular weight percentage of the active ingredient mixed within the composition depends on factors such as duration of the release, cumulative amount of release, and release rate that is desired.
- a second fluid or solvent such as tetrahydrofuran (THF) or dimethylformamide (DMF) can be used to improve the solubility of an active ingredient in the composition and/or to increase the wetting of the composition. Increasing the wetting of the composition has been discovered to lead to the application of a more uniformed coating.
- the second fluid or solvent can be added to the composition or the active ingredient can be added to the second-solvent prior to admixture with the blend.
- the polymer can comprise from about 0.1% to about 35%, more narrowly from about 2% to about 20% by weight of the total weight of the composition
- the solvent can comprise from about 19.8% to about 98.8%, more narrowly from about 49% to about 79% by weight of the total weight of the composition
- the second solvent can comprise from about 1% to about 80%, more narrowly from about 5% to about 40% by weight of the total weight of the composition
- the active ingredient can comprise from about 0.1% to about 40%, more narrowly from about 1% to about 9% by weight of the total weight of the composition.
- Selection of a specific weight ratio of the polymer, the solvent, and the second solvent is dependent on factors such as, but not limited to, the material from which the implantable device is made, the geometrical structure of the device, and the type and amount of the active ingredient employed.
- the particular weight percentage of the active ingredient mixed within the composition depends on factors such as duration of the release, cumulative amount of release, and release rate that is desired.
- Table 2 is an exemplary list of suitable combinations in accordance with various embodiment of the present invention: TABLE 2 SECOND ACTIVE POLYMER SOLVENT SOLVENT INGREDIENT EVOH (29 mol % IPA/H 2 O — Actinomycin D ethylene content e.g., (1:1) Soarnol ®) EVOH (44 mol % DMSO THF Actinomycin D ethylene content) EVOH DMSO THF Actinomycin D EVOH DMSO DMF Paclitaxel poly(L-lactic acid) chloroform — dexamethasone poly(lactic acid-co- acetone — dexamethasone glycolic acid) Polyether urethane N-methyl — tocopherol pyrrolidinone
- compositions for a rate-reducing membrane or diffusion barrier layer are prepared by conventional methods wherein all components are combined.
- dispersion techniques should also be employed to circumvent agglomeration or formation of particle flocs.
- the embodiments for the composition for the reservoir layer can be applied on a selected region of the reservoir layer to form a rate reducing member or a barrier layer.
- the barrier layer can reduce the rate of release or delay the time at which the active ingredient is released from the reservoir layer.
- polyethylene glycol or polyethylene oxide can also be added to the blend.
- Ethylene vinyl alcohol is functionally a very suitable choice of polymer.
- the copolymer allows for good control capabilities over the release rate of the active ingredient. As a general rule, an increase in the amount of the ethylene comonomer content decreases the rate that the active ingredient is released from the copolymer matrix.
- the release rate of the active ingredient decreases as the hydrophilicity of the polymer decreases.
- An increase in the amount of the ethylene comonomer content increases the overall hydrophobicity of the copolymer, especially as the content of vinyl alcohol is concomitantly reduced.
- the choice of polymer for the barrier layer can be the same as the selected polymer for the reservoir.
- the use, if desired, of the same polymeric material for the barrier layer and the reservoir layer results in the formation of a single-layered coating.
- the use of the same polymeric material results in a seamless multi-layered coating in which the layers vary in terms of their content. Defined interfacial boundaries are, accordingly, significantly reduced or eliminated.
- particles of inorganic or organic type are added to the blend.
- the particles should be dispersed in the blend. Dispersed is defined as the particles being present as individual particles, not agglomerates or flocs. In certain polymer-solvent blends, certain particles will disperse with ordinary mixing. Otherwise the particles can be dispersed in the composition by high shear processes such as ball mill, disc mill, sand mill, attritor, rotor stator mixer, ultrasonication—all such high shear dispersion techniques being well known to one of ordinary skill in the art.
- one of the aforementioned wetting fluids can also be added to the blend. The wetting fluid can be added prior to, contemporaneously with, or subsequent to the agitation.
- Biocompatible dispersing agents in the form of surfactants, emulsifiers, or stablilizers may also be added to the blend to assist in particle dispersion.
- the particles can be made from any suitable material having barrier-type properties, such as, but not limited to tortuousity, excluded volume, and adsorptivity.
- Tortuosity refers to the exclusion of space in the polymer matrix for the creation of a defined space or a tortuous path through and about which the active ingredient must travel to be expelled from the layer.
- Excluded volume refers to the volume displaced by the particles that would otherwise be available for the diffusion of the active ingredient.
- Adsorptivity refers to the chromatographic effect which is dependent upon the interaction between the active ingredient used in combination with the particle.
- the active ingredient may be partially adsorbed and released by the surface of the particles, such as silica or famed carbon particles.
- the particles can be made from a metal oxide, such as rutile titanium oxide, anatase titanium dioxide, niobium oxide, tantalum oxide, zirconium oxide, iridium oxide, or tungsten oxide.
- the particles can be made from a main group oxide such as silica (silicon oxide) or alumina (aluminum oxide).
- Metallic particles such as gold, hafnium, platinum, iridium, palladium, tungsten, tantalum, niobium, zirconium, titanium, aluminum, or chromium can also be employed.
- carbonaceous particles made from, for example, lamp black, furnace black, carbon black, fumed carbon black, gas black, channel black, activated charcoal, diamond, diamond like carbon, or CVD diamond can be employed.
- the particles can be made from nitrides such as titanium nitride, chromium nitride, and zirconium nitride.
- carbides such as tungsten carbide, silicon carbide, or titanium carbide, and calcium salts such as hydroxyapatite, dahlite, brushite, tricalcium phosphate, calcium sulphate, and calcium carbonate can be used.
- Other inorganic particles can include particles made from silicides, barium titanate, and strontium titanate.
- the particles can be made from a suitable polymer including polymers of polyolefins, polyurethanes, cellulosics (i.e., polymers having mer units derived from cellulose), polyesters, polyamides, poly(hexamethylene isophthalamide/terephthalamide) (commercially available as SELAR PATM), poly(ethylene terephthalate-co-p-oxybenzoate) (PET/PHB, e.g., copolymer having about 60-80 mole percent PHB), poly(hydroxy amide ethers), polyacrylates, polyacrylonitrile, acrylonitrile/styrene copolymer (commercially available as LOPAC), rubber-modified acrylonitrile/acrylate copolymer (commercially available as BAREX), poly(methyl methacrylate), liquid crystal polymers (LCP) (e.g., VECTRA available from Hoescht-Celanese, ZENITE available from DuPont, and XY
- LCP
- polyolefins include those based upon alpha-monoolefin monomers having from about 2 to 6 carbon atoms and halogen substituted olefins, i.e., halogenated polyolefins.
- low to high density polyethylenes essentially unplasticized poly (vinyl chloride), poly (vinylidene chloride), poly (vinyl fluoride), poly (vinylidene fluoride), poly (tetrafluoroethylene) (Teflon), poly (chlorotrifluoroethylene) (KEL-F), and mixtures thereof are suitable.
- Low to high density polyethylenes are generally understood to have densities of about 0.92 g cm ⁇ 3 to about 0.96 g cm ⁇ 3 , however, no bright line can be drawn for density classifications and the density can vary according to the supplier.
- Representative polyurethanes include polyurethanes having a glass transition temperature above a storage or ambient temperature, for example having a glass transition temperature of at least 40° C. to 60° C., or having a non-polar soft segment which includes a hydrocarbon, silicone, fluorosilicone, or mixtures thereof.
- ELAST-EON manufactured by Elastomedic/CSIRO Molecular Science, is a polyurethane with a non-polar soft segment which is made from 1,4-butanediol, 4,4′-methylenediphenyl diisocyanate, and a soft segment composed of a blend poly(hexamethylene oxide) (PHMO) and bishydroxyethoxypropylpolydimethylsiloxane (PDMS).
- PHMO poly(hexamethylene oxide)
- PDMS bishydroxyethoxypropylpolydimethylsiloxane
- a useful example has a blend of 20% by weight PHMO and 80% by weight PDMS.
- cellulosics include, but are not limited to, cellulose acetate having a degree of substitution (DS) greater than about 0.8 or less than about 0.6, ethyl cellulose, cellulose nitrate, cellulose acetate butyrate, methyl cellulose, and mixtures thereof.
- DS degree of substitution
- polyesters include saturated or unsaturated polyesters such as, but not limitated to, poly (butylene terephthalate), poly(ethylene 2,6-naphthalene dicarboxylate) (PEN), and poly (ethylene terephthalate).
- polyamides include crystalline or amorphous polyamides such as, but not limited to, nylon-6, nylon-6,6, nylon-6,9, nylon-6,10, aromatic nylon MXD6 (manufactured by Mitsubishi Gas Chemical America Inc.), and mixtures thereof.
- Representative polyacrylates include, but are not limited to, poly(methylmethacrylate) and polymethacrylate.
- the particle can be a mixture of the aforementioned polymers.
- the polymer can comprise about 70% to about 99% by weight acrylonitrile and about 30% to about 1% by weight styrene.
- copolymers of vinyl chloride and vinylidene chloride with a vinyl chloride content of about 1 to about 30 mole percent and PET/PHB copolymers with a PHB content of about 60 to about 80 mole percent function effectively.
- the device or prosthesis used in conjunction with the above-described compositions may be any suitable device used for the release of an active ingredient, examples of which include self-expandable stents, balloon-expandable stents, and stent-grafts, and grafts.
- the underlying structure of the device can be virtually any design.
- the device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof.
- MP35N and MP20N are trade names for alloys of cobalt, nickel, chromium and molybdenum available from standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention. A polymeric device should be compatible with the selected compositions. The ethylene vinyl alcohol copolymer, however, adheres very well to metallic materials, more specifically to stainless steel.
- the surface of the device or prosthesis should be clean and free from contaminants that may be introduced during manufacturing.
- the surface of the prosthesis requires no particular surface treatment to retain the applied coating.
- Metallic surfaces of stents can be, for example, cleaned by argon plasma process as is well known to one of ordinary skill in the art.
- Application of the composition can be by any conventional method, such as by spraying the composition onto the prosthesis or immersing the prosthesis in the composition. Operations such as wiping, centrifugation, blowing, or other web clearing acts can also be performed to achieve a more uniform coating.
- wiping refers to physical removal of excess coating from the surface of the stent; centrifugation refers to rapid rotation of the stent about an axis of rotation; and blowing refers to application of air at a selected pressure to the deposited coating.
- the excess coating can also be vacuumed off the surface of the device.
- the addition of a wetting fluid leads to a consistent application of the composition, which also causes the coating to be uniformly deposited on the surface of the prosthesis.
- the deposited primer composition should be exposed to a heat treatment at temperature range greater than about the glass transition temperature (T g ) and less than about the melting temperature (T m ) of the selected polymer.
- T g glass transition temperature
- T m melting temperature
- the device should be exposed to the heat treatment for any suitable duration of time, which would allow for the formation of the primer coating on the surface of the device and allows for the evaporation of the solvent or combination of solvent and wetting fluid. It is understood that essentially all of the solvent and the wetting fluid will be removed from the composition but traces or residues can remain blended with the polymer.
- Table 3 lists the T g and T m for some of the polymers used in the embodiments of the present invention. T g and T m of polymers are attainable by one or ordinary skill in the art. The cited exemplary temperature and time for exposure is provided by way of illustration and it is not meant to be limiting.
- TABLE 3 Exemplary Exemplary Duration of T g Temperature Time For Polymer (° C.) T m (° C.) (° C.) Heating EVOH 55 165 140 4 hours polycaprolactone ⁇ 60 60 50 2 hours ethylene vinyl 36 63 45 2 hours acetate (e.g., 33% vinylacetate content) Polyvinyl 75-85* 200-220* 165 2 hours alcohol *Exact temperature depends on the degree of hydrolysis which is also known as the amount of residual acetate.
- thermoset polymers With the use of one of the aforementioned thermoset polymers, the use of initiators may be required.
- epoxy systems consisting of diglycidyl ether of bisphenol A resins can be cured with amine curatives, thermoset polyurethane prepolymers can be cured with polyols, polyamines, or water (moisture), and acrylated urethane can be cured with UV light.
- Examples 27 and 28 provide illustrative descriptions. If baked, the temperature can be above the T g of the selected polymer.
- Example 29 provides a brief description.
- the composition containing the active ingredient can be applied to a designated region of the primer coating.
- Masking techniques can be implemented for applying compositions containing different active ingredients to selected regions of the primer layer. Accordingly, stents having various cocktail formulations or combinations of a variety of active ingredients can be manufactured.
- the solvent(s) or the combination of the solvent(s) and the wetting fluid is removed from the composition by allowing the solvent(s) or combination of the solvent(s) and the wetting fluid to evaporate.
- the evaporation can be induced by heating device at a predetermined temperature for a predetermined period of time. For example, the device can be heated at a temperature of about 60° C. for about 12 hours to about 24 hours.
- the heating can be conducted in an anhydrous atmosphere and at ambient pressure and should not exceed the temperature which would adversely affect the active ingredient.
- the heating can, alternatively, be conducted under a vacuum condition. It is understood that essentially all of the solvent and the wetting fluid will be removed from the compositision but traces or residues can remain blended with the polymer.
- the diffusion barrier layer can be deposited on a designated region of the active ingredient-containing coating subsequent to the evaporation of the solvent(s) or solvent(s)/wetting fluid and the drying of the polymer for the active ingredient-containing coating.
- the diffusion barrier layer can also be applied by spraying the composition onto the device or immersing the device in the composition. The above-described processes can be similarly repeated for the formation of the diffusion barrier layer.
- FIGS. 2A-2E , 3 A and 3 B Some of the various embodiments of the present invention are illustrated by FIGS. 2A-2E , 3 A and 3 B.
- the Figures have not been drawn to scale, and the depth and thickness of the various regions and layers have been over or under emphasized for illustrative purposes.
- a body of a stent 20 is illustrated having a surface 22 , e.g., metallic surface such as stainless steel.
- a coating 24 is disposed on surface 22 .
- Coating 24 includes a first region 26 defining the reservoir portion of coating 24 containing the active ingredient.
- a second region 28 free from any active ingredients, defines the primer portion of coating 24 .
- coating 24 can include a third region 30 defining a barrier portion, free from any particles.
- Third region 30 as illustrated in FIG. 2C , can also include particles 32 .
- Coating 24 for FIGS. 2A-2C is made from only one of the aforementioned polymeric materials, e.g., EVOH, and accordingly, the existence of any interfacial boundaries between the fist 26 , second 28 , and third 30 regions is essentially reduced or eliminated. Elimination of interfacial boundaries essentially reduces or eliminates any incompatibilities, such as adhesiveness, that may exist when using layers of different polymeric materials.
- reservoir region 26 for coating 24 can have a thickness T 1 of about 0.5 microns to about 10 microns.
- the particular thickness T 1 is based on the type of procedure for which stent 20 is employed and the amount of the active ingredient that is desired to be delivered.
- Primer region 28 can have any suitable thickness T 2 , examples of which can be in the range of about 0.1 to about 10 microns, more narrowly about 0.1 to about 2 microns.
- Diffusion barrier region 30 can have any suitable thickness T 3 , as the thickness T 3 is dependent on parameters such as, but not limited to, the desired rate or duration of release and the procedure for which stent 20 will be used.
- V is volume
- reservoir region 26 can include a first and second reservoir sections 26 A and 26 B, each containing a different active ingredient, e.g., actinomycin D and taxol, respectively.
- coating 24 can carry a combination of at least two different active ingredients for sustained delivery.
- First and second sections 26 A and 26 B can be deposited by, for example, masking the area of primer region 28 over second section 26 B and applying a first composition containing a first active ingredient to form first section 26 A.
- First section 26 A can then be masked and a second composition containing a second active ingredient can be applied to form second section 26 B. This procedure can be followed to from any suitable number of regions containing a different active ingredient.
- barrier region 30 can be formed on reservoir sections 26 A and 26 B, as illustrated in FIG. 2D .
- barrier region 30 can include a first barrier section 30 A disposed over first reservoir section 26 A containing a first active ingredient, e.g., actinomycin D.
- a second barrier section 30 B is formed over second reservoir section 26 B containing a second active ingredient, e.g., taxol.
- First barrier section 30 A is particle free and second barrier section 30 B contains particles 32 .
- coating 24 harbors two different release parameters for each of the active ingredients contained in reservoir sections 26 A and 26 B.
- a coating 34 is provided having a primer layer 36 , made from a first polymeric material, formed on surface 22 of stent 20 .
- a reservoir layer 38 made from a second polymeric material is deposited on a selected area of primer layer 36 .
- a barrier layer 40 made from a third polymeric material can be deposited on reservoir layer 38 .
- coating 34 contains primer layer 36 made from a first polymeric material.
- Reservoir layer 38 made from a second polymeric material, is formed on primer layer 36 .
- Reservoir layer 38 contains first and second regions, illustrated as 38 A and 38 B.
- First and second regions 38 A and 38 B each contain a different active ingredient.
- Barrier layer 40 made from a third polymeric material, can be deposited on reservoir layer 38 .
- Barrier layer 40 includes a first region 40 A deposited over first region 38 A of reservoir layer 38 .
- Barrier layer 40 additionally includes a second region 40 B deposited over second region 38 B of reservoir layer 38 .
- Second region 40 B can include particles 32 and/or be made out of a fourth polymeric material to create a variety of different release parameters.
- Examples of different polymeric materials having interfacial compatibilities include, for example, an EVOH primer with a reservoir layer of ethylene vinylacetate; a poly(n-butyl methacrylate) primer with an EVOH reservoir layer; an EVOH primer and a reservoir layer of polycaprolactone; and an epoxy primer consisting of the diglycidylether of bisphenol A cured with polyamine curatives with an EVOH reservoir layers.
- an EVOH primer with a reservoir layer of ethylene vinylacetate a poly(n-butyl methacrylate) primer with an EVOH reservoir layer
- an EVOH primer and a reservoir layer of polycaprolactone an epoxy primer consisting of the diglycidylether of bisphenol A cured with polyamine curatives with an EVOH reservoir layers.
- Other combinations can be derived by one of ordinary skill in the art.
- the active ingredient can be applied to a medical device, e.g., a stent, retained on the stent during delivery and expansion of the stent, and released at a desired control rate and for a predetermined duration of time at the site of implantation.
- a medical device e.g., a stent
- a stent having the above-described coating layers is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachealbronchi and other biological passageways.
- a stent having the above-described coating layers is particularly useful for treating occluded regions of blood vessels caused abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis.
- Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries. The application of the present invention should not, however, be limited to stents such that the embodiments of the coating can be used with a variety of medical substrates.
- an angiogram is first performed to determine the appropriate positioning for stent therapy.
- Angiography is typically accomplished by injecting a radiopaque contrast agent through a catheter inserted into an artery or vein as an x-ray is taken.
- a guidewire is then advanced through the lesion or proposed site of treatment.
- Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway.
- the delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance.
- a stent having the above described coating layers may then be expanded at the desired area of treatment.
- a post insertion angiogram may also be utilized to confirm appropriate positioning.
- Multi-LinkTM stents (available from Guidant Corporation) were cleaned by placement in an ultrasonic bath of isopropyl alcohol solution for 10 minutes. The stents were dried and plasma cleaned in a plasma chamber. An EVOH solution was made with 1 gram of EVOH and 7 grams of DMSO, making an EVOH: DMSO ratio of 1:7. The mixture was placed in a warm water shaker bath at 60° C. for 24 hours. The solution was cooled and vortexed. The cleaned Multi-LinkTm stents were dipped in the EVOH solution and then passed over a hot plate, for about 3-5 seconds, with a temperature setting of about 60° C.
- the coated stents were heated for 6 hours in an air box and then placed in an oven at 60° C., under vacuum condition, and for 24 hours.
- the coated stents were expanded on a 4.0 mm angioplasty balloon.
- the coatings remained intact on the stents.
- the coatings were transparent giving the Multi-LinkTM stents a glossy-like shine.
- Multi-LinkTM stents were cleaned by placement in an ultrasonic bath of isopropyl alcohol solution for 10 minutes. The stents were dried and plasma cleaned in a plasma chamber. An EVOH solution was made with 1 gram of EVOH and 4 grams of DMSO, making an EVOH: DMSO ratio of 1:4. Dexamethasone was added to the 1:4 EVOH: DMSO solution. Dexamethasone constituted 9% by weight of the total weight of the solution. The solution was vortexed and placed in a tube. The cleaned Multi-LinkTm stents were attached to mandrel wires and dipped into the solution.
- the coated stents were passed over a hot plate, for about 3-5 seconds, with a temperature setting of about 60° C.
- the coated stents were cured for 6 hours in an air box and then placed in a vacuum oven at 60° C. for 24 hours.
- the above-recited step was repeated twice.
- the average weight of the coating was 0.0003 gram, having an estimated dexamethasone content of 75 ug per stent.
- the coated stents were expanded on a 4.0 mm angioplasty balloon. The coatings remained intact on the stents. Verification of coverage and physical properties of the coatings were visualized using a scanning electron microscope.
- the coatings were transparent, giving the Multi-LinkTM stents a glossy-like shine.
- Multi-Link DuetTM stents are cleaned by placement in an ultrasonic bath of isopropyl alcohol solution for 10 minutes.
- the stents are dried and plasma cleaned in a plasma chamber.
- the EVOH solution is made with 1 gram of EVOH and 4 grams of DMSO, making an EVOH: DMSO ratio of 1:4.
- Dexamethasone is added to the 1:4 EVOH: DMSO solution.
- Dexamethasone constitutes 9% by weight of the total weight of the solution.
- the solution is vortexed and placed in a tube.
- the cleaned Multi-LinkTM stents are attached to mandrel wires and dipped into the solution.
- the coated stents are passed over a hot plate, for about 3-5 seconds, with a temperature setting of about 60° C.
- the coated stents are cured for 6 hours in an air box then placed in a vacuum oven at 60° C. for 24 hours.
- the single layered dexamethasone/EVOH coated stents are dipped into the 1:4 ratio EVOH:DMSO solution, free from dexamethasone.
- the stents are passed over the hot plate, cured, and placed in the oven as previously described.
- the top coating will provide a barrier layer for controlling the release of dexamethasone from the drug coated layer.
- the coated stents can be expanded on a 4.0 mm angioplasty balloon. It is predicted that the coatings will remain intact on the stents.
- the coatings will be transparent, giving the Multi-LinkTm stents a glossy-like shine.
- Multi-LinkTM stents were cleaned by placement in an ultrasonic bath of isopropyl alcohol solution for 10 minutes. The stents were dried and plasma cleaned in a plasma chamber. An EVOH solution was made with 1 gram of EVOH and 7 grams of DMSO, making an EVOH: DMSO ratio of 1:7. Vinblastine was added to the 1:7 EVOH:DMSO solution. Vinblastine constituted 2.5% by weight of the total weight of the solution. The solution was vortexed and placed in a tube. The cleaned Multi-LinkTM stents were attached to mandrel wires and dipped into the solution. The coated stents were passed over a hot plate, for about 3-5 seconds, with a temperature setting of about 600 C.
- the coated stents were cured for 6 hours in an air box then placed in a vacuum oven at 60° C. for 24 hours. The above process was repeated twice, having a total of three layers. The average weight of the coating was 0.00005 gram, with an estimated vinblastine concentration of 12 microgram per stent.
- Some of the stents were sterilized by electron beam radiation.
- the sterilized and unsterilized vinblastine coated stents were tested for a 24 hour elution period by placing one sterilized and one unsterilized stent in 5 ml of phosphated saline solution (pH 7.4) at room temperature with rotational motion. The amount of vinblastine eluted was evaluated by High Performance Liquid Chromatography (HPLC) analysis.
- HPLC High Performance Liquid Chromatography
- Multi-LinkTM stents were cleaned by placement in an ultrasonic bath of isopropyl alcohol solution for 10 minutes. The stents were dried and plasma cleaned in a plasma chamber. An EVOH solution was made with 1 gram of EVOH and 7 grams of DMSO, making an EVOH: DMSO ratio of 1:7. Cephalotaxin was added to the 1:7 EVOH: DMSO solution. Cephalotaxin constituted 5% by weight of the total weight of the solution. The solution was vortexed and placed in a tube. The cleaned Multi-LinkTM stents were attached to mandrel wires and dipped into the solution.
- the coated stents were passed over a hot plate, for about 3-5 seconds, with a temperature setting of about 60° C.
- the coated stents were cured for 6 hours in an air box then placed in a vacuum oven at 60° C. for 24 hours.
- the above process was repeated twice, having a total of three layers.
- the average weight of the coating was 0.00013 gram, with an estimated cephalotaxin concentration of 33 ug.
- the stents were sterilized by electron beam radiation.
- Cephalotaxin/EVOH coated stents and EVOH-coated control stents were implanted in the coronary arteries of 4 pigs, generally in accordance to the procedure set forth in “Restenosis After Balloon Angioplasty-A Practical Proliferative Model in Porcine Coronary Arteries” by Robert S. Schwartz, et al., Circulation 82(6):2190-2200, December 1990, and “Restenosis and the Proportional Neointimal Response to Coronary Artery Injury: Results in a Porcine Model” by Robert S. Schwartz et al, J Am Coll Cardiol; 19:267-74 February 1992. Results of the porcine artery study indicated that there was no significant difference between the uncoated, EVOH coated and cephalotaxin coated stents in the amount of neointimal proliferation resulting from arterial injury.
- Multi-Link DuetTM stents (available from Guidant Corporation) were cleaned by placement in an ultrasonic bath of isopropryl alcohol solution for 20 minutes, then air dried.
- An EVOH stock solution was made with 1 gram of EVOH and 7 grams of DMSO, making an EVOH: DMSO ratio of 1:7.
- the mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature.
- a co-solvent was added to the EVOH solution to promote wetting of the struts of the Multi-Link DuetTM stents.
- One gram of tetrahydrofuran (THF) was mixed with 1.2 grams of the EVOH: DMSO solution.
- the cleaned Multi-Link DuetTM stents were attached to mandrel wires and dipped into the solution.
- the coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C.
- the coated stents were then heated in a laboratory oven at 90° C. for 4 hours.
- the thin EVOH coating adhered to stainless steel without peeling or cracking. EVOH forms a superior primer base coat for other polymers that do not adhere well to stainless steel.
- Multi-Link DuetTM stents were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried.
- An EVOH solution was made with 1 gram of EVOH and 5 grams of DMSO, making an EVOH: DMSO ratio of 1:5.
- the mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature.
- the dissolved EVOH: DMSO solution was mixed with 24.6 grams of THF and 19.56 grams of DMSO. The solution was mixed then placed in the reservoir of an air pressured atomizing sprayer.
- Multi-Link DuetTM stents were sprayed while the stents rotated between 30 to 120 rpm.
- the spray time was dependent upon the flow rate of the sprayer. A flow rate between 1 to 20 mg/second required a stent to be sprayed between 1 to 30 seconds.
- the polymer coated Multi-Link DuetTM stents were heated in a forced air convection oven for 12 hours. The coatings were transparent, giving the Multi-Link DuetTM stents a glossy-like shine.
- Multi-Link DuetTM stents were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried.
- An EVOH stock solution was made having an EVOH: DMSO ratio of 1:4. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature.
- Various co-solvents were examined to determine which co-solvent would promote a thicker coating. These co-solvents were THF, DMF, 1-butanol, and n-butyl acetate.
- the formulation for the co-solvents was as follows.
- a second layer of coating was applied to coated Multi-Link DuetTM stents and the stents were heated in the same manner as above. No difference was seen between the stents coated with the various co-solvents (e.g., greater weight of coating or physical appearance). All coated stents were transparent, giving the Multi-Link DuetTM stents a glossy-like shine. No webbing or bridging of the coating was seen between the struts of the coated Multi-Link DuetTM stents. The weight of the coatings was between 0.2 to 0.27 mg/stent.
- Multi-Link DuetTM stents are cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried.
- An EVOH stock solution is made having an EVOH: DMSO ratio of 1:4. The mixture is placed in a warm water shaker bath at 60° C. for 12 hours. The solution is mixed, then cooled to room temperature.
- a 9% by weight Dexamethasone solution is formulated as follows: 2.96 grams of the EVOH: DMSO solution is mixed with 0.29 gram of Dexamethasone, then 0.9 gram of THF is added.
- the cleaned Multi-Link DuetTM stents are attached to mandrel wires and dipped into the solution.
- the coated stents are passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C.
- the coated stents are cured in a forced air convection oven for 2 hours.
- a second layer of coating is applied and cured in the above manner. It is predicted that the coatings will be transparent, giving the Multi-Link DuetTM stents a glossy-like shine.
- Multi-Link DuetTM stents are cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried.
- An EVOH stock solution is made having an EVOH: DMSO ratio of 1:4. The mixture is placed in a warm water shaker bath at 60° C. for 12 hours. The solution is mixed, then cooled to room temperature.
- a 9% by weight Dexamethasone solution is formulated as follows: 2.96 grams of the EVOH: DMSO solution is mixed with 0.29 gram of Dexamethasone, then 0.9 gram of THF is added.
- the cleaned Multi-Link DuetTM stents are attached to mandrel wires and dipped into the solution.
- the coated stents are passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C.
- the coated stents are cured in a forced air convection oven for 2 hours.
- a second layer of coating is applied and cured in the above manner. It is predicted that the coatings will be transparent, giving the Multi-Link DuetTM stents a glossy-like shine.
- Multi-Link DuetTM stents were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried.
- An EVOH stock solution was made having an EVOH: DMSO ratio of 1:4. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature.
- a 4.75% by weight actinomycin D solution was formulated as follows: 600 milligrams of the EVOH: DMSO solution was mixed with 40 milligrams of actinomycin D, then 200 milligrams of THF was added.
- the cleaned Multi-Link DuetTM stents were attached to mandrel wires and dipped into the solution.
- the coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C.
- the coated stents were cured in a forced air convection oven for 2 hours.
- a second layer of coating was applied and cured in the above manner.
- Multi-Link DuetTM stents were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried.
- An EVOH stock solution was made having an EVOH: DMSO ratio of 1:4. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature.
- a 3.60% by weight actinomycin D solution was formulated as follows: 600 milligrams of the EVOH: DMSO solution was mixed with 40 milligrams of actinomycin D, then 480 milligrams of DMF was added.
- the cleaned Multi-Link DuetTM stents were attached to mandrel wires and dipped into the solution.
- the coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C.
- the coated stents were cured in a forced air convection oven for 2 hours.
- a second layer of coating was applied and cured in the above manner.
- Multi-Link DuetTM stents were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried.
- An EVOH stock solution was made having an EVOH: DMSO ratio of 1:4. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature.
- a 6.45% by weight actinomycin D solution was formulated as follows: 680 milligrams of the EVOH: DMSO solution was mixed with 80 milligrams of actinomycin D, then 480 milligrams of DMF was added.
- the cleaned Multi-Link DuetTM stents were attached to mandrel wires and dipped into the solution.
- the coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C.
- the coated stents were cured in a forced air convection oven for 2 hours.
- a second layer of coating was applied and cured in the above manner.
- Multi-Link DuetTM stents are cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried.
- An EVOH stock solution is made having an EVOH: DMSO ratio of 1:40.
- the mixture is placed in a warm water shaker bath at 60° C. for 12 hours.
- the solution is mixed, then cooled to room temperature.
- a 0.60% by weight actinomycin D solution can be formulated as follows: 4920 milligrams of the EVOH: DMSO solution is mixed with 40 milligrams of Actinomycin D, then 2000 milligrams of THF is added.
- the cleaned Multi-Link DuetTM stents can be sprayed upon by the above formulation.
- the coated stents are cured in a forced air convection oven for 2 hours.
- a second layer of coating is applied and cured in the above manner.
- SMC Medial smooth muscle cells
- the IC 50 (concentration at which 50% of the cells stop proliferating) of actimomycin D was 10 ⁇ 9M as compared to 5 ⁇ 10 ⁇ 5M for mitomycin and 10 ⁇ 6M for docetaxel. Actinomycin D was the most potent agent to prevent SMC proliferation as compared to other pharmaceutical agents.
- Porcine coronary models were used to assess the degree of the inhibition of neointimal formation in the coronary arteries of a porcine stent injury model by Actinomycin D, delivered with a microporous balloon catheter (1 ⁇ 10 6 pores/mm 2 with sizes ranging from 0.2-0.8 micron).
- the preclinical animal testing was performed in accordance with the NIH Guide for Care and Use of Laboratory Animals. Domestic swine were utilized to evaluate effect of the drug on the inhibition of the neointimal formation. Each testing procedure, excluding the angiographic analysis at the follow-up endpoints, was conducted using sterile techniques. During the study procedure, the activated clotting time (ACT) was monitored regularly to ensure appropriate anticoagulation. Base line blood samples were collected for each animal before initiation of the procedure. Quantitative coronary angiographic analysis (QCA) and intravascular ultrasound (IVUS) analysis was used for vessel size assessment.
- QCA Quantitative coronary angiographic analysis
- IVUS intravascular ultrasound
- the vessels at the sites of the delivery were denuded by inflation of the PTCA balloons to 1:1 balloon to artery ratio and moving the balloons back and forth 5 times.
- the drug was delivered to the denuded sites at 3.5 atm (3.61 Kg/sq cm) for 2 minutes using the microporous balloon catheters before stent deployment.
- the average volume of delivery was about 3.3 ⁇ 1.2 ml.
- stents were deployed at the delivery site such that final stent to artery ratio was 1.1:1.
- angiographic assessments were performed. Coronary artery blood flow was assessed and the stented vessels were evaluated to determine minimal lumen diameter. The animals were euthanized following this procedure at the endpoint. Following euthanasia, the hearts were pressure perfusion fixed with formalin and prepared for histological analysis, encompassing light microscopy, and morphometry. Morphometric analysis of the stented arteries included assessment of the position of the stent struts and determination of vessel/lumen areas, percent (%) stenosis, injury scores, intimal and medial areas and intima/media ratios. Percent stenosis is quantitated by the following equation: 100 (IEL area ⁇ lumen area)/IEL area
- IEL is the internal elastic lamia.
- the control group of animals received delivery of water instead of the drug.
- the test group of animals received actinomycin D in two different concentration of 10 ⁇ 5M and 10 ⁇ 4M.
- the results of the study are tabulated in Table 4.
- the percent stenosis in the treated groups (32.3 ⁇ 11.7) was significantly decreased as compared to the control groups (48.8 ⁇ 9.8).
- FIGS. 6A and 6B illustrate sample pictures of the histology slides of the coronary vessels from the control and the Dose 1 group, respectively.
- actinomycin D is useful for the treatment of hyper-proliferative vascular disease. Specifically, actinomycin D is useful for the inhibition of smooth muscle cell hyperplasia, restenosis and vascular occlusion in a mammal, particularly occlusions following a mechanically mediated vascular trauma or injury.
- Multi-Link DuetTM stents (13 mm in length) were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried.
- An EVOH stock solution was made having an EVOH: DMSO ratio of 1:4. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature.
- a 5.06% by weight actinomycin D solution was formulated as follows: 40 milligrams of actinomycin D was dissolved in 150 milligrams of THF, then 600 milligrams of the EVOH: DMSO was added.
- the cleaned Multi-Link DuetTM stents were attached to mandrel wires and dipped into the solution.
- the coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C.
- the coated stents were cured in a forced air convection oven at 60° C. for 1 hour.
- a second layer of coating was applied in the above manner and cured in a forced air convection oven at 60° C. for 4 hours.
- An average coating weight of about 260 micrograms and an average actinomycin D loading of about 64 micrograms was achieved.
- Multi-Link DuetTM stents (13 mm in length) were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried.
- An EVOH stock solution was made having an EVOH: DMSO ratio of 1:4. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature.
- a 3.75% by weight actinomycin D solution was formulated as follows: 60 milligrams of actinomycin D was dissolved in 310 milligrams of DMF, then 1.22 grams of EVOH: DMSO solution was added.
- the cleaned Multi-Link DuetTM stents were attached to mandrel wires and dipped into the solution.
- the coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C.
- the coated stents were cured in a forced air convection oven at 60° C. for 1 hour.
- a second layer of coating was applied in the above manner and cured in a forced air convection oven at 60° C. for 4 hours.
- An average coating weight of about 270 micrograms with an average actinomycin D content of about 51 micrograms was achieved.
- Multi-Link DuetTM stents were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried.
- An EVOH stock solution was made having an EVOH: DMSO ratio of 1:4. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature.
- a 6.1% by weight actinomycin D solution was formulated as follows: 100 milligrams of actinomycin D was dissolved in 310 milligrams of DMF, then 1.22 grams of EVOH: DMSO was added.
- the cleaned Multi-Link DuetTM stents were attached to mandrel wires and dipped into the solution.
- the coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C.
- the coated stents were cured in a forced air convection oven at 60° C. for 1 hour.
- a second layer of coating was applied in the above manner and cured in a forced air convection oven at 60° C. for 4 hours.
- An average coating weight of about 250 micrograms and an average actinomycin D loading of about 75 micrograms was achieved.
- Multi-Link DuetTM stents are cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried.
- An EVOH stock solution is made having an EVOH: DMSO ratio of 1:40.
- the mixture is placed in a warm water shaker bath at 60° C. for 12 hours.
- the solution is mixed, then cooled to room temperature.
- a 0.60% by weight actinomycin D solution can be formulated as follows: 4920 milligrams of the EVOH: DMSO solution is mixed with 40 milligrams of Actinomycin D, then 2000 milligrams of THF is added.
- the cleaned Multi-Link DuetTM stents can be sprayed upon by the above formulation.
- the coated stents are cured in a forced air convection oven 60° C. for 15 minutes. Additional layers of the coating are applied and cured in the above manner.
- the final curing step for the coated stents is conducted for about 4 hours.
- a stainless steel stent can be spray coated with a formulation of EVOH and a drug, as previously described in any of the above examples.
- a diffusion barrier composition can be formulated with 2 grams of EVOH blended with 20 grams of dimethylsulfoxide. 2.2 grams of fumed silica can be added and dispersed with a high shear process. With constant agitation, 50 grams of tetrahydrofuran and 30 grams of dimethylformamide are admixed with the blend. The stent, having the EVOH coating, can be immersed in the diffusion barrier composition to form a layer.
- a stainless steel stent can be spray coated with a formulation of EVOH and a drug, as previously described in any of the above examples.
- a diffusion barrier formulation can be made by dissolving 8 grams of EVOH into 32 grams of dimethylsulfoxide. To this is added 14 grams of rutile titanium dioxide and 7 grams more of dimethylsulfoxide. The particles can be dispersed using a ball mill. The final solution is diluted with 39 grams of tetrahydrofuran, added slowly with constant agitation. It is predicted that the diffusion barrier will reduce the rate at which the drug is released from the stent.
- a stainless steel stent can be coated with a formulation of EVOH and a drug, as previously described in any of the above examples.
- a diffusion barrier formulation can be made by dissolving 8 grams of EVOH in 32 grams of dimethylsulfoxide. 10.5 grams of solution precipitated hydroxyapatite can be added to the blend. The particles can be dispersed using a rotor stator mixer. With constant agitation, 30 grams of tetrahydrofuran can be added. The stent can be coated by immersion followed by centrifugation.
- a stent can be coated with a formulation of EVOH and a drug, as previously described in any of the above examples. 8 grams of EVOH can be added 50 grams of dimethylsulfoxide and the polymer can be dissolved by agitation and heat. Four grams of lamp black can be added and dispersed in a ball mill. 60 grams of dimethyl sulfoxide and 110 grams of tetrahydrofuran are slowly added while stirring. The stent can be spray coated.
- a stent can be coated with a formulation of EVOH and a drug, as previously described in any of the above examples.
- Colloidal gold can be prepared by reduction of tetrachloroauric acid with sodium citrate in aqueous solution. The solution can be exchanged by rinsing with tetrahydrofuran. Eight grams of EVOH can be dissolved in 32 grams of dimethylsulfoxide. To this is added a solution of 77 grams of colloidal gold in 32 grams of tetrahydrofuran. The stent can be coated by a dip coating process.
- FIGS. 7A and 7B illustrate sample pictures of the histology slides of the coronary vessels from the control group 64 RCA (Right Coronary Group) and the actinomycin D loaded stent group 68 LAD (Left Anterior Descending), respectively.
- the stent used was an Advanced Cardiovascular Systems Multi-Link DuetTM (stainless steel).
- FIG. 7B the positive remodeling of EEL 50 , caused by the application of actinomycin D, creates a gap between stent struts 52 and EEL 50 .
- Thrombus deposites, illustrated by reference number 54 are formed in the gap over time.
- the use of a self-expandable stent eliminates the formation of the gap as the stent self-expands in response to the positive remodeling of IEL. Thrombus deposits can be, accordingly, eliminated.
- Actinomycin D induces the positive remodeling of the vessel walls, more particularly positive remodeling of the external elastic lamina (EEL) of a blood.
- vessel wall is generally defined as the ability of the vessel walls to structurally adapt, by increasing in lumen size, to chronic stimuli.
- a positively remodeled lumen wall has a greater diameter or size as compared to a lumen wall which has not been subjected to the remodeling effect. Accordingly, the flow of blood through the remodeled site is increased—flow which would have otherwise been reduced because of, for example, the presence of plaque build-up or migration and proliferation of cells.
- the index of remodeling is defined by the ratio of the area circumscribed by the EEL of the lesion site to the area circumscribed by the EEL of a reference site.
- the internal elastic lamina in response, can also increases in area or diameter.
- Actinomycin D, or analogs or derivative thereof not only can inhibit abnormal or inappropriate migration and/or proliferation of smooth muscle cells, which can lead to restenosis, but can also induce positive remodeling of the blood vessel walls. Thus the widening of the diseased region becomes more pronounced.
- thermoset resin 1.67 grams of Epon 828 (Shell) resin can be added to 98 grams of propylene glycol monomethyl ether and 0.33 grams of Jeffamine T-430 (Huntsman). After application, the stent can be baked for 2 hours at 80° C. and 2 hours at 160° C.
- a 0.25% (w/w) solution of tetra-n-butyl titanate can be made in anhydrous ethyl acetate.
- the solution can be applied by spraying to a surface of a stainless steel stent.
- the stent can be heated at 100° C. for two hours.
- the test was performed to observe the coating integrity after a simulated delivery to a tortuosity without a lesion.
- the primer layer improved coating adhesion to the stents that resulted in fewer defects after a simulated use.
- Group B had a number defects. Although the coating surface for Group B was poor to begin with, and the defects were not too severe.
- the adhesion of 0.67% Actinomycin-D (in 5% EVAL 1:1 THF:DMSO solution) coating on stents with two different surface treatments was compared to control samples.
- the specific surface treatments consisted of: (1) Argon plasma treatment; and (2) Argon plasma treatment with a primer layer of 5% EVAL in 1:1 DMSO:DMF solution applied with the dip-spin process, i.e., centrifugation process, and followed by heat treatments at 120° C. for two hours and 60° C. for 10 hours.
- the test method used to test adhesion of coatings on stents was a wet flow test, expanding the stents in a Tecoflex tubing at 37° C. of water or saline.
- Count defects based on the following categories: Defect type; defect size; defect location; and peel defects on rings 3, 5, and 7.
- Stent weight could not be a measurable because of the loss of the drug and uptake of water.
- Peel defects are defined as areas where the coating separated from the stent. The number of peel defects were counted on the stents' OD/sidewall on rings 3, 5, and 7. The flow field was on the inner diameter (“ID”) of the stents' surface. Some of the damage to the OD surface could have been aggravated by the Tecoflex tubing. The number of peel defects observed on groups C and F (EVAL primer) was clearly lower than the other two test groups, regardless of flow rate. The increased flow rate did not induce more peel defects.
- the objective of this experiment was to test the adhesive properties of an Actinomycin-D containing coating on stainless steel stents having an EVAL primer layer.
- the coated stents were tested in a wet flow test condition of saline heated to 37° C.
- the number of “peel defects” on a select number of stent rings was observed.
- a “peel defect” is defined as a location on the stent surface devoid of coating, i.e., bare metal or underlying coating layer that is visible under optical magnification of less than 100 ⁇ .
- Group Treatment Flow Rate A Argon plasma treatment + EVAL primer layer 50 mL/min (15% EVAL, 1:1 DMF:DMSO) baked at 140° C. for 2 hours and dried at 60° C. for 2 hours B Argon plasma treatment + EVAL primer layer 50 mL/min Control (15% EVAL, 1:1 DMF:DMSO) baked at 120° C. for 2 hours and dried at 60° C. for 10 hours Materials and Equipment
- the objective of this study was to test the adhesive properties of an Actinomycin-D containing coating on stainless steel stents having an EVAL primer layer.
- the coated stents were tested under wet flow conditions of saline heated to 37° C.
- the number of “peel defects” on a select number of stent rings was observed.
- a “peel defect” is defined as a location on the stent surface devoid of coating, i.e., bare metal or an underlying coating layer that is visible under optical magnification of no more than 100 ⁇ .
- EVAL primer layer by dip-spin (2% EVAL, 50 mL/min 1:1 DMF:DMSO) baked at 140° C. for 4 hours
- D Argon plasma treatment + EVAL primer layer 50 mL/min by spray (2% EVAL, 1:1 DMF:DMSO) baked at 140° C. for 4 hours
- E EVAL primer layer by spray (2% EVAL, 1:1 50 mL/min DMF:DMSO) baked at 140° C. for 4 hours
- Stent weight could not be a measurable because of the loss of the drug and uptake of water.
- the objective of this experiment was to test the adhesive properties of an Actinomycin-D containing coating to stainless steel stents having an EVAL primer layer. More specifically, this experiment attempted to illustrate the effect of different bake times on the final result.
- the coated stents were tested under wet flow conditions of saline heated to 37° C. The number of “peel defects” on a select number of stent rings was observed.
- Group Treatment Flow Rate A none 50 mL/min Control B Argon plasma treatment + EVAL primer 50 mL/min layer by spray (2% EVAL, 1:1 DMF:DMSO) baked at 140° C. for 15 minutes C Argon plasma treatment + EVAL primer layer 50 mL/min by spray (2% EVAL, 1:1 DMF:DMSO) baked at 140° C.
- Stent weight could not be a measurable because of the loss of the drug and uptake of water.
- the control group with no primer layer had significantly more peel defects as compared to the treatment groups with a primer layer.
- the objective of this experiment was to test the adhesive properties of an Actinomycin-D containing coating on stainless steel stents having an EVAL primer layer. More specifically, different solvent systems (e.g., THF and DMF) were evaluated. The coated stents were tested under wet flow conditions of saline heated to 37° C. The number of “peel defects” on a select number of stent rings was observed.
- Group Treatment Flow Rate A none 50 mL/min Control B Argon plasma treatment + EVAL primer layer 50 mL/min by spray (2% EVAL, 1:1 DMF:DMSO) baked at 140° C. for 15 minutes C Argon plasma treatment + EVAL primer layer 50 mL/min by spray (2% EVAL, 1:1 DMF:DMSO) baked at 140° C.
- the weight of the stents could not be a measurable because of the loss of the drug and uptake of water.
- the objective of this experiment was to test the adhesive properties of an Actinomycin-D containing coating on stainless steel stents having an EVAL primer layer made from a DMSO:THF solution applied to the stents.
- the coated stents were tested under wet flow conditions of saline heated to 37° C. The number of “peel defects” on a select number of stent rings was observed.
- Group Treatment Drying Time (min.) A Argon plasma treatment + EVAL primer 15 B Argon plasma treatment + EVAL primer 30 C Argon plasma treatment + EVAL primer 60 D Argon plasma treatment + EVAL primer 90 E Argon plasma treatment + EVAL primer 120 Materials and Equipment
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dermatology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Materials Engineering (AREA)
- Hematology (AREA)
- Inorganic Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
Abstract
Coatings for implantable devices or endoluminal prosthesis, such as stents, are provided, including a method of forming the coatings. The coatings can be used for the delivery of an active ingredient or a combination of active ingredients.
Description
- This is a divisional application to U.S. patent application Ser. No. 10/751,289, which is a continuation application of U.S. Pat. No. 6,790,228 filed on Dec. 28, 2000 and issued on Sep. 14, 2004.
- 1. Field of the Invention
- The invention relates to coatings and methods of forming the coatings on implantable devices or endoluminal prostheses, such as stents.
- 2. Description of the Background
- Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease. A catheter assembly having a balloon portion is introduced percutaneously into the cardiovascular system of a patient via the brachial or femoral artery. The catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion. Once in position across the lesion, the balloon is inflated to a predetermined size to radially press against the atherosclerotic plaque of the lesion for remodeling of the vessel wall. The balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature.
- A problem associated with the above procedure includes formation of intimal flaps or torn arterial linings which can collapse and occlude the conduit after the balloon is deflated. Vasospasms and recoil of the vessel wall also threaten vessel closure. Moreover, thrombosis and restenosis of the artery may develop over several months after the procedure, which may require another angioplasty procedure or a surgical by-pass operation. To reduce the partial or total occlusion of the artery by the collapse of arterial lining, and to reduce the chance of the development of thrombosis and restenosis, an expandable, intraluminal prosthesis, one example of which includes a stent, is implanted in the lumen to maintain the vascular patency.
- Stents are used not only as a mechanical intervention but also as a vehicle for providing biological therapy. As a mechanical intervention, stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway. Typically stents are capable of being compressed, so that they can be inserted through small cavities via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in the patent literature disclosing stents which have been successfully applied in PTCA procedures include stents illustrated in U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco, and U.S. Pat. No. 4,886,062 issued to Wiktor. Mechanical intervention via stents has reduced the rate of restenosis as compared to balloon angioplasty; but restenosis is still a significant clinical problem with rates ranging from 20-40%. When restenosis does occur in the stented segment, its treatment can be challenging, as clinical options are more limited as compared to lesions that were treated solely with a balloon.
- Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at the diseased site. In order to provide an efficacious concentration to the treated site, systemic administration of such medication often produces adverse or toxic side effects for the patient. Local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more favorable results.
- One proposed method for medicating stents disclosed seeding the stents with endothelial cells (Dichek, D. A. et al. Seeding of Intravascular Stents With Genetically Engineered Endothelial Cells; Circulation 1989; 80: 1347-1353). Briefly, endothelial cells were seeded onto stainless steel stents and grown until the stents were covered. The cells were therefore able to be delivered to the vascular wall where they provided therapeutic proteins. Another proposed method of providing a therapeutic substance to the vascular wall included use of a heparin-coated metallic stent, whereby a heparin coating was ionically or covalently bonded to the stent. Significant disadvantages associated with the aforementioned method includes significant loss of the therapeutic substance from the body of the stent during delivery and expansion of the stent, an absolute lack of control of the release rate of the proteins from the stent, and the inherent limitation as to the type of therapeutic substance that can be used.
- Another proposed method involved the use of a polymeric carrier coated onto the surface of a stent, as disclosed in U.S. Pat. No. 5,464,650 issued to Berg et al. Berg disclosed applying to a stent body a solution which included a specified solvent, a specified polymer dissolved in the solvent, and a therapeutic substance dispersed in the blend. The solvent was allowed to evaporate, leaving on the stent surface a coating of the polymer and the therapeutic substance impregnated in the polymer. Among the specified, suitable choices of polymers listed by Berg, empirical results were specifically provided for poly(caprolactone) and poly(L-lactic acid). The preferred choice of mutually compatible solvents included acetone or chloroform. As indicated in Berg, stents where immersed in the
solution 12 to 15 times or sprayed 20 times. The evaporation of the solvent provided a white coating. A white coloration is generally indicative of a brittle coating. A brittle coating is an undesirable characteristic, since portions of the coating typically become detached during stent expansion. Detachment of the coating causes the quantity of the therapeutic substance to fall below a threshold level sufficient for the effective treatment of a patient. - It is desirable to improve the adhesion or retention of the polymeric coating to the surface of a prosthesis, e.g., stent. It is also desirable to be able to increase the quantity of the therapeutic substance carried by the polymeric layer without perturbing the mechanical properties of the coating, such as inadequate coating adhesion, or significantly increasing the thickness of the coating.
- It is additionally desirable to provide an improved polymeric coating that is susceptible to delivery and expansion with a prosthesis without significant detachment from the surface of the prosthesis. An improved polymeric coating is also needed which allows for a significant control of the release of the therapeutic substance.
- It may also be advantageous to maintain the concentration of the therapeutic substance at a therapeutically acceptable level for a prolonged duration of time. Depending on the physiological mechanism targeted, the therapeutic substance may be required to be released at the target site for an extended duration of time. Accordingly, it is desirable to provide a coating which can maintain the residence time of a substance at a therapeutically useful concentration for an effective duration of time.
- In accordance with one aspect of the present invention, a prosthesis is provided, such as a balloon-expandable stent or a self-expandable stent, which includes a coating having a reservoir region carrying an active ingredient, e.g., actinomycin D or taxol. A primer region, free from any active ingredients, can be disposed between the reservoir region and the surface of the prosthesis. The primer can act as an intermediary tie layer between the surface of the prosthesis and the reservoir region. The primer and reservoir regions can be made form the same polymeric material or different polymeric materials. The prosthesis can additionally include a barrier region disposed on a selected portion of the reservoir region for reducing the rate at which the active ingredient is released. In one embodiment, the barrier layer contains inorganic particles. Examples of suitable polymeric materials for the primer layer include polyisocyanates, unsaturated polymers, amine content polymers, acrylates, polymers containing a high content of hydrogen bonding groups, and inorganic polymers. Biocompatible polymers can be used not only for the primer region, but also for the reservoir region. One examples of a biocompatible polymer includes ethylene vinyl alcohol copolymer.
- In accordance with another aspect of the present invention, a method is provided for forming a coating for an implantable device comprising forming a primer on at lease a selected portion of a surface of the implantable device and forming a reservoir region containing an active ingredient on at least a selected portion of the primer. The primer can provide an adhesive tie layer between the surface of the implantable device and the reservoir region. In one embodiment, the method can additionally include forming a barrier layer on at lease a selected portion of the reservoir region for reducing the rate at which the active ingredient is released from the reservoir region.
- In one embodiment, the act of forming the primer comprises applying a composition to a selected portion of the surface of the implantable device wherein the composition includes a thermoplastic polymer added to a solvent, and heating the composition applied to the implantable device to a temperature greater than about the glass transition temperature and less than about the melting temperature of the polymer.
- In accordance with another embodiment, the act of forming the primer comprises applying a composition to a selected portion of the surface of the implantable device, wherein the composition comprises an inorganic polymer added to a solvent, and significantly removing the solvent to form the primer.
- In accordance with another embodiment, the act of forming the primer comprises applying a composition to a selected portion of the surface of the implantable device, wherein the composition comprises a polymer added to a solvent, and heating the composition applied to the selected portion of the surface of the implantable device to a temperature above the glass transition temperature of the polymer.
- In accordance with another embodiment, the act of forming the primer comprises applying a composition to a selected portion of the surface of the implantable device, wherein the composition comprises a prepolymer and an initiator, e.g., a free radical or UV initiator. The composition is then exposed to a condition such as UV radiation or heat to polymerize the prepolymer.
- In accordance with another aspect of the present invention, a coating for a stent is provided containing a first active ingredient and a second active ingredient, wherein the rate of release of the first active ingredient is slower than the rate of release of the second active ingredient. The coating can be made from a polymeric material such as an ethylene vinyl alcohol copolymer. The coating can include a first region containing the first and second active ingredients, and a second region, free from any active ingredients, located between the first region and the surface of the stent. The second region increases the ability of the coating to be retained by the stent.
-
FIG. 1A illustrates a fluid on a solid substrate having a contact angle Φ1; -
FIG. 1B illustrates a fluid on a solid substrate having a contact angle Φ2; -
FIGS. 2A-2E illustrate a coating in accordance with some of the embodiment of the present invention; -
FIG. 3A and 3B illustrate a coating having different layers; -
FIG. 4 graphically illustrates elution profiles for stents with a coating of ethylene vinyl alcohol copolymer impregnated with vinblastine made according to Example 4; -
FIG. 5 graphically illustrates in vitro experimental data, in accordance with Example 15, showing affects of actinomycin D, mitomycin, and docetaxel on smooth muscle cell proliferation; -
FIG. 6A is a picture of a histology slide of a coronary vessel from the control group in accordance with Example 16; -
FIG. 6B is a picture of a histology slide of a coronary vessel from the actinomycin D group in accordance with Example 16 -
FIG. 7A is a picture of a histology slide of a coronary vessel from the control group in accordance with Example 26; and -
FIG. 7B is a picture of a histology slide of a coronary vessel from the actinomycin D group in~accordance with Example 26. - The embodiments of the composition for a primer layer are prepared by conventional methods wherein all components are combined, then blended. More particularly, in accordance to one embodiment, a predetermined amount of a polymer or a prepolymer is added to a predetermined amount of a solvent or a combination of solvents. The mixture can be prepared in ambient pressure and under anhydrous atmosphere. If necessary, a free radical or UV initiator can be added to the composition for initiating the curing or cross-linking of the prepolymer. Heating and stirring and/or mixing can be employed to effect dissolution of the polymer into the solvent.
- “Polymer,” “poly,” and “polymeric” are defined as compounds that are the product of a polymerization reaction and are inclusive of homopolymers, copolymers, terpolymers etc., including random, alternating, block, and graft variations thereof. The polymers should have a high capacity of adherence to the surface of an implantable device, such as a metallic surface of a stent. Stainless steel, such as 316L, is a commonly used material for the manufacturing of a stent. Stainless steel includes a chromium oxide surface layer which makes the stent corrosion resistant and confers, in large part, biocompatibility properties to the stent. The chromium oxide layer presents oxide, anionic groups, and hydroxyl moieties, which are polar. Consequently, polymeric materials with polar substituents and cationic groups can adhere to the surface. Representative examples of suitable polymeric material include polyisocyanates, unsaturated polymers, high amine content polymers, acrylates, polymers with high content of hydrogen bonding groups, silane coupling agents, titanates and zirconates.
- Representative examples of polyisocyanates include triisocyanurate, alphatic polyisocyanate resins based on hexamethylene diisocyanate, aromatic polyisocyanate prepolymers based on diphenylmethane diisocyanate, polyisocyanate polyether polyurethanes based on diphenylmethane diisocyanate, polymeric isocyanates based on toluene diisocyanate, polymethylene polyphenyl isocyanate, and polyester polyurethanes.
- Representative examples of unsaturated polymers include polyester diacrylates, polycaprolactone diacrylates, polyester diacrylates, polytetramethylene glycol diacrylate, polyacrylates with at least two acrylate groups, polyacrylated polyurethanes, and triacrylates. With the use of unsaturated prepolymers a free radical or UV initiator can be added to the composition for the thermal or UV curing or cross-linking process. For thermal curing, examples of free radicals initiators are benzoyl peroxide; bis(2,4-dichlorobenzoyl) peroxide; dicumyl peroxide; 2,5-bis(tert-butyl peroxy)-2,5-dimethyl hexane; ammonium persulfate, and 2,2′-azobisisobutyronitrile. As is understood by one of ordinary skill in the art, each initiator requires a different temperature to induce decomposition. For UV curing, examples of initiators include 2,2-dimethoxy-2-phenylacetophenone; 1-hydroxycyclohexyl phenyl ketone; benzoin ethyl ether; and benzophenone. These initators can be activated by illumination with a medium pressure Hg bulb that contains wavelengths between 250 and 350 nm.
- Representative examples of high amine content polymers include polyethyleneamine, polyallylamine, and polylysine.
- Representative examples of acrylates include copolymers of ethyl acrylate, methyl acrylate, butyl methacrylate, methacrylic acid, acrylic acid, and cyanoacrylates.
- Representative examples of high content of hydrogen bonding group polymers include polyethylene-co-polyvinyl alcohol, epoxy polymers based on the diglycidylether of bisphenol A with amine crosslinking agents, epoxy polymers cured by polyols and lewis acid catalysts, epoxy phenolics, epoxy-polysulfides, ethylene vinyl acetate, melamine formaldehydes, polyvinylalcohol-co-vinyl acetate polymers, resorcinol-formaldehydes, urea-formaldehydes, polyvinylbutyral, polyvinylacetate, alkyd polyester resins, acrylic acid modified ethylene vinyl acetate polymers, methacrylic acid modified ethylene vinyl acetate polymers, acrylic acid modified ethylene acrylate polymers, methacrylic acid modified ethylene acrylate polymers, anhydride modified ethylene acrylate copolymers, and anhydride modified ethylene vinyl acetate polymers.
- Representative examples of silane coupling agents include 3-aminopropyltriethoxysilane and (3-glydidoxypropyl) methyldiethoxysilane.
- Representative examples of titanates include tetra-iso-propyl titanate and tetra-n-butyl titanate.
- Representative examples of zirconates include n-propyl zirconate and n-butyl zirconate.
- Biocompatible polymers can also be used for the primer material. Examples of biocompatible primers include poly(hydroxyvalerate), poly(L-lactic acid), polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoesters, polyanhydrides, poly(glycolic acid), poly(D,L-lactic acid), poly(glycolic acid-co-trimethylene carbonate), polyphosphoesters, polyphosphoester urethanes, poly(amino acids), cyanoacrylates, poly(trimethylene carbonates), poly(iminocarbonate), copoly(ether-esters) (e.g. PEO/PLA), polyalkylene oxalates, polyphosphazenes and biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid. Also, polyurethanes, silicones, and polyesters could be used and other polymers could also be used if they can be dissolved and cured or polymerized on the stent such as polyolefins, polyisobutylene and ethylene-alphaolefin copolymers; acrylic polymers and copolymers, vinyl halide polymers and copolymers, such as polyvinyl chloride; polyvinyl ethers, such as polyvinyl methyl ether; polyvinylidene halides, such as polyvinylidene fluoride and polyvinylidene chloride; polyacrylonitrile; polyvinyl ketones; polyvinyl aromatics, such as polystyrene; polyvinyl esters, such as polyvinyl acetate; copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers; polyamides, such as Nylon 66 and polycaprolactam; alkyd resins; polycarbonates; polyoxymethylenes; polyimides; polyethers; epoxy resins; rayon; rayon-triacetate; cellulose, cellulose acetate, cellulose butyrate; cellulose acetate butyrate; cellophane; cellulose nitrate; cellulose propionate; cellulose ethers; and carboxymethyl cellulose.
- Ethylene vinyl alcohol is functionally a very suitable choice of polymer. Ethylene vinyl alcohol copolymer, commonly known by the generic name EVOH or by the trade name EVOH, refers to copolymers comprising residues of both ethylene and vinyl alcohol monomers. One of ordinary skill in the art understands that ethylene vinyl alcohol copolymer may also be a terpolymer so as to include small amounts of additional monomers, for example less than about five (5) mole percentage of styrenes, propylene, or other suitable monomers. In a useful embodiment, the copolymer comprises a mole percent of ethylene of from about 27% to about 47%. Typically, 44 mole percent ethylene is suitable. Ethylene vinyl alcohol copolymers are available commercially from companies such as Aldrich Chemical Company, Milwaukee, Wis., or EVOH Company of America, Lisle, Ill., or can be prepared by conventional polymerization procedures that are well known to one of ordinary skill in the art. The copolymer possesses good adhesive qualities to the surface of a stent, particularly stainless steel surfaces, and has illustrated the ability to expand with a stent without any significant detachment of the copolymer from the surface of the stent.
- The solvent should be mutually compatible with the polymer and should be capable of placing the polymer into solution at the concentration desired in the solution. Useful solvents should also be able to expand the chains of the polymer for maximum interaction with the surface of the device, such as a metallic surface of a stent. Examples of solvent can include, but are not limited to, dimethylsulfoxide (DMSO), chloroform, acetone, water (buffered saline), xylene, acetone, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, ethyl acetate, methylethylketone, propylene glycol monomethylether, isopropanol, N-methyl pyrrolidinone, toluene and mixtures thereof.
- By way of example, and not limitation, the polymer can comprise from about 0.1% to about 35%, more narrowly about 2% to about 20% by weight of the total weight of the composition, and the solvent can comprise from about 65% to about 99.9%, more narrowly about 80% to about 98% by weight of the total weight of the composition. A specific weight ratio is dependent on factors such as the material from which the implantable device is made and the geometrical structure of the device.
- In accordance with another embodiment, a fluid can be added to the composition to enhance the wetting of the composition for a more uniform coating application. To enhance the wetting of the composition, a suitable fluid typically has a high capillary permeation. Capillary permeation or wetting is the movement of a fluid on a solid substrate driven by interfacial energetics. Capillary permeation is quantitated by a contact angle, defined as an angle at the tangent of a droplet in a fluid phase that has taken an equilibrium shape on a solid surface. A low contact angle means a higher wetting liquid. A suitably high capillary permeation corresponds to a contact angle less than about 90°.
FIG. 1A illustrates afluid droplet 10A on asolid substrate 12, for example a stainless steel surface.Fluid droplet 10A has a high capillary permeation that corresponds to a contact angle Φ1 which is less than about 90°. In contrast,FIG. 1B illustrates afluid droplet 10B onsolid substrate 12, having a low capillary permeation that corresponds to a contact angle Φ2, which is greater than about 90°. The wetting fluid, typically, should have a viscosity not greater than about 50 centipoise, narrowly about 0.3 to about 5 centipoise, more narrowly about 0.4 to about 2.5 centipoise. The wetting fluid, accordingly, when added to the composition, reduces the viscosity of composition. - The wetting fluid should be mutually compatible with the polymer and the solvent and should not precipitate the polymer. The wetting fluid can also act as the solvent. Useful examples of the wetting fluid include, but are not limited to, tetrahydrofuran (THF), dimethylformamide (DMF), 1-butanol, n-butyl acetate, dimethyl acetamide (DMAC), and mixtures and combinations thereof. By way of example and not limitation, the polymer can comprise from about 0.1% to about 35%, more narrowly from about 2% to about 20% by weight of the total weight of the composition; the solvent can comprise from about 19.9% to about 98.9%, more narrowly from about 58% to about 84% by weight of the total weight of the composition; the wetting fluid can comprise from about 1% to about 80%, more narrowly from about 5% to about 40% by weight of the total weight of the composition. The specific weight ratio of the wetting fluid depends on the type of wetting fluid employed and type of and the weight ratio of the polymer and the solvent. More particularly, tetrahydrofuran used as the wetting fluid can comprise, for example, from about 1% to about 44%, more narrowly about 21% by weight of the total weight of the solution. Dimethylformamide used as the wetting fluid can comprise, for example, from about 1% to about 80%, more narrowly about 8% by weight of the total weight of the solution. 1-butanol used as the wetting fluid can comprise, for example, from about 1% to about 33%, more narrowly about 9% by weight of the total weight of the solution. N-butyl acetate used as the wetting fluid can comprise, for example, from about 1% to about 34%, more narrowly about 14% by weight of the total weight of the solution. Dimethyl acetamide used as the wetting fluid can comprise, for example, from about 1% to about 40%, more narrowly about 20% by weight of the total weight of the solution.
- The presence of an active ingredient in a polymeric matrix typically interferes with the ability of the matrix to adhere effectively to the surface of the device. An increase in the quantity of the active ingredient reduces the effectiveness of the adhesion. High drug loadings of, for example, 10-40% by weight in the coating significantly hinder the retention of the coating on the surface of the device. The primer layer serves as a functionally useful intermediary layer between the surface of the device and an active ingredient-containing or reservoir coating. The primer layer provides for an adhesive tie between the reservoir coating and the device—which, in effect, would also allow for the quantity of the active ingredient in the reservoir coating to be increased without compromising the ability of the reservoir coating to be effectively contained on the device during delivery and, if applicable, expansion of the device. Ethylene vinyl alcohol copolymer adheres well to metallic surfaces, particularly devices made from stainless steel. The copolymer has illustrated good elastic qualities, which allow the copolymer to be delivered and, if applicable, expanded with the device without any significant detachment of the copolymer form the surface of the device.
- Table 1 illustrates some examples of suitable combinations for the primer composition:
TABLE 1 Wetting Polymer Solvent Fluid Initiators EVOH DMSO — — EVOH DMSO THF — polyester polyurethanes dimethylformamide — — polyester polyurethanes dimethylformamide DMAC — polycaprolactone chloroform n-butyl acetate polyacrylate polyurethane ethyl acetate — benzophenone polyacrylated polyurethane ethyl acetate — 1- hydroxycyclohexyl phenyl ketone polyethyleneamine H2O — — methacrylic acid THF — — copolymer ethylene vinylacetate methylethylketone — — (e.g., 40% vinyl acetate content) aminopropyltriethoxysilane ethanol/water — — 95/5 blend (w/w) (3-glydidoxypropyl) toluene — — methyldiethoxysilane tetra-iso-propyl titanate isopropanol — — (e.g., 0.25% w/w in isopropanol) tetra-n-butyl titanate ethyl acetate — — (e.g., 0.1-5% w/w in ethyl acetate) - The embodiments of the composition for an active ingredient-containing or reservoir layer are prepared by conventional methods wherein all components are combined, then blended. More particularly, in accordance to one embodiment, a predetermined amount of a polymeric compound is added to a predetermined amount of a mutually compatible solvent or combination of solvents. The polymeric compound can be added at ambient pressure and under anhydrous atmosphere. If necessary, gentle heating and stirring and/or mixing can be employed to effect dissolution of the polymer into the solvent, for example 12 hours in a water bath at about 60° C.
- The polymer chosen must be a polymer that is biocompatible and minimizes irritation to the vessel wall when the device is implanted. The polymer may be either a biostable or a bioabsorbable polymer. Bioabsorbable polymers that could be used include poly(hydroxyvalerate), poly(L-lactic acid), polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoesters, polyanhydrides, poly(glycolic acid), poly(D,L-lactic acid), poly(glycolic acid-co-trimethylene carbonate), polyphosphoesters, polyphosphoester urethanes, poly(amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), copoly(ether-esters) (e.g. PEO/PLA), polyalkylene oxalates, polyphosphazenes and biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid. Also, biostable polymers with a relatively low chronic tissue response such as polyurethanes, silicones, and polyesters could be used and other polymers could also be used if they can be dissolved and cured or polymerized on the stent such as polyolefins, polyisobutylene and ethylene-alphaolefin copolymers; acrylic polymers and copolymers, vinyl halide polymers and copolymers, such as polyvinyl chloride; polyvinyl ethers, such as polyvinyl methyl ether; polyvinylidene halides, such as polyvinylidene fluoride and polyvinylidene chloride; polyacrylonitrile; polyvinyl ketones; polyvinyl aromatics, such as polystyrene; polyvinyl esters, such as polyvinyl acetate; copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers; polyamides, such as Nylon 66 and polycaprolactam; alkyd resins; polycarbonates; polyoxymethylenes; polyimides; polyethers; epoxy resins; rayon; rayon-triacetate; cellulose, cellulose acetate, cellulose butyrate; cellulose acetate butyrate; cellophane; cellulose nitrate; cellulose propionate; cellulose ethers; and carboxymethyl cellulose.
- Ethylene vinyl alcohol is functionally a very suitable choice of polymer. The copolymer allows for good control capabilities over the release rate of the active ingredient. As a general rule, an increase in the amount of the ethylene comonomer content decreases the rate that the active ingredient is released from the copolymer matrix. The release rate of the active ingredient typically decreases as the hydrophilicity of the copolymer decreases. An increase in the amount of the ethylene comonomer content increases the overall hydrophobicity of the copolymer, especially as the content of vinyl alcohol is concomitantly reduced. It is also known that the release rate and the cumulative amount of the active ingredient that is released is directly proportional to the total initial content of the ingredient in the copolymer matrix. Accordingly, a wide spectrum of release rates can be achieved by modifying the ethylene comonomer content and the initial amount of the active ingredient.
- The choice of polymer for the reservoir layer can be the same as or different from the selected polymer for the primer layer. The use of the same polymer significantly reduces or eliminates any interfacial incompatibilities, such as lack of an adhesive tie or bond, which may exist with the employment of two different polymeric layers. In effect, it can be said that the use of the same polymeric material for the primer layer and the reservoir layer results in the formation of a single-layered coating.
- The solvent should be capable of placing the polymer into solution at the concentration desired in the solution. Examples of solvent can include, but are not limited to, DMSO, chloroform, acetone, water (buffered saline), xylene, acetone, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, and N-methyl pyrrolidinone. With the use of low ethylene content, e.g., 29 mol %, ethylene vinyl alcohol copolymer, a suitable choice of solvent is iso-propylalcohol (IPA) admixed with water.
- Sufficient amounts of an active ingredient are dispersed in the blended composition of the polymer and the solvent. The active ingredient should be in true solution or saturated in the blended composition. If the active ingredient is not completely soluble in the composition, operations including mixing, stirring, and/or agitation can be employed to effect homogeneity of the residues. The active ingredient may be added so that the dispersion is in fine particles. The mixing of the active ingredient can be conducted in an anhydrous atmosphere, at ambient pressure, and at room temperature such that supersaturating the active ingredient is not desired.
- The active ingredient should inhibit the activity of vascular smooth muscle cells. More specifically, the active ingredient is aimed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells.
- “Smooth muscle cells” include those cells derived from the medial and adventitial layers of the vessel which proliferate in intimal hyperplastic vascular sites following vascular trauma or injury. Under light microscopic examination, characteristics of smooth muscle cells include a histological morphology of a spindle shape with an oblong nucleus located centrally in the cell with nucleoli present and myofibrils in the sarcoplasm. Under electron microscopic examination, smooth muscle cells have long slender mitochondria in the juxtanuclear sarcoplasm, a few tubular elements of granular endoplasmic reticulum, and numerous clusters of free ribosomes. A small Golgi complex may also be located near one pole of the nucleus.
- “Migration” of smooth muscle cells means movement of these cells in vivo from the medial layers of a vessel into the intima, such as may also be studied in vitro by following the motion of a cell from one location to another, e.g., using time-lapse cinematography or a video recorder and manual counting of smooth muscle cell migration out of a defined area in the tissue culture over time.
- “Proliferation” of smooth muscle cells means increase in cell number.
- “Abnormal” or “inappropriate” proliferation means division, growth or migration of cells occurring more rapidly or to a significantly greater extent than typically occurs in a normally functioning cell of the same type, i.e., hyper-proliferation.
- “Inhibiting” cellular activity means reducing, delaying or eliminating smooth muscle cell hyperplasia, restenosis, and vascular occlusions, particularly following biologically or mechanically mediated vascular injury or trauma or under conditions that would predispose a mammal to suffer such a vascular injury or trauma. As used herein, the term “reducing” means decreasing the intimal thickening that results from stimulation of smooth muscle cell proliferation. “Delaying” means retarding the progression of the hyper-proliferative vascular disease or delaying the time until onset of visible intimal hyperplasia, as observed, for example, by histological or angiographic examination. “Elimination” of restenosis following vascular trauma or injury means completely “reducing” and/or completely “delaying” intimal hyperplasia in a patient to an extent which makes it no longer necessary to surgically intervene, i.e., to re-establish a suitable blood flow through the vessel by, for example, repeat angioplasty, atherectomy, or coronary artery bypass surgery. The effects of reducing, delaying, or eliminating restenosis may be determined by methods known to one of ordinary skill in the art, including, but not limited to, angiography, intravascular ultrasound, fluoroscopic imaging, fiber optic visualization, optical coherence tomography, intravascular MRI, or biopsy and histology. Biologically mediated vascular injury includes, but is not limited to, injury caused by or attributed to autoimmune disorders, alloimmune related disorders, infectious disorders including endotoxins and herpes viruses such as cytomegalovirus, metabolic disorders such as atherosclerosis, and vascular injury resulting from hypothermia and irradiation. Mechanically mediated vascular injury includes, but is not limited to, vascular injury caused by catheterization procedures or vascular scraping procedures such as percutaneous transluminal coronary angioplasty, vascular surgery, stent placement, transplantation surgery, laser treatment, and other invasive procedures which disrupted the integrity of the vascular intima or endothelium. The active ingredient of the invention is not restricted in use for therapy following vascular injury or trauma; rather, the usefulness of the active ingredient will also be determined by the ingredient's ability to inhibit cellular activity of smooth muscle cells or inhibit the development of restenosis.
- The active ingredient also includes any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention as well as having positive pharmacological effects on the expression of the extracellular matrix. The active ingredient can also be for enhancing wound healing in a vascular site and improving the structural and elastic properties of the vascular site. Examples of such active ingredients include antiproliferative substances as well as antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antioxidant, and combinations thereof. A suitable example of an antiproliferative substance includes actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin II, actinomycin X1, and actinomycin C1. Examples of suitable antineoplastics include paclitaxel and docetaxel. Examples of suitable antiplatelets, anticoagulants, antifibrins, and antithrombins include sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogs, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudin, thrombin inhibitor (available from Biogen), and 7E-3B® (an antiplatelet drug from Centocore). Examples of suitable antimitotic agents include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, adriamycin, and mutamycin. Examples of suitable cytostatic or antiproliferative agents include angiopeptin (a somatostatin analog from Ibsen), angiotensin converting enzyme inhibitors such as CAPTOPRIL (available from Squibb), CILAZAPRIL (available from Hoffman-LaRoche), or LISINOPRIL (available from Merck); calcium channel blockers (such as Nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonist, LOVASTATIN (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug from Merck), monoclonal antibodies (such as PDGF receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor (available form Glazo), Seramin (a PDGF antagonist), serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, and dexamethasone. Exposure of the composition to the active ingredient is not permitted to adversely alter the active ingredient's composition or characteristic. Accordingly, the particular active ingredient is selected for mutual compatibility with the blended composition.
- The dosage or concentration of the active ingredient required to produce a favorable therapeutic effect should be less than the level at which the active ingredient produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the active ingredient required to inhibit the desired cellular activity of the vascular region can depend upon factors such as the particular circumstances of the patient; the nature of the trauma; the nature of the therapy desired; the time over which the ingredient administered resides at the vascular site; and if other bioactive substances are employed, the nature and type of the substance or combination of substances. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.
- By way of example, the polymer can comprise from about 0.1% to about 35%, more narrowly from about 2% to about 20% by weight of the total weight of the composition, the solvent can comprise from about 59.9% to about 99.8%, more narrowly from about 79% to about 87% by weight of the total weight of the composition, and the active ingredient can comprise from about 0.1% to about 40%, more narrowly from about 1% to about 9% by weight of the total weight of the composition. More than 9% by weight of the active ingredient could adversely affect characteristics that are desirable in the polymeric coating, such as adhesion of the coating to the device. With the use of the primer layer, weight ratios of more than 9% for the active ingredient are achievable. Selection of a specific weight ratio of the polymer and solvent is dependent on factors such as, but not limited to, the material from which the device is made, the geometrical structure of the device, and the type and amount of the active ingredient employed. The particular weight percentage of the active ingredient mixed within the composition depends on factors such as duration of the release, cumulative amount of release, and release rate that is desired.
- Optionally, a second fluid or solvent, such as tetrahydrofuran (THF) or dimethylformamide (DMF) can be used to improve the solubility of an active ingredient in the composition and/or to increase the wetting of the composition. Increasing the wetting of the composition has been discovered to lead to the application of a more uniformed coating. The second fluid or solvent can be added to the composition or the active ingredient can be added to the second-solvent prior to admixture with the blend.
- In this embodiment with a second fluid, by way of example, the polymer can comprise from about 0.1% to about 35%, more narrowly from about 2% to about 20% by weight of the total weight of the composition, the solvent can comprise from about 19.8% to about 98.8%, more narrowly from about 49% to about 79% by weight of the total weight of the composition, the second solvent can comprise from about 1% to about 80%, more narrowly from about 5% to about 40% by weight of the total weight of the composition, and the active ingredient can comprise from about 0.1% to about 40%, more narrowly from about 1% to about 9% by weight of the total weight of the composition. Selection of a specific weight ratio of the polymer, the solvent, and the second solvent is dependent on factors such as, but not limited to, the material from which the implantable device is made, the geometrical structure of the device, and the type and amount of the active ingredient employed. The particular weight percentage of the active ingredient mixed within the composition depends on factors such as duration of the release, cumulative amount of release, and release rate that is desired.
- Table 2 is an exemplary list of suitable combinations in accordance with various embodiment of the present invention:
TABLE 2 SECOND ACTIVE POLYMER SOLVENT SOLVENT INGREDIENT EVOH (29 mol % IPA/H2O — Actinomycin D ethylene content e.g., (1:1) Soarnol ®) EVOH (44 mol % DMSO THF Actinomycin D ethylene content) EVOH DMSO THF Actinomycin D EVOH DMSO DMF Paclitaxel poly(L-lactic acid) chloroform — dexamethasone poly(lactic acid-co- acetone — dexamethasone glycolic acid) Polyether urethane N-methyl — tocopherol pyrrolidinone - The embodiments of the composition for a rate-reducing membrane or diffusion barrier layer are prepared by conventional methods wherein all components are combined. In the embodiment with the use of particles, dispersion techniques should also be employed to circumvent agglomeration or formation of particle flocs.
- More particularly, in accordance with one embodiment, the embodiments for the composition for the reservoir layer can be applied on a selected region of the reservoir layer to form a rate reducing member or a barrier layer. The barrier layer can reduce the rate of release or delay the time at which the active ingredient is released from the reservoir layer. In one embodiment, for maximum blood compatibility, polyethylene glycol or polyethylene oxide can also be added to the blend. Ethylene vinyl alcohol is functionally a very suitable choice of polymer. The copolymer allows for good control capabilities over the release rate of the active ingredient. As a general rule, an increase in the amount of the ethylene comonomer content decreases the rate that the active ingredient is released from the copolymer matrix. The release rate of the active ingredient decreases as the hydrophilicity of the polymer decreases. An increase in the amount of the ethylene comonomer content increases the overall hydrophobicity of the copolymer, especially as the content of vinyl alcohol is concomitantly reduced.
- Usefully, the choice of polymer for the barrier layer can be the same as the selected polymer for the reservoir. The use of the same polymer, as described for some of the embodiments, significantly reduces or eliminates any interfacial incompatibilities, such as lack of adhesion, which may exist in the employment of two different polymeric layers. In effect, it can be said that the use, if desired, of the same polymeric material for the barrier layer and the reservoir layer results in the formation of a single-layered coating. In other words, the use of the same polymeric material results in a seamless multi-layered coating in which the layers vary in terms of their content. Defined interfacial boundaries are, accordingly, significantly reduced or eliminated.
- In accordance with another embodiment, particles of inorganic or organic type are added to the blend. The particles should be dispersed in the blend. Dispersed is defined as the particles being present as individual particles, not agglomerates or flocs. In certain polymer-solvent blends, certain particles will disperse with ordinary mixing. Otherwise the particles can be dispersed in the composition by high shear processes such as ball mill, disc mill, sand mill, attritor, rotor stator mixer, ultrasonication—all such high shear dispersion techniques being well known to one of ordinary skill in the art. Optionally, one of the aforementioned wetting fluids can also be added to the blend. The wetting fluid can be added prior to, contemporaneously with, or subsequent to the agitation. Biocompatible dispersing agents in the form of surfactants, emulsifiers, or stablilizers may also be added to the blend to assist in particle dispersion.
- The particles can be made from any suitable material having barrier-type properties, such as, but not limited to tortuousity, excluded volume, and adsorptivity. Tortuosity refers to the exclusion of space in the polymer matrix for the creation of a defined space or a tortuous path through and about which the active ingredient must travel to be expelled from the layer. Excluded volume refers to the volume displaced by the particles that would otherwise be available for the diffusion of the active ingredient. Adsorptivity refers to the chromatographic effect which is dependent upon the interaction between the active ingredient used in combination with the particle. The active ingredient may be partially adsorbed and released by the surface of the particles, such as silica or famed carbon particles.
- In one embodiment, the particles can be made from a metal oxide, such as rutile titanium oxide, anatase titanium dioxide, niobium oxide, tantalum oxide, zirconium oxide, iridium oxide, or tungsten oxide. In another embodiment, the particles can be made from a main group oxide such as silica (silicon oxide) or alumina (aluminum oxide). Metallic particles such as gold, hafnium, platinum, iridium, palladium, tungsten, tantalum, niobium, zirconium, titanium, aluminum, or chromium can also be employed. In another embodiment, carbonaceous particles made from, for example, lamp black, furnace black, carbon black, fumed carbon black, gas black, channel black, activated charcoal, diamond, diamond like carbon, or CVD diamond can be employed. In yet another embodiment, the particles can be made from nitrides such as titanium nitride, chromium nitride, and zirconium nitride. In yet another embodiment, carbides such as tungsten carbide, silicon carbide, or titanium carbide, and calcium salts such as hydroxyapatite, dahlite, brushite, tricalcium phosphate, calcium sulphate, and calcium carbonate can be used. Other inorganic particles can include particles made from silicides, barium titanate, and strontium titanate.
- In yet another embodiment, the particles can be made from a suitable polymer including polymers of polyolefins, polyurethanes, cellulosics (i.e., polymers having mer units derived from cellulose), polyesters, polyamides, poly(hexamethylene isophthalamide/terephthalamide) (commercially available as SELAR PA™), poly(ethylene terephthalate-co-p-oxybenzoate) (PET/PHB, e.g., copolymer having about 60-80 mole percent PHB), poly(hydroxy amide ethers), polyacrylates, polyacrylonitrile, acrylonitrile/styrene copolymer (commercially available as LOPAC), rubber-modified acrylonitrile/acrylate copolymer (commercially available as BAREX), poly(methyl methacrylate), liquid crystal polymers (LCP) (e.g., VECTRA available from Hoescht-Celanese, ZENITE available from DuPont, and XYDAR available from Amoco Performance Chemicals), poly(phenylene sulfide), polystyrenes, polycarbonates, poly(vinyl alcohols), poly(ethylene-vinyl alcohol) (EVOH, e.g., having about 27 to about 47 mole percent of ethylene content), epoxies composed of bisphenol A based diepoxides with amine cure, aliphatic polyketones (e.g., CARILON available from Shell, and KETONEX available from British Petroleum), polysulfones, poly(ester-sulfone), poly(urethane-sulfone), poly(carbonate-sulfone), poly(3-hydroxyoxetane), poly(amino ethers), gelatin, amylose, parylene-C, parylene-D, parylene-N.
- Representatives polyolefins include those based upon alpha-monoolefin monomers having from about 2 to 6 carbon atoms and halogen substituted olefins, i.e., halogenated polyolefins. By way of example, and not limitation, low to high density polyethylenes, essentially unplasticized poly (vinyl chloride), poly (vinylidene chloride), poly (vinyl fluoride), poly (vinylidene fluoride), poly (tetrafluoroethylene) (Teflon), poly (chlorotrifluoroethylene) (KEL-F), and mixtures thereof are suitable. Low to high density polyethylenes are generally understood to have densities of about 0.92 g cm−3 to about 0.96 g cm−3, however, no bright line can be drawn for density classifications and the density can vary according to the supplier.
- Representative polyurethanes include polyurethanes having a glass transition temperature above a storage or ambient temperature, for example having a glass transition temperature of at least 40° C. to 60° C., or having a non-polar soft segment which includes a hydrocarbon, silicone, fluorosilicone, or mixtures thereof. For example, ELAST-EON, manufactured by Elastomedic/CSIRO Molecular Science, is a polyurethane with a non-polar soft segment which is made from 1,4-butanediol, 4,4′-methylenediphenyl diisocyanate, and a soft segment composed of a blend poly(hexamethylene oxide) (PHMO) and bishydroxyethoxypropylpolydimethylsiloxane (PDMS). A useful example has a blend of 20% by weight PHMO and 80% by weight PDMS.
- Representative examples of cellulosics include, but are not limited to, cellulose acetate having a degree of substitution (DS) greater than about 0.8 or less than about 0.6, ethyl cellulose, cellulose nitrate, cellulose acetate butyrate, methyl cellulose, and mixtures thereof.
- Representative polyesters include saturated or unsaturated polyesters such as, but not limitated to, poly (butylene terephthalate), poly(
ethylene 2,6-naphthalene dicarboxylate) (PEN), and poly (ethylene terephthalate). - Representative polyamides include crystalline or amorphous polyamides such as, but not limited to, nylon-6, nylon-6,6, nylon-6,9, nylon-6,10, aromatic nylon MXD6 (manufactured by Mitsubishi Gas Chemical America Inc.), and mixtures thereof.
- Representative polyacrylates include, but are not limited to, poly(methylmethacrylate) and polymethacrylate.
- In one embodiment, the particle can be a mixture of the aforementioned polymers. For example, the polymer can comprise about 70% to about 99% by weight acrylonitrile and about 30% to about 1% by weight styrene. Similarly, copolymers of vinyl chloride and vinylidene chloride with a vinyl chloride content of about 1 to about 30 mole percent and PET/PHB copolymers with a PHB content of about 60 to about 80 mole percent function effectively.
- The device or prosthesis used in conjunction with the above-described compositions may be any suitable device used for the release of an active ingredient, examples of which include self-expandable stents, balloon-expandable stents, and stent-grafts, and grafts. The underlying structure of the device can be virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention. A polymeric device should be compatible with the selected compositions. The ethylene vinyl alcohol copolymer, however, adheres very well to metallic materials, more specifically to stainless steel.
- To form the primer layer, the surface of the device or prosthesis should be clean and free from contaminants that may be introduced during manufacturing. However, the surface of the prosthesis requires no particular surface treatment to retain the applied coating. Metallic surfaces of stents can be, for example, cleaned by argon plasma process as is well known to one of ordinary skill in the art. Application of the composition can be by any conventional method, such as by spraying the composition onto the prosthesis or immersing the prosthesis in the composition. Operations such as wiping, centrifugation, blowing, or other web clearing acts can also be performed to achieve a more uniform coating. Briefly, wiping refers to physical removal of excess coating from the surface of the stent; centrifugation refers to rapid rotation of the stent about an axis of rotation; and blowing refers to application of air at a selected pressure to the deposited coating. The excess coating can also be vacuumed off the surface of the device. The addition of a wetting fluid leads to a consistent application of the composition, which also causes the coating to be uniformly deposited on the surface of the prosthesis.
- With the use of the thermoplastic polymers, such as ethylene vinyl alcohol copolymer, polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), etc., the deposited primer composition should be exposed to a heat treatment at temperature range greater than about the glass transition temperature (Tg) and less than about the melting temperature (Tm) of the selected polymer. Unexpected results have been discovered with treatment of the composition under this temperature range, specifically strong adhesion or bonding of the coating to the metallic surface of a stent. The device should be exposed to the heat treatment for any suitable duration of time, which would allow for the formation of the primer coating on the surface of the device and allows for the evaporation of the solvent or combination of solvent and wetting fluid. It is understood that essentially all of the solvent and the wetting fluid will be removed from the composition but traces or residues can remain blended with the polymer.
- Table 3 lists the Tg and Tm for some of the polymers used in the embodiments of the present invention. Tg and Tm of polymers are attainable by one or ordinary skill in the art. The cited exemplary temperature and time for exposure is provided by way of illustration and it is not meant to be limiting.
TABLE 3 Exemplary Exemplary Duration of Tg Temperature Time For Polymer (° C.) Tm (° C.) (° C.) Heating EVOH 55 165 140 4 hours polycaprolactone −60 60 50 2 hours ethylene vinyl 36 63 45 2 hours acetate (e.g., 33% vinylacetate content) Polyvinyl 75-85* 200-220* 165 2 hours alcohol
*Exact temperature depends on the degree of hydrolysis which is also known as the amount of residual acetate.
- With the use of one of the aforementioned thermoset polymers, the use of initiators may be required. By way of example, epoxy systems consisting of diglycidyl ether of bisphenol A resins can be cured with amine curatives, thermoset polyurethane prepolymers can be cured with polyols, polyamines, or water (moisture), and acrylated urethane can be cured with UV light. Examples 27 and 28 provide illustrative descriptions. If baked, the temperature can be above the Tg of the selected polymer.
- With the use of the inorganic polymers, such as silanes, titanates, and zirconates the composition containing the prepolymer or precursor is applied and the solvent is allowed to evaporate. Example 29 provides a brief description.
- Subsequent to the formation of the primer layer, the composition containing the active ingredient can be applied to a designated region of the primer coating. Masking techniques can be implemented for applying compositions containing different active ingredients to selected regions of the primer layer. Accordingly, stents having various cocktail formulations or combinations of a variety of active ingredients can be manufactured. The solvent(s) or the combination of the solvent(s) and the wetting fluid is removed from the composition by allowing the solvent(s) or combination of the solvent(s) and the wetting fluid to evaporate. The evaporation can be induced by heating device at a predetermined temperature for a predetermined period of time. For example, the device can be heated at a temperature of about 60° C. for about 12 hours to about 24 hours. The heating can be conducted in an anhydrous atmosphere and at ambient pressure and should not exceed the temperature which would adversely affect the active ingredient. The heating can, alternatively, be conducted under a vacuum condition. It is understood that essentially all of the solvent and the wetting fluid will be removed from the compositision but traces or residues can remain blended with the polymer.
- The diffusion barrier layer can be deposited on a designated region of the active ingredient-containing coating subsequent to the evaporation of the solvent(s) or solvent(s)/wetting fluid and the drying of the polymer for the active ingredient-containing coating. The diffusion barrier layer can also be applied by spraying the composition onto the device or immersing the device in the composition. The above-described processes can be similarly repeated for the formation of the diffusion barrier layer.
- Some of the various embodiments of the present invention are illustrated by
FIGS. 2A-2E , 3A and 3B. The Figures have not been drawn to scale, and the depth and thickness of the various regions and layers have been over or under emphasized for illustrative purposes. - Referring to
FIG. 2A , a body of astent 20 is illustrated having asurface 22, e.g., metallic surface such as stainless steel. Acoating 24 is disposed onsurface 22.Coating 24 includes afirst region 26 defining the reservoir portion ofcoating 24 containing the active ingredient. Asecond region 28, free from any active ingredients, defines the primer portion ofcoating 24. In accordance with another embodiment, as illustrated inFIG. 2B , coating 24 can include athird region 30 defining a barrier portion, free from any particles.Third region 30, as illustrated inFIG. 2C , can also includeparticles 32. -
Coating 24 forFIGS. 2A-2C is made from only one of the aforementioned polymeric materials, e.g., EVOH, and accordingly, the existence of any interfacial boundaries between thefist 26, second 28, and third 30 regions is essentially reduced or eliminated. Elimination of interfacial boundaries essentially reduces or eliminates any incompatibilities, such as adhesiveness, that may exist when using layers of different polymeric materials. - By way of example, and not limitation,
reservoir region 26 for coating 24 can have a thickness T1 of about 0.5 microns to about 10 microns. The particular thickness T1 is based on the type of procedure for whichstent 20 is employed and the amount of the active ingredient that is desired to be delivered.Primer region 28 can have any suitable thickness T2, examples of which can be in the range of about 0.1 to about 10 microns, more narrowly about 0.1 to about 2 microns.Diffusion barrier region 30 can have any suitable thickness T3, as the thickness T3 is dependent on parameters such as, but not limited to, the desired rate or duration of release and the procedure for whichstent 20 will be used.Diffusion barrier region 30 can have a thickness T3 of about 0.1 to about 10 microns, more narrowly from about 0.25 to about 2 microns. Ifparticles 32 are employed, for a smooth outer surface, the size ofparticles 32 should not be greater than about 10% of thickness T3 ofdiffusion barrier region 30. Additionally, the particle volume fraction Xp should not exceed about 0.74. Packing density or particle volume fraction Xp can be defined by the following equation:
X p =V particles/(V particies +V polymer) - wherein V is volume.
- In yet another embodiment, as illustrated in
FIG. 2D ,reservoir region 26 can include a first andsecond reservoir sections second sections primer region 28 oversecond section 26B and applying a first composition containing a first active ingredient to formfirst section 26A.First section 26A can then be masked and a second composition containing a second active ingredient can be applied to formsecond section 26B. This procedure can be followed to from any suitable number of regions containing a different active ingredient. - In accordance with yet another embodiment,
barrier region 30 can be formed onreservoir sections FIG. 2D . Referring toFIG. 2E ,barrier region 30 can include afirst barrier section 30A disposed overfirst reservoir section 26A containing a first active ingredient, e.g., actinomycin D. Asecond barrier section 30B is formed oversecond reservoir section 26B containing a second active ingredient, e.g., taxol.First barrier section 30A is particle free andsecond barrier section 30B containsparticles 32. As a result, coating 24 harbors two different release parameters for each of the active ingredients contained inreservoir sections - In accordance with yet another embodiment, different polymeric materials having interfacial compatibilities can be used to form individual, distinct layers for the primer, reservoir, and diffusion barrier components of the coating. Referring to
FIG. 3A , acoating 34 is provided having aprimer layer 36, made from a first polymeric material, formed onsurface 22 ofstent 20. Areservoir layer 38 made from a second polymeric material is deposited on a selected area ofprimer layer 36. Abarrier layer 40, made from a third polymeric material can be deposited onreservoir layer 38. - One of ordinary skill in the art can appreciate that a variety of coating combinations can be provided with the practice of the present invention. For example, as illustrated in
FIG. 3B , coating 34 containsprimer layer 36 made from a first polymeric material.Reservoir layer 38, made from a second polymeric material, is formed onprimer layer 36.Reservoir layer 38 contains first and second regions, illustrated as 38A and 38B. First andsecond regions Barrier layer 40, made from a third polymeric material, can be deposited onreservoir layer 38.Barrier layer 40 includes afirst region 40A deposited overfirst region 38A ofreservoir layer 38.Barrier layer 40 additionally includes asecond region 40B deposited oversecond region 38B ofreservoir layer 38.Second region 40B can includeparticles 32 and/or be made out of a fourth polymeric material to create a variety of different release parameters. - Examples of different polymeric materials having interfacial compatibilities include, for example, an EVOH primer with a reservoir layer of ethylene vinylacetate; a poly(n-butyl methacrylate) primer with an EVOH reservoir layer; an EVOH primer and a reservoir layer of polycaprolactone; and an epoxy primer consisting of the diglycidylether of bisphenol A cured with polyamine curatives with an EVOH reservoir layers. Other combinations can be derived by one of ordinary skill in the art.
- In accordance with the above-described method, the active ingredient can be applied to a medical device, e.g., a stent, retained on the stent during delivery and expansion of the stent, and released at a desired control rate and for a predetermined duration of time at the site of implantation. A stent having the above-described coating layers is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachealbronchi and other biological passageways. A stent having the above-described coating layers is particularly useful for treating occluded regions of blood vessels caused abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries. The application of the present invention should not, however, be limited to stents such that the embodiments of the coating can be used with a variety of medical substrates.
- Briefly, an angiogram is first performed to determine the appropriate positioning for stent therapy. Angiography is typically accomplished by injecting a radiopaque contrast agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above described coating layers may then be expanded at the desired area of treatment. A post insertion angiogram may also be utilized to confirm appropriate positioning.
- The embodiments of the invention will be illustrated by the following set forth examples which are being given by way of illustration only and not by way of limitation. All parameters and data are not be construed to unduly limit the scope of the embodiments of the invention.
- Multi-Link™ stents (available from Guidant Corporation) were cleaned by placement in an ultrasonic bath of isopropyl alcohol solution for 10 minutes. The stents were dried and plasma cleaned in a plasma chamber. An EVOH solution was made with 1 gram of EVOH and 7 grams of DMSO, making an EVOH: DMSO ratio of 1:7. The mixture was placed in a warm water shaker bath at 60° C. for 24 hours. The solution was cooled and vortexed. The cleaned Multi-LinkTm stents were dipped in the EVOH solution and then passed over a hot plate, for about 3-5 seconds, with a temperature setting of about 60° C. The coated stents were heated for 6 hours in an air box and then placed in an oven at 60° C., under vacuum condition, and for 24 hours. The coated stents were expanded on a 4.0 mm angioplasty balloon. The coatings remained intact on the stents. The coatings were transparent giving the Multi-Link™ stents a glossy-like shine.
- Multi-Link™ stents were cleaned by placement in an ultrasonic bath of isopropyl alcohol solution for 10 minutes. The stents were dried and plasma cleaned in a plasma chamber. An EVOH solution was made with 1 gram of EVOH and 4 grams of DMSO, making an EVOH: DMSO ratio of 1:4. Dexamethasone was added to the 1:4 EVOH: DMSO solution. Dexamethasone constituted 9% by weight of the total weight of the solution. The solution was vortexed and placed in a tube. The cleaned Multi-LinkTm stents were attached to mandrel wires and dipped into the solution. The coated stents were passed over a hot plate, for about 3-5 seconds, with a temperature setting of about 60° C. The coated stents were cured for 6 hours in an air box and then placed in a vacuum oven at 60° C. for 24 hours. The above-recited step was repeated twice. The average weight of the coating was 0.0003 gram, having an estimated dexamethasone content of 75 ug per stent. The coated stents were expanded on a 4.0 mm angioplasty balloon. The coatings remained intact on the stents. Verification of coverage and physical properties of the coatings were visualized using a scanning electron microscope. The coatings were transparent, giving the Multi-Link™ stents a glossy-like shine.
- Multi-Link Duet™ stents are cleaned by placement in an ultrasonic bath of isopropyl alcohol solution for 10 minutes. The stents are dried and plasma cleaned in a plasma chamber. The EVOH solution is made with 1 gram of EVOH and 4 grams of DMSO, making an EVOH: DMSO ratio of 1:4. Dexamethasone is added to the 1:4 EVOH: DMSO solution. Dexamethasone constitutes 9% by weight of the total weight of the solution. The solution is vortexed and placed in a tube. The cleaned Multi-Link™ stents are attached to mandrel wires and dipped into the solution. The coated stents are passed over a hot plate, for about 3-5 seconds, with a temperature setting of about 60° C. The coated stents are cured for 6 hours in an air box then placed in a vacuum oven at 60° C. for 24 hours. The single layered dexamethasone/EVOH coated stents are dipped into the 1:4 ratio EVOH:DMSO solution, free from dexamethasone. The stents are passed over the hot plate, cured, and placed in the oven as previously described. The top coating will provide a barrier layer for controlling the release of dexamethasone from the drug coated layer. The coated stents can be expanded on a 4.0 mm angioplasty balloon. It is predicted that the coatings will remain intact on the stents. The coatings will be transparent, giving the Multi-LinkTm stents a glossy-like shine.
- Multi-Link™ stents were cleaned by placement in an ultrasonic bath of isopropyl alcohol solution for 10 minutes. The stents were dried and plasma cleaned in a plasma chamber. An EVOH solution was made with 1 gram of EVOH and 7 grams of DMSO, making an EVOH: DMSO ratio of 1:7. Vinblastine was added to the 1:7 EVOH:DMSO solution. Vinblastine constituted 2.5% by weight of the total weight of the solution. The solution was vortexed and placed in a tube. The cleaned Multi-Link™ stents were attached to mandrel wires and dipped into the solution. The coated stents were passed over a hot plate, for about 3-5 seconds, with a temperature setting of about 600 C. The coated stents were cured for 6 hours in an air box then placed in a vacuum oven at 60° C. for 24 hours. The above process was repeated twice, having a total of three layers. The average weight of the coating was 0.00005 gram, with an estimated vinblastine concentration of 12 microgram per stent. Some of the stents were sterilized by electron beam radiation. The sterilized and unsterilized vinblastine coated stents were tested for a 24 hour elution period by placing one sterilized and one unsterilized stent in 5 ml of phosphated saline solution (pH 7.4) at room temperature with rotational motion. The amount of vinblastine eluted was evaluated by High Performance Liquid Chromatography (HPLC) analysis. The results of this test are given below and plotted in
FIG. 4 . The data indicates that electron beam radiation procedure does not interfere in the release of vinblastine from EVOH.Release Profile For Vinblastine - Unsterilized Time microgram Total microgram microgram Release (Hours) Released Released per Hour 0 0 0 0 0.5 2.12 2.12 4.24 3 1.91 4.03 0.76 4 0.27 4.30 0.27 6 0.38 4.68 0.19 24 1.7 6.38 0.09 -
Release Profile For Vinblastine - Sterilized Time Total uG uG Release (Hours) ug Release Released per Hour 0 0 0 0 0.5 2.14 2.14 4.28 3 1.7 3.84 0.68 4 0.28 4.12 0.28 6 0.26 4.38 0.13 24 2.05 6.43 0.11 - Multi-Link™ stents were cleaned by placement in an ultrasonic bath of isopropyl alcohol solution for 10 minutes. The stents were dried and plasma cleaned in a plasma chamber. An EVOH solution was made with 1 gram of EVOH and 7 grams of DMSO, making an EVOH: DMSO ratio of 1:7. Cephalotaxin was added to the 1:7 EVOH: DMSO solution. Cephalotaxin constituted 5% by weight of the total weight of the solution. The solution was vortexed and placed in a tube. The cleaned Multi-Link™ stents were attached to mandrel wires and dipped into the solution. The coated stents were passed over a hot plate, for about 3-5 seconds, with a temperature setting of about 60° C. The coated stents were cured for 6 hours in an air box then placed in a vacuum oven at 60° C. for 24 hours. The above process was repeated twice, having a total of three layers. The average weight of the coating was 0.00013 gram, with an estimated cephalotaxin concentration of 33 ug. The stents were sterilized by electron beam radiation. Cephalotaxin/EVOH coated stents and EVOH-coated control stents were implanted in the coronary arteries of 4 pigs, generally in accordance to the procedure set forth in “Restenosis After Balloon Angioplasty-A Practical Proliferative Model in Porcine Coronary Arteries” by Robert S. Schwartz, et al., Circulation 82(6):2190-2200, December 1990, and “Restenosis and the Proportional Neointimal Response to Coronary Artery Injury: Results in a Porcine Model” by Robert S. Schwartz et al, J Am Coll Cardiol; 19:267-74 February 1992. Results of the porcine artery study indicated that there was no significant difference between the uncoated, EVOH coated and cephalotaxin coated stents in the amount of neointimal proliferation resulting from arterial injury.
- Multi-Link Duet™ stents (available from Guidant Corporation) were cleaned by placement in an ultrasonic bath of isopropryl alcohol solution for 20 minutes, then air dried. An EVOH stock solution was made with 1 gram of EVOH and 7 grams of DMSO, making an EVOH: DMSO ratio of 1:7. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature. A co-solvent was added to the EVOH solution to promote wetting of the struts of the Multi-Link Duet™ stents. One gram of tetrahydrofuran (THF) was mixed with 1.2 grams of the EVOH: DMSO solution. The cleaned Multi-Link Duet™ stents were attached to mandrel wires and dipped into the solution. The coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C. The coated stents were then heated in a laboratory oven at 90° C. for 4 hours. The thin EVOH coating adhered to stainless steel without peeling or cracking. EVOH forms a superior primer base coat for other polymers that do not adhere well to stainless steel.
- Multi-Link Duet™ stents were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried. An EVOH solution was made with 1 gram of EVOH and 5 grams of DMSO, making an EVOH: DMSO ratio of 1:5. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature. The dissolved EVOH: DMSO solution was mixed with 24.6 grams of THF and 19.56 grams of DMSO. The solution was mixed then placed in the reservoir of an air pressured atomizing sprayer. Multi-Link Duet™ stents were sprayed while the stents rotated between 30 to 120 rpm. The spray time was dependent upon the flow rate of the sprayer. A flow rate between 1 to 20 mg/second required a stent to be sprayed between 1 to 30 seconds. The polymer coated Multi-Link Duet™ stents were heated in a forced air convection oven for 12 hours. The coatings were transparent, giving the Multi-Link Duet™ stents a glossy-like shine.
- Multi-Link Duet™ stents were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried. An EVOH stock solution was made having an EVOH: DMSO ratio of 1:4. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature. Various co-solvents were examined to determine which co-solvent would promote a thicker coating. These co-solvents were THF, DMF, 1-butanol, and n-butyl acetate. The formulation for the co-solvents was as follows. Three grams of dissolved EVOH: DMSO solution was mixed with 0.9 gram of THF; three grams of dissolved EVOH: DMSO solution was mixed with 0.39 gram of DMF; three grams of dissolved EVOH: DMSO solution was mixed with 0.5 gram of 1-butanol; and three grams of dissolved EVOH: DMSO solution was mixed with 0.68 gram of n-butyl acetate. The cleaned Multi-Link Duet™ stents, attached to mandrel wires, were dipped into the solutions. The coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C. The coated stents were heated in a forced air convection oven for 24 hours. A second layer of coating was applied to coated Multi-Link Duet™ stents and the stents were heated in the same manner as above. No difference was seen between the stents coated with the various co-solvents (e.g., greater weight of coating or physical appearance). All coated stents were transparent, giving the Multi-Link Duet™ stents a glossy-like shine. No webbing or bridging of the coating was seen between the struts of the coated Multi-Link Duet™ stents. The weight of the coatings was between 0.2 to 0.27 mg/stent.
- Multi-Link Duet™ stents are cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried. An EVOH stock solution is made having an EVOH: DMSO ratio of 1:4. The mixture is placed in a warm water shaker bath at 60° C. for 12 hours. The solution is mixed, then cooled to room temperature. A 9% by weight Dexamethasone solution is formulated as follows: 2.96 grams of the EVOH: DMSO solution is mixed with 0.29 gram of Dexamethasone, then 0.9 gram of THF is added. The cleaned Multi-Link Duet™ stents are attached to mandrel wires and dipped into the solution. The coated stents are passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C. The coated stents are cured in a forced air convection oven for 2 hours. A second layer of coating is applied and cured in the above manner. It is predicted that the coatings will be transparent, giving the Multi-Link Duet™ stents a glossy-like shine.
- Multi-Link Duet™ stents are cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried. An EVOH stock solution is made having an EVOH: DMSO ratio of 1:4. The mixture is placed in a warm water shaker bath at 60° C. for 12 hours. The solution is mixed, then cooled to room temperature. A 9% by weight Dexamethasone solution is formulated as follows: 2.96 grams of the EVOH: DMSO solution is mixed with 0.29 gram of Dexamethasone, then 0.9 gram of THF is added. The cleaned Multi-Link Duet™ stents are attached to mandrel wires and dipped into the solution. The coated stents are passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C. The coated stents are cured in a forced air convection oven for 2 hours. A second layer of coating is applied and cured in the above manner. It is predicted that the coatings will be transparent, giving the Multi-Link Duet™ stents a glossy-like shine.
- Multi-Link Duet™ stents were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried. An EVOH stock solution was made having an EVOH: DMSO ratio of 1:4. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature. A 4.75% by weight actinomycin D solution was formulated as follows: 600 milligrams of the EVOH: DMSO solution was mixed with 40 milligrams of actinomycin D, then 200 milligrams of THF was added. The cleaned Multi-Link Duet™ stents were attached to mandrel wires and dipped into the solution. The coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C. The coated stents were cured in a forced air convection oven for 2 hours. A second layer of coating was applied and cured in the above manner.
- Multi-Link Duet™ stents were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried. An EVOH stock solution was made having an EVOH: DMSO ratio of 1:4. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature. A 3.60% by weight actinomycin D solution was formulated as follows: 600 milligrams of the EVOH: DMSO solution was mixed with 40 milligrams of actinomycin D, then 480 milligrams of DMF was added. The cleaned Multi-Link Duet™ stents were attached to mandrel wires and dipped into the solution. The coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C. The coated stents were cured in a forced air convection oven for 2 hours. A second layer of coating was applied and cured in the above manner.
- Multi-Link Duet™ stents were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried. An EVOH stock solution was made having an EVOH: DMSO ratio of 1:4. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature. A 6.45% by weight actinomycin D solution was formulated as follows: 680 milligrams of the EVOH: DMSO solution was mixed with 80 milligrams of actinomycin D, then 480 milligrams of DMF was added. The cleaned Multi-Link Duet™ stents were attached to mandrel wires and dipped into the solution. The coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C. The coated stents were cured in a forced air convection oven for 2 hours. A second layer of coating was applied and cured in the above manner.
- Multi-Link Duet™ stents are cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried. An EVOH stock solution is made having an EVOH: DMSO ratio of 1:40. The mixture is placed in a warm water shaker bath at 60° C. for 12 hours. The solution is mixed, then cooled to room temperature. A 0.60% by weight actinomycin D solution can be formulated as follows: 4920 milligrams of the EVOH: DMSO solution is mixed with 40 milligrams of Actinomycin D, then 2000 milligrams of THF is added. The cleaned Multi-Link Duet™ stents can be sprayed upon by the above formulation. The coated stents are cured in a forced air convection oven for 2 hours. A second layer of coating is applied and cured in the above manner.
- Medial smooth muscle cells (SMC) were isolated from rat aorta and cultured according to explant methods known to one of ordinary skill in the art. Cells were harvested via trypsinization and subcultivated. Cells were identified as vascular SMC through their characteristic hill-and-valley growth pattern as well as indirect immunofluorescence with monoclonal anti SMC α-actin. Studies were performed with cells at passage 3-4. SMC monlayers were established on 24 well culture dishes, scrape wounded and treated with actinomycin D, mytomycin and docetaxel. The cells were exposed to the drug solution of different concentrations for 2 hours and then washed with buffered saline solution. The proliferation of the cells was quantified by standard technique of thymidine incorporation. The results from the study are tabulated in
FIG. 5 . - The IC50 (concentration at which 50% of the cells stop proliferating) of actimomycin D was 10−9M as compared to 5×10−5M for mitomycin and 10−6M for docetaxel. Actinomycin D was the most potent agent to prevent SMC proliferation as compared to other pharmaceutical agents.
- Porcine coronary models were used to assess the degree of the inhibition of neointimal formation in the coronary arteries of a porcine stent injury model by Actinomycin D, delivered with a microporous balloon catheter (1×106 pores/mm2 with sizes ranging from 0.2-0.8 micron).
- The preclinical animal testing was performed in accordance with the NIH Guide for Care and Use of Laboratory Animals. Domestic swine were utilized to evaluate effect of the drug on the inhibition of the neointimal formation. Each testing procedure, excluding the angiographic analysis at the follow-up endpoints, was conducted using sterile techniques. During the study procedure, the activated clotting time (ACT) was monitored regularly to ensure appropriate anticoagulation. Base line blood samples were collected for each animal before initiation of the procedure. Quantitative coronary angiographic analysis (QCA) and intravascular ultrasound (IVUS) analysis was used for vessel size assessment.
- The vessels at the sites of the delivery were denuded by inflation of the PTCA balloons to 1:1 balloon to artery ratio and moving the balloons back and forth 5 times. The drug was delivered to the denuded sites at 3.5 atm (3.61 Kg/sq cm) for 2 minutes using the microporous balloon catheters before stent deployment. The average volume of delivery was about 3.3±1.2 ml. Following drug delivery, stents were deployed at the delivery site such that final stent to artery ratio was 1.1:1.
- QCA and IVUS analyses were used for stent deployment guidance. Pre-stenting WUS measurements of the lumen size at the targeted vessel sites were performed for determination of the balloon (size) inflation pressure. Quantitative analysis of the stented coronary arteries to compare pre-stenting, post-stenting, follow-up minimal luminal diameters, stent recoil, and balloon/stent to artery ratio were performed. Following stent implantation and final angiogram, all devices were withdrawn and the wounds closed; the animals were allowed to recover from anesthesia as managed by the attending veterinarian or animal care professionals at the research center.
- Upon return to the research laboratory at the 28-day endpoint, angiographic assessments were performed. Coronary artery blood flow was assessed and the stented vessels were evaluated to determine minimal lumen diameter. The animals were euthanized following this procedure at the endpoint. Following euthanasia, the hearts were pressure perfusion fixed with formalin and prepared for histological analysis, encompassing light microscopy, and morphometry. Morphometric analysis of the stented arteries included assessment of the position of the stent struts and determination of vessel/lumen areas, percent (%) stenosis, injury scores, intimal and medial areas and intima/media ratios. Percent stenosis is quantitated by the following equation:
100 (IEL area−lumen area)/IEL area - where IEL is the internal elastic lamia.
- The control group of animals received delivery of water instead of the drug. The test group of animals received actinomycin D in two different concentration of 10−5M and 10−4M. The results of the study are tabulated in Table 4. The percent stenosis in the treated groups (32.3±11.7) was significantly decreased as compared to the control groups (48.8±9.8).
FIGS. 6A and 6B illustrate sample pictures of the histology slides of the coronary vessels from the control and theDose 1 group, respectively.TABLE 4 t test CONTROL DOSE 1 DOSE 2 (significant 0M 1E−05M 1E−04M if p < 0.05) (n = 9) (n = 10) (n = 7) p˜ p* ANGIOGRAPHIC DATA (QCA) Percent Diameter 48.8 +/− 9.8 36.8 +/− 9.7 32.3 +/− 11.7 0.02 0.01 Stenosis t test CONTROL DOSE 1 DOSE 2 (significant 0M 1E−05M 1E−04M if p < 0.05) (n = 27) (n = 30) (n = 21) p˜ p* HISTOMORPHOMETRIC DATA Percent Stenosis 63.4 +/− 12.7 51.8 +/− 13.8 54.1 +/− 11.7 0.002 0.01 (IEL area-lumen area)/IEL area Residual Lumen 0.36 +/− 0.16 0.49 +/− 0.14 0.46 +/− 0.08 0.002 0.01 (Lumen area)/IEL area
˜comparison between control andDose 1
*comparison between control andDose 2
- The results of the in vitro and in vivo standard test procedures demonstrate that actinomycin D is useful for the treatment of hyper-proliferative vascular disease. Specifically, actinomycin D is useful for the inhibition of smooth muscle cell hyperplasia, restenosis and vascular occlusion in a mammal, particularly occlusions following a mechanically mediated vascular trauma or injury.
- Multi-Link Duet™ stents (13 mm in length) were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried. An EVOH stock solution was made having an EVOH: DMSO ratio of 1:4. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature. A 5.06% by weight actinomycin D solution was formulated as follows: 40 milligrams of actinomycin D was dissolved in 150 milligrams of THF, then 600 milligrams of the EVOH: DMSO was added. The cleaned Multi-Link Duet™ stents were attached to mandrel wires and dipped into the solution. The coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C. The coated stents were cured in a forced air convection oven at 60° C. for 1 hour. A second layer of coating was applied in the above manner and cured in a forced air convection oven at 60° C. for 4 hours. An average coating weight of about 260 micrograms and an average actinomycin D loading of about 64 micrograms was achieved.
- Multi-Link Duet™ stents (13 mm in length) were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried. An EVOH stock solution was made having an EVOH: DMSO ratio of 1:4. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature. A 3.75% by weight actinomycin D solution was formulated as follows: 60 milligrams of actinomycin D was dissolved in 310 milligrams of DMF, then 1.22 grams of EVOH: DMSO solution was added. The cleaned Multi-Link Duet™ stents were attached to mandrel wires and dipped into the solution. The coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C. The coated stents were cured in a forced air convection oven at 60° C. for 1 hour. A second layer of coating was applied in the above manner and cured in a forced air convection oven at 60° C. for 4 hours. An average coating weight of about 270 micrograms with an average actinomycin D content of about 51 micrograms was achieved.
- Multi-Link Duet™ stents were cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried. An EVOH stock solution was made having an EVOH: DMSO ratio of 1:4. The mixture was placed in a warm water shaker bath at 60° C. for 12 hours. The solution was mixed, then cooled to room temperature. A 6.1% by weight actinomycin D solution was formulated as follows: 100 milligrams of actinomycin D was dissolved in 310 milligrams of DMF, then 1.22 grams of EVOH: DMSO was added. The cleaned Multi-Link Duet™ stents were attached to mandrel wires and dipped into the solution. The coated stents were passed over a hot plate, for about 3 to 5 seconds, with a temperature setting of about 60° C. The coated stents were cured in a forced air convection oven at 60° C. for 1 hour. A second layer of coating was applied in the above manner and cured in a forced air convection oven at 60° C. for 4 hours. An average coating weight of about 250 micrograms and an average actinomycin D loading of about 75 micrograms was achieved.
- Multi-Link Duet™ stents are cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried. An EVOH stock solution is made having an EVOH: DMSO ratio of 1:40. The mixture is placed in a warm water shaker bath at 60° C. for 12 hours. The solution is mixed, then cooled to room temperature. A 0.60% by weight actinomycin D solution can be formulated as follows: 4920 milligrams of the EVOH: DMSO solution is mixed with 40 milligrams of Actinomycin D, then 2000 milligrams of THF is added. The cleaned Multi-Link Duet™ stents can be sprayed upon by the above formulation. The coated stents are cured in a forced air convection oven 60° C. for 15 minutes. Additional layers of the coating are applied and cured in the above manner. The final curing step for the coated stents is conducted for about 4 hours.
- A stainless steel stent can be spray coated with a formulation of EVOH and a drug, as previously described in any of the above examples. A diffusion barrier composition can be formulated with 2 grams of EVOH blended with 20 grams of dimethylsulfoxide. 2.2 grams of fumed silica can be added and dispersed with a high shear process. With constant agitation, 50 grams of tetrahydrofuran and 30 grams of dimethylformamide are admixed with the blend. The stent, having the EVOH coating, can be immersed in the diffusion barrier composition to form a layer.
- A stainless steel stent can be spray coated with a formulation of EVOH and a drug, as previously described in any of the above examples. A diffusion barrier formulation can be made by dissolving 8 grams of EVOH into 32 grams of dimethylsulfoxide. To this is added 14 grams of rutile titanium dioxide and 7 grams more of dimethylsulfoxide. The particles can be dispersed using a ball mill. The final solution is diluted with 39 grams of tetrahydrofuran, added slowly with constant agitation. It is predicted that the diffusion barrier will reduce the rate at which the drug is released from the stent.
- A stainless steel stent can be coated with a formulation of EVOH and a drug, as previously described in any of the above examples. A diffusion barrier formulation can be made by dissolving 8 grams of EVOH in 32 grams of dimethylsulfoxide. 10.5 grams of solution precipitated hydroxyapatite can be added to the blend. The particles can be dispersed using a rotor stator mixer. With constant agitation, 30 grams of tetrahydrofuran can be added. The stent can be coated by immersion followed by centrifugation.
- A stent can be coated with a formulation of EVOH and a drug, as previously described in any of the above examples. 8 grams of EVOH can be added 50 grams of dimethylsulfoxide and the polymer can be dissolved by agitation and heat. Four grams of lamp black can be added and dispersed in a ball mill. 60 grams of dimethyl sulfoxide and 110 grams of tetrahydrofuran are slowly added while stirring. The stent can be spray coated.
- A stent can be coated with a formulation of EVOH and a drug, as previously described in any of the above examples. Colloidal gold can be prepared by reduction of tetrachloroauric acid with sodium citrate in aqueous solution. The solution can be exchanged by rinsing with tetrahydrofuran. Eight grams of EVOH can be dissolved in 32 grams of dimethylsulfoxide. To this is added a solution of 77 grams of colloidal gold in 32 grams of tetrahydrofuran. The stent can be coated by a dip coating process.
- In vivo data is provided illustrated positive remodeling caused by the application of actinomycin D. Stents coated with EVOH impregnated with actinomycin D and a control group of stents coated with EVOH free from actinomycin D were implanted in porcine coronary arteries. The animals were sacrificed at the end of 28 days. The EEL area of the actinomycin D-loaded vessels was statistically significantly greater than the EEL area of the control vessels. The index of remodeling was 1.076 (8.54/7.94).
Condition Mean Area Std Dev IEL Drug coated(Act-D in EVOH) 7.47 0.89 Control (EVOH) 6.6 0.61 p value 0.0002 Statistical significant difference EEL (external elastic lamia) Drug coated(Act-D in EVOH) 8.54 0.87 Control (EVOH) 7.94 0.73 p value 0.014 Statistical significant difference -
EEL Area (mm2) ID # Control ID # Actinomycin D ID # EVOH 48 LCX d 6.3966 63 LCX d 7.4498 63 LAD d 8.3037 48 LCX m 7.4601 63 LCX m 8.2509 63 LAD m 8.8545 48 LCX p 7.3063 63 LCX p 7.7342 63 LAD p 9.4698 49 LAD d 8.5573 63 RCA d 7.9207 64 LCX d 7.8063 49 LAD m 8.5187 63 RCA m 6.9926 64 LCX m 7.1117 49 LAD p 6.6346 63 RCA p 8.3883 64 LCX p 7.2411 58 LAD d 8.6078 65 LAD d 7.8546 64 RCA d 8.3383 58 LAD m 8.1674 65 LAD m 9.2545 64 RCA m 8.0793 58 LAD p 8.3775 65 LAD p 9.2515 64 RCA p 8.3652 59 LCA d 8.3054 68 LAD d 8.7854 65 LCX d 6.4638 59 LCX m 7.3713 68 LAD m 9.5164 65 LCX m 7.1493 59 LCX p 7.8662 68 LAD p 9.1504 65 RCA d 8.5955 59 RCA d 7.3714 69 LCX d 9.6679 65 RCA m 8.0855 59 RCA m 6.6783 69 LCX m 9.1237 65 RCA p 8.4785 59 RCA p 7.4707 69 LCX p 9.9849 68 LCX d 8.4723 62 LCX d 7.8784 69 RCA d 9.4765 68 LCX m 7.8382 62 LCX m 7.5318 69 RCA m 7.4424 68 LCX p 8.0570 62 LCX p 6.2647 69 RCA p 9.1462 68 RCA d 8.4840 62 RCA d 8.3240 70 LCX d 8.9504 68 RCA p 8.8767 62 RCA m 7.9535 70 LCX m 8.9117 69 LAD d 6.6648 62 RCA p 8.5454 70 LCX p 8.7533 69 LAD m 6.8614 67 LAD d 8.9532 70 RCA d 7.3249 69 LAD p 7.7632 67 LAD m 9.2410 70 RCA m 7.1061 70 LAD d 7.5175 67 LAD p 8.3841 70 RCA p 8.5830 70 LAD m 7.8630 70 LAD p 8.2222 AVG 7.8402 8.5425 7.9475 SD 0.8046 0.8755 0.7349 ActD vs EVOH p = 0.014709 AVG % EEL 7.486304 growth IEL Area (mm2) ID # Control ID # Actinomycin D ID # EVOH 48 LCX d 5.2178 63 LCX d 6.3785 63 LAD d 6.9687 48 LCX m 6.2108 63 LCX m 7.5206 63 LAD m 7.3908 48 LCX p 6.1125 63 LCX p 6.9992 63 LAD p 7.3563 49 LAD d 7.2848 63 RCA d 6.9632 64 LCX d 6.4420 49 LAD m 7.4117 63 RCA m 6.0418 64 LCX m 6.0064 49 LAD p 5.9918 63 RCA p 7.4794 64 LCX p 5.9970 58 LAD d 7.2049 65 LAD d 6.2324 64 RCA d 6.8001 58 LAD m 6.9334 65 LAD m 8.3785 64 RCA m 6.8561 58 LAD p 6.9454 65 LAD p 8.5819 64 RCA p 7.0172 59 LCA d 7.2640 68 LAD d 8.0964 65 LCX d 5.2485 59 LCX m 6.2014 68 LAD m 8.6879 65 LCX m 6.1135 59 LCX p 6.7283 68 LAD p 8.0914 65 RCA d 7.1525 59 RCA d 6.0519 69 LCX d 8.7181 65 RCA m 6.4815 59 RCA m 5.9992 69 LCX m 8.0273 65 RCA p 7.1775 59 RCA p 5.9032 69 LCX p 8.5222 68 LCX d 6.9571 62 LCX d 6.5329 69 RCA d 8.3796 68 LCX m 6.5724 62 LCX m 6.2804 69 RCA m 6.4219 68 LCX p 6.7740 62 LCX p 4.9303 69 RCA p 7.7757 68 RCA d 7.2425 62 RCA d 7.0977 70 LCX d 7.5392 68 RCA p 7.5554 62 RCA m 6.7466 70 LCX m 7.6573 69 LAD d 5.5505 62 RCA p 7.1747 70 LCX p 6.9749 69 LAD m 5.5571 67 LAD d 8.0264 70 RCA d 6.2815 69 LAD p 6.2697 67 LAD m 8.1144 70 RCA m 5.9760 70 LAD d 6.3212 67 LAD p 7.2091 70 RCA p 7.6195 70 LAD m 6.6518 70 LAD p 6.9032 AVG 6.6489 7.4727 6.6025 SD 0.7883 0.8972 0.6130 ActD vs EVOH p = 0.000283 AVG % IEL 13.17981 growth -
FIGS. 7A and 7B illustrate sample pictures of the histology slides of the coronary vessels from the control group 64 RCA (Right Coronary Group) and the actinomycin D loaded stent group 68 LAD (Left Anterior Descending), respectively. The stent used was an Advanced Cardiovascular Systems Multi-Link Duet™ (stainless steel). As is illustrated byFIG. 7B , the positive remodeling ofEEL 50, caused by the application of actinomycin D, creates a gap between stent struts 52 andEEL 50. Thrombus deposites, illustrated byreference number 54, are formed in the gap over time. The use of a self-expandable stent eliminates the formation of the gap as the stent self-expands in response to the positive remodeling of IEL. Thrombus deposits can be, accordingly, eliminated. - Actinomycin D induces the positive remodeling of the vessel walls, more particularly positive remodeling of the external elastic lamina (EEL) of a blood. vessel wall. Positive remodeling is generally defined as the ability of the vessel walls to structurally adapt, by increasing in lumen size, to chronic stimuli. A positively remodeled lumen wall has a greater diameter or size as compared to a lumen wall which has not been subjected to the remodeling effect. Accordingly, the flow of blood through the remodeled site is increased—flow which would have otherwise been reduced because of, for example, the presence of plaque build-up or migration and proliferation of cells. The index of remodeling is defined by the ratio of the area circumscribed by the EEL of the lesion site to the area circumscribed by the EEL of a reference site. As a result of the positive remodeling of the EEL, the internal elastic lamina (IEL), in response, can also increases in area or diameter. Actinomycin D, or analogs or derivative thereof, not only can inhibit abnormal or inappropriate migration and/or proliferation of smooth muscle cells, which can lead to restenosis, but can also induce positive remodeling of the blood vessel walls. Thus the widening of the diseased region becomes more pronounced.
- 2 grams of an acrylate terminated urethane (Henkel 12892) can be added to 18 grams of ethyl acetate with 0.08 grams of benzophenone and 0.08 grams of 1-hydroxycyclohexyl phenyl ketone. After application, the stent can be cured for 5 minutes under medium pressure mercury lamp.
- For a thermoset system, 1.67 grams of Epon 828 (Shell) resin can be added to 98 grams of propylene glycol monomethyl ether and 0.33 grams of Jeffamine T-430 (Huntsman). After application, the stent can be baked for 2 hours at 80° C. and 2 hours at 160° C.
- A 0.25% (w/w) solution of tetra-n-butyl titanate can be made in anhydrous ethyl acetate. The solution can be applied by spraying to a surface of a stainless steel stent. The stent can be heated at 100° C. for two hours.
- While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
- Objective
- Coated stents tested through simulated delivery to a target lesion for testing the mechanical integrity of the coating.
Group Quantity Coating A 2 Control: 2% EVAL in 1:1 THF:DMSO, 3:1 EVAL:Act-d; no primer B 2 2% EVAL in 5:3:2 THF:DMF:DMSO, 3:1 EVAL:Act-d; no primer C 2 EVAL primer layer baked at 120 C/60 C for 2/10 hrs + 2% EVAL in 1:1 THF:DMSO, 3:1 EVAL:Act-d; primer D 2 EVAL primer layer baked at 140 C/60 C for 2/2 hrs + 2% EVAL in 1:1 THF:DMSO, 3:1 EVAL:Act-d; primer - In this experiment four different treatment groups were tested through a simulated delivery and use. Number of peel defects at
rings 3, 5, and 7, with a peel defect defined as a location on the stent where coating has been removed to expose bare stent or an underlying layer of coating, were observed. - Materials and Equipment
- 1. 8, 13 mm Solo stents (Available from Guidant Corporation);
- 2. 8, 3.0×30 mm Duet catheters;
- 3. 100% IPA;
- 4. Tominator Stent Crimper S/N 400;
- 5. 7F JL4 guiding catheter;
- 6. 0.014″ Balance Middle Weight guide wire;
- 7. Rotating Hemostatic Valve;
- 8. SVS tortuosity tree (2.5 mm lumen tapering to 1.5 mm lumen);
- Preparation
- Crimped the stents onto the catheters using the Tominator crimper and the following conditions: 3 crimps, 65 psi, rotation between crimps.
- Test Procedure
- 1. Performed simulation using heart model having a tortuosity and contained in a tub filled with water:
-
- a. Inserted the stents through the following set-up: RHF, 7F JL4 guiding catheter, SVS tortuosity tree (2.5 mm lumen at entrance, 1.5 mm lumen at exit).
- b. Once the stent passed through the distal opening of tortuosity, the balloon was cut from the catheter just distal to proximal marker.
- 2. Examined the stents under 100× magnification using Leica MZFLIII microscope in the clean environment room (CER).
- 3. Recorded number of peel defects at stent rings 3, 5, and 7. Only the outer diameter (“OD”) was examined for peel defects.
- 4. All test samples were handled with personal protective equipment (PPE) appropriate for drug containing stents.
- Data Summary and Results
Group # Peel Defects/Ring Comments A (THF) 2.0 — B (DMF) 5.3 Began with poor coating finish. C (140° C.) 0.7 — D (120° C.) 0 —
Discussion - The test was performed to observe the coating integrity after a simulated delivery to a tortuosity without a lesion. The primer layer improved coating adhesion to the stents that resulted in fewer defects after a simulated use. Group B had a number defects. Although the coating surface for Group B was poor to begin with, and the defects were not too severe.
- Objective
- The adhesion of 0.67% Actinomycin-D (in 5% EVAL 1:1 THF:DMSO solution) coating on stents with two different surface treatments was compared to control samples. The specific surface treatments consisted of: (1) Argon plasma treatment; and (2) Argon plasma treatment with a primer layer of 5% EVAL in 1:1 DMSO:DMF solution applied with the dip-spin process, i.e., centrifugation process, and followed by heat treatments at 120° C. for two hours and 60° C. for 10 hours. The test method used to test adhesion of coatings on stents was a wet flow test, expanding the stents in a Tecoflex tubing at 37° C. of water or saline. Water or saline is then flushed through the stents for 18 hours to simulate blood flow through the stents. The stents were then removed from the Tecoflex with a “stent catcher” and observed under optical microscope for defects.
Group Treatment Flow Rate A None 50 mL/min B Argon plasma 50 mL/min C Argon plasma + 5% EVAL in 1:1 DMSO: DMF 50 mL/min heated at 120° C. for two hours and 60° C. for 10 hours D None 100 mL/min E Argon plasma 100 mL/min F Argon plasma + 5% EVAL in 1:1 DMSO: DMF 100 mL/min heated at 120° C. for two hours and 60° C. for 10 hours
Materials and Equipment -
- 1. 30, 13 mm coated Solo stents, cleaned ultrasonically in IPA for 15 minutes;
- 2. 30, balloon catheters or subassemblies to expand the stents (3.0×20 mm RX Rocket);
- 3. 0.67% Actinomycin-D in 5% EVAL with 1:1 THF:DMSO solution;
- 4. 5% EVAL in 1:1 DMF:DMSO;
- 5. 3.0 mm, thin walled Tecoflex tubing;
- 6. Saline;
- 7. Lint Free Wipes SU 00126 or equivalent;
- 8. 100% IPA;
- 9. Oven;
- 10. Timer;
- 11. Centrifuge;
- 12. Plasma Machine (available from Advanced Plasma System);
- 13. Ultrasonic cleaner;
- 14. Mettler balance with 0.1 micrograms resolution; and
- 15. Spray Coater with Fan Air Cap and EFD dispenser (EFD Inc. East Providence R.I.).
Preparation
- 1. Sonicated the stents in IPA for 15 minutes;
- 2. Weighed each stent to the nearest microgram;
- 3. Prepared 5 stent samples:
-
- A. Groups A and D:
- i. Performed spray-coating process in CER under the following conditions: 3 passes, 3-second spray, no blowing.
- ii. Weighed each sample at the end of the last pass to the nearest microgram.
- iii. Baked the samples for 4 hrs at 60° C.
- iv. Placed the stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. saline.
- B. Groups B and E:
- i. Placed the samples on a sample holder. Performed argon plasma treatment using plasma machine.
- ii. Performed spray-coating process in CER under the following conditions: 3 passes, 3-second spray, no blow.
- iii. Weighed each sample at the end of the last pass to the nearest microgram.
- iv. Baked the samples for 4 hrs at 60° C.
- v. Placed the stents into the Tecoflex tubing with the balloon catheter—submerged in 37° C. saline.
- C. Groups C and F:
- i. Placed samples flat on a sample holder. Performed argon plasma treatment.
- ii. Used dip-spin process to apply 2% EVAL primer layer, 1:1 DMSO:DMF.
- iii. Baked the stents at 120° C. for two hours.
- iv. Baked the stents at 60° C. for ten hours.
- v. Performed spray-coating process in CER under the following conditions: 3 passes, 3-second spray, no blow.
- vi. Weighed each sample at the end of the last pass to the nearest microgram.
- vii. Baked the samples for 4 hrs at 60° C.
- viii. Placed the stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
Test Procedure
- A. Groups A and D:
- Tested three samples from each group. Wet Flow Testing:
- 1. Expanded the stents into the 3.0 mm Tecoflex tubing in 37° C. saline.
- 2. Performed wet flow testing for 18 hrs.
- 3. Removed the stents from the Tecoflex tubing with a stent catcher.
- 4. Count defects, based on the following categories: Defect type; defect size; defect location; and peel defects on
rings 3, 5, and 7. - 5. Stent weight could not be a measurable because of the loss of the drug and uptake of water.
- 6. All test samples were handled with PPE appropriate for drug containing stents.
- Data Summary
Average # of Peel Defects/Stent Average # Peel Defects/Ring Group (3 rings) After Flow Test After Flow Test A 18.0 6.0 B 15.3 5.1 C 2.7 0.9 D 14.3 4.8 E 14.0 4.7 F 0.7 0.2
Discussion - Peel defects are defined as areas where the coating separated from the stent. The number of peel defects were counted on the stents' OD/sidewall on
rings 3, 5, and 7. The flow field was on the inner diameter (“ID”) of the stents' surface. Some of the damage to the OD surface could have been aggravated by the Tecoflex tubing. The number of peel defects observed on groups C and F (EVAL primer) was clearly lower than the other two test groups, regardless of flow rate. The increased flow rate did not induce more peel defects. - Objective
- The objective of this experiment was to test the adhesive properties of an Actinomycin-D containing coating on stainless steel stents having an EVAL primer layer. The coated stents were tested in a wet flow test condition of saline heated to 37° C. The number of “peel defects” on a select number of stent rings was observed. A “peel defect” is defined as a location on the stent surface devoid of coating, i.e., bare metal or underlying coating layer that is visible under optical magnification of less than 100×.
Group Treatment Flow Rate A Argon plasma treatment + EVAL primer layer 50 mL/min (15% EVAL, 1:1 DMF:DMSO) baked at 140° C. for 2 hours and dried at 60° C. for 2 hours B Argon plasma treatment + EVAL primer layer 50 mL/min Control (15% EVAL, 1:1 DMF:DMSO) baked at 120° C. for 2 hours and dried at 60° C. for 10 hours
Materials and Equipment -
- 1. 10, 13 mm Solo stents, cleaned ultrasonically in IPA for 15 minutes;
- 2. 10, balloon catheters or subassemblies to expand the stents;
- 3. 15% EVAL in 1:1 DMF:DMSO solution;
- 4. Actinomycin-D solution, 1:1 THF:DMSO with 3:1 EVAL: Act-D;
- 5. Tecoflex tubing
- 6. Saline
- 7. Lint Free Wipes SU 00126 or equivalent
- 8. 100% IPA
- 9. Oven
- 10. Timer
- 11. Plasma Machine (Advanced Plasma System);
- 12. Ultrasonic cleaner; and
- 13. Mettler balance with 0.1 micrograms resolution.
Preparation
- 1. Sonicated the stents in IPA for 15 minutes.
- 2. Weighed each stent to the nearest microgram.
- 3. Prepared 5 stent samples for each group:
-
- A. Group A (Control):
- i. Placed the samples flat on a sample holder. Performed argon plasma treatment.
- ii. Used dip-spin process, i.e., centrifugation at 6000 rpm for one minute, to apply the EVAL primer layer, 1:1 DMSO:DMF.
- iii. Baked the stents at 140° C. for two hours in the convection oven.
- iv. Took weight measurements of each stent to the nearest microgram.
- v. Baked the stents at 60° C. for two hours in vacuum oven.
- vi. Took weight measurements of each stent to the nearest microgram.
- vii. Performed spray-coating process in CER under the following conditions: 3 passes, 3-second spray, no blow.
- viii. Weighed each sample at the end of the last pass to the nearest microgram.
- ix. Baked samples for 4 hrs at 60° C.
- x. Took weight measurements of each stent to the nearest microgram.
- xi. Placed the stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
- B. Groups B:
- i. Placed samples flat on sample holder. Performed argon plasma treatment.
- ii. Used dip-spin process at 6000 rpm for one minute to apply EVAL primer layer, 1:1 DMSO:DMF.
- iii. Baked the stents at 120° C. for two hours in the convection oven.
- iv. Took weight measurements on each stent to the nearest microgram.
- v. Baked the stents at 60° C. for ten hours in vacuum oven.
- vi. Took weight measurements for each stent to the nearest microgram.
- vii. Performed spray-coating process in CER at the following conditions: 3 passes, 3-second spray, no blow.
- viii. Weighed each sample at the end of the last pass to the nearest microgram.
- ix. Baked the samples for 4 hrs at 60° C.
- x. Took weight measurements of each stent to the nearest microgram.
- xi. Placed the stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
Test Procedure
- A. Group A (Control):
- 1. Performed wet flow testing overnight for about 18 hrs.
- 2. Removed the stents from the Tecoflex tubing with a stent catcher.
- 3. Counted the defects based on the number of peel defects at
rings 3, 5, and 7 on the stents' OD. Count the defects on the ID of the same rings. - 4. The weight could not be measured because of the loss of the drug and uptake of water.
- 5. All test samples were handled with PPE appropriate for drug containing stents.
- Data Summary and Results
# Peel Average # of Peel # Peel Average # Defects Defects/Ring (OD, Defects of Peel Defects/Ring Group (OD) rings 3, 5, 7) (ID) (ID, rings 3, 5, 7) A 0 0 1 0.3 0 0 1 0.3 0 0 1* 0.3 B 0 0 0 0 0 0 0 0 0 0 0 0
*Defect occurred at a location of a defect in the stent surface.
- Objective
- The objective of this study was to test the adhesive properties of an Actinomycin-D containing coating on stainless steel stents having an EVAL primer layer. The coated stents were tested under wet flow conditions of saline heated to 37° C. The number of “peel defects” on a select number of stent rings was observed. A “peel defect” is defined as a location on the stent surface devoid of coating, i.e., bare metal or an underlying coating layer that is visible under optical magnification of no more than 100×.
Group Treatment Flow Rate A None 50 mL/min Control B Argon plasma treatment + EVAL primer layer 50 mL/min by dip-spin (2% EVAL, 1:1 DMF:DMSO) baked at 140° C. for 4 hours C EVAL primer layer by dip-spin (2% EVAL, 50 mL/min 1:1 DMF:DMSO) baked at 140° C. for 4 hours D Argon plasma treatment + EVAL primer layer 50 mL/min by spray (2% EVAL, 1:1 DMF:DMSO) baked at 140° C. for 4 hours E EVAL primer layer by spray (2% EVAL, 1:1 50 mL/min DMF:DMSO) baked at 140° C. for 4 hours
Materials and Equipment -
- 1. 25, 13 mm Solo stents, cleaned ultrasonically in IPA for 15 minutes;
- 2. 25, balloon catheters or subassemblies to expand the stents;
- 3. 2% EVAL in 1:1 DMF:DMSO solution;
- 4. Actinomycin-D solution, 1:1 THF:DMSO with 3:1 EVAL: Act-D;
- 5. 3.0 mm Tecoflex tubing;
- 6. Saline;
- 7. Lint Free Wipes SU 00126 or equivalent;
- 8. 100% IPA;
- 9. Convection Oven
- 10. Timer;
- 11. Plasma Machine;
- 12. Ultrasonic cleaner; and
- 13. Mettler balance with 0.1 micrograms resolution.
Preparation
- 1. Sonicated the stents in IPA for 15 minutes.
- 2. Weighed each stent to the nearest microgram.
- 3. Prepared 5 stent samples for each group.
-
- A. Group A (Control):
- i. Performed spray-coating process in CER under the following conditions: 3 passes, 3-second spray, no blow.
- ii. Weighed each sample at the end of the last pass to the nearest microgram.
- iii. Baked the samples for 4 hrs at 60° C.
- iv. Took the weight measurements of each stent to the nearest microgram.
- v. Placed the stents into the Tecoflex tubing with the balloon catheter—submerged in 37° C. water.
- B. Group B:
- i. Placed samples flat on sample holder. Perform argon plasma treatment.
- ii. Used dip-spin process to apply EVAL primer layer, 1:1 DMSO: DMF (6000 rpm for one minute).
- iii. Baked the stents at 140° C. for 4 hours in convection oven.
- iv. Took weight measurements on each stent to the nearest microgram.
- v. Performed spray-coating process in CER at the following conditions: 3 passes, 3-second spray, no blow.
- vi. Weighed each sample at the end of the last pass to the nearest microgram.
- vii. Baked the samples for 4 hrs at 60° C.
- viii. Took the weight measurements of each stent to the nearest microgram.
- ix. Placed the stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
- C. Group C:
- i. Used dip-spin process to apply EVAL primer layer, 1:1 DMSO:DMF (6000 rpm for one minute).
- ii. Baked the stents at 140° C. for four hours in convection oven.
- iii. Took weight measurements on each stent to the nearest microgram.
- iv. Performed spray-coating process in CER under the following conditions: 3 passes, 3-second spray, no blow.
- v. Weighed each sample at the end of the last pass to the nearest microgram.
- vi. Baked the samples for 4 hrs at 60° C.
- vii. Took weight measurements of each stent to the nearest microgram.
- viii. Placed stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
- D. Group D:
- i. Placed the samples flat on a sample holder. Perform argon plasma treatment.
- ii. Spray coated primer layer (2% EVAL, 1:1 DMF:DMSO) onto the stents. Used 1.5 sec. spray time, 1-2 passes to achieve 10-40 micrograms of coating.
- iii. Baked the stents at 140° C. for 4 hours in the convection oven.
- iv. Took weight measurements on each stent to the nearest microgram.
- v. Performed spray-coating process in CER at the following conditions: 3 passes, 3-second spray, no blow.
- vi. Weighed each sample at the end of the last pass to the nearest microgram.
- vii. Baked samples for 4 hrs at 60° C.
- viii. Took weight measurements of each stent to the nearest microgram.
- ix. Placed stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
- E. Group E:
- i. Spray coated primer layer (2% EVAL, 1:1 DMF:DMSO) onto the stents. Used 1.5 sec. spray time, 1-2 passes to achieve 10-40 micrograms of coating.
- ii. Baked the stents at 140° C. for four hours in convection oven.
- iii. Took weight measurements on each stent to the nearest microgram.
- iv. Performed spray-coating process in CER at the following conditions: 3 passes, 3-second spray, no blow.
- v. Weighed each sample at the end of the last pass to the nearest microgram.
- vi. Baked the samples for 4 hrs at 60° C.
- vii. Took weight measurements of each stent to the nearest microgram.
- viii. Placed the stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
Test Procedure
- A. Group A (Control):
- 1. Performed wet flow testing overnight for about 18 hrs.
- 2. Removed stents from the Tecoflex tubing with a stent catcher.
- 3. Counted the defects based on the number of peel defects at
rings - 4. Stent weight could not be a measurable because of the loss of the drug and uptake of water.
- 5. All test samples were handled with PPE appropriate for drug containing stents.
- Data Summary and Results
Group Defects/Ring (OD) Defects/Ring (ID) Control 2.67 3.00 Dip/Plasma 0.67 0.47 Dip/No Plasma 0.87 0.80 Spray/Plasma 0.47 0.80 Spray/No Plasma 0.67 0.73
Discussion
Peel Defects of Primer Coated Stents vs. Untreated Controls - An improved adhesion, based on the number of peel defects, of the drug containing coating to the Tri-Star stent when an EVAL primer layer was applied is illustrated. All four treatment groups displayed significantly fewer peel defects per stent than the untreated control stents. Use of a spray-coated, 2% EVAL solution in 1:1 DMF:DMSO as a primer significantly improved adhesion of Actinomycin-D containing coating to the Tri-Star stents vs. the controls. The spray-coated primer produced slightly higher peel defect counts compared to the dip-spin deposited primer.
- Objective
- The objective of this experiment was to test the adhesive properties of an Actinomycin-D containing coating to stainless steel stents having an EVAL primer layer. More specifically, this experiment attempted to illustrate the effect of different bake times on the final result. The coated stents were tested under wet flow conditions of saline heated to 37° C. The number of “peel defects” on a select number of stent rings was observed.
Group Treatment Flow Rate A none 50 mL/min Control B Argon plasma treatment + EVAL primer 50 mL/min layer by spray (2% EVAL, 1:1 DMF:DMSO) baked at 140° C. for 15 minutes C Argon plasma treatment + EVAL primer layer 50 mL/min by spray (2% EVAL, 1:1 DMF:DMSO) baked at 140° C. for 30 minutes D Argon plasma treatment + EVAL primer layer 50 mL/min by spray (2% EVAL, 1:1 DMF:DMSO) baked at 140° C. for 60 minutes E Argon plasma treatment + EVAL primer layer 50 mL/min by spray (2% EVAL, 1:1 DMF:DMSO) baked at 140° C. for 120 minutes
Materials and Equipment -
- 1. 25, 13 mm Solo stents, cleaned ultrasonically in IPA for 15 minutes;
- 2. 25, balloon catheters or subassemblies to expand the stents;
- 3. 2% EVAL in 1:1 DMF:DMSO solution;
- 4. Actinomycin-D solution, 1:1 THF:DMSO with 3:1 EVAL: Act-D;
- 5. 3.0 mm Tecoflex tubing;
- 6. Saline;
- 7. Lint Free Wipes SU 00126 or equivalent;
- 8. 100% IPA;
- 9. Convection Oven;
- 10. Timer;
- 11. Plasma Machine;
- 12. Ultrasonic cleaner; and
- 13. Mettler balance with 0.1 micrograms resolution.
Preparation
- 1. Sonicated stents in IPA for 15 minutes.
- 2. Weighed each stent to the nearest microgram.
- 3. Prepared 5 stent samples for each group.
-
- A. Group A (Control):
- i. Performed spray-coating process in CER under the following conditions: 3 passes, 3-second spray, no blow.
- ii. Weighed each sample at the end of the last pass to the nearest microgram.
- iii. Baked the samples for 240 minutes at 50° C.
- iv. Took weight measurements of each stent to the nearest microgram.
- v. Placed the stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
- B. Group B:
- i. Placed samples flat on sample holder. Perform argon plasma treatment.
- ii. Spray coated primer layer (2% EVAL, 1:1 IDMF:DMSO) onto stents. Used 1.5 sec. spray time, 1-2 passes to achieve 10-40 micrograms of coating.
- iii. Baked the stents at 140° C. for 15 minutes in the convection oven.
- iv. Took weight measurements on each stent to the nearest microgram.
- v. Performed spray-coating process in CER under the following conditions: 3 passes, 3-second spray, no blow.
- vi. Weighed each sample at the end of the last pass to the nearest microgram.
- vii. Baked the samples for 240 minutes at 50° C.
- viii. Took weight measurements of each stent to the nearest microgram.
- ix. Placed stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
- C. Group C:
- i. Placed the samples flat on sample holder. Perform argon plasma treatment.
- ii. Spray coated primer layer (2% EVAL, 1:1 DMF:DMSO) onto stents. Used 1.5 sec. spray time, 1-2 passes to achieve 10-40 micrograms of coating.
- iii. Baked the stents at 140° C. for 30 minutes in the convection oven.
- iv. Took weight measurements on each stent to the nearest microgram.
- v. Performed spray-coating process in CER under the following conditions: 3 passes, 3-second spray, no blow.
- vi. Weighed each sample at the end of the last pass to the nearest microgram.
- vii. Baked the samples for 240 minutes at 50° C.
- viii. Took weight measurements of each stent to the nearest microgram.
- ix. Placed stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
- D. Group D:
- i. Placed samples flat on sample holder. Perform argon plasma treatment.
- ii. Spray coated primer layer (2% EVAL, 1:1 DMF:DMSO) onto stents. Used 1.5 sec. spray time, 1-2 passes to achieve 10-40 micrograms of coating.
- iii. Baked the stents at 140° C. for 60 minutes in the convection oven.
- iv. Took weight measurements on each stent to the nearest microgram.
- v. Performed spray-coating process in CER under the following conditions: 3 passes, 3-second spray, no blow.
- vi. Weighed each sample at the end of the last pass to the nearest microgram.
- vii. Baked the samples for 240 minutes at 50° C.
- viii. Took weight measurements of each stent to the nearest microgram.
- ix. Placed stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
- E. Group E:
- i. Placed samples flat on sample holder. Perform argon plasma treatment.
- ii. Spray coated primer layer (2% EVAL, 1:1 DMF:DMSO) onto stents. Used 1.5 sec. spray time, 1-2 passes to achieve 10-40 micrograms of coating.
- iii. Baked the stents at 140° C. for 120 minutes in the convection oven.
- iv. Took weight measurements on each stent to the nearest microgram.
- v. Performed spray-coating process in CER at the following conditions: 3 passes, 3-second spray, no blow.
- vi. Weighed each sample at the end of the last pass to the nearest microgram.
- vii. Baked samples for 240 minutes at 50° C.
- viii. Took weight measurements of each stent to the nearest microgram.
- ix. Placed stent into the Tecoflex tube with balloon catheter—submerged in 37° C. water.
Test Procedure
- A. Group A (Control):
- 1. Performed wet flow testing overnight for about 18 hrs.
- 2. Removed the stents from the Tecoflex tubing with a stent catcher.
- 3. Counted the defects based on the number of peel defects at
rings 3, 5, and 7 on the stents' OD. Count the defects on the ID of the same rings. - 4. Stent weight could not be a measurable because of the loss of the drug and uptake of water.
- 5. All test samples were handled with PPE appropriate for drug containing stents.
- Data Summary and Results
Group Total Defects per Stent Control 3.33 15 min bake 1.00 30 min bake 3.00 60 min bake 1.67 120 min bake 1.33
Discussion - The control group with no primer layer had significantly more peel defects as compared to the treatment groups with a primer layer. The groups with shorter baking times (15 and 30 minutes) had higher defect counts than the groups with longer baking times.
- Objective
- The objective of this experiment was to test the adhesive properties of an Actinomycin-D containing coating on stainless steel stents having an EVAL primer layer. More specifically, different solvent systems (e.g., THF and DMF) were evaluated. The coated stents were tested under wet flow conditions of saline heated to 37° C. The number of “peel defects” on a select number of stent rings was observed.
Group Treatment Flow Rate A none 50 mL/min Control B Argon plasma treatment + EVAL primer layer 50 mL/min by spray (2% EVAL, 1:1 DMF:DMSO) baked at 140° C. for 15 minutes C Argon plasma treatment + EVAL primer layer 50 mL/min by spray (2% EVAL, 1:1 DMF:DMSO) baked at 140° C. for 60 minutes D Argon plasma treatment + EVAL primer layer 50 mL/min by spray (2% EVAL, 1:1 DMF:DMSO) baked at 140° C. for 240 minutes E Argon plasma treatment + EVAL primer layer 50 mL/min by spray (2% EVAL, 1:1 THF:DMSO) baked at 140° C. for 60 minutes
Materials and Equipment -
- 1. 25, 13 mm Solo stents, cleaned ultrasonically in IPA for 15 minutes;
- 2. 25, balloon catheters or subassemblies to expand the stents;
- 3. 2% EVAL in 1:1 DMF:DMSO solution;
- 4. 2% EVAL in 1:1 THF:DMSO solution;
- 5. Actinomycin-D solution, 1:1 THF: DMSO with 3:1 EVAL: Act-D, 2% EVAL;
- 6. 3.0 mm Tecoflex tubing;
- 7. Saline;
- 8. Lint Free Wipes SU 00126 or equivalent;
- 9. 100% IPA;
- 10. Convection Oven;
- 11. Timer;
- 12. Plasma Machine;
- 13. Ultrasonic cleaner; and
- 14. Mettler balance with 0.1 micrograms resolution.
Preparation
- 1. Sonicated stents in IPA for 15 minutes.
- 2. Weighed each stent to the nearest microgram.
- 3. Prepared 5 stent samples for each group.
-
- A. Group A (Control):
- i. Performed spray-coating process in CER under the following conditions: 3 passes, 3-second spray, no blow.
- ii. Weighed each sample at the end of the last pass to the nearest microgram.
- iii. Baked samples for 240 minutes at 50° C.
- iv. Took weight measurements of each stent to the nearest microgram.
- v. Placed the stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
- B. Group B:
- i. Placed samples flat on a sample holder. Performed argon plasma treatment.
- ii. Spray coated the primer layer (2% EVAL, 1:1 DMF: DMSO) onto the stents. Used 1.5 sec. spray time, 1-2 passes to achieve 10-40 micrograms of coating.
- iii. Baked the stents at 140° C. for 15 minutes in the convection oven.
- iv. Took weight measurements of each stent to the nearest microgram.
- v. Performed spray-coating process in CER under the following conditions: 3 passes, 3-second spray, no blow.
- vi. Weighed each sample at the end of the last pass to the nearest microgram.
- vii. Baked the samples for 240 minutes at 50° C.
- viii. Took weight measurements of each stent to the nearest microgram.
- ix. Placed the stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
- C. Group C:
- i. Placed samples flat on a sample holder. Performed argon plasma treatment.
- ii. Spray coated the primer layer (2% EVAL, 1:1 DMF: DMSO) onto the stents. Used 1.5 sec. spray time, 1-2 passes to achieve 10-40 micrograms of coating.
- iii. Baked the stents at 140° C. for 60 minutes in the convection oven.
- iv. Took weight measurements of each stent to the nearest microgram.
- v. Performed spray-coating process in CER under the following conditions: 3 passes, 3-second spray, no blow.
- vi. Weighed each sample at the end of the last pass to the nearest microgram.
- vii. Baked the samples for 240 minutes at 50° C.
- viii. Took weight measurements of each stent to the nearest microgram.
- ix. Placed the stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
- D. Group D:
- i. Placed samples on flat on a sample holder. Performed argon plasma treatment.
- ii. Spray coated the primer layer (2% EVAL, 1:1 DMF: DMSO) onto the stents. Used 1.5 sec. spray time, 1-2 passes to achieve 10-40 micrograms of coating.
- iii. Baked the stents at 140° C. for 240 minutes in the convection oven.
- iv. Took weight measurements of each stent to the nearest microgram.
- v. Performed spray-coating process in CER at the following conditions: 3 passes, 3-second spray, no blow.
- vi. Weighed each sample at the end of the last pass to the nearest microgram.
- vii. Baked the samples for 240 minutes at 50° C.
- viii. Took weight measurements of each stent to the nearest microgram.
- ix. Placed the stents into the Tecoflex tubing with a balloon catheter—submerged in 37° C. water.
- E. Group E:
- i. Placed samples flat on a sample holder. Perform argon plasma treatment.
- ii. Spray coated the primer layer (2% EVAL, 1:1 THF: DMSO) onto the stents. Used 1.5 sec. spray time, 1-2 passes to achieve 10-40 micrograms of coating.
- iii. Baked the stents at 140° C. for 60 minutes in the convection oven.
- iv. Took weight measurements of each stent to the nearest microgram.
- V. Performed spray-coating process in CER under the following conditions: 3 passes, 3 second spray, no blow.
- vi. Weighed each sample at the end of the last pass to the nearest microgram.
- vii. Baked the samples for 240 minutes at 50° C.
- viii. Took weight measurements of each stent to the nearest microgram.
- ix. Placed the stents into the Tecoflex tubing with a balloon catheter—submerged in 37 ° C. water.
Test Procedure
- A. Group A (Control):
- 1. Performed wet flow testing overnight for about 18 hrs.
- 2. Removed the stents from the Tecoflex tubing with a stent catcher.
- 3. Counted the defects, based on the number of peel defects at
rings 3, 5, and 7 on the stents' OD. Counted defects on the ID of the same rings. - 4. The weight of the stents could not be a measurable because of the loss of the drug and uptake of water.
- 5. All test samples were handled with PPE appropriate for drug containing stents.
- Data Summary and Results
Group Total Defects per Stent No primer control 0.00 15 min. bake 0.00 60 min. bake 0.33 240 min. bake 0.00 THF, 15 min. bake 0.00 - Objective
- The objective of this experiment was to test the adhesive properties of an Actinomycin-D containing coating on stainless steel stents having an EVAL primer layer made from a DMSO:THF solution applied to the stents. The coated stents were tested under wet flow conditions of saline heated to 37° C. The number of “peel defects” on a select number of stent rings was observed.
Group Treatment Drying Time (min.) A Argon plasma treatment + EVAL primer 15 B Argon plasma treatment + EVAL primer 30 C Argon plasma treatment + EVAL primer 60 D Argon plasma treatment + EVAL primer 90 E Argon plasma treatment + EVAL primer 120
Materials and Equipment -
- 1. 10, 13 mm SOLO stents, cleaned ultrasonically in IPA for 15 minutes;
- 2. 2% EVAL in 1:1 THF:DMSO solution;
- 3. 10 Balloon catheters or subassemblies to expand the stents;
- 4. Actinomycin-D solution, 1:1 THF:DMSO with 1:3 Act-D:EVAL, 2% EVAL;
- 5. 4.0 mm Tecoflex tubing;
- 6. Saline;
- 7. Lint Free Wipes SU 00126 or equivalent;
- 8. 100% IPA;
- 9. Convection Oven;
- 10. Timer;
- 11. Plasma Machine;
- 12. Ultrasonic cleaner;
- 13. Mettler balance with 0.1 microgram resolution;
- 14. Spray/bake mandrels and tips;
- 15. Flow Meter, N1429;
- 16. Microscope,
minimum magnification 50×; - 17. EFD controller with spray apparatus without translational stage; and
- 18. EFD controller with spray apparatus with translational stage.
Preparation
- 1. Sonicated the stents in IPA for 15 minutes.
- 2. Weighed each stent to the nearest microgram.
- 3. Prepare the stent samples for each group.
-
- A. Primer Coat
- i. Placed samples on sample holder. Performed argon plasma treatment.
- ii. Sprayed the primer layer (2% EVAL, 1:1 TBF:DMSO) onto the stents with translational spray coater. Used 1.5 sec. for the spray time and speed 7 to achieve 10-40 μg of coating.
- iii. Baked the stents at 140° C. for the specified time in the convection oven.
- iv. Weighed the stents and recorded measurements to the nearest microgram.
- B. Drug Coat
- i. Sprayed the stents with a 3:1, EVAL:Act-D, 2% EVAL, 1:1 DMSO:THF solution for three seconds per pass for three passes. After each spray pass, dried the stents in the convection oven for 15 minutes at 50° C.
- ii. Weighed the stents and recorded measurements. If the drug coat weight matched the target weight, the §tents were returned to the oven for 240 minutes. If weight gain did not match, the stents were returned to the glove box for additional spray coat application. Spray time on subsequent passes was adjusted to achieve target weight.
- A. Primer Coat
- 4. Wet Flow Test Sample Preparation
-
- A. Crimped the stents onto the balloon catheters.
- B. Inflated the stents to 4.0 mm in the Tecoflex tubing with the balloon catheters—submerged in 37 ° C. water.
- C. Disposed Act-D contaminated water as hazardous waste.
Test Method/Procedure
- 1. Set flow rate at 50 ml/min.
- 2. Performed wet flow testing overnight for about 18 hrs.
- 3. Removed the stents from the Tecoflex tubing with a stent catcher.
- 4. Counted defects, based on the number of peel defects at
rings - 5. All test samples were handled with PPE appropriate for drug containing stents.
- Data Summary and Results
Drying Time Total Defects per Total Defects per Total Defects per (min.) Stent Stent (end rings) Stent (middle rings) 15 0.0 0.0 0.0 30 2.0 2.0 0.0 60 1.0 1.0 0.0 90 0.0 0.0 0.0 120 0.5 0.5 0.0 - While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Claims (28)
1. An implantable device comprising a coating, wherein the coating comprises:
a) a reservoir region comprising a polymer and a drug blended with or dispersed in the polymer; and
b) a primer region free from any drugs located between the reservoir region and the surface of the device, the primer region comprising a material selected from a group consisting of polyisocyanates, unsaturated polymers, high amine content polymers, acrylates, polymers containing a high content of hydrogen bonding groups, inorganic polymers, and any combination thereof.
2. The implantable device of claim 1 , wherein the device is a stent.
3. The implantable device of Claim 1 , wherein the surface of the device includes a chromium oxide layer.
4. The implantable device of claim 1 , wherein the polyisocyanates are selected from triisocyanurate, alphatic polyisocyanate resins based on hexamethylene diisocyanate, aromatic polyisocyanate prepolymers based on diphenylmethane diisocyanate, polyisocyanate polyether polyurethanes based on diphenylmethane diisocyanate, polymeric isocyanates based on toluene diisocyanate, polymethylene polyphenyl isocyanate, polyester polyurethanes, and any combination thereof.
5. The implantable device of claim 1 , wherein the unsaturated polymers are selected from polyester diacrylates, polycaprolactone diacrylates, polytetramethylene glycol diacrylate, polyacrylates with at least two acrylate groups, polyacrylated polyurethanes, triacrylates, and any combination thereof.
6. The implantable device of claim 1 , wherein the amine content polymers are selected from polyethyleneamine, polyallylamine, polylysine, and any combination thereof.
7. The implantable device of claim 1 , wherein the acrylates are selected from copolymers of ethyl acrylate, methyl acrylate, butyl methacrylate, methacrylic acid, acrylic acid, cyanoacrylates, and any combination thereof.
8. The implantable device of claim 1 , wherein the polymers containing 15 hydrogen bonding groups are selected from polyethylene-co-polyvinyl alcohol, epoxy polymers based on the diglycidylether of bisphenol A with amine crosslinking agents, epoxy polymers cured by polyols and Lewis acid catalysts, epoxy phenolics, epoxy-polysulfides, ethylene vinyl acetate, melamine formaldehydes, polyvinylalcohol-co-vinyl acetate polymers, resorcinol-formaldehydes, urea-formaldehydes, polyvinylbutyral, polyvinylacetate, alkyd polyester resins, acrylic acid modified ethylene vinyl acetate polymers, methacrylic acid modified ethylene vinyl acetate polymers, acrylic acid modified ethylene acrylate polymers, methacrylic acid modified ethylene acrylate polymers, anhydride modified ethylene acrylate copolymers, anhydride modified ethylene vinyl acetate polymers, and any combination thereof.
9. The implantable device of claim 1 , wherein the inorganic polymers are selected from silane coupling agents, titanates, zirconates, and any combination thereof.
10. The implantable device of claim 9 , wherein the silane coupling agents are selected from 3-aminopropyltriethoxysilane, (3-glydidoxypropyl) methyldiethoxysilane, and any combination thereof.
11. The implantable device of claim 9 , wherein the titanates are selected from tetra-iso-propyl titanate, tetra-n-butyl titanate, or any combination thereof.
12. The implantable device of claim 9 , wherein the zirconates are selected from n-propyl zirconate, n-butyl zirconate, or any combination thereof.
13. The implantable device of claim 9 , wherein the surface is metallic.
14. The implantable device of claim 9 , wherein the reservoir region includes a combination of polymers.
15. An implantable device comprising
a) a substrate having a surface, wherein the surface includes a chromium oxide layer;
b) a primer layer free from drugs deposited on the surface, the primer layer including a polymeric material with polar substituents or cationic groups; and
c) a reservoir layer comprising polymer and a drug deposited on the primer layer.
16. The implantable device of claim 15 , wherein the polymeric material of the primer layer is selected from a group consisting of polyisocyanates, unsaturated polymers, high amine content polymers, acrylates, polymers containing a high content of hydrogen bonding groups, inorganic polymers, and any combination thereof.
17. An implantable device comprising a coating, wherein the coating comprises:
a) a reservoir region comprising a polymer and a drug; and
b) a primer region free from any drugs located under the reservoir region and on the surface of the device, the primer region comprising a material selected from a group consisting of poly(hydroxyvalerate), poly(L-lactic acid), polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoesters, polyanhydrides, poly(glycolic acid), poly(D,L-lactic acid), poly(glycolic acid-co-trimethylene carbonate), polyphosphoesters, polyphosphoester urethanes, poly(amino acids), cyanoacrylates, poly(trimethylene carbonates), poly(iminocarbonate), copoly(ether-esters), polyalkylene oxalates, polyphosphazenes, fibrin, fibrinogen, cellulose, starch, collagen, hyaluronic acid, polyurethanes, silicones, polyesters, polyolefins, polyisobutylene, ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers, polyvinyl chloride, polyvinyl ethers, polyvinyl methyl ether, polyvinylidene halides, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics, polystyrene, polyvinyl esters, polyvinyl acetate, copolymers of vinyl monomers with each other and olefins, ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, ethylene-vinyl acetate copolymers, polyamides, Nylon 66, polycaprolactam, alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, epoxy resins, rayon, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, carboxymethyl cellulose, and combinations or blends thereof.
18. An stent comprising a coating, wherein the coating comprises:
a) a reservoir region comprising a drug; and
b) a primer region free from any drugs located between the reservoir region and the surface of the stent, the coating including a material selected from a group consisting of polyisocyanates, unsaturated polymers, high amine content polymers, acrylates, polymers containing a high content of hydrogen bonding groups, inorganic polymers, and any combination thereof.
19. The implantable device of claim 18 , wherein the polyisocyanates are selected from triisocyanurate, alphatic polyisocyanate resins based on hexamethylene diisocyanate, aromatic polyisocyanate prepolymers based on diphenylmethane diisocyanate, polyisocyanate polyether polyurethanes based on diphenylmethane diisocyanate, polymeric isocyanates based on toluene diisocyanate, polymethylene polyphenyl isocyanate, polyester polyurethanes, and any combination thereof.
20. The implantable device of claim 18 , wherein the unsaturated polymers are selected from polyester diacrylates, polycaprolactone diacrylates, polytetramethylene glycol diacrylate, polyacrylates with at least two acrylate groups, polyacrylated polyurethanes, triacrylates, and any combination thereof.
21. The implantable device of claim 18 , wherein the amine content polymers are selected from polyethyleneamine, polyallylamine, polylysine and any combination thereof.
22. The implantable device of claim 18 , wherein the acrylates are selected from copolymers of ethyl acrylate, methyl acrylate, butyl methacrylate, methacrylic acid, acrylic acid, cyanoacrylates, and any combination thereof.
23. The implantable device of claim 18 , wherein the polymers containing hydrogen bonding groups are selected from polyethylene-co-polyvinyl alcohol, epoxy polymers based on the diglycidylether of bisphenol A with amine crosslinking agents, epoxy polymers cured by polyols and Lewis acid catalysts, epoxy phenolics, epoxy-polysulfides, ethylene vinyl acetate, melamine formaldehydes, polyvinylalcohol-co-vinyl acetate polymers, resorcinol-formaldehydes, urea-formaldehydes, polyvinylbutyral, polyvinylacetate, alkyd polyester resins, acrylic acid modified ethylene vinyl acetate polymers, methacrylic acid modified ethylene vinyl acetate polymers, acrylic acid modified ethylene acrylate polymers, methacrylic acid modified ethylene acrylate polymers, anhydride modified ethylene acrylate copolymers, anhydride modified ethylene vinyl acetate polymers, and any combination thereof.
24. The implantable device of claim 18 , wherein the inorganic polymers are selected from silane coupling agents, titanates, zirconates, and any combination thereof.
25. The implantable device of claim 24 , wherein the silane coupling agents are selected from 3-aminopropyltriethoxysilane, (3-glydidoxypropyl) methyldiethoxysilane, and any combination thereof.
26. The implantable device of claim 24 , wherein the titanates are selected from tetra-iso-propyl titanate, tetra-n-butyl titanate, and any combination thereof.
27. The implantable device of claim 24 , wherein the zirconates are selected from n-propyl zirconate, n-butyl zirconate, and any combination thereof.
28. An stent comprising:
a) a substrate having oxide, anionic, or hydroxyl moieties or groups on the outer surface thereof;
b) a primer region free from any drugs disposed on the outer surface of the substrate, the primer region including a polymer with polar substituents or cationic groups; and
c) a reservoir region comprising a drug disposed over the primer region.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/506,656 US20060280770A1 (en) | 2000-12-28 | 2006-08-17 | Coating for implantable devices and a method of forming the same |
US12/723,556 US8383142B2 (en) | 2000-12-28 | 2010-03-12 | Implantable devices comprising cyanoacrylate primer coatings |
US12/723,565 US20100198342A1 (en) | 2000-12-28 | 2010-03-12 | Coating for implantable devices and a method of forming the same |
US12/723,534 US8337874B2 (en) | 2000-12-28 | 2010-03-12 | Primer coating of inorganic material for implantable devices |
US12/723,561 US8858975B2 (en) | 2000-12-28 | 2010-03-12 | Coatings for implantable devices having a chromium oxide layer and a method of forming the same |
US12/723,552 US8206733B2 (en) | 2000-12-28 | 2010-03-12 | High amine content polymer coatings for implantable devices and a method of forming the same |
US12/723,548 US8211457B2 (en) | 2000-12-28 | 2010-03-12 | Isocyanate coatings for implantable devices and a method of forming the same |
US12/723,569 US9101689B2 (en) | 2000-12-28 | 2010-03-12 | Primer coatings for stents with oxide, anionic, or hydroxyl surface moieties |
US13/427,608 US8652501B2 (en) | 2000-12-28 | 2012-03-22 | Primer layer coatings of a material with a high content of hydrogen bonding groups for implantable devices and a method of forming the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/750,595 US6790228B2 (en) | 1999-12-23 | 2000-12-28 | Coating for implantable devices and a method of forming the same |
US10/751,289 US7820190B2 (en) | 2000-12-28 | 2004-01-02 | Coating for implantable devices and a method of forming the same |
US11/506,656 US20060280770A1 (en) | 2000-12-28 | 2006-08-17 | Coating for implantable devices and a method of forming the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/751,289 Division US7820190B2 (en) | 2000-12-28 | 2004-01-02 | Coating for implantable devices and a method of forming the same |
Related Child Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/723,552 Division US8206733B2 (en) | 2000-12-28 | 2010-03-12 | High amine content polymer coatings for implantable devices and a method of forming the same |
US12/723,556 Division US8383142B2 (en) | 2000-12-28 | 2010-03-12 | Implantable devices comprising cyanoacrylate primer coatings |
US12/723,565 Division US20100198342A1 (en) | 2000-12-28 | 2010-03-12 | Coating for implantable devices and a method of forming the same |
US12/723,569 Division US9101689B2 (en) | 2000-12-28 | 2010-03-12 | Primer coatings for stents with oxide, anionic, or hydroxyl surface moieties |
US12/723,534 Division US8337874B2 (en) | 2000-12-28 | 2010-03-12 | Primer coating of inorganic material for implantable devices |
US12/723,548 Division US8211457B2 (en) | 2000-12-28 | 2010-03-12 | Isocyanate coatings for implantable devices and a method of forming the same |
US12/723,561 Division US8858975B2 (en) | 2000-12-28 | 2010-03-12 | Coatings for implantable devices having a chromium oxide layer and a method of forming the same |
US13/427,608 Division US8652501B2 (en) | 2000-12-28 | 2012-03-22 | Primer layer coatings of a material with a high content of hydrogen bonding groups for implantable devices and a method of forming the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060280770A1 true US20060280770A1 (en) | 2006-12-14 |
Family
ID=25018485
Family Applications (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/750,595 Expired - Lifetime US6790228B2 (en) | 1999-09-03 | 2000-12-28 | Coating for implantable devices and a method of forming the same |
US10/751,289 Expired - Fee Related US7820190B2 (en) | 2000-12-28 | 2004-01-02 | Coating for implantable devices and a method of forming the same |
US10/751,043 Abandoned US20040162609A1 (en) | 1999-09-03 | 2004-01-02 | Coating for implantable devices and a method of forming the same |
US11/506,656 Abandoned US20060280770A1 (en) | 2000-12-28 | 2006-08-17 | Coating for implantable devices and a method of forming the same |
US12/723,569 Expired - Fee Related US9101689B2 (en) | 2000-12-28 | 2010-03-12 | Primer coatings for stents with oxide, anionic, or hydroxyl surface moieties |
US12/723,565 Abandoned US20100198342A1 (en) | 2000-12-28 | 2010-03-12 | Coating for implantable devices and a method of forming the same |
US12/723,548 Expired - Fee Related US8211457B2 (en) | 2000-12-28 | 2010-03-12 | Isocyanate coatings for implantable devices and a method of forming the same |
US12/723,561 Expired - Fee Related US8858975B2 (en) | 2000-12-28 | 2010-03-12 | Coatings for implantable devices having a chromium oxide layer and a method of forming the same |
US12/723,534 Expired - Fee Related US8337874B2 (en) | 2000-12-28 | 2010-03-12 | Primer coating of inorganic material for implantable devices |
US12/723,552 Expired - Fee Related US8206733B2 (en) | 2000-12-28 | 2010-03-12 | High amine content polymer coatings for implantable devices and a method of forming the same |
US12/723,556 Expired - Fee Related US8383142B2 (en) | 2000-12-28 | 2010-03-12 | Implantable devices comprising cyanoacrylate primer coatings |
US13/427,608 Expired - Fee Related US8652501B2 (en) | 2000-12-28 | 2012-03-22 | Primer layer coatings of a material with a high content of hydrogen bonding groups for implantable devices and a method of forming the same |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/750,595 Expired - Lifetime US6790228B2 (en) | 1999-09-03 | 2000-12-28 | Coating for implantable devices and a method of forming the same |
US10/751,289 Expired - Fee Related US7820190B2 (en) | 2000-12-28 | 2004-01-02 | Coating for implantable devices and a method of forming the same |
US10/751,043 Abandoned US20040162609A1 (en) | 1999-09-03 | 2004-01-02 | Coating for implantable devices and a method of forming the same |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/723,569 Expired - Fee Related US9101689B2 (en) | 2000-12-28 | 2010-03-12 | Primer coatings for stents with oxide, anionic, or hydroxyl surface moieties |
US12/723,565 Abandoned US20100198342A1 (en) | 2000-12-28 | 2010-03-12 | Coating for implantable devices and a method of forming the same |
US12/723,548 Expired - Fee Related US8211457B2 (en) | 2000-12-28 | 2010-03-12 | Isocyanate coatings for implantable devices and a method of forming the same |
US12/723,561 Expired - Fee Related US8858975B2 (en) | 2000-12-28 | 2010-03-12 | Coatings for implantable devices having a chromium oxide layer and a method of forming the same |
US12/723,534 Expired - Fee Related US8337874B2 (en) | 2000-12-28 | 2010-03-12 | Primer coating of inorganic material for implantable devices |
US12/723,552 Expired - Fee Related US8206733B2 (en) | 2000-12-28 | 2010-03-12 | High amine content polymer coatings for implantable devices and a method of forming the same |
US12/723,556 Expired - Fee Related US8383142B2 (en) | 2000-12-28 | 2010-03-12 | Implantable devices comprising cyanoacrylate primer coatings |
US13/427,608 Expired - Fee Related US8652501B2 (en) | 2000-12-28 | 2012-03-22 | Primer layer coatings of a material with a high content of hydrogen bonding groups for implantable devices and a method of forming the same |
Country Status (5)
Country | Link |
---|---|
US (12) | US6790228B2 (en) |
EP (1) | EP1347792A2 (en) |
JP (1) | JP4236467B2 (en) |
AU (1) | AU2002246846A1 (en) |
WO (1) | WO2002058753A2 (en) |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060122683A1 (en) * | 2004-12-07 | 2006-06-08 | Scimed Life Systems, Inc. | Medical device that signals lumen loss |
US20070259427A1 (en) * | 2006-03-27 | 2007-11-08 | Storey Daniel M | Modified surfaces for attachment of biological materials |
US20080275546A1 (en) * | 2007-05-03 | 2008-11-06 | Chameleon Scientific Corp | Inhibitory cell adhesion surfaces |
US20090276035A1 (en) * | 2003-08-11 | 2009-11-05 | Igor Waysbeyn | Anastomosis method |
US20100057189A1 (en) * | 2008-08-27 | 2010-03-04 | Boston Scientific Scimed, Inc. | Medical devices having fluorine-containing polymer coatings with improved adhesion |
US20100198343A1 (en) * | 2000-12-28 | 2010-08-05 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US20100204777A1 (en) * | 2007-05-03 | 2010-08-12 | Chameleon Scientific Corporation | Inhibitory cell adhesion surfaces |
US20100256502A1 (en) * | 2009-04-06 | 2010-10-07 | General Electric Company | Materials and processes for bonding acoustically neutral structures for use in ultrasound catheters |
US20100322992A1 (en) * | 2004-06-30 | 2010-12-23 | Stephen Dugan | Anti-Proliferative And Anti-Inflammatory Agent Combination For Treatment Of Vascular Disorders With An Implantable Medical Device |
US20110001271A1 (en) * | 1999-09-03 | 2011-01-06 | Advanced Cardiovascular Systems, Inc. | Thermal Treatment Of An Implantable Medical Device |
US7931683B2 (en) | 2007-07-27 | 2011-04-26 | Boston Scientific Scimed, Inc. | Articles having ceramic coated surfaces |
US7938855B2 (en) | 2007-11-02 | 2011-05-10 | Boston Scientific Scimed, Inc. | Deformable underlayer for stent |
US7942926B2 (en) | 2007-07-11 | 2011-05-17 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US7976915B2 (en) | 2007-05-23 | 2011-07-12 | Boston Scientific Scimed, Inc. | Endoprosthesis with select ceramic morphology |
US7981150B2 (en) | 2006-11-09 | 2011-07-19 | Boston Scientific Scimed, Inc. | Endoprosthesis with coatings |
US7985252B2 (en) | 2008-07-30 | 2011-07-26 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US7998192B2 (en) | 2008-05-09 | 2011-08-16 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8002821B2 (en) | 2006-09-18 | 2011-08-23 | Boston Scientific Scimed, Inc. | Bioerodible metallic ENDOPROSTHESES |
US8002823B2 (en) | 2007-07-11 | 2011-08-23 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8029554B2 (en) | 2007-11-02 | 2011-10-04 | Boston Scientific Scimed, Inc. | Stent with embedded material |
US8048150B2 (en) | 2006-04-12 | 2011-11-01 | Boston Scientific Scimed, Inc. | Endoprosthesis having a fiber meshwork disposed thereon |
US8052745B2 (en) | 2007-09-13 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis |
US8052744B2 (en) | 2006-09-15 | 2011-11-08 | Boston Scientific Scimed, Inc. | Medical devices and methods of making the same |
US8052743B2 (en) | 2006-08-02 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis with three-dimensional disintegration control |
US8057534B2 (en) | 2006-09-15 | 2011-11-15 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8067054B2 (en) | 2007-04-05 | 2011-11-29 | Boston Scientific Scimed, Inc. | Stents with ceramic drug reservoir layer and methods of making and using the same |
US8066763B2 (en) | 1998-04-11 | 2011-11-29 | Boston Scientific Scimed, Inc. | Drug-releasing stent with ceramic-containing layer |
US8071156B2 (en) | 2009-03-04 | 2011-12-06 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8070797B2 (en) | 2007-03-01 | 2011-12-06 | Boston Scientific Scimed, Inc. | Medical device with a porous surface for delivery of a therapeutic agent |
US8080055B2 (en) | 2006-12-28 | 2011-12-20 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8089029B2 (en) | 2006-02-01 | 2012-01-03 | Boston Scientific Scimed, Inc. | Bioabsorbable metal medical device and method of manufacture |
US8128689B2 (en) | 2006-09-15 | 2012-03-06 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis with biostable inorganic layers |
US8187620B2 (en) | 2006-03-27 | 2012-05-29 | Boston Scientific Scimed, Inc. | Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents |
US8216632B2 (en) | 2007-11-02 | 2012-07-10 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8221822B2 (en) | 2007-07-31 | 2012-07-17 | Boston Scientific Scimed, Inc. | Medical device coating by laser cladding |
US8231980B2 (en) | 2008-12-03 | 2012-07-31 | Boston Scientific Scimed, Inc. | Medical implants including iridium oxide |
US8236046B2 (en) | 2008-06-10 | 2012-08-07 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US8267992B2 (en) | 2009-03-02 | 2012-09-18 | Boston Scientific Scimed, Inc. | Self-buffering medical implants |
US8287937B2 (en) | 2009-04-24 | 2012-10-16 | Boston Scientific Scimed, Inc. | Endoprosthese |
US8303643B2 (en) | 2001-06-27 | 2012-11-06 | Remon Medical Technologies Ltd. | Method and device for electrochemical formation of therapeutic species in vivo |
US8313521B2 (en) | 1995-06-07 | 2012-11-20 | Cook Medical Technologies Llc | Method of delivering an implantable medical device with a bioabsorbable coating |
US8353949B2 (en) | 2006-09-14 | 2013-01-15 | Boston Scientific Scimed, Inc. | Medical devices with drug-eluting coating |
US8382824B2 (en) | 2008-10-03 | 2013-02-26 | Boston Scientific Scimed, Inc. | Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides |
US8431149B2 (en) | 2007-03-01 | 2013-04-30 | Boston Scientific Scimed, Inc. | Coated medical devices for abluminal drug delivery |
US8449603B2 (en) | 2008-06-18 | 2013-05-28 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US20130204245A1 (en) * | 2010-02-05 | 2013-08-08 | Albena Ivanisevic | Surface Modification of Surgical Instruments for Selective Manipulation of Biological Tissues |
US8574615B2 (en) | 2006-03-24 | 2013-11-05 | Boston Scientific Scimed, Inc. | Medical devices having nanoporous coatings for controlled therapeutic agent delivery |
US8642063B2 (en) | 2008-08-22 | 2014-02-04 | Cook Medical Technologies Llc | Implantable medical device coatings with biodegradable elastomer and releasable taxane agent |
US8668732B2 (en) | 2010-03-23 | 2014-03-11 | Boston Scientific Scimed, Inc. | Surface treated bioerodible metal endoprostheses |
US8771343B2 (en) | 2006-06-29 | 2014-07-08 | Boston Scientific Scimed, Inc. | Medical devices with selective titanium oxide coatings |
US8808726B2 (en) | 2006-09-15 | 2014-08-19 | Boston Scientific Scimed. Inc. | Bioerodible endoprostheses and methods of making the same |
US8815275B2 (en) | 2006-06-28 | 2014-08-26 | Boston Scientific Scimed, Inc. | Coatings for medical devices comprising a therapeutic agent and a metallic material |
US8815273B2 (en) | 2007-07-27 | 2014-08-26 | Boston Scientific Scimed, Inc. | Drug eluting medical devices having porous layers |
US8840660B2 (en) | 2006-01-05 | 2014-09-23 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8900292B2 (en) | 2007-08-03 | 2014-12-02 | Boston Scientific Scimed, Inc. | Coating for medical device having increased surface area |
US8920491B2 (en) | 2008-04-22 | 2014-12-30 | Boston Scientific Scimed, Inc. | Medical devices having a coating of inorganic material |
US8932346B2 (en) | 2008-04-24 | 2015-01-13 | Boston Scientific Scimed, Inc. | Medical devices having inorganic particle layers |
US9284409B2 (en) | 2007-07-19 | 2016-03-15 | Boston Scientific Scimed, Inc. | Endoprosthesis having a non-fouling surface |
Families Citing this family (367)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6774278B1 (en) | 1995-06-07 | 2004-08-10 | Cook Incorporated | Coated implantable medical device |
US7341598B2 (en) | 1999-01-13 | 2008-03-11 | Boston Scientific Scimed, Inc. | Stent with protruding branch portion for bifurcated vessels |
US6241762B1 (en) | 1998-03-30 | 2001-06-05 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges |
US7208010B2 (en) | 2000-10-16 | 2007-04-24 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
US20020099438A1 (en) | 1998-04-15 | 2002-07-25 | Furst Joseph G. | Irradiated stent coating |
US20030040790A1 (en) | 1998-04-15 | 2003-02-27 | Furst Joseph G. | Stent coating |
EP1019111B1 (en) * | 1998-04-27 | 2002-06-26 | Surmodics Inc. | Bioactive agent release coating |
US7967855B2 (en) | 1998-07-27 | 2011-06-28 | Icon Interventional Systems, Inc. | Coated medical device |
US8070796B2 (en) | 1998-07-27 | 2011-12-06 | Icon Interventional Systems, Inc. | Thrombosis inhibiting graft |
US20030099682A1 (en) * | 1998-11-20 | 2003-05-29 | Francis Moussy | Apparatus and method for control of tissue/implant interactions |
US6955661B1 (en) | 1999-01-25 | 2005-10-18 | Atrium Medical Corporation | Expandable fluoropolymer device for delivery of therapeutic agents and method of making |
SE9902202D0 (en) * | 1999-06-10 | 1999-06-10 | Astra Ab | Production of aggregates |
US7682647B2 (en) | 1999-09-03 | 2010-03-23 | Advanced Cardiovascular Systems, Inc. | Thermal treatment of a drug eluting implantable medical device |
US20070032853A1 (en) | 2002-03-27 | 2007-02-08 | Hossainy Syed F | 40-O-(2-hydroxy)ethyl-rapamycin coated stent |
US6908624B2 (en) | 1999-12-23 | 2005-06-21 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US7220276B1 (en) * | 2000-03-06 | 2007-05-22 | Surmodics, Inc. | Endovascular graft coatings |
US9522217B2 (en) | 2000-03-15 | 2016-12-20 | Orbusneich Medical, Inc. | Medical device with coating for capturing genetically-altered cells and methods for using same |
US8088060B2 (en) | 2000-03-15 | 2012-01-03 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
DE50111797D1 (en) * | 2000-04-11 | 2007-02-15 | Polyzenix Gmbh | Use of films of poly-tri-fluoro-ethoxypolyphosphazenes for wrapping medical devices |
US7419678B2 (en) * | 2000-05-12 | 2008-09-02 | Cordis Corporation | Coated medical devices for the prevention and treatment of vascular disease |
US7682648B1 (en) * | 2000-05-31 | 2010-03-23 | Advanced Cardiovascular Systems, Inc. | Methods for forming polymeric coatings on stents |
US20090004240A1 (en) * | 2000-08-11 | 2009-01-01 | Celonova Biosciences, Inc. | Implants with a phosphazene-containing coating |
EP1179353A1 (en) * | 2000-08-11 | 2002-02-13 | B. Braun Melsungen Ag | Antithrombogenic implants with coating of polyphosphazenes and a pharmacologically active agent |
US6953560B1 (en) | 2000-09-28 | 2005-10-11 | Advanced Cardiovascular Systems, Inc. | Barriers for polymer-coated implantable medical devices and methods for making the same |
DE60112318T4 (en) | 2000-10-16 | 2008-11-27 | Conor Medsystems, Inc., Menlo Park | Expandable medical device for delivering a beneficial agent |
US7807210B1 (en) | 2000-10-31 | 2010-10-05 | Advanced Cardiovascular Systems, Inc. | Hemocompatible polymers on hydrophobic porous polymers |
US8632845B2 (en) | 2000-12-28 | 2014-01-21 | Abbott Cardiovascular Systems Inc. | Method of drying bioabsorbable coating over stents |
WO2003015719A1 (en) * | 2001-08-17 | 2003-02-27 | Polyzenix Gmbh | Device based on nitinol with a polyphosphazene coating |
GB0100761D0 (en) | 2001-01-11 | 2001-02-21 | Biocompatibles Ltd | Drug delivery from stents |
US9080146B2 (en) | 2001-01-11 | 2015-07-14 | Celonova Biosciences, Inc. | Substrates containing polyphosphazene as matrices and substrates containing polyphosphazene with a micro-structured surface |
US20030215564A1 (en) * | 2001-01-18 | 2003-11-20 | Heller Phillip F. | Method and apparatus for coating an endoprosthesis |
US20040073294A1 (en) | 2002-09-20 | 2004-04-15 | Conor Medsystems, Inc. | Method and apparatus for loading a beneficial agent into an expandable medical device |
DE10115740A1 (en) | 2001-03-26 | 2002-10-02 | Ulrich Speck | Preparation for restenosis prophylaxis |
US6780424B2 (en) * | 2001-03-30 | 2004-08-24 | Charles David Claude | Controlled morphologies in polymer drug for release of drugs from polymer films |
US6712845B2 (en) * | 2001-04-24 | 2004-03-30 | Advanced Cardiovascular Systems, Inc. | Coating for a stent and a method of forming the same |
US6660034B1 (en) * | 2001-04-30 | 2003-12-09 | Advanced Cardiovascular Systems, Inc. | Stent for increasing blood flow to ischemic tissues and a method of using the same |
US6656506B1 (en) | 2001-05-09 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Microparticle coated medical device |
US8741378B1 (en) | 2001-06-27 | 2014-06-03 | Advanced Cardiovascular Systems, Inc. | Methods of coating an implantable device |
US7247313B2 (en) * | 2001-06-27 | 2007-07-24 | Advanced Cardiovascular Systems, Inc. | Polyacrylates coatings for implantable medical devices |
US6695920B1 (en) | 2001-06-27 | 2004-02-24 | Advanced Cardiovascular Systems, Inc. | Mandrel for supporting a stent and a method of using the mandrel to coat a stent |
NL1018619C2 (en) * | 2001-07-24 | 2003-01-27 | Rigitec B V | Method for the manufacture of a plastic film material suitable for implantation, and stent formed using it |
US7682669B1 (en) | 2001-07-30 | 2010-03-23 | Advanced Cardiovascular Systems, Inc. | Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device |
US7842083B2 (en) | 2001-08-20 | 2010-11-30 | Innovational Holdings, Llc. | Expandable medical device with improved spatial distribution |
US7708712B2 (en) | 2001-09-04 | 2010-05-04 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
US8303651B1 (en) | 2001-09-07 | 2012-11-06 | Advanced Cardiovascular Systems, Inc. | Polymeric coating for reducing the rate of release of a therapeutic substance from a stent |
US7578841B2 (en) | 2001-09-24 | 2009-08-25 | Boston Scientific Scimed, Inc. | Stent with protruding branch portion for bifurcated vessels |
US20030083739A1 (en) * | 2001-09-24 | 2003-05-01 | Robert Cafferata | Rational drug therapy device and methods |
US6753071B1 (en) * | 2001-09-27 | 2004-06-22 | Advanced Cardiovascular Systems, Inc. | Rate-reducing membrane for release of an agent |
US20030073961A1 (en) * | 2001-09-28 | 2003-04-17 | Happ Dorrie M. | Medical device containing light-protected therapeutic agent and a method for fabricating thereof |
US8740973B2 (en) | 2001-10-26 | 2014-06-03 | Icon Medical Corp. | Polymer biodegradable medical device |
US7682387B2 (en) * | 2002-04-24 | 2010-03-23 | Biosensors International Group, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
US6939376B2 (en) * | 2001-11-05 | 2005-09-06 | Sun Biomedical, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
US7585516B2 (en) | 2001-11-12 | 2009-09-08 | Advanced Cardiovascular Systems, Inc. | Coatings for drug delivery devices |
US6946173B2 (en) * | 2002-03-21 | 2005-09-20 | Advanced Cardiovascular Systems, Inc. | Catheter balloon formed of ePTFE and a diene polymer |
US7288111B1 (en) * | 2002-03-26 | 2007-10-30 | Thoratec Corporation | Flexible stent and method of making the same |
US20030195610A1 (en) * | 2002-04-04 | 2003-10-16 | Herrmann Robert A. | Processes for producing polymer coatings through surface polymerization |
US20040024450A1 (en) * | 2002-04-24 | 2004-02-05 | Sun Biomedical, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
US7159272B2 (en) * | 2002-05-14 | 2007-01-09 | Emerson Electric Co. | Detachable accessory holder |
US7097850B2 (en) | 2002-06-18 | 2006-08-29 | Surmodics, Inc. | Bioactive agent release coating and controlled humidity method |
US7105175B2 (en) * | 2002-06-19 | 2006-09-12 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices for controlled delivery of a therapeutic agent |
US7217426B1 (en) | 2002-06-21 | 2007-05-15 | Advanced Cardiovascular Systems, Inc. | Coatings containing polycationic peptides for cardiovascular therapy |
US7396539B1 (en) * | 2002-06-21 | 2008-07-08 | Advanced Cardiovascular Systems, Inc. | Stent coatings with engineered drug release rate |
US8506617B1 (en) | 2002-06-21 | 2013-08-13 | Advanced Cardiovascular Systems, Inc. | Micronized peptide coated stent |
US7056523B1 (en) | 2002-06-21 | 2006-06-06 | Advanced Cardiovascular Systems, Inc. | Implantable medical devices incorporating chemically conjugated polymers and oligomers of L-arginine |
US7033602B1 (en) | 2002-06-21 | 2006-04-25 | Advanced Cardiovascular Systems, Inc. | Polycationic peptide coatings and methods of coating implantable medical devices |
US7794743B2 (en) | 2002-06-21 | 2010-09-14 | Advanced Cardiovascular Systems, Inc. | Polycationic peptide coatings and methods of making the same |
US20080138433A1 (en) * | 2002-07-05 | 2008-06-12 | Celonova Biosciences, Inc. | Vasodilator eluting blood storage and administration devices with a specific polyphosphazene coating and methods for their manufacture and use |
US20080138377A1 (en) * | 2002-07-05 | 2008-06-12 | Celonova Biosciences, Inc. | Vasodilator Eluting Luminal Stent Devices With A Specific Polyphosphazene Coating and Methods for Their Manufacture and Use |
US8016881B2 (en) | 2002-07-31 | 2011-09-13 | Icon Interventional Systems, Inc. | Sutures and surgical staples for anastamoses, wound closures, and surgical closures |
ATE475435T1 (en) * | 2002-08-13 | 2010-08-15 | Medtronic Inc | MEDICAL DEVICE WITH IMPROVED ADHESION BETWEEN A POLYMERIC COATING AND A SUBSTRATE |
US7363074B1 (en) | 2002-08-20 | 2008-04-22 | Advanced Cardiovascular Systems, Inc. | Coatings comprising self-assembled molecular structures and a method of delivering a drug using the same |
FI20021570A0 (en) * | 2002-09-03 | 2002-09-03 | Gallen Kallela Siren Janne | Improved structure of coated surgical stent |
US7758636B2 (en) | 2002-09-20 | 2010-07-20 | Innovational Holdings Llc | Expandable medical device with openings for delivery of multiple beneficial agents |
DE10244847A1 (en) | 2002-09-20 | 2004-04-01 | Ulrich Prof. Dr. Speck | Medical device for drug delivery |
US7232573B1 (en) * | 2002-09-26 | 2007-06-19 | Advanced Cardiovascular Systems, Inc. | Stent coatings containing self-assembled monolayers |
CN1684641A (en) * | 2002-09-26 | 2005-10-19 | 血管内装置有限公司 | Apparatus and method for delivery of mitomycin through an eluting biocompatible implantable medical device |
US7087263B2 (en) * | 2002-10-09 | 2006-08-08 | Advanced Cardiovascular Systems, Inc. | Rare limiting barriers for implantable medical devices |
US20040093056A1 (en) | 2002-10-26 | 2004-05-13 | Johnson Lianw M. | Medical appliance delivery apparatus and method of use |
US7959671B2 (en) | 2002-11-05 | 2011-06-14 | Merit Medical Systems, Inc. | Differential covering and coating methods |
US7637942B2 (en) | 2002-11-05 | 2009-12-29 | Merit Medical Systems, Inc. | Coated stent with geometry determinated functionality and method of making the same |
US7875068B2 (en) | 2002-11-05 | 2011-01-25 | Merit Medical Systems, Inc. | Removable biliary stent |
US7169178B1 (en) | 2002-11-12 | 2007-01-30 | Advanced Cardiovascular Systems, Inc. | Stent with drug coating |
KR20130010039A (en) * | 2002-12-10 | 2013-01-24 | 가부시키가이샤 니콘 | Exposure system and device producing method |
US7776926B1 (en) | 2002-12-11 | 2010-08-17 | Advanced Cardiovascular Systems, Inc. | Biocompatible coating for implantable medical devices |
US7758880B2 (en) | 2002-12-11 | 2010-07-20 | Advanced Cardiovascular Systems, Inc. | Biocompatible polyacrylate compositions for medical applications |
US7074276B1 (en) | 2002-12-12 | 2006-07-11 | Advanced Cardiovascular Systems, Inc. | Clamp mandrel fixture and a method of using the same to minimize coating defects |
US7758881B2 (en) | 2004-06-30 | 2010-07-20 | Advanced Cardiovascular Systems, Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US8435550B2 (en) | 2002-12-16 | 2013-05-07 | Abbot Cardiovascular Systems Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US20060002968A1 (en) | 2004-06-30 | 2006-01-05 | Gordon Stewart | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders |
US20040147999A1 (en) * | 2003-01-24 | 2004-07-29 | Kishore Udipi | Stent with epoxy primer coating |
US7144419B2 (en) * | 2003-01-24 | 2006-12-05 | Medtronic Vascular, Inc. | Drug-polymer coated stent with blended phenoxy and styrenic block copolymers |
US20090093875A1 (en) * | 2007-05-01 | 2009-04-09 | Abbott Laboratories | Drug eluting stents with prolonged local elution profiles with high local concentrations and low systemic concentrations |
US7001421B2 (en) * | 2003-02-28 | 2006-02-21 | Medtronic Vascular, Inc. | Stent with phenoxy primer coating |
EP1605863B1 (en) | 2003-03-14 | 2016-09-07 | Intersect ENT, Inc. | Sinus delivery of sustained release therapeutics |
WO2004087214A1 (en) | 2003-03-28 | 2004-10-14 | Conor Medsystems, Inc. | Implantable medical device with beneficial agent concentration gradient |
US7637934B2 (en) | 2003-03-31 | 2009-12-29 | Merit Medical Systems, Inc. | Medical appliance optical delivery and deployment apparatus and method |
DE602004018908D1 (en) * | 2003-03-31 | 2009-02-26 | Memry Corp | MEDICAL DEVICES WITH MEDICAMENT ELUTION PROPERTIES AND METHOD OF PREPARATION THEREOF |
US20040236399A1 (en) * | 2003-04-22 | 2004-11-25 | Medtronic Vascular, Inc. | Stent with improved surface adhesion |
US20040215313A1 (en) * | 2003-04-22 | 2004-10-28 | Peiwen Cheng | Stent with sandwich type coating |
US20040230298A1 (en) * | 2003-04-25 | 2004-11-18 | Medtronic Vascular, Inc. | Drug-polymer coated stent with polysulfone and styrenic block copolymer |
US8791171B2 (en) | 2003-05-01 | 2014-07-29 | Abbott Cardiovascular Systems Inc. | Biodegradable coatings for implantable medical devices |
ATE476960T1 (en) | 2003-05-02 | 2010-08-15 | Surmodics Inc | SYSTEM FOR THE CONTROLLED RELEASE OF A BIOACTIVE INGREDIENT IN THE BACK OF THE EYE |
US8246974B2 (en) | 2003-05-02 | 2012-08-21 | Surmodics, Inc. | Medical devices and methods for producing the same |
US6923996B2 (en) | 2003-05-06 | 2005-08-02 | Scimed Life Systems, Inc. | Processes for producing polymer coatings for release of therapeutic agent |
US7279174B2 (en) * | 2003-05-08 | 2007-10-09 | Advanced Cardiovascular Systems, Inc. | Stent coatings comprising hydrophilic additives |
US20040254545A1 (en) * | 2003-06-16 | 2004-12-16 | Rider Dean Loller | Method and apparatus for extending feeding tube longevity |
US20050021131A1 (en) * | 2003-06-16 | 2005-01-27 | Subramanian Venkatraman | Polymeric stent and method of manufacture |
US20050118344A1 (en) | 2003-12-01 | 2005-06-02 | Pacetti Stephen D. | Temperature controlled crimping |
US8308682B2 (en) | 2003-07-18 | 2012-11-13 | Broncus Medical Inc. | Devices for maintaining patency of surgically created channels in tissue |
US7625408B2 (en) * | 2003-07-22 | 2009-12-01 | Avanta Orthopaedics, Llc | Prosthetic wrist implant |
US7785512B1 (en) | 2003-07-31 | 2010-08-31 | Advanced Cardiovascular Systems, Inc. | Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices |
JP2007502281A (en) * | 2003-08-13 | 2007-02-08 | メドトロニック・インコーポレーテッド | Active agent release system, medical device and method comprising a miscible polymer formulation |
JP2007505658A (en) * | 2003-09-15 | 2007-03-15 | アトリウム メディカル コーポレーション | Application of therapeutic substances to tissue sites using expandable medical devices |
US7785653B2 (en) | 2003-09-22 | 2010-08-31 | Innovational Holdings Llc | Method and apparatus for loading a beneficial agent into an expandable medical device |
US7744645B2 (en) * | 2003-09-29 | 2010-06-29 | Medtronic Vascular, Inc. | Laminated drug-polymer coated stent with dipped and cured layers |
US7198675B2 (en) | 2003-09-30 | 2007-04-03 | Advanced Cardiovascular Systems | Stent mandrel fixture and method for selectively coating surfaces of a stent |
AU2003276523B2 (en) * | 2003-11-07 | 2011-01-27 | Nobil Bio Ricerche S.R.L. | Method for preparing drug eluting medical devices and devices obtained therefrom |
WO2005044142A2 (en) * | 2003-11-10 | 2005-05-19 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
US20050098241A1 (en) * | 2003-11-11 | 2005-05-12 | W. C. Heraeus Gmbh & Co. Kg | Niobium-Zirconium Alloy for medical devices or their parts |
US7261946B2 (en) * | 2003-11-14 | 2007-08-28 | Advanced Cardiovascular Systems, Inc. | Block copolymers of acrylates and methacrylates with fluoroalkenes |
US7286574B2 (en) * | 2003-11-19 | 2007-10-23 | Neumann Information Systems, Inc. | Infrared laser |
US9114198B2 (en) | 2003-11-19 | 2015-08-25 | Advanced Cardiovascular Systems, Inc. | Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same |
US8192752B2 (en) | 2003-11-21 | 2012-06-05 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same |
WO2005051229A2 (en) * | 2003-11-24 | 2005-06-09 | Avantec Vascular Corporation | Devices delivering therapeutic agents and methods regarding the same |
US7435788B2 (en) | 2003-12-19 | 2008-10-14 | Advanced Cardiovascular Systems, Inc. | Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents |
US7959659B2 (en) | 2004-01-02 | 2011-06-14 | Advanced Cardiovascular Systems, Inc. | High-density lipoprotein coated medical devices |
US8685431B2 (en) | 2004-03-16 | 2014-04-01 | Advanced Cardiovascular Systems, Inc. | Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same |
US20050208093A1 (en) | 2004-03-22 | 2005-09-22 | Thierry Glauser | Phosphoryl choline coating compositions |
CA2559741A1 (en) * | 2004-03-26 | 2005-10-20 | Surmodics, Inc. | A medical article having a bioactive agent-releasing component with photoreactive groups |
US20050214339A1 (en) * | 2004-03-29 | 2005-09-29 | Yiwen Tang | Biologically degradable compositions for medical applications |
JP2005281240A (en) * | 2004-03-30 | 2005-10-13 | Kawasumi Lab Inc | Genetic medicine-releasing type stent |
US7351591B2 (en) * | 2004-03-30 | 2008-04-01 | Intel Corporation | Surface modification of metals for biomolecule detection using surface enhanced Raman scattering (SERS) |
US8778014B1 (en) | 2004-03-31 | 2014-07-15 | Advanced Cardiovascular Systems, Inc. | Coatings for preventing balloon damage to polymer coated stents |
CN1569270B (en) * | 2004-04-29 | 2011-06-29 | 上海瑞邦生物材料有限公司 | Method for preparing cardiovascular drug eluting stent |
US7820732B2 (en) | 2004-04-30 | 2010-10-26 | Advanced Cardiovascular Systems, Inc. | Methods for modulating thermal and mechanical properties of coatings on implantable devices |
US8293890B2 (en) | 2004-04-30 | 2012-10-23 | Advanced Cardiovascular Systems, Inc. | Hyaluronic acid based copolymers |
US9561309B2 (en) | 2004-05-27 | 2017-02-07 | Advanced Cardiovascular Systems, Inc. | Antifouling heparin coatings |
US8999364B2 (en) * | 2004-06-15 | 2015-04-07 | Nanyang Technological University | Implantable article, method of forming same and method for reducing thrombogenicity |
US7563780B1 (en) | 2004-06-18 | 2009-07-21 | Advanced Cardiovascular Systems, Inc. | Heparin prodrugs and drug delivery stents formed therefrom |
US20060018948A1 (en) * | 2004-06-24 | 2006-01-26 | Guire Patrick E | Biodegradable implantable medical devices, methods and systems |
US20050287184A1 (en) | 2004-06-29 | 2005-12-29 | Hossainy Syed F A | Drug-delivery stent formulations for restenosis and vulnerable plaque |
US8409167B2 (en) | 2004-07-19 | 2013-04-02 | Broncus Medical Inc | Devices for delivering substances through an extra-anatomic opening created in an airway |
US8357391B2 (en) | 2004-07-30 | 2013-01-22 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages |
US7494665B1 (en) | 2004-07-30 | 2009-02-24 | Advanced Cardiovascular Systems, Inc. | Polymers containing siloxane monomers |
US7311980B1 (en) * | 2004-08-02 | 2007-12-25 | Advanced Cardiovascular Systems, Inc. | Polyactive/polylactic acid coatings for an implantable device |
US8980300B2 (en) | 2004-08-05 | 2015-03-17 | Advanced Cardiovascular Systems, Inc. | Plasticizers for coating compositions |
US7648727B2 (en) | 2004-08-26 | 2010-01-19 | Advanced Cardiovascular Systems, Inc. | Methods for manufacturing a coated stent-balloon assembly |
US7244443B2 (en) | 2004-08-31 | 2007-07-17 | Advanced Cardiovascular Systems, Inc. | Polymers of fluorinated monomers and hydrophilic monomers |
US8110211B2 (en) | 2004-09-22 | 2012-02-07 | Advanced Cardiovascular Systems, Inc. | Medicated coatings for implantable medical devices including polyacrylates |
US7901451B2 (en) | 2004-09-24 | 2011-03-08 | Biosensors International Group, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
US9011831B2 (en) * | 2004-09-30 | 2015-04-21 | Advanced Cardiovascular Systems, Inc. | Methacrylate copolymers for medical devices |
WO2006044727A2 (en) | 2004-10-15 | 2006-04-27 | Baxano, Inc. | Devices and methods for tissue removal |
US20110190772A1 (en) | 2004-10-15 | 2011-08-04 | Vahid Saadat | Powered tissue modification devices and methods |
US8430881B2 (en) | 2004-10-15 | 2013-04-30 | Baxano, Inc. | Mechanical tissue modification devices and methods |
US7553307B2 (en) * | 2004-10-15 | 2009-06-30 | Baxano, Inc. | Devices and methods for tissue modification |
US7887538B2 (en) | 2005-10-15 | 2011-02-15 | Baxano, Inc. | Methods and apparatus for tissue modification |
US8221397B2 (en) | 2004-10-15 | 2012-07-17 | Baxano, Inc. | Devices and methods for tissue modification |
US8048080B2 (en) | 2004-10-15 | 2011-11-01 | Baxano, Inc. | Flexible tissue rasp |
US20080103504A1 (en) * | 2006-10-30 | 2008-05-01 | Schmitz Gregory P | Percutaneous spinal stenosis treatment |
US7578819B2 (en) | 2005-05-16 | 2009-08-25 | Baxano, Inc. | Spinal access and neural localization |
US7959577B2 (en) | 2007-09-06 | 2011-06-14 | Baxano, Inc. | Method, system, and apparatus for neural localization |
US9101386B2 (en) | 2004-10-15 | 2015-08-11 | Amendia, Inc. | Devices and methods for treating tissue |
US20100331883A1 (en) | 2004-10-15 | 2010-12-30 | Schmitz Gregory P | Access and tissue modification systems and methods |
US7738969B2 (en) | 2004-10-15 | 2010-06-15 | Baxano, Inc. | Devices and methods for selective surgical removal of tissue |
US7938830B2 (en) | 2004-10-15 | 2011-05-10 | Baxano, Inc. | Powered tissue modification devices and methods |
US20110004207A1 (en) | 2004-10-15 | 2011-01-06 | Baxano, Inc. | Flexible Neural Localization Devices and Methods |
US9247952B2 (en) | 2004-10-15 | 2016-02-02 | Amendia, Inc. | Devices and methods for tissue access |
US8617163B2 (en) | 2004-10-15 | 2013-12-31 | Baxano Surgical, Inc. | Methods, systems and devices for carpal tunnel release |
US8062300B2 (en) | 2006-05-04 | 2011-11-22 | Baxano, Inc. | Tissue removal with at least partially flexible devices |
US8257356B2 (en) | 2004-10-15 | 2012-09-04 | Baxano, Inc. | Guidewire exchange systems to treat spinal stenosis |
US9114162B2 (en) | 2004-10-25 | 2015-08-25 | Celonova Biosciences, Inc. | Loadable polymeric particles for enhanced imaging in clinical applications and methods of preparing and using the same |
US9107850B2 (en) | 2004-10-25 | 2015-08-18 | Celonova Biosciences, Inc. | Color-coded and sized loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same |
US20210299056A9 (en) | 2004-10-25 | 2021-09-30 | Varian Medical Systems, Inc. | Color-Coded Polymeric Particles of Predetermined Size for Therapeutic and/or Diagnostic Applications and Related Methods |
US8603634B2 (en) | 2004-10-27 | 2013-12-10 | Abbott Cardiovascular Systems Inc. | End-capped poly(ester amide) copolymers |
US7390497B2 (en) | 2004-10-29 | 2008-06-24 | Advanced Cardiovascular Systems, Inc. | Poly(ester amide) filler blends for modulation of coating properties |
KR100609812B1 (en) * | 2004-11-13 | 2006-08-08 | 노만균 | Polymer composition for air purification |
US8609123B2 (en) | 2004-11-29 | 2013-12-17 | Advanced Cardiovascular Systems, Inc. | Derivatized poly(ester amide) as a biobeneficial coating |
US7892592B1 (en) * | 2004-11-30 | 2011-02-22 | Advanced Cardiovascular Systems, Inc. | Coating abluminal surfaces of stents and other implantable medical devices |
US7604818B2 (en) | 2004-12-22 | 2009-10-20 | Advanced Cardiovascular Systems, Inc. | Polymers of fluorinated monomers and hydrocarbon monomers |
US7419504B2 (en) | 2004-12-27 | 2008-09-02 | Advanced Cardiovascular Systems, Inc. | Poly(ester amide) block copolymers |
US8007775B2 (en) | 2004-12-30 | 2011-08-30 | Advanced Cardiovascular Systems, Inc. | Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same |
US8221504B2 (en) | 2005-02-23 | 2012-07-17 | Wright Medical Technology, Inc. | Coating an implant for increased bone in-growth |
WO2006110197A2 (en) | 2005-03-03 | 2006-10-19 | Icon Medical Corp. | Polymer biodegradable medical device |
US8323333B2 (en) | 2005-03-03 | 2012-12-04 | Icon Medical Corp. | Fragile structure protective coating |
US9107899B2 (en) | 2005-03-03 | 2015-08-18 | Icon Medical Corporation | Metal alloys for medical devices |
US7540995B2 (en) * | 2005-03-03 | 2009-06-02 | Icon Medical Corp. | Process for forming an improved metal alloy stent |
US20060198940A1 (en) * | 2005-03-04 | 2006-09-07 | Mcmorrow David | Method of producing particles utilizing a vibrating mesh nebulizer for coating a medical appliance, a system for producing particles, and a medical appliance |
US9381279B2 (en) | 2005-03-24 | 2016-07-05 | Abbott Cardiovascular Systems Inc. | Implantable devices formed on non-fouling methacrylate or acrylate polymers |
US7700659B2 (en) * | 2005-03-24 | 2010-04-20 | Advanced Cardiovascular Systems, Inc. | Implantable devices formed of non-fouling methacrylate or acrylate polymers |
JP5247428B2 (en) | 2005-04-04 | 2013-07-24 | インターセクト エント, インコーポレイテッド | Apparatus and method for treating sinus symptoms |
US8292791B2 (en) * | 2005-04-07 | 2012-10-23 | Bridgestone Corporation | Electrical conductive roller |
US7795467B1 (en) | 2005-04-26 | 2010-09-14 | Advanced Cardiovascular Systems, Inc. | Bioabsorbable, biobeneficial polyurethanes for use in medical devices |
US8778375B2 (en) | 2005-04-29 | 2014-07-15 | Advanced Cardiovascular Systems, Inc. | Amorphous poly(D,L-lactide) coating |
US7772393B2 (en) | 2005-06-13 | 2010-08-10 | Innovative Surface Technologies, Inc. | Photochemical crosslinkers for polymer coatings and substrate tie-layer |
US7622070B2 (en) | 2005-06-20 | 2009-11-24 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing an implantable polymeric medical device |
US7823533B2 (en) | 2005-06-30 | 2010-11-02 | Advanced Cardiovascular Systems, Inc. | Stent fixture and method for reducing coating defects |
US8021676B2 (en) | 2005-07-08 | 2011-09-20 | Advanced Cardiovascular Systems, Inc. | Functionalized chemically inert polymers for coatings |
US8722074B2 (en) * | 2005-07-19 | 2014-05-13 | Boston Scientific Scimed, Inc. | Medical devices containing radiation resistant polymers |
US7785647B2 (en) | 2005-07-25 | 2010-08-31 | Advanced Cardiovascular Systems, Inc. | Methods of providing antioxidants to a drug containing product |
US7735449B1 (en) | 2005-07-28 | 2010-06-15 | Advanced Cardiovascular Systems, Inc. | Stent fixture having rounded support structures and method for use thereof |
US7658880B2 (en) | 2005-07-29 | 2010-02-09 | Advanced Cardiovascular Systems, Inc. | Polymeric stent polishing method and apparatus |
EP1909788A2 (en) | 2005-07-29 | 2008-04-16 | Resverlogix Corp. | Pharmaceutical compositions for the prevention and treatment of complex diseases and their delivery by insertable medical devices |
US20070082021A1 (en) * | 2005-09-30 | 2007-04-12 | Bates Brian L | Coated vaso-occlusion device |
KR101377900B1 (en) | 2005-10-13 | 2014-03-27 | 신세스 게엠바하 | Drug-impregnated encasement |
US8366712B2 (en) | 2005-10-15 | 2013-02-05 | Baxano, Inc. | Multiple pathways for spinal nerve root decompression from a single access point |
US8092456B2 (en) | 2005-10-15 | 2012-01-10 | Baxano, Inc. | Multiple pathways for spinal nerve root decompression from a single access point |
US20080086034A1 (en) | 2006-08-29 | 2008-04-10 | Baxano, Inc. | Tissue Access Guidewire System and Method |
US8062298B2 (en) | 2005-10-15 | 2011-11-22 | Baxano, Inc. | Flexible tissue removal devices and methods |
US20070112300A1 (en) * | 2005-11-14 | 2007-05-17 | Roman Ricardo D | Balloon folding design, apparatus and method of making the same |
US7976891B1 (en) | 2005-12-16 | 2011-07-12 | Advanced Cardiovascular Systems, Inc. | Abluminal stent coating apparatus and method of using focused acoustic energy |
US7867547B2 (en) | 2005-12-19 | 2011-01-11 | Advanced Cardiovascular Systems, Inc. | Selectively coating luminal surfaces of stents |
US7540881B2 (en) | 2005-12-22 | 2009-06-02 | Boston Scientific Scimed, Inc. | Bifurcation stent pattern |
US20070154466A1 (en) * | 2005-12-30 | 2007-07-05 | Jan Weber | Internal medical devices containing peroxide-converting catalysts |
WO2007089761A2 (en) * | 2006-01-31 | 2007-08-09 | Angiotech Biocoatings Corp. | Lubricious echogenic coatings |
US20070196428A1 (en) | 2006-02-17 | 2007-08-23 | Thierry Glauser | Nitric oxide generating medical devices |
US20070244548A1 (en) * | 2006-02-27 | 2007-10-18 | Cook Incorporated | Sugar-and drug-coated medical device |
US7601383B2 (en) * | 2006-02-28 | 2009-10-13 | Advanced Cardiovascular Systems, Inc. | Coating construct containing poly (vinyl alcohol) |
US7713637B2 (en) | 2006-03-03 | 2010-05-11 | Advanced Cardiovascular Systems, Inc. | Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer |
US7879086B2 (en) * | 2006-04-20 | 2011-02-01 | Boston Scientific Scimed, Inc. | Medical device having a coating comprising an adhesion promoter |
US20080051335A1 (en) * | 2006-05-02 | 2008-02-28 | Kleiner Lothar W | Methods, compositions and devices for treating lesioned sites using bioabsorbable carriers |
US20070258903A1 (en) * | 2006-05-02 | 2007-11-08 | Kleiner Lothar W | Methods, compositions and devices for treating lesioned sites using bioabsorbable carriers |
US8304012B2 (en) | 2006-05-04 | 2012-11-06 | Advanced Cardiovascular Systems, Inc. | Method for drying a stent |
US7985441B1 (en) | 2006-05-04 | 2011-07-26 | Yiwen Tang | Purification of polymers for coating applications |
US8003156B2 (en) | 2006-05-04 | 2011-08-23 | Advanced Cardiovascular Systems, Inc. | Rotatable support elements for stents |
US7775178B2 (en) * | 2006-05-26 | 2010-08-17 | Advanced Cardiovascular Systems, Inc. | Stent coating apparatus and method |
US8568764B2 (en) | 2006-05-31 | 2013-10-29 | Advanced Cardiovascular Systems, Inc. | Methods of forming coating layers for medical devices utilizing flash vaporization |
US9561351B2 (en) | 2006-05-31 | 2017-02-07 | Advanced Cardiovascular Systems, Inc. | Drug delivery spiral coil construct |
US8703167B2 (en) | 2006-06-05 | 2014-04-22 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug |
US8778376B2 (en) | 2006-06-09 | 2014-07-15 | Advanced Cardiovascular Systems, Inc. | Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating |
US8114150B2 (en) | 2006-06-14 | 2012-02-14 | Advanced Cardiovascular Systems, Inc. | RGD peptide attached to bioabsorbable stents |
US20080095918A1 (en) * | 2006-06-14 | 2008-04-24 | Kleiner Lothar W | Coating construct with enhanced interfacial compatibility |
US8603530B2 (en) | 2006-06-14 | 2013-12-10 | Abbott Cardiovascular Systems Inc. | Nanoshell therapy |
US8048448B2 (en) | 2006-06-15 | 2011-11-01 | Abbott Cardiovascular Systems Inc. | Nanoshells for drug delivery |
US7972617B1 (en) | 2006-06-15 | 2011-07-05 | Topaz Stephen R | Anti-thrombogenic device and method of manufacturing the same |
US8017237B2 (en) | 2006-06-23 | 2011-09-13 | Abbott Cardiovascular Systems, Inc. | Nanoshells on polymers |
US8388573B1 (en) | 2006-06-28 | 2013-03-05 | Abbott Cardiovascular Systems Inc. | Local delivery with a balloon covered by a cage |
US8956640B2 (en) * | 2006-06-29 | 2015-02-17 | Advanced Cardiovascular Systems, Inc. | Block copolymers including a methoxyethyl methacrylate midblock |
US20080008736A1 (en) * | 2006-07-06 | 2008-01-10 | Thierry Glauser | Random copolymers of methacrylates and acrylates |
US9028859B2 (en) | 2006-07-07 | 2015-05-12 | Advanced Cardiovascular Systems, Inc. | Phase-separated block copolymer coatings for implantable medical devices |
US8685430B1 (en) | 2006-07-14 | 2014-04-01 | Abbott Cardiovascular Systems Inc. | Tailored aliphatic polyesters for stent coatings |
US8952123B1 (en) | 2006-08-02 | 2015-02-10 | Abbott Cardiovascular Systems Inc. | Dioxanone-based copolymers for implantable devices |
US8703169B1 (en) | 2006-08-15 | 2014-04-22 | Abbott Cardiovascular Systems Inc. | Implantable device having a coating comprising carrageenan and a biostable polymer |
WO2008022258A2 (en) * | 2006-08-16 | 2008-02-21 | Surmodics, Inc. | Methods and materials for increasing the adhesion of elution control matrices to substrates |
CN101646468A (en) * | 2006-10-10 | 2010-02-10 | 西洛诺瓦生物科学公司 | Compositions and devices comrising silicone and specific polyphosphazenes |
US7951191B2 (en) | 2006-10-10 | 2011-05-31 | Boston Scientific Scimed, Inc. | Bifurcated stent with entire circumferential petal |
WO2008045949A2 (en) * | 2006-10-10 | 2008-04-17 | Celonova Biosciences, Inc. | Bioprosthetic heart valve with polyphosphazene |
US8011316B2 (en) | 2006-10-18 | 2011-09-06 | Innovational Holdings, Llc | Systems and methods for producing a medical device |
US8067055B2 (en) * | 2006-10-20 | 2011-11-29 | Biosensors International Group, Ltd. | Drug-delivery endovascular stent and method of use |
US20080097591A1 (en) | 2006-10-20 | 2008-04-24 | Biosensors International Group | Drug-delivery endovascular stent and method of use |
GB2443164B (en) * | 2006-10-24 | 2011-03-30 | Univ Hull | Speech valve |
US7842082B2 (en) | 2006-11-16 | 2010-11-30 | Boston Scientific Scimed, Inc. | Bifurcated stent |
US20080119927A1 (en) * | 2006-11-17 | 2008-05-22 | Medtronic Vascular, Inc. | Stent Coating Including Therapeutic Biodegradable Glass, and Method of Making |
JP4884180B2 (en) * | 2006-11-21 | 2012-02-29 | 東京エレクトロン株式会社 | Substrate processing apparatus and substrate processing method |
US7713541B1 (en) | 2006-11-21 | 2010-05-11 | Abbott Cardiovascular Systems Inc. | Zwitterionic terpolymers, method of making and use on medical devices |
US20080118541A1 (en) * | 2006-11-21 | 2008-05-22 | Abbott Laboratories | Use of a terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride in drug eluting coatings on medical devices |
JP5557373B2 (en) * | 2006-11-21 | 2014-07-23 | アボット ラボラトリーズ | Use of terpolymers of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride in drug-eluting coatings |
US8597673B2 (en) | 2006-12-13 | 2013-12-03 | Advanced Cardiovascular Systems, Inc. | Coating of fast absorption or dissolution |
US8017141B2 (en) | 2006-12-15 | 2011-09-13 | Advanced Cardiovascular Systems, Inc. | Coatings of acrylamide-based copolymers |
WO2008076383A2 (en) * | 2006-12-18 | 2008-06-26 | Med Institute Inc. | Stent graft with releasable therapeutic agent |
US20100196718A1 (en) * | 2006-12-22 | 2010-08-05 | Angiotech Biocoatings Corp. | Coated medical devices with adhesion promoters |
US20080175882A1 (en) * | 2007-01-23 | 2008-07-24 | Trollsas Mikael O | Polymers of aliphatic thioester |
US8118861B2 (en) | 2007-03-28 | 2012-02-21 | Boston Scientific Scimed, Inc. | Bifurcation stent and balloon assemblies |
US20080286332A1 (en) | 2007-05-14 | 2008-11-20 | Pacetti Stephen D | Implantable medical devices with a topcoat layer of phosphoryl choline acrylate polymer for reduced thrombosis, and improved mechanical properties |
US8147769B1 (en) | 2007-05-16 | 2012-04-03 | Abbott Cardiovascular Systems Inc. | Stent and delivery system with reduced chemical degradation |
US9056155B1 (en) | 2007-05-29 | 2015-06-16 | Abbott Cardiovascular Systems Inc. | Coatings having an elastic primer layer |
US10155881B2 (en) * | 2007-05-30 | 2018-12-18 | Abbott Cardiovascular Systems Inc. | Substituted polycaprolactone for coating |
US8425591B1 (en) * | 2007-06-11 | 2013-04-23 | Abbott Cardiovascular Systems Inc. | Methods of forming polymer-bioceramic composite medical devices with bioceramic particles |
US9737638B2 (en) * | 2007-06-20 | 2017-08-22 | Abbott Cardiovascular Systems, Inc. | Polyester amide copolymers having free carboxylic acid pendant groups |
US8048441B2 (en) | 2007-06-25 | 2011-11-01 | Abbott Cardiovascular Systems, Inc. | Nanobead releasing medical devices |
US7927621B2 (en) * | 2007-06-25 | 2011-04-19 | Abbott Cardiovascular Systems Inc. | Thioester-ester-amide copolymers |
US8109904B1 (en) | 2007-06-25 | 2012-02-07 | Abbott Cardiovascular Systems Inc. | Drug delivery medical devices |
US20090004243A1 (en) | 2007-06-29 | 2009-01-01 | Pacetti Stephen D | Biodegradable triblock copolymers for implantable devices |
US20090043276A1 (en) * | 2007-08-09 | 2009-02-12 | Boston Scientific Scimed, Inc. | Drug delivery device, compositions and methods relating thereto |
US7959669B2 (en) | 2007-09-12 | 2011-06-14 | Boston Scientific Scimed, Inc. | Bifurcated stent with open ended side branch support |
US8100855B2 (en) * | 2007-09-17 | 2012-01-24 | Abbott Cardiovascular Systems, Inc. | Methods and devices for eluting agents to a vessel |
KR100930167B1 (en) * | 2007-09-19 | 2009-12-07 | 삼성전기주식회사 | Ultra wide angle optical system |
US9814553B1 (en) | 2007-10-10 | 2017-11-14 | Abbott Cardiovascular Systems Inc. | Bioabsorbable semi-crystalline polymer for controlling release of drug from a coating |
US20090104241A1 (en) * | 2007-10-23 | 2009-04-23 | Pacetti Stephen D | Random amorphous terpolymer containing lactide and glycolide |
US20090306120A1 (en) * | 2007-10-23 | 2009-12-10 | Florencia Lim | Terpolymers containing lactide and glycolide |
US8642062B2 (en) * | 2007-10-31 | 2014-02-04 | Abbott Cardiovascular Systems Inc. | Implantable device having a slow dissolving polymer |
US20090110833A1 (en) * | 2007-10-31 | 2009-04-30 | Gala Industries, Inc. | Method for abrasion-resistant non-stick surface treatments for pelletization and drying process equipment components |
US20090110713A1 (en) * | 2007-10-31 | 2009-04-30 | Florencia Lim | Biodegradable polymeric materials providing controlled release of hydrophobic drugs from implantable devices |
WO2009064697A2 (en) * | 2007-11-13 | 2009-05-22 | Boston Scientific Scimed, Inc. | Combination coil and liquid embolic for embolization |
US7833266B2 (en) | 2007-11-28 | 2010-11-16 | Boston Scientific Scimed, Inc. | Bifurcated stent with drug wells for specific ostial, carina, and side branch treatment |
US8192436B2 (en) | 2007-12-07 | 2012-06-05 | Baxano, Inc. | Tissue modification devices |
DK2231065T3 (en) * | 2007-12-18 | 2021-02-01 | Intersect Ent Inc | SELF-EXPANDING DEVICES |
US8277501B2 (en) | 2007-12-21 | 2012-10-02 | Boston Scientific Scimed, Inc. | Bi-stable bifurcated stent petal geometry |
US20090171453A1 (en) * | 2007-12-28 | 2009-07-02 | Adams Tara K | Drug Coated Stent Having a Surface Treatment and Method of Manufacturing |
US20090192583A1 (en) * | 2008-01-28 | 2009-07-30 | Medtronic Vascular, Inc. | Ordered Coatings for Drug Eluting Stents and Medical Devices |
US9259857B2 (en) | 2008-02-12 | 2016-02-16 | Gala Industries, Inc. | Method and apparatus to condition polymers utilizing multiple processing systems |
US8080196B2 (en) * | 2008-02-12 | 2011-12-20 | Gala Industries, Inc. | Method and apparatus to achieve crystallization of polymers utilizing multiple processing systems |
US8252048B2 (en) * | 2008-03-19 | 2012-08-28 | Boston Scientific Scimed, Inc. | Drug eluting stent and method of making the same |
US8128983B2 (en) * | 2008-04-11 | 2012-03-06 | Abbott Cardiovascular Systems Inc. | Coating comprising poly(ethylene glycol)-poly(lactide-glycolide-caprolactone) interpenetrating network |
US20090285873A1 (en) * | 2008-04-18 | 2009-11-19 | Abbott Cardiovascular Systems Inc. | Implantable medical devices and coatings therefor comprising block copolymers of poly(ethylene glycol) and a poly(lactide-glycolide) |
US8916188B2 (en) | 2008-04-18 | 2014-12-23 | Abbott Cardiovascular Systems Inc. | Block copolymer comprising at least one polyester block and a poly (ethylene glycol) block |
US20090297584A1 (en) * | 2008-04-18 | 2009-12-03 | Florencia Lim | Biosoluble coating with linear over time mass loss |
US8697113B2 (en) * | 2008-05-21 | 2014-04-15 | Abbott Cardiovascular Systems Inc. | Coating comprising a terpolymer comprising caprolactone and glycolide |
US8932340B2 (en) | 2008-05-29 | 2015-01-13 | Boston Scientific Scimed, Inc. | Bifurcated stent and delivery system |
US8771332B2 (en) * | 2008-05-29 | 2014-07-08 | Boston Scientific Scimed, Inc. | Multi-layer balloon design for use in combination with catheter assemblies, and methods of making the same |
US10898620B2 (en) | 2008-06-20 | 2021-01-26 | Razmodics Llc | Composite stent having multi-axial flexibility and method of manufacture thereof |
US8206635B2 (en) | 2008-06-20 | 2012-06-26 | Amaranth Medical Pte. | Stent fabrication via tubular casting processes |
US8206636B2 (en) | 2008-06-20 | 2012-06-26 | Amaranth Medical Pte. | Stent fabrication via tubular casting processes |
US8398641B2 (en) | 2008-07-01 | 2013-03-19 | Baxano, Inc. | Tissue modification devices and methods |
US8409206B2 (en) | 2008-07-01 | 2013-04-02 | Baxano, Inc. | Tissue modification devices and methods |
WO2010009093A2 (en) | 2008-07-14 | 2010-01-21 | Baxano, Inc | Tissue modification devices |
US9314253B2 (en) | 2008-07-01 | 2016-04-19 | Amendia, Inc. | Tissue modification devices and methods |
CA2734414A1 (en) | 2008-09-19 | 2010-03-25 | Innovative Surface Technologies, Inc. | Drug eluting superhydrophobic coatings |
US20100125335A1 (en) * | 2008-11-20 | 2010-05-20 | Daley Robert J | Methods and apparatus for replacing biological joints using bone cement in a suspended state |
US20100125303A1 (en) * | 2008-11-20 | 2010-05-20 | Daley Robert J | Methods and apparatus for replacing biological joints using bone mineral substance in a suspended state |
US20100152027A1 (en) * | 2008-12-15 | 2010-06-17 | Chevron U.S.A., Inc. | Ionic liquid catalyst having a high molar ratio of aluminum to nitrogen |
DE102008054920A1 (en) * | 2008-12-18 | 2010-07-01 | Biotronik Vi Patent Ag | Implant and method for producing a layer structure |
US8691983B2 (en) * | 2009-03-03 | 2014-04-08 | Innovative Surface Technologies, Inc. | Brush polymer coating by in situ polymerization from photoreactive surface |
US8183337B1 (en) | 2009-04-29 | 2012-05-22 | Abbott Cardiovascular Systems Inc. | Method of purifying ethylene vinyl alcohol copolymers for use with implantable medical devices |
US8697110B2 (en) * | 2009-05-14 | 2014-04-15 | Abbott Cardiovascular Systems Inc. | Polymers comprising amorphous terpolymers and semicrystalline blocks |
US9309347B2 (en) | 2009-05-20 | 2016-04-12 | Biomedical, Inc. | Bioresorbable thermoset polyester/urethane elastomers |
AU2010249558A1 (en) | 2009-05-20 | 2011-12-08 | Arsenal Medical, Inc. | Medical implant |
US9265633B2 (en) | 2009-05-20 | 2016-02-23 | 480 Biomedical, Inc. | Drug-eluting medical implants |
US20110319987A1 (en) | 2009-05-20 | 2011-12-29 | Arsenal Medical | Medical implant |
US8888840B2 (en) * | 2009-05-20 | 2014-11-18 | Boston Scientific Scimed, Inc. | Drug eluting medical implant |
US8992601B2 (en) | 2009-05-20 | 2015-03-31 | 480 Biomedical, Inc. | Medical implants |
US8394102B2 (en) | 2009-06-25 | 2013-03-12 | Baxano, Inc. | Surgical tools for treatment of spinal stenosis |
US8795761B2 (en) | 2009-07-02 | 2014-08-05 | Abbott Cardiovascular Systems Inc. | Removing a solvent from a drug-eluting coating |
US20110015672A1 (en) * | 2009-07-17 | 2011-01-20 | Tyco Healthcare Group Lp | Method for Coating a Medical Device |
US8372133B2 (en) * | 2009-10-05 | 2013-02-12 | 480 Biomedical, Inc. | Polymeric implant delivery system |
EP2490827A4 (en) * | 2009-10-24 | 2014-06-18 | 3M Innovative Properties Co | Process for gradient nanovoided article |
US8271873B2 (en) * | 2009-10-30 | 2012-09-18 | International Business Machines Corporation | Automatically detecting layout of bidirectional (BIDI) text |
EP2338534A2 (en) * | 2009-12-21 | 2011-06-29 | Biotronik VI Patent AG | Medical implant, coating method and implantation method |
US8398916B2 (en) | 2010-03-04 | 2013-03-19 | Icon Medical Corp. | Method for forming a tubular medical device |
US8795762B2 (en) | 2010-03-26 | 2014-08-05 | Battelle Memorial Institute | System and method for enhanced electrostatic deposition and surface coatings |
US8685433B2 (en) | 2010-03-31 | 2014-04-01 | Abbott Cardiovascular Systems Inc. | Absorbable coating for implantable device |
TWI424876B (en) | 2010-11-26 | 2014-02-01 | Univ Nat Central | Surface structure applied to change the wettability of liquid |
EP2462961A3 (en) * | 2010-12-08 | 2014-08-27 | Biotronik AG | Implant made of biocorrodible material and with a coating containing a tissue adhesive |
US10227568B2 (en) | 2011-03-22 | 2019-03-12 | Nanofiber Solutions, Llc | Fiber scaffolds for use in esophageal prostheses |
WO2012154920A1 (en) | 2011-05-12 | 2012-11-15 | Small Bone Innovations, Inc. | Wrist implant for carpal hemiarthroplasty |
US8709034B2 (en) | 2011-05-13 | 2014-04-29 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
WO2012158553A2 (en) | 2011-05-13 | 2012-11-22 | Broncus Technologies, Inc. | Methods and devices for excision of tissue |
WO2013078051A1 (en) * | 2011-11-21 | 2013-05-30 | Johnson Jed K | Fiber scaffolds for use in tracheal prostheses |
WO2013078235A1 (en) | 2011-11-23 | 2013-05-30 | Broncus Medical Inc | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
TWI590843B (en) | 2011-12-28 | 2017-07-11 | 信迪思有限公司 | Films and methods of manufacture |
WO2013106822A1 (en) | 2012-01-12 | 2013-07-18 | Johnson Jed K | Nanofiber scaffolds for biological structures |
US9827401B2 (en) | 2012-06-01 | 2017-11-28 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
WO2013181498A1 (en) | 2012-06-01 | 2013-12-05 | Surmodics, Inc. | Apparatus and method for coating balloon catheters |
CN103578786A (en) | 2012-07-26 | 2014-02-12 | 三星电子株式会社 | Conductive layered structure, electrode, supercapacitor, method of manufacturing the conductive layered structure, and electronic device in a body |
EP3950019A1 (en) | 2013-03-15 | 2022-02-09 | Nanofiber Solutions, LLC | Biocompatible fiber textiles for implantation |
CA2909069C (en) | 2013-04-25 | 2018-10-16 | Innovative Surface Technologies, Inc. | Coatings for controlled release of highly water soluble drugs |
CN105555328B (en) | 2013-06-21 | 2019-01-11 | 德普伊新特斯产品公司 | film and manufacturing method |
WO2015048224A1 (en) | 2013-09-25 | 2015-04-02 | Johnson Jed K | Fiber scaffolds for use creating implantable structures |
JP2017505817A (en) | 2014-02-04 | 2017-02-23 | アボット カーディオバスキュラー システムズ インコーポレイテッド | Drug delivery scaffold or stent having a coating based on NOVOLIMUS and lactide so that the binding of NOVOLIMUS to the coating is minimized |
US9972054B1 (en) | 2014-05-20 | 2018-05-15 | State Farm Mutual Automobile Insurance Company | Accident fault determination for autonomous vehicles |
US11669090B2 (en) | 2014-05-20 | 2023-06-06 | State Farm Mutual Automobile Insurance Company | Autonomous vehicle operation feature monitoring and evaluation of effectiveness |
US10373259B1 (en) | 2014-05-20 | 2019-08-06 | State Farm Mutual Automobile Insurance Company | Fully autonomous vehicle insurance pricing |
US10185997B1 (en) | 2014-05-20 | 2019-01-22 | State Farm Mutual Automobile Insurance Company | Accident fault determination for autonomous vehicles |
JP6424237B2 (en) | 2014-05-23 | 2018-11-14 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Deployment system including application of adhesive |
EP3160397A4 (en) | 2014-06-24 | 2018-03-21 | Icon Medical Corp. | Improved metal alloys for medical devices |
WO2016065255A1 (en) * | 2014-10-23 | 2016-04-28 | Gopinath Mani | Formulations for tailored drug release |
US10166315B2 (en) | 2015-05-04 | 2019-01-01 | Nanofiber Solutions, Inc. | Chitosan-enhanced electrospun fiber compositions |
US10953097B2 (en) | 2015-11-02 | 2021-03-23 | Nanofiber Solutions. Llc | Electrospun fibers having contrast agents and methods of making the same |
EP3419682B1 (en) | 2016-02-24 | 2024-04-03 | Innovative Surface Technologies, Inc. | Crystallization inhibitor compositions for implantable urological devices |
WO2017151548A1 (en) | 2016-03-04 | 2017-09-08 | Mirus Llc | Stent device for spinal fusion |
US20170349766A1 (en) * | 2016-06-02 | 2017-12-07 | Avery Dennison Corporation | Opacifying compositions for pvc films |
WO2018144858A1 (en) | 2017-02-02 | 2018-08-09 | Nanofiber Solutions, Inc. | Methods of improving bone-soft tissue healing using electrospun fibers |
AU2018218261B2 (en) | 2017-02-09 | 2020-06-11 | Med-El Elektromedizinische Geraete Gmbh | Dexamethasone coating for use with electrode carrier |
WO2020112816A1 (en) | 2018-11-29 | 2020-06-04 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
AU2019397470A1 (en) | 2018-12-11 | 2021-06-10 | Nfs Ip Holdings, Llc | Methods of treating chronic wounds using electrospun fibers |
US11819590B2 (en) | 2019-05-13 | 2023-11-21 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
CN113318945A (en) * | 2021-07-01 | 2021-08-31 | 漳州建晟家具有限公司 | Children's furniture panel surface UV colored paint photocuring equipment |
EP4399095A1 (en) * | 2021-09-07 | 2024-07-17 | University of Maine System Board of Trustees | Selective particle entrapment and applications thereof |
Citations (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2701559A (en) * | 1951-08-02 | 1955-02-08 | William A Cooper | Apparatus for exfoliating and collecting diagnostic material from inner walls of hollow viscera |
US4075045A (en) * | 1976-02-09 | 1978-02-21 | International Business Machines Corporation | Method for fabricating FET one-device memory cells with two layers of polycrystalline silicon and fabrication of integrated circuits containing arrays of the memory cells charge storage capacitors utilizing five basic pattern deliberating steps |
US4132357A (en) * | 1976-06-23 | 1979-01-02 | Inmont Corporation | Apparatus and method for spray application of solvent-thinned coating compositions |
US4316885A (en) * | 1980-08-25 | 1982-02-23 | Ayerst, Mckenna And Harrison, Inc. | Acyl derivatives of rapamycin |
US4633873A (en) * | 1984-04-26 | 1987-01-06 | American Cyanamid Company | Surgical repair mesh |
US4638805A (en) * | 1985-07-30 | 1987-01-27 | Advanced Cardiovascular Systems, Inc. | Self-venting balloon dilatation catheter and method |
US4718907A (en) * | 1985-06-20 | 1988-01-12 | Atrium Medical Corporation | Vascular prosthesis having fluorinated coating with varying F/C ratio |
US4722335A (en) * | 1986-10-20 | 1988-02-02 | Vilasi Joseph A | Expandable endotracheal tube |
US4723549A (en) * | 1986-09-18 | 1988-02-09 | Wholey Mark H | Method and apparatus for dilating blood vessels |
US4800882A (en) * | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
US4902289A (en) * | 1982-04-19 | 1990-02-20 | Massachusetts Institute Of Technology | Multilayer bioreplaceable blood vessel prosthesis |
US4988356A (en) * | 1987-02-27 | 1991-01-29 | C. R. Bard, Inc. | Catheter and guidewire exchange system |
US4994298A (en) * | 1988-06-07 | 1991-02-19 | Biogold Inc. | Method of making a biocompatible prosthesis |
US4994560A (en) * | 1987-06-24 | 1991-02-19 | The Dow Chemical Company | Functionalized polyamine chelants and radioactive rhodium complexes thereof for conjugation to antibodies |
US4994033A (en) * | 1989-05-25 | 1991-02-19 | Schneider (Usa) Inc. | Intravascular drug delivery dilatation catheter |
US5078720A (en) * | 1990-05-02 | 1992-01-07 | American Medical Systems, Inc. | Stent placement instrument and method |
US5081394A (en) * | 1987-09-01 | 1992-01-14 | Hitachi, Ltd. | Black matrix color picture tube |
US5084065A (en) * | 1989-07-10 | 1992-01-28 | Corvita Corporation | Reinforced graft assembly |
US5085629A (en) * | 1988-10-06 | 1992-02-04 | Medical Engineering Corporation | Biodegradable stent |
US5087244A (en) * | 1989-01-31 | 1992-02-11 | C. R. Bard, Inc. | Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen |
US5176638A (en) * | 1990-01-12 | 1993-01-05 | Don Michael T Anthony | Regional perfusion catheter with improved drug delivery control |
US5188734A (en) * | 1991-03-26 | 1993-02-23 | Memtec America Corporation | Ultraporous and microporous integral membranes |
US5238749A (en) * | 1986-03-27 | 1993-08-24 | Clinitex Corporation | Antimicrobial coating process and product |
US5278200A (en) * | 1992-10-30 | 1994-01-11 | Medtronic, Inc. | Thromboresistant material and articles |
US5279594A (en) * | 1990-05-23 | 1994-01-18 | Jackson Richard R | Intubation devices with local anesthetic effect for medical use |
US5282860A (en) * | 1991-10-16 | 1994-02-01 | Olympus Optical Co., Ltd. | Stent tube for medical use |
US5282823A (en) * | 1992-03-19 | 1994-02-01 | Medtronic, Inc. | Intravascular radially expandable stent |
US5286254A (en) * | 1990-06-15 | 1994-02-15 | Cortrak Medical, Inc. | Drug delivery apparatus and method |
US5380299A (en) * | 1993-08-30 | 1995-01-10 | Med Institute, Inc. | Thrombolytic treated intravascular medical device |
US5383927A (en) * | 1992-05-07 | 1995-01-24 | Intervascular Inc. | Non-thromogenic vascular prosthesis |
US5383925A (en) * | 1992-09-14 | 1995-01-24 | Meadox Medicals, Inc. | Three-dimensional braided soft tissue prosthesis |
US5383928A (en) * | 1992-06-10 | 1995-01-24 | Emory University | Stent sheath for local drug delivery |
US5385580A (en) * | 1990-08-28 | 1995-01-31 | Meadox Medicals, Inc. | Self-supporting woven vascular graft |
US5387450A (en) * | 1989-05-11 | 1995-02-07 | Landec Corporation | Temperature-activated adhesive assemblies |
US5389106A (en) * | 1993-10-29 | 1995-02-14 | Numed, Inc. | Impermeable expandable intravascular stent |
US5480599A (en) * | 1992-04-09 | 1996-01-02 | Huels Aktiengesellschaft | Method of manufacturing foam beads |
US5485496A (en) * | 1994-09-22 | 1996-01-16 | Cornell Research Foundation, Inc. | Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties |
US5591607A (en) * | 1994-03-18 | 1997-01-07 | Lynx Therapeutics, Inc. | Oligonucleotide N3→P5' phosphoramidates: triplex DNA formation |
US5591199A (en) * | 1995-06-07 | 1997-01-07 | Porter; Christopher H. | Curable fiber composite stent and delivery system |
US5591224A (en) * | 1992-03-19 | 1997-01-07 | Medtronic, Inc. | Bioelastomeric stent |
US5591227A (en) * | 1992-03-19 | 1997-01-07 | Medtronic, Inc. | Drug eluting stent |
US5593403A (en) * | 1994-09-14 | 1997-01-14 | Scimed Life Systems Inc. | Method for modifying a stent in an implanted site |
US5593434A (en) * | 1992-01-31 | 1997-01-14 | Advanced Cardiovascular Systems, Inc. | Stent capable of attachment within a body lumen |
US5595722A (en) * | 1993-01-28 | 1997-01-21 | Neorx Corporation | Method for identifying an agent which increases TGF-beta levels |
US5599301A (en) * | 1993-11-22 | 1997-02-04 | Advanced Cardiovascular Systems, Inc. | Motor control system for an automatic catheter inflation system |
US5599307A (en) * | 1993-07-26 | 1997-02-04 | Loyola University Of Chicago | Catheter and method for the prevention and/or treatment of stenotic processes of vessels and cavities |
US5707385A (en) * | 1994-11-16 | 1998-01-13 | Advanced Cardiovascular Systems, Inc. | Drug loaded elastic membrane and method for delivery |
US5707867A (en) * | 1993-10-27 | 1998-01-13 | The Regents Of The University Of California | Antiviral compounds |
US5711763A (en) * | 1991-02-20 | 1998-01-27 | Tdk Corporation | Composite biological implant of a ceramic material in a metal substrate |
US5711812A (en) * | 1995-06-06 | 1998-01-27 | Varian Associates, Inc. | Apparatus for obtaining dose uniformity in plasma doping (PLAD) ion implantation processes |
US5711958A (en) * | 1996-07-11 | 1998-01-27 | Life Medical Sciences, Inc. | Methods for reducing or eliminating post-surgical adhesion formation |
US5756145A (en) * | 1995-11-08 | 1998-05-26 | Baylor College Of Medicine | Durable, Resilient and effective antimicrobial coating for medical devices and method of coating therefor |
US5855598A (en) * | 1993-10-21 | 1999-01-05 | Corvita Corporation | Expandable supportive branched endoluminal grafts |
US5855618A (en) * | 1996-09-13 | 1999-01-05 | Meadox Medicals, Inc. | Polyurethanes grafted with polyethylene oxide chains containing covalently bonded heparin |
US5855612A (en) * | 1995-05-12 | 1999-01-05 | Ohta Inc. | Biocompatible titanium implant |
US5858746A (en) * | 1992-04-20 | 1999-01-12 | Board Of Regents, The University Of Texas System | Gels for encapsulation of biological materials |
US5857998A (en) * | 1994-06-30 | 1999-01-12 | Boston Scientific Corporation | Stent and therapeutic delivery system |
US5858990A (en) * | 1997-03-04 | 1999-01-12 | St. Elizabeth's Medical Center | Fas ligand compositions for treatment of proliferative disorders |
US5860954A (en) * | 1995-03-31 | 1999-01-19 | Boston Scientific Corporation | Multiple hole drug delivery balloon |
US6011125A (en) * | 1998-09-25 | 2000-01-04 | General Electric Company | Amide modified polyesters |
US6010573A (en) * | 1998-07-01 | 2000-01-04 | Virginia Commonwealth University | Apparatus and method for endothelial cell seeding/transfection of intravascular stents |
US6010445A (en) * | 1997-09-11 | 2000-01-04 | Implant Sciences Corporation | Radioactive medical device and process |
US6010530A (en) * | 1995-06-07 | 2000-01-04 | Boston Scientific Technology, Inc. | Self-expanding endoluminal prosthesis |
US6013621A (en) * | 1997-10-17 | 2000-01-11 | The Rockfeller University | Method of treating psychosis and/or hyperactivity |
US6013099A (en) * | 1998-04-29 | 2000-01-11 | Medtronic, Inc. | Medical device for delivering a water-insoluble therapeutic salt or substance |
US6015541A (en) * | 1997-11-03 | 2000-01-18 | Micro Therapeutics, Inc. | Radioactive embolizing compositions |
US6015815A (en) * | 1997-09-26 | 2000-01-18 | Abbott Laboratories | Tetrazole-containing rapamycin analogs with shortened half-lives |
US6168617B1 (en) * | 1999-06-14 | 2001-01-02 | Scimed Life Systems, Inc. | Stent delivery system |
US6168619B1 (en) * | 1998-10-16 | 2001-01-02 | Quanam Medical Corporation | Intravascular stent having a coaxial polymer member and end sleeves |
US6172167B1 (en) * | 1996-06-28 | 2001-01-09 | Universiteit Twente | Copoly(ester-amides) and copoly(ester-urethanes) |
US6171609B1 (en) * | 1995-02-15 | 2001-01-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US6174316B1 (en) * | 1998-05-28 | 2001-01-16 | Medtronic, Inc. | Stent delivery system |
US6174330B1 (en) * | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
US6177523B1 (en) * | 1999-07-14 | 2001-01-23 | Cardiotech International, Inc. | Functionalized polyurethanes |
US6180632B1 (en) * | 1997-05-28 | 2001-01-30 | Aventis Pharmaceuticals Products Inc. | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
US6335029B1 (en) * | 1998-08-28 | 2002-01-01 | Scimed Life Systems, Inc. | Polymeric coatings for controlled delivery of active agents |
US20020002399A1 (en) * | 1999-12-22 | 2002-01-03 | Huxel Shawn Thayer | Removable stent for body lumens |
US20020004101A1 (en) * | 1995-04-19 | 2002-01-10 | Schneider (Usa) Inc. | Drug coating with topcoat |
US20020004060A1 (en) * | 1997-07-18 | 2002-01-10 | Bernd Heublein | Metallic implant which is degradable in vivo |
US20020005206A1 (en) * | 2000-05-19 | 2002-01-17 | Robert Falotico | Antiproliferative drug and delivery device |
US20020007214A1 (en) * | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
US20020007215A1 (en) * | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
US20020007213A1 (en) * | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
US20020009604A1 (en) * | 1999-12-22 | 2002-01-24 | Zamora Paul O. | Plasma-deposited coatings, devices and methods |
US20030003221A1 (en) * | 2001-07-02 | 2003-01-02 | Zhong Sheng-Ping (Samuel) | Coating dispensing system and method using a solenoid head for coating medical devices |
US20030004141A1 (en) * | 2001-03-08 | 2003-01-02 | Brown David L. | Medical devices, compositions and methods for treating vulnerable plaque |
US6504307B1 (en) * | 2000-11-30 | 2003-01-07 | Advanced Cardiovascular Systems, Inc. | Application of variable bias voltage on a cylindrical grid enclosing a target |
US6503538B1 (en) * | 2000-08-30 | 2003-01-07 | Cornell Research Foundation, Inc. | Elastomeric functional biodegradable copolyester amides and copolyester urethanes |
US6503556B2 (en) * | 2000-12-28 | 2003-01-07 | Advanced Cardiovascular Systems, Inc. | Methods of forming a coating for a prosthesis |
US6503954B1 (en) * | 2000-03-31 | 2003-01-07 | Advanced Cardiovascular Systems, Inc. | Biocompatible carrier containing actinomycin D and a method of forming the same |
US6506437B1 (en) * | 2000-10-17 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Methods of coating an implantable device having depots formed in a surface thereof |
US6510722B1 (en) * | 2000-05-10 | 2003-01-28 | Advanced Cardiovascular Systems, Inc. | Stent crimping tool for producing a grooved crimp |
US6511748B1 (en) * | 1998-01-06 | 2003-01-28 | Aderans Research Institute, Inc. | Bioabsorbable fibers and reinforced composites produced therefrom |
US6673154B1 (en) * | 2001-06-28 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Stent mounting device to coat a stent |
US6673385B1 (en) * | 2000-05-31 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Methods for polymeric coatings stents |
US6676700B1 (en) * | 1999-10-13 | 2004-01-13 | Advanced Cardiovascular Systems, Inc. | Stent with radiopaque core |
US6676697B1 (en) * | 1996-09-19 | 2004-01-13 | Medinol Ltd. | Stent with variable features to optimize support and method of making such stent |
US6679980B1 (en) * | 2001-06-13 | 2004-01-20 | Advanced Cardiovascular Systems, Inc. | Apparatus for electropolishing a stent |
US20040018296A1 (en) * | 2000-05-31 | 2004-01-29 | Daniel Castro | Method for depositing a coating onto a surface of a prosthesis |
US6790228B2 (en) * | 1999-12-23 | 2004-09-14 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US6846323B2 (en) * | 2003-05-15 | 2005-01-25 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
Family Cites Families (236)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US527012A (en) * | 1894-10-02 | Hydrocarbon-burner | ||
FR732895A (en) | 1932-10-18 | 1932-09-25 | Consortium Elektrochem Ind | Articles spun in polyvinyl alcohol |
ZA737247B (en) * | 1972-09-29 | 1975-04-30 | Ayerst Mckenna & Harrison | Rapamycin and process of preparation |
US4374669A (en) * | 1975-05-09 | 1983-02-22 | Mac Gregor David C | Cardiovascular prosthetic devices and implants with porous systems |
US4151413A (en) * | 1977-06-29 | 1979-04-24 | Texaco Inc. | Method of measuring horizontal fluid flow behind casing in subsurface formations with sequential logging for interfering isotope compensation and increased measurement accuracy |
US4329383A (en) | 1979-07-24 | 1982-05-11 | Nippon Zeon Co., Ltd. | Non-thrombogenic material comprising substrate which has been reacted with heparin |
US4325903A (en) * | 1980-07-15 | 1982-04-20 | Celanese Corporation | Processing of melt processible liquid crystal polymer by control of thermal history |
US4580568A (en) * | 1984-10-01 | 1986-04-08 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
IL76641A0 (en) * | 1985-10-10 | 1986-02-28 | Bron Dan | Cyclic flow distributor |
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4650803A (en) * | 1985-12-06 | 1987-03-17 | University Of Kansas | Prodrugs of rapamycin |
US4882168A (en) | 1986-09-05 | 1989-11-21 | American Cyanamid Company | Polyesters containing alkylene oxide blocks as drug delivery systems |
JPH0696023B2 (en) | 1986-11-10 | 1994-11-30 | 宇部日東化成株式会社 | Artificial blood vessel and method for producing the same |
US5059211A (en) * | 1987-06-25 | 1991-10-22 | Duke University | Absorbable vascular stent |
US5527337A (en) * | 1987-06-25 | 1996-06-18 | Duke University | Bioabsorbable stent and method of making the same |
US4894231A (en) | 1987-07-28 | 1990-01-16 | Biomeasure, Inc. | Therapeutic agent delivery system |
DE3738134A1 (en) | 1987-10-09 | 1989-06-01 | Amazonen Werke Dreyer H | AGRICULTURAL ORDER COMBINATION |
US4886062A (en) | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
DE3853477T2 (en) | 1987-12-09 | 1995-11-09 | Fisons Plc | MACROCYCLIC CONNECTIONS. |
JP2561309B2 (en) | 1988-03-28 | 1996-12-04 | テルモ株式会社 | Medical material and manufacturing method thereof |
EP0377649B1 (en) * | 1988-06-02 | 1993-03-10 | Hewlett-Packard Company | Halogenated surface with reduced protein interaction |
US5328471A (en) | 1990-02-26 | 1994-07-12 | Endoluminal Therapeutics, Inc. | Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens |
US5053048A (en) * | 1988-09-22 | 1991-10-01 | Cordis Corporation | Thromboresistant coating |
US4977901A (en) | 1988-11-23 | 1990-12-18 | Minnesota Mining And Manufacturing Company | Article having non-crosslinked crystallized polymer coatings |
US5766883A (en) * | 1989-04-29 | 1998-06-16 | Delta Biotechnology Limited | Polypeptides |
US5041287A (en) * | 1989-05-22 | 1991-08-20 | Terry L. Driggers | Sprayable composition using acetone solvent |
US5100899A (en) | 1989-06-06 | 1992-03-31 | Roy Calne | Methods of inhibiting transplant rejection in mammals using rapamycin and derivatives and prodrugs thereof |
US5272012A (en) * | 1989-06-23 | 1993-12-21 | C. R. Bard, Inc. | Medical apparatus having protective, lubricious coating |
GB8916901D0 (en) | 1989-07-24 | 1989-09-06 | Sandoz Ltd | Improvements in or relating to organic compounds |
US5971954A (en) | 1990-01-10 | 1999-10-26 | Rochester Medical Corporation | Method of making catheter |
DE69101313T2 (en) | 1990-01-30 | 1994-06-30 | Akzo Nv | OBJECT FOR CONTROLLED DELIVERY OF ACTIVE SUBSTANCES FILLED WITH A CAVITY COMPLETELY ENCLOSED BY A WALL, AND COMPLETELY OR PARTLY FILLED WITH ONE OR MORE ACTIVE SUBSTANCES. |
JP2730702B2 (en) | 1990-02-26 | 1998-03-25 | エンドルミナル セラピューティックス,インコーポレイテッド | Device for treating lesions in hollow vessels and other tissue lumens |
US5298260A (en) * | 1990-05-01 | 1994-03-29 | Mediventures, Inc. | Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality |
US5306501A (en) | 1990-05-01 | 1994-04-26 | Mediventures, Inc. | Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers |
US5292516A (en) | 1990-05-01 | 1994-03-08 | Mediventures, Inc. | Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers |
US5300295A (en) * | 1990-05-01 | 1994-04-05 | Mediventures, Inc. | Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH |
WO1991017724A1 (en) | 1990-05-17 | 1991-11-28 | Harbor Medical Devices, Inc. | Medical device polymer |
US6060451A (en) | 1990-06-15 | 2000-05-09 | The National Research Council Of Canada | Thrombin inhibitors based on the amino acid sequence of hirudin |
US5112457A (en) | 1990-07-23 | 1992-05-12 | Case Western Reserve University | Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants |
US5455040A (en) | 1990-07-26 | 1995-10-03 | Case Western Reserve University | Anticoagulant plasma polymer-modified substrate |
US5155210A (en) | 1990-09-11 | 1992-10-13 | Brunswick Corporation | Methods of conjugating actinomycin d |
US5462990A (en) | 1990-10-15 | 1995-10-31 | Board Of Regents, The University Of Texas System | Multifunctional organic polymers |
US5120842A (en) * | 1991-04-01 | 1992-06-09 | American Home Products Corporation | Silyl ethers of rapamycin |
US5100883A (en) * | 1991-04-08 | 1992-03-31 | American Home Products Corporation | Fluorinated esters of rapamycin |
US5118678A (en) * | 1991-04-17 | 1992-06-02 | American Home Products Corporation | Carbamates of rapamycin |
US5102876A (en) * | 1991-05-07 | 1992-04-07 | American Home Products Corporation | Reduction products of rapamycin |
US5138051A (en) * | 1991-08-07 | 1992-08-11 | American Home Products Corporation | Rapamycin analogs as immunosuppressants and antifungals |
US5118677A (en) * | 1991-05-20 | 1992-06-02 | American Home Products Corporation | Amide esters of rapamycin |
DE69125828T2 (en) * | 1991-05-21 | 1997-07-31 | Hewlett Packard Gmbh | Process for pretreating the surface of a medical article |
US5120725A (en) * | 1991-05-29 | 1992-06-09 | American Home Products Corporation | Bicyclic rapamycins |
US5120727A (en) | 1991-05-29 | 1992-06-09 | American Home Products Corporation | Rapamycin dimers |
US5330768A (en) | 1991-07-05 | 1994-07-19 | Massachusetts Institute Of Technology | Controlled drug delivery using polymer/pluronic blends |
US5169851A (en) * | 1991-08-07 | 1992-12-08 | American Home Products Corporation | Rapamycin analog as immunosuppressants and antifungals |
US5162333A (en) * | 1991-09-11 | 1992-11-10 | American Home Products Corporation | Aminodiesters of rapamycin |
US5500013A (en) | 1991-10-04 | 1996-03-19 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
US5151413A (en) * | 1991-11-06 | 1992-09-29 | American Home Products Corporation | Rapamycin acetals as immunosuppressant and antifungal agents |
US5221740A (en) * | 1992-01-16 | 1993-06-22 | American Home Products Corporation | Oxepane isomers of rapamycin useful as immunosuppressive agents |
EP0568451B1 (en) | 1992-04-28 | 1999-08-04 | Terumo Kabushiki Kaisha | Thermoplastic polymer composition and medical devices made of the same |
GB9221220D0 (en) | 1992-10-09 | 1992-11-25 | Sandoz Ag | Organic componds |
US5258389A (en) * | 1992-11-09 | 1993-11-02 | Merck & Co., Inc. | O-aryl, O-alkyl, O-alkenyl and O-alkynylrapamycin derivatives |
EP0604022A1 (en) | 1992-12-22 | 1994-06-29 | Advanced Cardiovascular Systems, Inc. | Multilayered biodegradable stent and method for its manufacture |
US5824048A (en) | 1993-04-26 | 1998-10-20 | Medtronic, Inc. | Method for delivering a therapeutic substance to a body lumen |
US5464650A (en) | 1993-04-26 | 1995-11-07 | Medtronic, Inc. | Intravascular stent and method |
US20020055710A1 (en) | 1998-04-30 | 2002-05-09 | Ronald J. Tuch | Medical device for delivering a therapeutic agent and method of preparation |
CH686761A5 (en) | 1993-05-27 | 1996-06-28 | Sandoz Ag | Pharmaceutical formulations. |
US5846981A (en) | 1993-05-28 | 1998-12-08 | Gpi Nil Holdings Inc. | Inhibitors of rotamase enzyme activity |
US5798355A (en) | 1995-06-07 | 1998-08-25 | Gpi Nil Holdings, Inc. | Inhibitors of rotamase enzyme activity |
US5886026A (en) | 1993-07-19 | 1999-03-23 | Angiotech Pharmaceuticals Inc. | Anti-angiogenic compositions and methods of use |
EG20321A (en) | 1993-07-21 | 1998-10-31 | Otsuka Pharma Co Ltd | Medical material and process for producing the same |
WO1995010989A1 (en) * | 1993-10-19 | 1995-04-27 | Scimed Life Systems, Inc. | Intravascular stent pump |
US5723004A (en) | 1993-10-21 | 1998-03-03 | Corvita Corporation | Expandable supportive endoluminal grafts |
US5423929A (en) * | 1993-10-27 | 1995-06-13 | Allergan, Inc. | Intraocular lenses and methods for producing same |
US5527907A (en) * | 1993-11-19 | 1996-06-18 | Abbott Laboratories | Macrolide immunomodulators |
JP4105761B2 (en) | 1993-11-19 | 2008-06-25 | アボット・ラボラトリーズ | Semi-synthetic analog immunomodulator of rapamycin (macrolide) |
SK78196A3 (en) | 1993-12-17 | 1997-02-05 | Sandoz Ag | Rapamycin demethoxy-derivatives, preparation method thereof and pharmaceutical agent containing them |
US6051576A (en) | 1994-01-28 | 2000-04-18 | University Of Kentucky Research Foundation | Means to achieve sustained release of synergistic drugs by conjugation |
US5898029A (en) | 1994-04-12 | 1999-04-27 | The John Hopkins University | Direct influences on nerve growth of agents that interact with immunophilins in combination with neurotrophic factors |
US5567410A (en) | 1994-06-24 | 1996-10-22 | The General Hospital Corporation | Composotions and methods for radiographic imaging |
US5670558A (en) | 1994-07-07 | 1997-09-23 | Terumo Kabushiki Kaisha | Medical instruments that exhibit surface lubricity when wetted |
DE4424242A1 (en) | 1994-07-09 | 1996-01-11 | Ernst Peter Prof Dr M Strecker | Endoprosthesis implantable percutaneously in a patient's body |
US5788979A (en) | 1994-07-22 | 1998-08-04 | Inflow Dynamics Inc. | Biodegradable coating with inhibitory properties for application to biocompatible materials |
US5578073A (en) | 1994-09-16 | 1996-11-26 | Ramot Of Tel Aviv University | Thromboresistant surface treatment for biomaterials |
US5649977A (en) | 1994-09-22 | 1997-07-22 | Advanced Cardiovascular Systems, Inc. | Metal reinforced polymer stent |
US5637113A (en) | 1994-12-13 | 1997-06-10 | Advanced Cardiovascular Systems, Inc. | Polymer film for wrapping a stent structure |
US5569198A (en) | 1995-01-23 | 1996-10-29 | Cortrak Medical Inc. | Microporous catheter |
US6017577A (en) | 1995-02-01 | 2000-01-25 | Schneider (Usa) Inc. | Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices |
US5919570A (en) | 1995-02-01 | 1999-07-06 | Schneider Inc. | Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices |
US5575818A (en) | 1995-02-14 | 1996-11-19 | Corvita Corporation | Endovascular stent with locking ring |
US5869127A (en) | 1995-02-22 | 1999-02-09 | Boston Scientific Corporation | Method of providing a substrate with a bio-active/biocompatible coating |
US6231600B1 (en) | 1995-02-22 | 2001-05-15 | Scimed Life Systems, Inc. | Stents with hybrid coating for medical devices |
US5702754A (en) | 1995-02-22 | 1997-12-30 | Meadox Medicals, Inc. | Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings |
US5605696A (en) | 1995-03-30 | 1997-02-25 | Advanced Cardiovascular Systems, Inc. | Drug loaded polymeric material and method of manufacture |
US20020091433A1 (en) * | 1995-04-19 | 2002-07-11 | Ni Ding | Drug release coated stent |
US6120536A (en) | 1995-04-19 | 2000-09-19 | Schneider (Usa) Inc. | Medical devices with long term non-thrombogenic coatings |
KR19990007861A (en) * | 1995-04-19 | 1999-01-25 | 가타오카가즈노리 | Heterotereric block copolymer and preparation method thereof |
US5837313A (en) * | 1995-04-19 | 1998-11-17 | Schneider (Usa) Inc | Drug release stent coating process |
US5609629A (en) | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
US5696135A (en) | 1995-06-07 | 1997-12-09 | Gpi Nil Holdings, Inc. | Inhibitors of rotamase enzyme activity effective at stimulating neuronal growth |
US6129761A (en) | 1995-06-07 | 2000-10-10 | Reprogenesis, Inc. | Injectable hydrogel compositions |
WO1998017331A1 (en) | 1995-06-07 | 1998-04-30 | Cook Incorporated | Silver implantable medical device |
CA2178541C (en) | 1995-06-07 | 2009-11-24 | Neal E. Fearnot | Implantable medical device |
US5820917A (en) | 1995-06-07 | 1998-10-13 | Medtronic, Inc. | Blood-contacting medical device and method |
EP0869804A4 (en) | 1995-06-07 | 2001-08-16 | American Nat Red Cross | Supplemented and unsupplemented tissue sealants, methods of their production and use |
CN1124276C (en) | 1995-06-09 | 2003-10-15 | 诺瓦蒂斯有限公司 | Rapamycin derivatives |
US5667767A (en) | 1995-07-27 | 1997-09-16 | Micro Therapeutics, Inc. | Compositions for use in embolizing blood vessels |
US5877224A (en) * | 1995-07-28 | 1999-03-02 | Rutgers, The State University Of New Jersey | Polymeric drug formulations |
JP2828432B2 (en) * | 1995-10-31 | 1998-11-25 | 三星電子株式会社 | Discharge port opening / closing device for air conditioner |
US5658995A (en) | 1995-11-27 | 1997-08-19 | Rutgers, The State University | Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide) |
EP1704878B1 (en) | 1995-12-18 | 2013-04-10 | AngioDevice International GmbH | Crosslinked polymer compositions and methods for their use |
US6033582A (en) | 1996-01-22 | 2000-03-07 | Etex Corporation | Surface modification of medical implants |
FR2744186B1 (en) * | 1996-01-31 | 1998-05-07 | Guttin Christian Sarl | ROCKER BEARING DEVICE FOR CARRYING ONE OF THE END OF A ROLLER BAR |
AU728605B2 (en) | 1996-02-13 | 2001-01-11 | General Hospital Corporation, The | Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices |
CA2199890C (en) * | 1996-03-26 | 2002-02-05 | Leonard Pinchuk | Stents and stent-grafts having enhanced hoop strength and methods of making the same |
GB9606452D0 (en) | 1996-03-27 | 1996-06-05 | Sandoz Ltd | Organic compounds |
US5713949A (en) * | 1996-08-06 | 1998-02-03 | Jayaraman; Swaminathan | Microporous covered stents and method of coating |
US5955509A (en) | 1996-05-01 | 1999-09-21 | Board Of Regents, The University Of Texas System | pH dependent polymer micelles |
BR9710682A (en) | 1996-05-24 | 1999-08-17 | Angiotech Pharm Inc | Compositions and methods for treating or preventing diseases of the body's pathways |
US5876433A (en) | 1996-05-29 | 1999-03-02 | Ethicon, Inc. | Stent and method of varying amounts of heparin coated thereon to control treatment |
US5874165A (en) | 1996-06-03 | 1999-02-23 | Gore Enterprise Holdings, Inc. | Materials and method for the immobilization of bioactive species onto polymeric subtrates |
US5916585A (en) | 1996-06-03 | 1999-06-29 | Gore Enterprise Holdings, Inc. | Materials and method for the immobilization of bioactive species onto biodegradable polymers |
US6143037A (en) | 1996-06-12 | 2000-11-07 | The Regents Of The University Of Michigan | Compositions and methods for coating medical devices |
US20030077317A1 (en) | 1996-06-25 | 2003-04-24 | Brown University Research Foundation | Methods and compositions for enhancing the bioadhesive properties of polymers using organic excipients |
US5830178A (en) | 1996-10-11 | 1998-11-03 | Micro Therapeutics, Inc. | Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide |
US6060518A (en) | 1996-08-16 | 2000-05-09 | Supratek Pharma Inc. | Polymer compositions for chemotherapy and methods of treatment using the same |
EP0920467A4 (en) * | 1996-08-26 | 1999-10-13 | Tyndale Plains Hunter Ltd | Hydrophilic and hydrophobic polyether polyurethanes and uses therefor |
US5980972A (en) | 1996-12-20 | 1999-11-09 | Schneider (Usa) Inc | Method of applying drug-release coatings |
US5997517A (en) | 1997-01-27 | 1999-12-07 | Sts Biopolymers, Inc. | Bonding layers for medical device surface coatings |
DE19705579A1 (en) * | 1997-02-14 | 1998-08-20 | Huels Chemische Werke Ag | An article with microorganism repellent coating, its preparation and use |
DE19706903A1 (en) | 1997-02-21 | 1998-08-27 | Bayer Ag | Use of known agonists of the central cannabinoid receptor CB 1 |
CA2282748C (en) | 1997-03-05 | 2007-11-20 | Boston Scientific Limited | Conformal laminate stent device |
EP0978288A4 (en) | 1997-04-11 | 2006-07-12 | Astellas Pharma Inc | Medicinal composition |
US6240616B1 (en) * | 1997-04-15 | 2001-06-05 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
US6273913B1 (en) | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
US6270902B1 (en) | 1997-04-23 | 2001-08-07 | C. R. Bard, Inc. | Method of improving the adherence of certain crosslinked polymer coatings containing PEO or PVP to a substrate |
US5879697A (en) * | 1997-04-30 | 1999-03-09 | Schneider Usa Inc | Drug-releasing coatings for medical devices |
US6056993A (en) | 1997-05-30 | 2000-05-02 | Schneider (Usa) Inc. | Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel |
US6110483A (en) * | 1997-06-23 | 2000-08-29 | Sts Biopolymers, Inc. | Adherent, flexible hydrogel and medicated coatings |
JP2002511878A (en) | 1997-07-01 | 2002-04-16 | アセロジエニクス・インコーポレイテツド | Enhanced treatment of hyperproliferative conditions with antioxidants |
US5980928A (en) | 1997-07-29 | 1999-11-09 | Terry; Paul B. | Implant for preventing conjunctivitis in cattle |
US5897911A (en) * | 1997-08-11 | 1999-04-27 | Advanced Cardiovascular Systems, Inc. | Polymer-coated stent structure |
US6121027A (en) | 1997-08-15 | 2000-09-19 | Surmodics, Inc. | Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups |
BR9815345A (en) | 1997-12-03 | 2000-11-21 | Fujisawa Pharmaceutical Co | Soft composition of pelleted drug, inhaler using it and method for its manufacture |
US5962007A (en) | 1997-12-19 | 1999-10-05 | Indigo Medical, Inc. | Use of a multi-component coil medical construct |
US6231660B1 (en) * | 1997-12-22 | 2001-05-15 | The National Lime And Stone Co. | Manufactured granular substrate and method for producing the same |
US6221425B1 (en) * | 1998-01-30 | 2001-04-24 | Advanced Cardiovascular Systems, Inc. | Lubricious hydrophilic coating for an intracorporeal medical device |
US6110188A (en) | 1998-03-09 | 2000-08-29 | Corvascular, Inc. | Anastomosis method |
US6096726A (en) * | 1998-03-11 | 2000-08-01 | Surface Solutions Laboratories Incorporated | Multicomponent complex for use with substrate |
US6001117A (en) | 1998-03-19 | 1999-12-14 | Indigo Medical, Inc. | Bellows medical construct and apparatus and method for using same |
RU2214244C9 (en) | 1998-03-26 | 2020-07-29 | Астеллас Фарма Инк. | Sustained-release preparations |
US8029561B1 (en) | 2000-05-12 | 2011-10-04 | Cordis Corporation | Drug combination useful for prevention of restenosis |
EP1019111B1 (en) | 1998-04-27 | 2002-06-26 | Surmodics Inc. | Bioactive agent release coating |
US6113629A (en) | 1998-05-01 | 2000-09-05 | Micrus Corporation | Hydrogel for the therapeutic treatment of aneurysms |
CA2326828C (en) * | 1998-05-05 | 2008-07-22 | Scimed Life Systems, Inc. | Stent with smooth ends |
KR100314496B1 (en) | 1998-05-28 | 2001-11-22 | 윤동진 | Non-thrombogenic heparin derivatives, process for preparation and use thereof |
AU746769B2 (en) | 1998-06-09 | 2002-05-02 | Metabolix, Inc. | Methods and apparatus for the production of amorphous polymer suspensions |
JP2002517435A (en) | 1998-06-11 | 2002-06-18 | シーラス コーポレイション | Use of alkylated compounds to inhibit proliferation of arterial smooth muscle cells |
US6153252A (en) | 1998-06-30 | 2000-11-28 | Ethicon, Inc. | Process for coating stents |
WO2000002599A1 (en) | 1998-07-08 | 2000-01-20 | Advanced Biocompatible Coatings Inc. | Biocompatible metallic stents with hydroxy methacrylate coating |
EP0985413A1 (en) | 1998-08-06 | 2000-03-15 | Jörg Michael Dr. Dr. Schierholz | Medical articles with sustained pharmacological activity and process for their preparation |
EP1100479B2 (en) | 1998-08-06 | 2016-12-07 | Jörg Dr.Dr. Schierholz | Medicinal products with retarded pharmacological activity and method for the production thereof |
US6605294B2 (en) | 1998-08-14 | 2003-08-12 | Incept Llc | Methods of using in situ hydration of hydrogel articles for sealing or augmentation of tissue or vessels |
JP4898991B2 (en) | 1998-08-20 | 2012-03-21 | クック メディカル テクノロジーズ エルエルシー | Sheathed medical device |
US6248127B1 (en) | 1998-08-21 | 2001-06-19 | Medtronic Ave, Inc. | Thromboresistant coated medical device |
CA2338788A1 (en) | 1998-09-02 | 2000-03-09 | Scimed Life Systems, Inc. | Drug delivery device for stent |
US6187024B1 (en) * | 1998-11-10 | 2001-02-13 | Target Therapeutics, Inc. | Bioactive coating for vaso-occlusive devices |
US20020065546A1 (en) | 1998-12-31 | 2002-05-30 | Machan Lindsay S. | Stent grafts with bioactive coatings |
US6419692B1 (en) | 1999-02-03 | 2002-07-16 | Scimed Life Systems, Inc. | Surface protection method for stents and balloon catheters for drug delivery |
DE19913978A1 (en) | 1999-03-18 | 2000-09-28 | Schering Ag | Asymmetric stent containing irregularly distributed active agents or radioisotopes useful e.g. for treating atherosclerosis and preventing restenosis |
AU4975500A (en) | 1999-04-23 | 2000-11-10 | Agion Technologies, Llc | Stent having antimicrobial agent |
US6258121B1 (en) | 1999-07-02 | 2001-07-10 | Scimed Life Systems, Inc. | Stent coating |
US6283947B1 (en) | 1999-07-13 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Local drug delivery injection catheter |
US6494862B1 (en) | 1999-07-13 | 2002-12-17 | Advanced Cardiovascular Systems, Inc. | Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway |
US6749626B1 (en) * | 2000-03-31 | 2004-06-15 | Advanced Cardiovascular Systems, Inc. | Actinomycin D for the treatment of vascular disease |
US20070032853A1 (en) * | 2002-03-27 | 2007-02-08 | Hossainy Syed F | 40-O-(2-hydroxy)ethyl-rapamycin coated stent |
US6287628B1 (en) | 1999-09-03 | 2001-09-11 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
US6713119B2 (en) | 1999-09-03 | 2004-03-30 | Advanced Cardiovascular Systems, Inc. | Biocompatible coating for a prosthesis and a method of forming the same |
US6759054B2 (en) | 1999-09-03 | 2004-07-06 | Advanced Cardiovascular Systems, Inc. | Ethylene vinyl alcohol composition and coating |
US7682647B2 (en) * | 1999-09-03 | 2010-03-23 | Advanced Cardiovascular Systems, Inc. | Thermal treatment of a drug eluting implantable medical device |
US6379381B1 (en) | 1999-09-03 | 2002-04-30 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
US7807211B2 (en) * | 1999-09-03 | 2010-10-05 | Advanced Cardiovascular Systems, Inc. | Thermal treatment of an implantable medical device |
US6224622B1 (en) * | 1999-09-29 | 2001-05-01 | Chemence, Inc. | Bioabsorable cyanoacrylate tissue adhesives |
US6203551B1 (en) | 1999-10-04 | 2001-03-20 | Advanced Cardiovascular Systems, Inc. | Chamber for applying therapeutic substances to an implant device |
US6331313B1 (en) | 1999-10-22 | 2001-12-18 | Oculex Pharmaceticals, Inc. | Controlled-release biocompatible ocular drug delivery implant devices and methods |
US6264671B1 (en) * | 1999-11-15 | 2001-07-24 | Advanced Cardiovascular Systems, Inc. | Stent delivery catheter and method of use |
US6475235B1 (en) | 1999-11-16 | 2002-11-05 | Iowa-India Investments Company, Limited | Encapsulated stent preform |
US6251136B1 (en) | 1999-12-08 | 2001-06-26 | Advanced Cardiovascular Systems, Inc. | Method of layering a three-coated stent using pharmacological and polymeric agents |
US6716895B1 (en) | 1999-12-15 | 2004-04-06 | C.R. Bard, Inc. | Polymer compositions containing colloids of silver salts |
US6908624B2 (en) * | 1999-12-23 | 2005-06-21 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US20050238686A1 (en) * | 1999-12-23 | 2005-10-27 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US6283949B1 (en) | 1999-12-27 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Refillable implantable drug delivery pump |
JP4473390B2 (en) | 2000-01-07 | 2010-06-02 | 川澄化学工業株式会社 | Stent and stent graft |
US6406739B1 (en) * | 2000-01-12 | 2002-06-18 | Alcon Universal Ltd. | Coating compositions and methods for reducing edge glare in implantable ophthalmic lenses |
US6818247B1 (en) * | 2000-03-31 | 2004-11-16 | Advanced Cardiovascular Systems, Inc. | Ethylene vinyl alcohol-dimethyl acetamide composition and a method of coating a stent |
US6527801B1 (en) * | 2000-04-13 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Biodegradable drug delivery material for stent |
US6270779B1 (en) * | 2000-05-10 | 2001-08-07 | United States Of America | Nitric oxide-releasing metallic medical devices |
US6776796B2 (en) | 2000-05-12 | 2004-08-17 | Cordis Corportation | Antiinflammatory drug and delivery device |
US6585765B1 (en) * | 2000-06-29 | 2003-07-01 | Advanced Cardiovascular Systems, Inc. | Implantable device having substances impregnated therein and a method of impregnating the same |
US20020077693A1 (en) * | 2000-12-19 | 2002-06-20 | Barclay Bruce J. | Covered, coiled drug delivery stent and method |
US6555157B1 (en) | 2000-07-25 | 2003-04-29 | Advanced Cardiovascular Systems, Inc. | Method for coating an implantable device and system for performing the method |
US6451373B1 (en) | 2000-08-04 | 2002-09-17 | Advanced Cardiovascular Systems, Inc. | Method of forming a therapeutic coating onto a surface of an implantable prosthesis |
US6585926B1 (en) | 2000-08-31 | 2003-07-01 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a porous balloon |
US6908324B1 (en) * | 2000-09-08 | 2005-06-21 | 3Com Corporation | Connector scheme to allow physical orientation of a computer peripheral |
US6254632B1 (en) | 2000-09-28 | 2001-07-03 | Advanced Cardiovascular Systems, Inc. | Implantable medical device having protruding surface structures for drug delivery and cover attachment |
US20020111590A1 (en) * | 2000-09-29 | 2002-08-15 | Davila Luis A. | Medical devices, drug coatings and methods for maintaining the drug coatings thereon |
CA2424029C (en) | 2000-09-29 | 2008-01-29 | Cordis Corporation | Coated medical devices |
US6558733B1 (en) | 2000-10-26 | 2003-05-06 | Advanced Cardiovascular Systems, Inc. | Method for etching a micropatterned microdepot prosthesis |
EP1355588B1 (en) | 2000-12-22 | 2007-08-15 | Avantec Vascular Corporation | Device for delivery of therepeutic agents |
US6824559B2 (en) * | 2000-12-22 | 2004-11-30 | Advanced Cardiovascular Systems, Inc. | Ethylene-carboxyl copolymers as drug delivery matrices |
US6544543B1 (en) * | 2000-12-27 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Periodic constriction of vessels to treat ischemic tissue |
US6663662B2 (en) * | 2000-12-28 | 2003-12-16 | Advanced Cardiovascular Systems, Inc. | Diffusion barrier layer for implantable devices |
US8632845B2 (en) * | 2000-12-28 | 2014-01-21 | Abbott Cardiovascular Systems Inc. | Method of drying bioabsorbable coating over stents |
US6540776B2 (en) | 2000-12-28 | 2003-04-01 | Advanced Cardiovascular Systems, Inc. | Sheath for a prosthesis and methods of forming the same |
US7504125B1 (en) * | 2001-04-27 | 2009-03-17 | Advanced Cardiovascular Systems, Inc. | System and method for coating implantable devices |
US6544223B1 (en) | 2001-01-05 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Balloon catheter for delivering therapeutic agents |
US6544582B1 (en) | 2001-01-05 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for coating an implantable device |
WO2002074194A2 (en) | 2001-03-16 | 2002-09-26 | Sts Biopolymers, Inc. | Stent with medicated multi-layer hydrid polymer coating |
US6712845B2 (en) | 2001-04-24 | 2004-03-30 | Advanced Cardiovascular Systems, Inc. | Coating for a stent and a method of forming the same |
US6605154B1 (en) | 2001-05-31 | 2003-08-12 | Advanced Cardiovascular Systems, Inc. | Stent mounting device |
US6572644B1 (en) * | 2001-06-27 | 2003-06-03 | Advanced Cardiovascular Systems, Inc. | Stent mounting device and a method of using the same to coat a stent |
US6565659B1 (en) | 2001-06-28 | 2003-05-20 | Advanced Cardiovascular Systems, Inc. | Stent mounting assembly and a method of using the same to coat a stent |
US6527863B1 (en) | 2001-06-29 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Support device for a stent and a method of using the same to coat a stent |
EP1273314A1 (en) | 2001-07-06 | 2003-01-08 | Terumo Kabushiki Kaisha | Stent |
SE523216C2 (en) * | 2001-07-27 | 2004-04-06 | Zoucas Kirurgkonsult Ab | heparin stent |
US6641611B2 (en) * | 2001-11-26 | 2003-11-04 | Swaminathan Jayaraman | Therapeutic coating for an intravascular implant |
US8303651B1 (en) | 2001-09-07 | 2012-11-06 | Advanced Cardiovascular Systems, Inc. | Polymeric coating for reducing the rate of release of a therapeutic substance from a stent |
US6753071B1 (en) | 2001-09-27 | 2004-06-22 | Advanced Cardiovascular Systems, Inc. | Rate-reducing membrane for release of an agent |
US20030065377A1 (en) * | 2001-09-28 | 2003-04-03 | Davila Luis A. | Coated medical devices |
US6939376B2 (en) | 2001-11-05 | 2005-09-06 | Sun Biomedical, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
AU2002365234B2 (en) * | 2001-12-14 | 2009-01-29 | Pharmasset Inc | N4-acylcytosine nucleosides for treatment of viral infections |
JP2003210570A (en) | 2002-01-18 | 2003-07-29 | Olympus Optical Co Ltd | Implant material having living body active layer and method for covering living body active layer on implant basic material |
CA2506519A1 (en) | 2002-10-11 | 2004-04-22 | Cartificial A/S | Medical device comprising a bio-compatible polymeric product with a layered structure |
US20060002968A1 (en) * | 2004-06-30 | 2006-01-05 | Gordon Stewart | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders |
US8435550B2 (en) * | 2002-12-16 | 2013-05-07 | Abbot Cardiovascular Systems Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US20040147999A1 (en) | 2003-01-24 | 2004-07-29 | Kishore Udipi | Stent with epoxy primer coating |
US20040230298A1 (en) | 2003-04-25 | 2004-11-18 | Medtronic Vascular, Inc. | Drug-polymer coated stent with polysulfone and styrenic block copolymer |
ITMI20032088A1 (en) * | 2003-10-27 | 2005-04-28 | Endura Spa | INSECTICIDE FORMULATION. |
-
2000
- 2000-12-28 US US09/750,595 patent/US6790228B2/en not_active Expired - Lifetime
-
2001
- 2001-12-21 AU AU2002246846A patent/AU2002246846A1/en not_active Abandoned
- 2001-12-21 EP EP01994454A patent/EP1347792A2/en not_active Withdrawn
- 2001-12-21 WO PCT/US2001/050398 patent/WO2002058753A2/en active Application Filing
- 2001-12-21 JP JP2002559086A patent/JP4236467B2/en not_active Expired - Fee Related
-
2004
- 2004-01-02 US US10/751,289 patent/US7820190B2/en not_active Expired - Fee Related
- 2004-01-02 US US10/751,043 patent/US20040162609A1/en not_active Abandoned
-
2006
- 2006-08-17 US US11/506,656 patent/US20060280770A1/en not_active Abandoned
-
2010
- 2010-03-12 US US12/723,569 patent/US9101689B2/en not_active Expired - Fee Related
- 2010-03-12 US US12/723,565 patent/US20100198342A1/en not_active Abandoned
- 2010-03-12 US US12/723,548 patent/US8211457B2/en not_active Expired - Fee Related
- 2010-03-12 US US12/723,561 patent/US8858975B2/en not_active Expired - Fee Related
- 2010-03-12 US US12/723,534 patent/US8337874B2/en not_active Expired - Fee Related
- 2010-03-12 US US12/723,552 patent/US8206733B2/en not_active Expired - Fee Related
- 2010-03-12 US US12/723,556 patent/US8383142B2/en not_active Expired - Fee Related
-
2012
- 2012-03-22 US US13/427,608 patent/US8652501B2/en not_active Expired - Fee Related
Patent Citations (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2701559A (en) * | 1951-08-02 | 1955-02-08 | William A Cooper | Apparatus for exfoliating and collecting diagnostic material from inner walls of hollow viscera |
US4075045A (en) * | 1976-02-09 | 1978-02-21 | International Business Machines Corporation | Method for fabricating FET one-device memory cells with two layers of polycrystalline silicon and fabrication of integrated circuits containing arrays of the memory cells charge storage capacitors utilizing five basic pattern deliberating steps |
US4132357A (en) * | 1976-06-23 | 1979-01-02 | Inmont Corporation | Apparatus and method for spray application of solvent-thinned coating compositions |
US4316885A (en) * | 1980-08-25 | 1982-02-23 | Ayerst, Mckenna And Harrison, Inc. | Acyl derivatives of rapamycin |
US4902289A (en) * | 1982-04-19 | 1990-02-20 | Massachusetts Institute Of Technology | Multilayer bioreplaceable blood vessel prosthesis |
US4633873A (en) * | 1984-04-26 | 1987-01-06 | American Cyanamid Company | Surgical repair mesh |
US4718907A (en) * | 1985-06-20 | 1988-01-12 | Atrium Medical Corporation | Vascular prosthesis having fluorinated coating with varying F/C ratio |
US4638805A (en) * | 1985-07-30 | 1987-01-27 | Advanced Cardiovascular Systems, Inc. | Self-venting balloon dilatation catheter and method |
US5238749A (en) * | 1986-03-27 | 1993-08-24 | Clinitex Corporation | Antimicrobial coating process and product |
US4723549A (en) * | 1986-09-18 | 1988-02-09 | Wholey Mark H | Method and apparatus for dilating blood vessels |
US4722335A (en) * | 1986-10-20 | 1988-02-02 | Vilasi Joseph A | Expandable endotracheal tube |
US4988356A (en) * | 1987-02-27 | 1991-01-29 | C. R. Bard, Inc. | Catheter and guidewire exchange system |
US4800882A (en) * | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
US4994560A (en) * | 1987-06-24 | 1991-02-19 | The Dow Chemical Company | Functionalized polyamine chelants and radioactive rhodium complexes thereof for conjugation to antibodies |
US5081394A (en) * | 1987-09-01 | 1992-01-14 | Hitachi, Ltd. | Black matrix color picture tube |
US4994298A (en) * | 1988-06-07 | 1991-02-19 | Biogold Inc. | Method of making a biocompatible prosthesis |
US5085629A (en) * | 1988-10-06 | 1992-02-04 | Medical Engineering Corporation | Biodegradable stent |
US5087244A (en) * | 1989-01-31 | 1992-02-11 | C. R. Bard, Inc. | Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen |
US5387450A (en) * | 1989-05-11 | 1995-02-07 | Landec Corporation | Temperature-activated adhesive assemblies |
US4994033A (en) * | 1989-05-25 | 1991-02-19 | Schneider (Usa) Inc. | Intravascular drug delivery dilatation catheter |
US5084065A (en) * | 1989-07-10 | 1992-01-28 | Corvita Corporation | Reinforced graft assembly |
US5176638A (en) * | 1990-01-12 | 1993-01-05 | Don Michael T Anthony | Regional perfusion catheter with improved drug delivery control |
US5078720A (en) * | 1990-05-02 | 1992-01-07 | American Medical Systems, Inc. | Stent placement instrument and method |
US5279594A (en) * | 1990-05-23 | 1994-01-18 | Jackson Richard R | Intubation devices with local anesthetic effect for medical use |
US5286254A (en) * | 1990-06-15 | 1994-02-15 | Cortrak Medical, Inc. | Drug delivery apparatus and method |
US5385580A (en) * | 1990-08-28 | 1995-01-31 | Meadox Medicals, Inc. | Self-supporting woven vascular graft |
US5711763A (en) * | 1991-02-20 | 1998-01-27 | Tdk Corporation | Composite biological implant of a ceramic material in a metal substrate |
US5188734A (en) * | 1991-03-26 | 1993-02-23 | Memtec America Corporation | Ultraporous and microporous integral membranes |
US5282860A (en) * | 1991-10-16 | 1994-02-01 | Olympus Optical Co., Ltd. | Stent tube for medical use |
US5593434A (en) * | 1992-01-31 | 1997-01-14 | Advanced Cardiovascular Systems, Inc. | Stent capable of attachment within a body lumen |
US5282823A (en) * | 1992-03-19 | 1994-02-01 | Medtronic, Inc. | Intravascular radially expandable stent |
US5591227A (en) * | 1992-03-19 | 1997-01-07 | Medtronic, Inc. | Drug eluting stent |
US5591224A (en) * | 1992-03-19 | 1997-01-07 | Medtronic, Inc. | Bioelastomeric stent |
US5480599A (en) * | 1992-04-09 | 1996-01-02 | Huels Aktiengesellschaft | Method of manufacturing foam beads |
US5858746A (en) * | 1992-04-20 | 1999-01-12 | Board Of Regents, The University Of Texas System | Gels for encapsulation of biological materials |
US5383927A (en) * | 1992-05-07 | 1995-01-24 | Intervascular Inc. | Non-thromogenic vascular prosthesis |
US5383928A (en) * | 1992-06-10 | 1995-01-24 | Emory University | Stent sheath for local drug delivery |
US5383925A (en) * | 1992-09-14 | 1995-01-24 | Meadox Medicals, Inc. | Three-dimensional braided soft tissue prosthesis |
US5278200A (en) * | 1992-10-30 | 1994-01-11 | Medtronic, Inc. | Thromboresistant material and articles |
US5595722A (en) * | 1993-01-28 | 1997-01-21 | Neorx Corporation | Method for identifying an agent which increases TGF-beta levels |
US5599307A (en) * | 1993-07-26 | 1997-02-04 | Loyola University Of Chicago | Catheter and method for the prevention and/or treatment of stenotic processes of vessels and cavities |
US5380299A (en) * | 1993-08-30 | 1995-01-10 | Med Institute, Inc. | Thrombolytic treated intravascular medical device |
US5855598A (en) * | 1993-10-21 | 1999-01-05 | Corvita Corporation | Expandable supportive branched endoluminal grafts |
US5707867A (en) * | 1993-10-27 | 1998-01-13 | The Regents Of The University Of California | Antiviral compounds |
US5389106A (en) * | 1993-10-29 | 1995-02-14 | Numed, Inc. | Impermeable expandable intravascular stent |
US5599301A (en) * | 1993-11-22 | 1997-02-04 | Advanced Cardiovascular Systems, Inc. | Motor control system for an automatic catheter inflation system |
US6169170B1 (en) * | 1994-03-18 | 2001-01-02 | Lynx Therapeutics, Inc. | Oligonucleotide N3′→N5′Phosphoramidate Duplexes |
US5591607A (en) * | 1994-03-18 | 1997-01-07 | Lynx Therapeutics, Inc. | Oligonucleotide N3→P5' phosphoramidates: triplex DNA formation |
US5857998A (en) * | 1994-06-30 | 1999-01-12 | Boston Scientific Corporation | Stent and therapeutic delivery system |
US5593403A (en) * | 1994-09-14 | 1997-01-14 | Scimed Life Systems Inc. | Method for modifying a stent in an implanted site |
US5485496A (en) * | 1994-09-22 | 1996-01-16 | Cornell Research Foundation, Inc. | Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties |
US5707385A (en) * | 1994-11-16 | 1998-01-13 | Advanced Cardiovascular Systems, Inc. | Drug loaded elastic membrane and method for delivery |
US6171609B1 (en) * | 1995-02-15 | 2001-01-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US5860954A (en) * | 1995-03-31 | 1999-01-19 | Boston Scientific Corporation | Multiple hole drug delivery balloon |
US20020004101A1 (en) * | 1995-04-19 | 2002-01-10 | Schneider (Usa) Inc. | Drug coating with topcoat |
US5855612A (en) * | 1995-05-12 | 1999-01-05 | Ohta Inc. | Biocompatible titanium implant |
US5711812A (en) * | 1995-06-06 | 1998-01-27 | Varian Associates, Inc. | Apparatus for obtaining dose uniformity in plasma doping (PLAD) ion implantation processes |
US6010530A (en) * | 1995-06-07 | 2000-01-04 | Boston Scientific Technology, Inc. | Self-expanding endoluminal prosthesis |
US5591199A (en) * | 1995-06-07 | 1997-01-07 | Porter; Christopher H. | Curable fiber composite stent and delivery system |
US5756145A (en) * | 1995-11-08 | 1998-05-26 | Baylor College Of Medicine | Durable, Resilient and effective antimicrobial coating for medical devices and method of coating therefor |
US6172167B1 (en) * | 1996-06-28 | 2001-01-09 | Universiteit Twente | Copoly(ester-amides) and copoly(ester-urethanes) |
US5711958A (en) * | 1996-07-11 | 1998-01-27 | Life Medical Sciences, Inc. | Methods for reducing or eliminating post-surgical adhesion formation |
US5855618A (en) * | 1996-09-13 | 1999-01-05 | Meadox Medicals, Inc. | Polyurethanes grafted with polyethylene oxide chains containing covalently bonded heparin |
US6676697B1 (en) * | 1996-09-19 | 2004-01-13 | Medinol Ltd. | Stent with variable features to optimize support and method of making such stent |
US5858990A (en) * | 1997-03-04 | 1999-01-12 | St. Elizabeth's Medical Center | Fas ligand compositions for treatment of proliferative disorders |
US6180632B1 (en) * | 1997-05-28 | 2001-01-30 | Aventis Pharmaceuticals Products Inc. | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
US20020004060A1 (en) * | 1997-07-18 | 2002-01-10 | Bernd Heublein | Metallic implant which is degradable in vivo |
US6174330B1 (en) * | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
US6010445A (en) * | 1997-09-11 | 2000-01-04 | Implant Sciences Corporation | Radioactive medical device and process |
US6015815A (en) * | 1997-09-26 | 2000-01-18 | Abbott Laboratories | Tetrazole-containing rapamycin analogs with shortened half-lives |
US6013621A (en) * | 1997-10-17 | 2000-01-11 | The Rockfeller University | Method of treating psychosis and/or hyperactivity |
US6015541A (en) * | 1997-11-03 | 2000-01-18 | Micro Therapeutics, Inc. | Radioactive embolizing compositions |
US6511748B1 (en) * | 1998-01-06 | 2003-01-28 | Aderans Research Institute, Inc. | Bioabsorbable fibers and reinforced composites produced therefrom |
US6013099A (en) * | 1998-04-29 | 2000-01-11 | Medtronic, Inc. | Medical device for delivering a water-insoluble therapeutic salt or substance |
US6174316B1 (en) * | 1998-05-28 | 2001-01-16 | Medtronic, Inc. | Stent delivery system |
US6010573A (en) * | 1998-07-01 | 2000-01-04 | Virginia Commonwealth University | Apparatus and method for endothelial cell seeding/transfection of intravascular stents |
US6335029B1 (en) * | 1998-08-28 | 2002-01-01 | Scimed Life Systems, Inc. | Polymeric coatings for controlled delivery of active agents |
US6011125A (en) * | 1998-09-25 | 2000-01-04 | General Electric Company | Amide modified polyesters |
US6168619B1 (en) * | 1998-10-16 | 2001-01-02 | Quanam Medical Corporation | Intravascular stent having a coaxial polymer member and end sleeves |
US6168617B1 (en) * | 1999-06-14 | 2001-01-02 | Scimed Life Systems, Inc. | Stent delivery system |
US6177523B1 (en) * | 1999-07-14 | 2001-01-23 | Cardiotech International, Inc. | Functionalized polyurethanes |
US6676700B1 (en) * | 1999-10-13 | 2004-01-13 | Advanced Cardiovascular Systems, Inc. | Stent with radiopaque core |
US20020002399A1 (en) * | 1999-12-22 | 2002-01-03 | Huxel Shawn Thayer | Removable stent for body lumens |
US20020009604A1 (en) * | 1999-12-22 | 2002-01-24 | Zamora Paul O. | Plasma-deposited coatings, devices and methods |
US6790228B2 (en) * | 1999-12-23 | 2004-09-14 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US6503954B1 (en) * | 2000-03-31 | 2003-01-07 | Advanced Cardiovascular Systems, Inc. | Biocompatible carrier containing actinomycin D and a method of forming the same |
US6510722B1 (en) * | 2000-05-10 | 2003-01-28 | Advanced Cardiovascular Systems, Inc. | Stent crimping tool for producing a grooved crimp |
US20020007214A1 (en) * | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
US20020007215A1 (en) * | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
US20020007213A1 (en) * | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
US20020005206A1 (en) * | 2000-05-19 | 2002-01-17 | Robert Falotico | Antiproliferative drug and delivery device |
US6673385B1 (en) * | 2000-05-31 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Methods for polymeric coatings stents |
US20040018296A1 (en) * | 2000-05-31 | 2004-01-29 | Daniel Castro | Method for depositing a coating onto a surface of a prosthesis |
US6503538B1 (en) * | 2000-08-30 | 2003-01-07 | Cornell Research Foundation, Inc. | Elastomeric functional biodegradable copolyester amides and copolyester urethanes |
US6506437B1 (en) * | 2000-10-17 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Methods of coating an implantable device having depots formed in a surface thereof |
US6504307B1 (en) * | 2000-11-30 | 2003-01-07 | Advanced Cardiovascular Systems, Inc. | Application of variable bias voltage on a cylindrical grid enclosing a target |
US6503556B2 (en) * | 2000-12-28 | 2003-01-07 | Advanced Cardiovascular Systems, Inc. | Methods of forming a coating for a prosthesis |
US20030004141A1 (en) * | 2001-03-08 | 2003-01-02 | Brown David L. | Medical devices, compositions and methods for treating vulnerable plaque |
US6679980B1 (en) * | 2001-06-13 | 2004-01-20 | Advanced Cardiovascular Systems, Inc. | Apparatus for electropolishing a stent |
US6673154B1 (en) * | 2001-06-28 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Stent mounting device to coat a stent |
US20030003221A1 (en) * | 2001-07-02 | 2003-01-02 | Zhong Sheng-Ping (Samuel) | Coating dispensing system and method using a solenoid head for coating medical devices |
US6846323B2 (en) * | 2003-05-15 | 2005-01-25 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8313521B2 (en) | 1995-06-07 | 2012-11-20 | Cook Medical Technologies Llc | Method of delivering an implantable medical device with a bioabsorbable coating |
US8066763B2 (en) | 1998-04-11 | 2011-11-29 | Boston Scientific Scimed, Inc. | Drug-releasing stent with ceramic-containing layer |
US20110003068A1 (en) * | 1999-09-03 | 2011-01-06 | Advanced Cardiovascular Systems, Inc. | Thermal Treatment Of An Implantable Medical Device |
US20110001271A1 (en) * | 1999-09-03 | 2011-01-06 | Advanced Cardiovascular Systems, Inc. | Thermal Treatment Of An Implantable Medical Device |
US9101689B2 (en) | 2000-12-28 | 2015-08-11 | Advanced Cardiovascular Systems, Inc. | Primer coatings for stents with oxide, anionic, or hydroxyl surface moieties |
US20100198343A1 (en) * | 2000-12-28 | 2010-08-05 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US20100198342A1 (en) * | 2000-12-28 | 2010-08-05 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US8303643B2 (en) | 2001-06-27 | 2012-11-06 | Remon Medical Technologies Ltd. | Method and device for electrochemical formation of therapeutic species in vivo |
US20090276035A1 (en) * | 2003-08-11 | 2009-11-05 | Igor Waysbeyn | Anastomosis method |
US8147501B2 (en) * | 2003-08-11 | 2012-04-03 | Hdh Medical Ltd. | Anastomosis method |
US9138337B2 (en) | 2004-06-30 | 2015-09-22 | Abbott Cardiovascular Systems Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US20100322992A1 (en) * | 2004-06-30 | 2010-12-23 | Stephen Dugan | Anti-Proliferative And Anti-Inflammatory Agent Combination For Treatment Of Vascular Disorders With An Implantable Medical Device |
US9566373B2 (en) | 2004-06-30 | 2017-02-14 | Abbott Cardiovascular Systems Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US8709469B2 (en) | 2004-06-30 | 2014-04-29 | Abbott Cardiovascular Systems Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US8048141B2 (en) * | 2004-12-07 | 2011-11-01 | Boston Scientific Scimed, Inc. | Medical device that signals lumen loss |
US20060122683A1 (en) * | 2004-12-07 | 2006-06-08 | Scimed Life Systems, Inc. | Medical device that signals lumen loss |
US8840660B2 (en) | 2006-01-05 | 2014-09-23 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8089029B2 (en) | 2006-02-01 | 2012-01-03 | Boston Scientific Scimed, Inc. | Bioabsorbable metal medical device and method of manufacture |
US8574615B2 (en) | 2006-03-24 | 2013-11-05 | Boston Scientific Scimed, Inc. | Medical devices having nanoporous coatings for controlled therapeutic agent delivery |
US8187620B2 (en) | 2006-03-27 | 2012-05-29 | Boston Scientific Scimed, Inc. | Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents |
US20070259427A1 (en) * | 2006-03-27 | 2007-11-08 | Storey Daniel M | Modified surfaces for attachment of biological materials |
WO2008054408A3 (en) * | 2006-03-27 | 2008-07-03 | Ionic Fusion Corp | Modified surfaces for attachment of biological materials |
US8048150B2 (en) | 2006-04-12 | 2011-11-01 | Boston Scientific Scimed, Inc. | Endoprosthesis having a fiber meshwork disposed thereon |
US8815275B2 (en) | 2006-06-28 | 2014-08-26 | Boston Scientific Scimed, Inc. | Coatings for medical devices comprising a therapeutic agent and a metallic material |
US8771343B2 (en) | 2006-06-29 | 2014-07-08 | Boston Scientific Scimed, Inc. | Medical devices with selective titanium oxide coatings |
US8052743B2 (en) | 2006-08-02 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis with three-dimensional disintegration control |
US8353949B2 (en) | 2006-09-14 | 2013-01-15 | Boston Scientific Scimed, Inc. | Medical devices with drug-eluting coating |
US8808726B2 (en) | 2006-09-15 | 2014-08-19 | Boston Scientific Scimed. Inc. | Bioerodible endoprostheses and methods of making the same |
US8052744B2 (en) | 2006-09-15 | 2011-11-08 | Boston Scientific Scimed, Inc. | Medical devices and methods of making the same |
US8057534B2 (en) | 2006-09-15 | 2011-11-15 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8128689B2 (en) | 2006-09-15 | 2012-03-06 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis with biostable inorganic layers |
US8002821B2 (en) | 2006-09-18 | 2011-08-23 | Boston Scientific Scimed, Inc. | Bioerodible metallic ENDOPROSTHESES |
US7981150B2 (en) | 2006-11-09 | 2011-07-19 | Boston Scientific Scimed, Inc. | Endoprosthesis with coatings |
US8715339B2 (en) | 2006-12-28 | 2014-05-06 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8080055B2 (en) | 2006-12-28 | 2011-12-20 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8070797B2 (en) | 2007-03-01 | 2011-12-06 | Boston Scientific Scimed, Inc. | Medical device with a porous surface for delivery of a therapeutic agent |
US8431149B2 (en) | 2007-03-01 | 2013-04-30 | Boston Scientific Scimed, Inc. | Coated medical devices for abluminal drug delivery |
US8067054B2 (en) | 2007-04-05 | 2011-11-29 | Boston Scientific Scimed, Inc. | Stents with ceramic drug reservoir layer and methods of making and using the same |
US20100204777A1 (en) * | 2007-05-03 | 2010-08-12 | Chameleon Scientific Corporation | Inhibitory cell adhesion surfaces |
US20080275546A1 (en) * | 2007-05-03 | 2008-11-06 | Chameleon Scientific Corp | Inhibitory cell adhesion surfaces |
US7976915B2 (en) | 2007-05-23 | 2011-07-12 | Boston Scientific Scimed, Inc. | Endoprosthesis with select ceramic morphology |
US8002823B2 (en) | 2007-07-11 | 2011-08-23 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US7942926B2 (en) | 2007-07-11 | 2011-05-17 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US9284409B2 (en) | 2007-07-19 | 2016-03-15 | Boston Scientific Scimed, Inc. | Endoprosthesis having a non-fouling surface |
US7931683B2 (en) | 2007-07-27 | 2011-04-26 | Boston Scientific Scimed, Inc. | Articles having ceramic coated surfaces |
US8815273B2 (en) | 2007-07-27 | 2014-08-26 | Boston Scientific Scimed, Inc. | Drug eluting medical devices having porous layers |
US8221822B2 (en) | 2007-07-31 | 2012-07-17 | Boston Scientific Scimed, Inc. | Medical device coating by laser cladding |
US8900292B2 (en) | 2007-08-03 | 2014-12-02 | Boston Scientific Scimed, Inc. | Coating for medical device having increased surface area |
US8052745B2 (en) | 2007-09-13 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis |
US8216632B2 (en) | 2007-11-02 | 2012-07-10 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8029554B2 (en) | 2007-11-02 | 2011-10-04 | Boston Scientific Scimed, Inc. | Stent with embedded material |
US7938855B2 (en) | 2007-11-02 | 2011-05-10 | Boston Scientific Scimed, Inc. | Deformable underlayer for stent |
US8920491B2 (en) | 2008-04-22 | 2014-12-30 | Boston Scientific Scimed, Inc. | Medical devices having a coating of inorganic material |
US8932346B2 (en) | 2008-04-24 | 2015-01-13 | Boston Scientific Scimed, Inc. | Medical devices having inorganic particle layers |
US7998192B2 (en) | 2008-05-09 | 2011-08-16 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8236046B2 (en) | 2008-06-10 | 2012-08-07 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US8449603B2 (en) | 2008-06-18 | 2013-05-28 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US7985252B2 (en) | 2008-07-30 | 2011-07-26 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US8642063B2 (en) | 2008-08-22 | 2014-02-04 | Cook Medical Technologies Llc | Implantable medical device coatings with biodegradable elastomer and releasable taxane agent |
US8795704B2 (en) | 2008-08-27 | 2014-08-05 | Boston Scientific Scimed, Inc. | Medical devices having fluorine-containing polymer coatings with improved adhesion |
WO2010027683A3 (en) * | 2008-08-27 | 2010-11-04 | Boston Scientific Scimed, Inc. | Medical devices having fluorine-containing polymer coatings with improved adhesion |
US20100057189A1 (en) * | 2008-08-27 | 2010-03-04 | Boston Scientific Scimed, Inc. | Medical devices having fluorine-containing polymer coatings with improved adhesion |
US8382824B2 (en) | 2008-10-03 | 2013-02-26 | Boston Scientific Scimed, Inc. | Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides |
US8231980B2 (en) | 2008-12-03 | 2012-07-31 | Boston Scientific Scimed, Inc. | Medical implants including iridium oxide |
US8267992B2 (en) | 2009-03-02 | 2012-09-18 | Boston Scientific Scimed, Inc. | Self-buffering medical implants |
US8071156B2 (en) | 2009-03-04 | 2011-12-06 | Boston Scientific Scimed, Inc. | Endoprostheses |
US20100256502A1 (en) * | 2009-04-06 | 2010-10-07 | General Electric Company | Materials and processes for bonding acoustically neutral structures for use in ultrasound catheters |
US8287937B2 (en) | 2009-04-24 | 2012-10-16 | Boston Scientific Scimed, Inc. | Endoprosthese |
US20130204245A1 (en) * | 2010-02-05 | 2013-08-08 | Albena Ivanisevic | Surface Modification of Surgical Instruments for Selective Manipulation of Biological Tissues |
US8668732B2 (en) | 2010-03-23 | 2014-03-11 | Boston Scientific Scimed, Inc. | Surface treated bioerodible metal endoprostheses |
Also Published As
Publication number | Publication date |
---|---|
US20040142015A1 (en) | 2004-07-22 |
US20100168843A1 (en) | 2010-07-01 |
US8383142B2 (en) | 2013-02-26 |
US20100198341A1 (en) | 2010-08-05 |
WO2002058753A3 (en) | 2003-01-16 |
EP1347792A2 (en) | 2003-10-01 |
US20010014717A1 (en) | 2001-08-16 |
US20100198339A1 (en) | 2010-08-05 |
US20100198342A1 (en) | 2010-08-05 |
JP4236467B2 (en) | 2009-03-11 |
US20040162609A1 (en) | 2004-08-19 |
US8211457B2 (en) | 2012-07-03 |
WO2002058753A9 (en) | 2003-08-07 |
US20100198340A1 (en) | 2010-08-05 |
US7820190B2 (en) | 2010-10-26 |
US8858975B2 (en) | 2014-10-14 |
US8337874B2 (en) | 2012-12-25 |
US8652501B2 (en) | 2014-02-18 |
US8206733B2 (en) | 2012-06-26 |
WO2002058753A2 (en) | 2002-08-01 |
JP2004533860A (en) | 2004-11-11 |
US20110070283A1 (en) | 2011-03-24 |
AU2002246846A1 (en) | 2002-08-06 |
US20120185034A1 (en) | 2012-07-19 |
US20100198343A1 (en) | 2010-08-05 |
US9101689B2 (en) | 2015-08-11 |
US6790228B2 (en) | 2004-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8652501B2 (en) | Primer layer coatings of a material with a high content of hydrogen bonding groups for implantable devices and a method of forming the same | |
US6908624B2 (en) | Coating for implantable devices and a method of forming the same | |
US6663662B2 (en) | Diffusion barrier layer for implantable devices | |
US6503954B1 (en) | Biocompatible carrier containing actinomycin D and a method of forming the same | |
US6759054B2 (en) | Ethylene vinyl alcohol composition and coating | |
US6713119B2 (en) | Biocompatible coating for a prosthesis and a method of forming the same | |
US20040029952A1 (en) | Ethylene vinyl alcohol composition and coating | |
US7803394B2 (en) | Polycationic peptide hydrogel coatings for cardiovascular therapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |