US20040170403A1 - Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition - Google Patents
Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition Download PDFInfo
- Publication number
- US20040170403A1 US20040170403A1 US10/792,323 US79232304A US2004170403A1 US 20040170403 A1 US20040170403 A1 US 20040170403A1 US 79232304 A US79232304 A US 79232304A US 2004170403 A1 US2004170403 A1 US 2004170403A1
- Authority
- US
- United States
- Prior art keywords
- solid precursor
- precursor
- housing
- solid
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4481—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
Definitions
- CVD and ALD are known techniques for forming solid films on a substrate by reaction of vapor phase chemicals near the surface of a substrate.
- CVD and ALD techniques involve the delivery of gaseous reactants to the surface of a substrate where a chemical reaction takes place under temperature and pressure conditions favorable to the thermodynamics of the reaction.
- the type and composition of the layers that can be formed using CVD and/or ALD are limited by the ability to deliver the reactant(s) (otherwise known as precursor(s)) to the surface of the substrate.
- Various liquid precursors have been successfully used in CVD and/or ALD applications by delivering the liquid precursors in a carrier gas. Analogous attempts to deliver solid precursors to a CVD and/or an ALD reaction chamber have shown much less success.
- U.S. Pat. No. 5,447,569 discloses the use of a tube containing a plurality of longitudinal slits, wherein vaporization of solid material packed within the tube is controlled by moving the tube through a band of heaters, wherein the vaporized material exits the tube perpendicularly to the longitudinal axis of the tube via the slits.
- U.S. Pat. No. 5,674,574 discloses the use of a rotatable surface contained within a container.
- the rotatable surface which has solid precursor material applied thereon, is heated using a focused thermal beam as it rotates.
- the vaporized solid exits the container through an outlet and is delivered to a reaction chamber.
- U.S. Pat. No. 6,072,939 discloses the use of a hollow tube-like container having a longitudinal axis passing through a first end.
- the hollow container is attached to an injector that is in communication with an inlet of a reaction chamber.
- the injector moves the hollow container through a heater that vaporizes the solid material contained therein.
- the present invention is directed to an apparatus and method for vaporizing solid precursors that overcomes the problems of the prior art so as to provide a simple, more efficient apparatus and method for vaporizing solid precursors in the formation of thin layers on substrates.
- the present invention also provides for a method for vaporizing solid precursors.
- the method involves applying a solid precursor to a surface located within a housing having a sealed interior volume. The surface is then heated either directly or indirectly by a heating element until a sufficient temperature is reached to vaporize the solid precursor.
- the surface supporting or containing the solid precursor includes one or more heated baffles or rods.
- a heating member may be contained within the baffles or rods.
- the baffles or rods may conform to the shape of the heating member.
- the baffles or rods may be cone-shaped to fit tightly over conventional cone-shaped heaters.
- the surface for the solid precursor includes one or more heated meshes or gratings.
- a heating member may be contained within the mesh or grating.
- the mesh or grating may conform in shape to maximize flow through of carrier gas (for example, the mesh or grating may be s-shaped).
- the vaporized precursor is mixed with a carrier gas and delivered to a reaction chamber where the vaporized precursor is deposited on the surface of a substrate by conventional deposition methods.
- FIG. 1 is a cross-sectional view of an apparatus for vaporizing a solid precursor in accordance with a first embodiment of the present invention.
- FIG. 3 is a cross-sectional view of an apparatus for vaporizing a solid precursor in accordance with a third embodiment of the present invention.
- FIG. 4 is a side view of the heated mesh used in the apparatus shown in FIG. 3.
- FIGS. 5A-5C are side views of a cone-shaped rod with heating member inside (FIG. 5A); a cone-shaped rod without heating member (FIG. 5B); and folded cone mesh with solid precursor pressed in between wire mesh (or grating) (FIG. 5C), respectively.
- the apparatus 1 includes a housing 2 defining a sealed interior volume 3 having an inlet 4 for receiving a carrier gas located at one end of housing 2 .
- At least one surface 6 for supporting or containing a solid precursor is contained within housing 2 .
- Surface 6 is preferably located on walls adjacent to the wall containing inlet 4 .
- a heating member 8 for heating a solid precursor applied to surface 6 is contained within at least one wall of housing 2 .
- an outlet 11 is provided on a wall of housing 2 opposite inlet 4 .
- outlet 11 is attached to a reaction chamber of a vapor deposition system.
- FIG. 2 An alternate embodiment of the apparatus of the present invention is set forth in FIG. 2.
- a housing 2 is provided that includes an inlet 4 on one wall of the housing for receiving a carrier gas and optionally an outlet 11 on the wall opposite inlet 4 .
- At least one surface 6 for supporting or applying a solid precursor is located on a wall adjacent to the wall containing inlet 4 .
- a heating member 8 is located in surface 6 for heating a solid precursor affixed to surface 6 .
- FIG. 3 shows another embodiment of the present invention.
- a housing 2 defining a sealed interior volume having an inlet 4 for receiving a carrier gas is provided.
- At least one surface for supporting a solid precursor is affixed to the walls of housing 2 and is formed of one or more heated meshes or gratings 10 .
- the mesh or grating 10 shown in FIG. 3 is s-shaped to allow for maximum flow through of a carrier gas.
- FIG. 4 provides a more detailed view of the mesh or grating 10 used in the apparatus of FIG. 3.
- heating member 8 may be contained in the walls of housing 2 (not shown).
- heating member 8 may be contained within mesh or grating 10 (not shown).
- FIG. 3 The s-shape of the mesh or grating shown in FIG. 3 is not to be construed as limiting as other figures or shapes for surface 6 are within the scope of the invention.
- heating member 8 is contained within surface 6 which is formed of mesh or grating, surface 6 may be shaped to conform to the heating member.
- the shape chosen for surface 6 is one that provides the most surface area.
- the solid precursor has from about 100 ⁇ to about 1000 ⁇ more surface area to vaporize. This allows for a more efficient and faster vaporization. Additionally, with the help of the carrier gas, the flow of vapor through the housing can be better controlled.
- Surface 6 is typically formed of a substance that can withstand the high temperatures needed to vaporize the solid precursors. Suitable examples of materials forming surface 6 include stainless steel and ceramics. Further, surface 6 may be in a staggered configuration as shown in FIG. 1, or in a flush (or even) configuration as shown in FIG. 2.
- any known solid precursor typically used in the production of semiconductor wafers can be used. Suitable preferred examples include W(CO) 6 and TaO x precursors.
- the solid precursor may be applied to the surface by any means that will permit it to remain thereon. For example, the solid precursor may be pressed onto the surface to increase surface area for vaporization. This is an improvement over prior apparatus and methods, where vaporization was limited to the top surfaces of a solid material located in the bottom of a container.
- solid precursors may be dissolved in solution and the heating element may be dipped into the solution. After it is allowed to dry, the solid is retained on the heating element. A rough surface on the heating element may improves adhesion of the solid precursor to the heating element.
- a solid precursor is first applied to surface 6 .
- the said precursor can be applied by pressing the precursor onto surface 6 or by “dipping” the heating element into the dissolved precursor as discussed above.
- the solid precursor is then heated, either directly by heating member 8 located inside surface 6 , or indirectly by heating element 8 located inside the walls of housing 2 , until a temperature high enough to vaporize the solid precursor is reached.
- the vaporization temperature will vary depending on the solid substrate applied to surface 6 .
- a carrier gas enters housing 2 through inlet 4 and carries the vaporized solid precursor to a reaction chamber (not shown) via outlet 11 .
- the vaporized precursor reaches the reaction chamber, it is deposited onto the surface of a substrate (e.g., semiconductor wafer) by conventional deposition methods such as atomic layer deposition (ALD), chemical vapor deposition methods (CVD), and evaporative coating (i.e., the redeposition of substance from precursor onto wafer or substrate).
- ALD atomic layer deposition
- CVD chemical vapor deposition methods
- evaporative coating i.e., the redeposition of substance from precursor onto wafer or substrate.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
An apparatus and method for effectively and controllably vaporizing a solid precursor material is provided. In particular, the present invention provides an apparatus that includes a housing defining a sealed interior volume having an inlet for receiving a carrier gas, at least one surface within the housing for the application of a solid precursor, and a heating member for heating the solid precursor. The heating member can be located in the housing or in the surface within the housing. The surface can be a rod, baffle, mesh, or grating, and is preferably s-shaped or cone-shaped. Optionally, an outlet connects the housing to a reaction chamber. A method for vaporizing a solid precursor using the apparatus of the present invention is also provided.
Description
- This application is a continuation of co-pending U.S. patent application Ser. No. 09/953,451, filed Sep. 14, 2001, and is herein incorporated by reference.
- 1. Field of the Invention
- The present invention relates to the vaporization of solids. More particularly, the present invention relates to an apparatus and method for vaporizing solid precursors used in chemical vapor deposition and/or atomic layer deposition processes.
- 2. Description of the Related Art
- Chemical vapor deposition (CVD) and atomic layer deposition (ALD) are known techniques for forming solid films on a substrate by reaction of vapor phase chemicals near the surface of a substrate. In general, CVD and ALD techniques involve the delivery of gaseous reactants to the surface of a substrate where a chemical reaction takes place under temperature and pressure conditions favorable to the thermodynamics of the reaction. The type and composition of the layers that can be formed using CVD and/or ALD are limited by the ability to deliver the reactant(s) (otherwise known as precursor(s)) to the surface of the substrate. Various liquid precursors have been successfully used in CVD and/or ALD applications by delivering the liquid precursors in a carrier gas. Analogous attempts to deliver solid precursors to a CVD and/or an ALD reaction chamber have shown much less success.
- In prior known solid precursor delivery devices, a carrier gas is passed through a heated container containing volatile solid precursor(s) at conditions conducive to vaporization of the solid. The carrier gas mixes with the vaporized solid and the vaporized solid is drawn from the container in a vacuum environment and carried with the carrier gas to the reaction chamber. Prior known solid precursor delivery procedures have been unsuccessful in reliably delivering solid precursor to the reaction chamber. For example, as the solid precursor is vaporized, the heat of vaporization needed to release the vaporized precursor molecules tends to cool underlying solid precursor molecules thus forming crystals, which tend to prevent or limit further vaporization of any underlying solid precursor.
- Lack of control of solid precursor vaporization is, at least in part, due to the changing surface area of the bulk solid precursor as it is vaporized. Such a changing surface area when the bulk solid precursor is exposed to high temperature produces a continuously changing rate of vaporization, particularly for thermally sensitive compounds. This ever-changing rate of vaporization results in an inability to consistently contact the carrier gas with the solid material, which in turn results in a continuously changing and non-reproducible flow of vaporized solid precursor delivered for deposition in the reaction chamber. A predictable amount of precursor cannot therefore be delivered. As a result, film growth rate and composition of such films on substrates in the reaction chamber cannot be controlled adequately and effectively.
- U.S. Pat. No. 5,447,569 discloses the use of a tube containing a plurality of longitudinal slits, wherein vaporization of solid material packed within the tube is controlled by moving the tube through a band of heaters, wherein the vaporized material exits the tube perpendicularly to the longitudinal axis of the tube via the slits.
- U.S. Pat. No. 5,674,574 discloses the use of a rotatable surface contained within a container. The rotatable surface, which has solid precursor material applied thereon, is heated using a focused thermal beam as it rotates. The vaporized solid exits the container through an outlet and is delivered to a reaction chamber.
- U.S. Pat. No. 6,072,939 discloses the use of a hollow tube-like container having a longitudinal axis passing through a first end. The hollow container is attached to an injector that is in communication with an inlet of a reaction chamber. The injector moves the hollow container through a heater that vaporizes the solid material contained therein.
- As discussed above, prior art methods, which use of elaborate systems to vaporize the solid precursor, have numerous disadvantages. Accordingly, there is a need in the art for a simplified vapor delivery system for delivering solid precursors at a highly controllable rate without decomposition of the solid precursors during vaporization. There is a further need in the art to both easily and efficiently vaporize a solid precursor at a controlled rate such that a reproducible flow of vaporized solid precursor can be delivered to the reaction chamber.
- The present invention is directed to an apparatus and method for vaporizing solid precursors that overcomes the problems of the prior art so as to provide a simple, more efficient apparatus and method for vaporizing solid precursors in the formation of thin layers on substrates.
- The present invention provides an apparatus for vaporizing solid precursors. The apparatus includes a housing defining a sealed interior volume having an inlet for receiving a carrier gas, at least one surface contained in the housing having a solid precursor applied thereon, and a heating member for heating the solid precursor. Although the heating member may or may not be contained within the surface supporting or containing the solid precursor, the heating member is preferably contained in the surface or surfaces contained within the housing.
- The present invention also provides for a method for vaporizing solid precursors. The method involves applying a solid precursor to a surface located within a housing having a sealed interior volume. The surface is then heated either directly or indirectly by a heating element until a sufficient temperature is reached to vaporize the solid precursor.
- According to one embodiment of the present invention, the surface supporting or containing the solid precursor includes one or more heated baffles or rods. A heating member may be contained within the baffles or rods. Additionally, the baffles or rods may conform to the shape of the heating member. For example, the baffles or rods may be cone-shaped to fit tightly over conventional cone-shaped heaters.
- According to another embodiment of the present invention, the surface for the solid precursor includes one or more heated meshes or gratings. A heating member may be contained within the mesh or grating. The mesh or grating may conform in shape to maximize flow through of carrier gas (for example, the mesh or grating may be s-shaped).
- In a preferred embodiment of the present invention, the vaporized precursor is mixed with a carrier gas and delivered to a reaction chamber where the vaporized precursor is deposited on the surface of a substrate by conventional deposition methods.
- With the foregoing and other objects, advantages and features of the invention that will become hereinafter apparent, the nature of the invention may be more clearly understood by reference to the following detailed description of the preferred embodiments of the invention and to the appended claims.
- So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
- FIG. 1 is a cross-sectional view of an apparatus for vaporizing a solid precursor in accordance with a first embodiment of the present invention.
- FIG. 2 is a cross-sectional view of an apparatus for vaporizing a solid precursor in accordance with a second embodiment of the present invention.
- FIG. 3 is a cross-sectional view of an apparatus for vaporizing a solid precursor in accordance with a third embodiment of the present invention.
- FIG. 4 is a side view of the heated mesh used in the apparatus shown in FIG. 3.
- FIGS. 5A-5C are side views of a cone-shaped rod with heating member inside (FIG. 5A); a cone-shaped rod without heating member (FIG. 5B); and folded cone mesh with solid precursor pressed in between wire mesh (or grating) (FIG. 5C), respectively.
- The present invention provides an apparatus and method for vaporizing solid precursors. Referring to FIG. 1, the
apparatus 1 includes ahousing 2 defining a sealedinterior volume 3 having aninlet 4 for receiving a carrier gas located at one end ofhousing 2. At least onesurface 6 for supporting or containing a solid precursor is contained withinhousing 2.Surface 6 is preferably located on walls adjacent to thewall containing inlet 4. In the embodiment shown in FIG. 1, aheating member 8 for heating a solid precursor applied tosurface 6 is contained within at least one wall ofhousing 2. Optionally, anoutlet 11 is provided on a wall ofhousing 2 oppositeinlet 4. Preferably,outlet 11 is attached to a reaction chamber of a vapor deposition system. - An alternate embodiment of the apparatus of the present invention is set forth in FIG. 2. In this embodiment, a
housing 2 is provided that includes aninlet 4 on one wall of the housing for receiving a carrier gas and optionally anoutlet 11 on the wall oppositeinlet 4. At least onesurface 6 for supporting or applying a solid precursor is located on a wall adjacent to thewall containing inlet 4. Aheating member 8 is located insurface 6 for heating a solid precursor affixed tosurface 6. - FIG. 3 shows another embodiment of the present invention. In particular, a
housing 2 defining a sealed interior volume having aninlet 4 for receiving a carrier gas is provided. At least one surface for supporting a solid precursor is affixed to the walls ofhousing 2 and is formed of one or more heated meshes orgratings 10. The mesh or grating 10 shown in FIG. 3 is s-shaped to allow for maximum flow through of a carrier gas. FIG. 4 provides a more detailed view of the mesh or grating 10 used in the apparatus of FIG. 3. Similar to the embodiments set forth in FIGS. 1 and 2,heating member 8 may be contained in the walls of housing 2 (not shown). Alternatively,heating member 8 may be contained within mesh or grating 10 (not shown). - The s-shape of the mesh or grating shown in FIG. 3 is not to be construed as limiting as other figures or shapes for
surface 6 are within the scope of the invention. For example, ifheating member 8 is contained withinsurface 6 which is formed of mesh or grating,surface 6 may be shaped to conform to the heating member. FIGS. 5A-5C depictsurface 6 as a cone shaped rod that has been molded to conform to the shape ofheating member 8. Typically, the shape chosen forsurface 6 is one that provides the most surface area. By allowing more surface areas to be created in the same volume by applying solid precursor onto a surface, i.e., mesh, grating, baffles, or rods as in the present invention, the solid precursor has from about 100× to about 1000× more surface area to vaporize. This allows for a more efficient and faster vaporization. Additionally, with the help of the carrier gas, the flow of vapor through the housing can be better controlled. -
Surface 6 is typically formed of a substance that can withstand the high temperatures needed to vaporize the solid precursors. Suitable examples ofmaterials forming surface 6 include stainless steel and ceramics. Further,surface 6 may be in a staggered configuration as shown in FIG. 1, or in a flush (or even) configuration as shown in FIG. 2. - Any known solid precursor typically used in the production of semiconductor wafers can be used. Suitable preferred examples include W(CO)6 and TaOx precursors. The solid precursor may be applied to the surface by any means that will permit it to remain thereon. For example, the solid precursor may be pressed onto the surface to increase surface area for vaporization. This is an improvement over prior apparatus and methods, where vaporization was limited to the top surfaces of a solid material located in the bottom of a container. Alternatively, solid precursors may be dissolved in solution and the heating element may be dipped into the solution. After it is allowed to dry, the solid is retained on the heating element. A rough surface on the heating element may improves adhesion of the solid precursor to the heating element.
- In previous systems, when the carrier gas was blown through the powdered solid precursor, the gas picked up some of the loose precursor particles and carried the loose particles out onto the wafer surface, thereby contaminating the wafer. However, in the present invention, the use of
surface 6 to hold the solid precursor permits better handling of the solid material, thereby reducing the risk of the solid material flowing with the carrier gas out into the reaction chamber. - To vaporize a solid precursor using the apparatus set forth in FIG. 1, a solid precursor is first applied to
surface 6. The said precursor can be applied by pressing the precursor ontosurface 6 or by “dipping” the heating element into the dissolved precursor as discussed above. The solid precursor is then heated, either directly byheating member 8 located insidesurface 6, or indirectly byheating element 8 located inside the walls ofhousing 2, until a temperature high enough to vaporize the solid precursor is reached. The vaporization temperature will vary depending on the solid substrate applied tosurface 6. A carrier gas entershousing 2 throughinlet 4 and carries the vaporized solid precursor to a reaction chamber (not shown) viaoutlet 11. Once the vaporized precursor reaches the reaction chamber, it is deposited onto the surface of a substrate (e.g., semiconductor wafer) by conventional deposition methods such as atomic layer deposition (ALD), chemical vapor deposition methods (CVD), and evaporative coating (i.e., the redeposition of substance from precursor onto wafer or substrate). - The invention of this application is described above both generically, and with regard to specific embodiments. A wide variety of alternatives known to those of ordinary skill in the art can be selected within the generic disclosure, and examples are not to be interpreted as limiting, unless specifically so indicated. The invention is not otherwise limited, except for the recitation of the claims set forth below.
- Although the invention has been described with some particularity with respect to preferred embodiments thereof, many changes could be made and many alternative embodiments could thus be derived without departing from the scope of the invention.
Claims (20)
1. An apparatus for vaporizing a solid precursor, comprising:
a housing defining an interior volume having an inlet for receiving a carrier gas;
at least two surfaces contained in the housing, wherein the at least two surfaces have the solid precursor applied thereto and are spaced to allow passage of the carrier gas therebetween; and
at least one heating member contained in the housing.
2. The apparatus of claim 1 , wherein the apparatus further comprises an outlet operably connected to a reaction chamber of a deposition chamber.
3. The apparatus of claim 2 , wherein the at least two surfaces are selected from the group consisting of a baffle, a rod, a mesh and a grating.
4. The apparatus of claim 1 , wherein the at least two surfaces have a form selected from the group consisting of an s-shape, a linear shape and a cone shape.
5. The apparatus of claim 3 , wherein the at least two surfaces are formed of a material selected from the group consisting of stainless steel and ceramic.
6. The apparatus of claim 2 , wherein the deposition chamber is selected from the group consisting of ALD chamber, CVD chamber, and evaporative coating chamber.
7. The apparatus of claim 6 , wherein the solid precursor includes a tantalum-containing precursor or a tungsten-containing precursor.
8. An apparatus for vaporizing a solid precursor, comprising:
a housing defining an interior volume having an inlet for receiving a carrier gas and an outlet for delivering the carrier gas and a vaporized solid precursor, wherein the vaporized solid precursor originates from the solid precursor;
a first wall to support the inlet;
at least one surface contained in the housing for application of the solid precursor, wherein the at least one surface is located on a second wall adjoining to the first wall and the at least one surface is spaced to allow passage of the carrier gas; and
a heating member contained in the housing.
9. The apparatus of claim 8 , wherein the outlet is operably connected to a reaction chamber of a deposition chamber.
10. The apparatus of claim 9 , wherein the at least one surface is selected from the group consisting of a baffle, a rod, a mesh and a grating.
11. The apparatus of claim 8 , wherein the heating member is contained within the at least one surface.
12. The apparatus of claim 9 , wherein the at least one surface has a form selected from the group consisting of an s-shape, a linear shape and a cone shape.
13. The apparatus of claim 12 , wherein the at least one surface is formed of a material selected from the group consisting of stainless steel and ceramic.
14. The apparatus of claim 9 , wherein the deposition chamber is selected from the group consisting of ALD chamber, CVD chamber, and evaporative coating chamber.
15. The apparatus of claim 14 , wherein the solid precursor includes a tantalum-containing precursor or a tungsten-containing precursor.
16. An apparatus for vaporizing a solid precursor, comprising:
a housing defining an interior volume having an inlet for receiving a carrier gas and an outlet for delivering the carrier gas and a vaporized solid precursor, wherein the vaporized solid precursor originates from the solid precursor;
at least two surfaces contained in the housing, wherein the at least two surfaces have the solid precursor applied thereto and are spaced to allow passage of the carrier gas therebetween; and
at least one heating member contained in at least one wall of the housing.
17. The apparatus of claim 16 , wherein the at least two surfaces is selected from the group consisting of a baffle, a rod, a mesh and a grating.
18. The apparatus of claim 16 , wherein the outlet is operably connected to a reaction chamber of a deposition chamber.
19. The apparatus of claim 18 , wherein the deposition chamber is selected from the group consisting of ALD chamber, CVD chamber, and evaporative coating chamber.
20. The apparatus of claim 19 , wherein the solid precursor includes a tantalum-containing precursor or a tungsten-containing precursor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/792,323 US20040170403A1 (en) | 2001-09-14 | 2004-03-03 | Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/953,451 US6718126B2 (en) | 2001-09-14 | 2001-09-14 | Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition |
US10/792,323 US20040170403A1 (en) | 2001-09-14 | 2004-03-03 | Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/953,451 Continuation US6718126B2 (en) | 2001-09-14 | 2001-09-14 | Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040170403A1 true US20040170403A1 (en) | 2004-09-02 |
Family
ID=25494016
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/953,451 Expired - Fee Related US6718126B2 (en) | 2001-09-14 | 2001-09-14 | Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition |
US10/792,323 Abandoned US20040170403A1 (en) | 2001-09-14 | 2004-03-03 | Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/953,451 Expired - Fee Related US6718126B2 (en) | 2001-09-14 | 2001-09-14 | Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition |
Country Status (1)
Country | Link |
---|---|
US (2) | US6718126B2 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GR20040100467A (en) * | 2004-12-03 | 2006-09-21 | Εθνικο Κεντρο Ερευνας Φυσικων Επιστημων "Δημοκριτος" | System for repeatable and constant in the time supply of vapours produced by solid-state precursors |
US20070235085A1 (en) * | 2006-03-30 | 2007-10-11 | Norman Nakashima | Chemical delivery apparatus for CVD or ALD |
US20080041313A1 (en) * | 2001-10-26 | 2008-02-21 | Ling Chen | Gas delivery apparatus for atomic layer deposition |
US20080149031A1 (en) * | 2006-03-30 | 2008-06-26 | Applied Materials, Inc. | Ampoule with a thermally conductive coating |
US7674715B2 (en) | 2000-06-28 | 2010-03-09 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
US7678298B2 (en) | 2007-09-25 | 2010-03-16 | Applied Materials, Inc. | Tantalum carbide nitride materials by vapor deposition processes |
US7682946B2 (en) | 2005-11-04 | 2010-03-23 | Applied Materials, Inc. | Apparatus and process for plasma-enhanced atomic layer deposition |
US7695563B2 (en) | 2001-07-13 | 2010-04-13 | Applied Materials, Inc. | Pulsed deposition process for tungsten nucleation |
US7699295B2 (en) | 2005-10-07 | 2010-04-20 | Applied Materials, Inc. | Ampoule splash guard apparatus |
US7709385B2 (en) | 2000-06-28 | 2010-05-04 | Applied Materials, Inc. | Method for depositing tungsten-containing layers by vapor deposition techniques |
US7732327B2 (en) | 2000-06-28 | 2010-06-08 | Applied Materials, Inc. | Vapor deposition of tungsten materials |
US7745329B2 (en) | 2002-02-26 | 2010-06-29 | Applied Materials, Inc. | Tungsten nitride atomic layer deposition processes |
US7745333B2 (en) | 2000-06-28 | 2010-06-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
US7749815B2 (en) | 2001-07-16 | 2010-07-06 | Applied Materials, Inc. | Methods for depositing tungsten after surface treatment |
US7780788B2 (en) | 2001-10-26 | 2010-08-24 | Applied Materials, Inc. | Gas delivery apparatus for atomic layer deposition |
US7794544B2 (en) | 2004-05-12 | 2010-09-14 | Applied Materials, Inc. | Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system |
US7798096B2 (en) | 2006-05-05 | 2010-09-21 | Applied Materials, Inc. | Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool |
US7824743B2 (en) | 2007-09-28 | 2010-11-02 | Applied Materials, Inc. | Deposition processes for titanium nitride barrier and aluminum |
US7867896B2 (en) | 2002-03-04 | 2011-01-11 | Applied Materials, Inc. | Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor |
US7867914B2 (en) | 2002-04-16 | 2011-01-11 | Applied Materials, Inc. | System and method for forming an integrated barrier layer |
US7892602B2 (en) | 2001-12-07 | 2011-02-22 | Applied Materials, Inc. | Cyclical deposition of refractory metal silicon nitride |
US7964505B2 (en) | 2005-01-19 | 2011-06-21 | Applied Materials, Inc. | Atomic layer deposition of tungsten materials |
US8146896B2 (en) | 2008-10-31 | 2012-04-03 | Applied Materials, Inc. | Chemical precursor ampoule for vapor deposition processes |
US8491967B2 (en) | 2008-09-08 | 2013-07-23 | Applied Materials, Inc. | In-situ chamber treatment and deposition process |
KR20130133716A (en) * | 2010-08-09 | 2013-12-09 | 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨. | Delivery device and method of use thereof |
US8821637B2 (en) | 2007-01-29 | 2014-09-02 | Applied Materials, Inc. | Temperature controlled lid assembly for tungsten nitride deposition |
US9418890B2 (en) | 2008-09-08 | 2016-08-16 | Applied Materials, Inc. | Method for tuning a deposition rate during an atomic layer deposition process |
US20160295925A1 (en) * | 2015-04-07 | 2016-10-13 | Chuhui Chen | Atomization core of electronic cigarette |
US20160357200A1 (en) * | 2015-06-08 | 2016-12-08 | Shimadzu Corporation | Heating control device, heating control method, and program for heating control device |
Families Citing this family (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6671223B2 (en) * | 1996-12-20 | 2003-12-30 | Westerngeco, L.L.C. | Control devices for controlling the position of a marine seismic streamer |
US6974766B1 (en) * | 1998-10-01 | 2005-12-13 | Applied Materials, Inc. | In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application |
US6620723B1 (en) * | 2000-06-27 | 2003-09-16 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
US20020036780A1 (en) * | 2000-09-27 | 2002-03-28 | Hiroaki Nakamura | Image processing apparatus |
US6951804B2 (en) * | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US6878206B2 (en) * | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US20070009658A1 (en) * | 2001-07-13 | 2007-01-11 | Yoo Jong H | Pulse nucleation enhanced nucleation technique for improved step coverage and better gap fill for WCVD process |
JP2005518088A (en) | 2001-07-16 | 2005-06-16 | アプライド マテリアルズ インコーポレイテッド | Formation of tungsten composite film |
US20090004850A1 (en) | 2001-07-25 | 2009-01-01 | Seshadri Ganguli | Process for forming cobalt and cobalt silicide materials in tungsten contact applications |
WO2003030224A2 (en) * | 2001-07-25 | 2003-04-10 | Applied Materials, Inc. | Barrier formation using novel sputter-deposition method |
US9051641B2 (en) * | 2001-07-25 | 2015-06-09 | Applied Materials, Inc. | Cobalt deposition on barrier surfaces |
US8110489B2 (en) | 2001-07-25 | 2012-02-07 | Applied Materials, Inc. | Process for forming cobalt-containing materials |
US7085616B2 (en) * | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
US6718126B2 (en) * | 2001-09-14 | 2004-04-06 | Applied Materials, Inc. | Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition |
US20030059538A1 (en) * | 2001-09-26 | 2003-03-27 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
US6936906B2 (en) * | 2001-09-26 | 2005-08-30 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
TW589684B (en) * | 2001-10-10 | 2004-06-01 | Applied Materials Inc | Method for depositing refractory metal layers employing sequential deposition techniques |
US20030111014A1 (en) * | 2001-12-18 | 2003-06-19 | Donatucci Matthew B. | Vaporizer/delivery vessel for volatile/thermally sensitive solid and liquid compounds |
WO2003065424A2 (en) * | 2002-01-25 | 2003-08-07 | Applied Materials, Inc. | Apparatus for cyclical deposition of thin films |
US6866746B2 (en) * | 2002-01-26 | 2005-03-15 | Applied Materials, Inc. | Clamshell and small volume chamber with fixed substrate support |
US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
US7601225B2 (en) * | 2002-06-17 | 2009-10-13 | Asm International N.V. | System for controlling the sublimation of reactants |
US6838125B2 (en) * | 2002-07-10 | 2005-01-04 | Applied Materials, Inc. | Method of film deposition using activated precursor gases |
US7186385B2 (en) * | 2002-07-17 | 2007-03-06 | Applied Materials, Inc. | Apparatus for providing gas to a processing chamber |
US7300038B2 (en) * | 2002-07-23 | 2007-11-27 | Advanced Technology Materials, Inc. | Method and apparatus to help promote contact of gas with vaporized material |
US6921062B2 (en) * | 2002-07-23 | 2005-07-26 | Advanced Technology Materials, Inc. | Vaporizer delivery ampoule |
CN101905126B (en) * | 2002-07-23 | 2013-01-23 | 高级技术材料公司 | Method and apparatus to help promote contact of gas with vaporized material |
US6915592B2 (en) * | 2002-07-29 | 2005-07-12 | Applied Materials, Inc. | Method and apparatus for generating gas to a processing chamber |
KR101183109B1 (en) * | 2002-07-30 | 2012-09-24 | 에이에스엠 아메리카, 인코포레이티드 | Sublimation system employing carrier gas |
US6936086B2 (en) * | 2002-09-11 | 2005-08-30 | Planar Systems, Inc. | High conductivity particle filter |
US20040065255A1 (en) * | 2002-10-02 | 2004-04-08 | Applied Materials, Inc. | Cyclical layer deposition system |
US20040069227A1 (en) * | 2002-10-09 | 2004-04-15 | Applied Materials, Inc. | Processing chamber configured for uniform gas flow |
US6905737B2 (en) * | 2002-10-11 | 2005-06-14 | Applied Materials, Inc. | Method of delivering activated species for rapid cyclical deposition |
US6740586B1 (en) * | 2002-11-06 | 2004-05-25 | Advanced Technology Materials, Inc. | Vapor delivery system for solid precursors and method of using same |
EP1420080A3 (en) * | 2002-11-14 | 2005-11-09 | Applied Materials, Inc. | Apparatus and method for hybrid chemical deposition processes |
WO2004064147A2 (en) * | 2003-01-07 | 2004-07-29 | Applied Materials, Inc. | Integration of ald/cvd barriers with porous low k materials |
US6868869B2 (en) * | 2003-02-19 | 2005-03-22 | Advanced Technology Materials, Inc. | Sub-atmospheric pressure delivery of liquids, solids and low vapor pressure gases |
US20040177813A1 (en) | 2003-03-12 | 2004-09-16 | Applied Materials, Inc. | Substrate support lift mechanism |
US7342984B1 (en) | 2003-04-03 | 2008-03-11 | Zilog, Inc. | Counting clock cycles over the duration of a first character and using a remainder value to determine when to sample a bit of a second character |
KR20060079144A (en) * | 2003-06-18 | 2006-07-05 | 어플라이드 머티어리얼스, 인코포레이티드 | Atomic layer deposition of barrier materials |
KR20050004379A (en) * | 2003-07-02 | 2005-01-12 | 삼성전자주식회사 | Gas supplying apparatus for atomic layer deposition |
US6909839B2 (en) * | 2003-07-23 | 2005-06-21 | Advanced Technology Materials, Inc. | Delivery systems for efficient vaporization of precursor source material |
US7156380B2 (en) * | 2003-09-29 | 2007-01-02 | Asm International, N.V. | Safe liquid source containers |
US20050082172A1 (en) * | 2003-10-21 | 2005-04-21 | Applied Materials, Inc. | Copper replenishment for copper plating with insoluble anode |
US20050095859A1 (en) * | 2003-11-03 | 2005-05-05 | Applied Materials, Inc. | Precursor delivery system with rate control |
US20050253283A1 (en) * | 2004-05-13 | 2005-11-17 | Dcamp Jon B | Getter deposition for vacuum packaging |
US20060062917A1 (en) * | 2004-05-21 | 2006-03-23 | Shankar Muthukrishnan | Vapor deposition of hafnium silicate materials with tris(dimethylamino)silane |
US8119210B2 (en) | 2004-05-21 | 2012-02-21 | Applied Materials, Inc. | Formation of a silicon oxynitride layer on a high-k dielectric material |
US20060153995A1 (en) * | 2004-05-21 | 2006-07-13 | Applied Materials, Inc. | Method for fabricating a dielectric stack |
US8323754B2 (en) * | 2004-05-21 | 2012-12-04 | Applied Materials, Inc. | Stabilization of high-k dielectric materials |
US20060019033A1 (en) * | 2004-05-21 | 2006-01-26 | Applied Materials, Inc. | Plasma treatment of hafnium-containing materials |
CN100339504C (en) * | 2004-07-07 | 2007-09-26 | 中国航空工业第一集团公司北京航空制造工程研究所 | Supplying device of chemical gaseous phase deposition solid state precusor |
US7241686B2 (en) * | 2004-07-20 | 2007-07-10 | Applied Materials, Inc. | Atomic layer deposition of tantalum-containing materials using the tantalum precursor TAIMATA |
US7819981B2 (en) * | 2004-10-26 | 2010-10-26 | Advanced Technology Materials, Inc. | Methods for cleaning ion implanter components |
US20060102079A1 (en) * | 2004-11-15 | 2006-05-18 | Glassman Timothy E | Reducing variability in delivery rates of solid state precursors |
US7488512B2 (en) * | 2004-11-29 | 2009-02-10 | Tokyo Electron Limited | Method for preparing solid precursor tray for use in solid precursor evaporation system |
US7708835B2 (en) * | 2004-11-29 | 2010-05-04 | Tokyo Electron Limited | Film precursor tray for use in a film precursor evaporation system and method of using |
US7638002B2 (en) * | 2004-11-29 | 2009-12-29 | Tokyo Electron Limited | Multi-tray film precursor evaporation system and thin film deposition system incorporating same |
US7484315B2 (en) * | 2004-11-29 | 2009-02-03 | Tokyo Electron Limited | Replaceable precursor tray for use in a multi-tray solid precursor delivery system |
US7429402B2 (en) * | 2004-12-10 | 2008-09-30 | Applied Materials, Inc. | Ruthenium as an underlayer for tungsten film deposition |
KR101299791B1 (en) * | 2005-03-16 | 2013-08-23 | 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 | System for delivery of reagents from solid sources thereof |
US8197898B2 (en) * | 2005-03-29 | 2012-06-12 | Tokyo Electron Limited | Method and system for depositing a layer from light-induced vaporization of a solid precursor |
US7485338B2 (en) * | 2005-03-31 | 2009-02-03 | Tokyo Electron Limited | Method for precursor delivery |
US7651570B2 (en) * | 2005-03-31 | 2010-01-26 | Tokyo Electron Limited | Solid precursor vaporization system for use in chemical vapor deposition |
US7345184B2 (en) * | 2005-03-31 | 2008-03-18 | Tokyo Electron Limited | Method and system for refurbishing a metal carbonyl precursor |
US20070049043A1 (en) * | 2005-08-23 | 2007-03-01 | Applied Materials, Inc. | Nitrogen profile engineering in HI-K nitridation for device performance enhancement and reliability improvement |
US7402534B2 (en) * | 2005-08-26 | 2008-07-22 | Applied Materials, Inc. | Pretreatment processes within a batch ALD reactor |
US20100112795A1 (en) * | 2005-08-30 | 2010-05-06 | Advanced Technology Materials, Inc. | Method of forming ultra-shallow junctions for semiconductor devices |
US7459395B2 (en) * | 2005-09-28 | 2008-12-02 | Tokyo Electron Limited | Method for purifying a metal carbonyl precursor |
US20070099422A1 (en) * | 2005-10-28 | 2007-05-03 | Kapila Wijekoon | Process for electroless copper deposition |
GB2432371B (en) * | 2005-11-17 | 2011-06-15 | Epichem Ltd | Improved bubbler for the transportation of substances by a carrier gas |
CN101589171A (en) * | 2006-03-03 | 2009-11-25 | 普拉萨德·盖德吉尔 | Apparatus and method for large area multi-layer atomic layer chemical vapor processing of thin films |
US7297719B2 (en) * | 2006-03-29 | 2007-11-20 | Tokyo Electron Limited | Method and integrated system for purifying and delivering a metal carbonyl precursor |
JP2010503977A (en) * | 2006-04-26 | 2010-02-04 | アドバンスト テクノロジー マテリアルズ,インコーポレイテッド | Cleaning method for semiconductor processing system |
TWI395335B (en) * | 2006-06-30 | 2013-05-01 | Applied Materials Inc | Nanocrystal formation |
US7601648B2 (en) | 2006-07-31 | 2009-10-13 | Applied Materials, Inc. | Method for fabricating an integrated gate dielectric layer for field effect transistors |
US20080241805A1 (en) | 2006-08-31 | 2008-10-02 | Q-Track Corporation | System and method for simulated dosimetry using a real time locating system |
KR101480971B1 (en) * | 2006-10-10 | 2015-01-09 | 에이에스엠 아메리카, 인코포레이티드 | Precursor delivery system |
US9109287B2 (en) * | 2006-10-19 | 2015-08-18 | Air Products And Chemicals, Inc. | Solid source container with inlet plenum |
US7775508B2 (en) * | 2006-10-31 | 2010-08-17 | Applied Materials, Inc. | Ampoule for liquid draw and vapor draw with a continuous level sensor |
US7692222B2 (en) * | 2006-11-07 | 2010-04-06 | Raytheon Company | Atomic layer deposition in the formation of gate structures for III-V semiconductor |
US7833353B2 (en) * | 2007-01-24 | 2010-11-16 | Asm Japan K.K. | Liquid material vaporization apparatus for semiconductor processing apparatus |
US7846256B2 (en) * | 2007-02-23 | 2010-12-07 | Tokyo Electron Limited | Ampule tray for and method of precursor surface area |
US7585762B2 (en) * | 2007-09-25 | 2009-09-08 | Applied Materials, Inc. | Vapor deposition processes for tantalum carbide nitride materials |
US9034105B2 (en) * | 2008-01-10 | 2015-05-19 | American Air Liquide, Inc. | Solid precursor sublimator |
TWI619153B (en) | 2008-02-11 | 2018-03-21 | 恩特葛瑞斯股份有限公司 | Ion source cleaning in semiconductor processing systems |
US8343583B2 (en) | 2008-07-10 | 2013-01-01 | Asm International N.V. | Method for vaporizing non-gaseous precursor in a fluidized bed |
US8012876B2 (en) * | 2008-12-02 | 2011-09-06 | Asm International N.V. | Delivery of vapor precursor from solid source |
US20110021011A1 (en) | 2009-07-23 | 2011-01-27 | Advanced Technology Materials, Inc. | Carbon materials for carbon implantation |
US9117773B2 (en) * | 2009-08-26 | 2015-08-25 | Asm America, Inc. | High concentration water pulses for atomic layer deposition |
WO2011053505A1 (en) | 2009-11-02 | 2011-05-05 | Sigma-Aldrich Co. | Evaporator |
EP2815424B1 (en) | 2012-02-14 | 2017-08-16 | Entegris Inc. | Carbon dopant gas and co-flow for implant beam and source life performance improvement |
US9598766B2 (en) | 2012-05-27 | 2017-03-21 | Air Products And Chemicals, Inc. | Vessel with filter |
KR20200124780A (en) | 2012-05-31 | 2020-11-03 | 엔테그리스, 아이엔씨. | Source reagent-based delivery of fluid with high material flux for batch deposition |
US9964332B2 (en) * | 2014-03-27 | 2018-05-08 | Lam Research Corporation | Systems and methods for bulk vaporization of precursor |
US11926894B2 (en) | 2016-09-30 | 2024-03-12 | Asm Ip Holding B.V. | Reactant vaporizer and related systems and methods |
US10876205B2 (en) | 2016-09-30 | 2020-12-29 | Asm Ip Holding B.V. | Reactant vaporizer and related systems and methods |
KR20200020608A (en) | 2018-08-16 | 2020-02-26 | 에이에스엠 아이피 홀딩 비.브이. | Solid source sublimator |
US11624113B2 (en) | 2019-09-13 | 2023-04-11 | Asm Ip Holding B.V. | Heating zone separation for reactant evaporation system |
KR20230150340A (en) * | 2021-02-26 | 2023-10-30 | 엔테그리스, 아이엔씨. | solid evaporator |
KR20240067977A (en) * | 2021-10-08 | 2024-05-17 | 엔테그리스, 아이엔씨. | Compressible trays for solid chemical vaporization chambers |
Citations (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4276243A (en) * | 1978-12-08 | 1981-06-30 | Western Electric Company, Inc. | Vapor delivery control system and method |
US4389973A (en) * | 1980-03-18 | 1983-06-28 | Oy Lohja Ab | Apparatus for performing growth of compound thin films |
US4717596A (en) * | 1985-10-30 | 1988-01-05 | International Business Machines Corporation | Method for vacuum vapor deposition with improved mass flow control |
US4834831A (en) * | 1986-09-08 | 1989-05-30 | Research Development Corporation Of Japan | Method for growing single crystal thin films of element semiconductor |
US4911101A (en) * | 1988-07-20 | 1990-03-27 | General Electric Company | Metal organic molecular beam epitaxy (MOMBE) apparatus |
US4993357A (en) * | 1987-12-23 | 1991-02-19 | Cs Halbleiter -Und Solartechnologie Gmbh | Apparatus for atomic layer epitaxial growth |
US5098741A (en) * | 1990-06-08 | 1992-03-24 | Lam Research Corporation | Method and system for delivering liquid reagents to processing vessels |
US5224202A (en) * | 1991-07-19 | 1993-06-29 | Leybold Aktiengesellschaft | Apparatus for the evaporation of liquids |
US5225366A (en) * | 1990-06-22 | 1993-07-06 | The United States Of America As Represented By The Secretary Of The Navy | Apparatus for and a method of growing thin films of elemental semiconductors |
US5294286A (en) * | 1984-07-26 | 1994-03-15 | Research Development Corporation Of Japan | Process for forming a thin film of silicon |
US5377429A (en) * | 1993-04-19 | 1995-01-03 | Micron Semiconductor, Inc. | Method and appartus for subliming precursors |
US5421895A (en) * | 1991-12-26 | 1995-06-06 | Tsubouchi; Kazuo | Apparatus for vaporizing liquid raw material and apparatus for forming thin film |
US5480818A (en) * | 1992-02-10 | 1996-01-02 | Fujitsu Limited | Method for forming a film and method for manufacturing a thin film transistor |
US5483919A (en) * | 1990-08-31 | 1996-01-16 | Nippon Telegraph And Telephone Corporation | Atomic layer epitaxy method and apparatus |
US5496408A (en) * | 1992-11-20 | 1996-03-05 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for producing compound semiconductor devices |
US5503875A (en) * | 1993-03-18 | 1996-04-02 | Tokyo Electron Limited | Film forming method wherein a partial pressure of a reaction byproduct in a processing container is reduced temporarily |
US5595603A (en) * | 1994-02-22 | 1997-01-21 | Osram Sylvania Inc. | Apparatus for the controlled delivery of vaporized chemical precursor to an LPCVD reactor |
US5620524A (en) * | 1995-02-27 | 1997-04-15 | Fan; Chiko | Apparatus for fluid delivery in chemical vapor deposition systems |
US5645642A (en) * | 1994-02-04 | 1997-07-08 | Applied Materials, Inc. | Method for in-situ liquid flow rate estimation and verification |
US5711811A (en) * | 1994-11-28 | 1998-01-27 | Mikrokemia Oy | Method and equipment for growing thin films |
US5730802A (en) * | 1994-05-20 | 1998-03-24 | Sharp Kabushiki Kaisha | Vapor growth apparatus and vapor growth method capable of growing good productivity |
US5764849A (en) * | 1996-03-27 | 1998-06-09 | Micron Technology, Inc. | Solid precursor injector apparatus and method |
US5855680A (en) * | 1994-11-28 | 1999-01-05 | Neste Oy | Apparatus for growing thin films |
US5879459A (en) * | 1997-08-29 | 1999-03-09 | Genus, Inc. | Vertically-stacked process reactor and cluster tool system for atomic layer deposition |
US5916365A (en) * | 1996-08-16 | 1999-06-29 | Sherman; Arthur | Sequential chemical vapor deposition |
US5923056A (en) * | 1996-10-10 | 1999-07-13 | Lucent Technologies Inc. | Electronic components with doped metal oxide dielectric materials and a process for making electronic components with doped metal oxide dielectric materials |
US6015917A (en) * | 1998-01-23 | 2000-01-18 | Advanced Technology Materials, Inc. | Tantalum amide precursors for deposition of tantalum nitride on a substrate |
US6015590A (en) * | 1994-11-28 | 2000-01-18 | Neste Oy | Method for growing thin films |
US6042652A (en) * | 1999-05-01 | 2000-03-28 | P.K. Ltd | Atomic layer deposition apparatus for depositing atomic layer on multiple substrates |
US6084302A (en) * | 1995-12-26 | 2000-07-04 | Micron Technologies, Inc. | Barrier layer cladding around copper interconnect lines |
US6174809B1 (en) * | 1997-12-31 | 2001-01-16 | Samsung Electronics, Co., Ltd. | Method for forming metal layer using atomic layer deposition |
US6174377B1 (en) * | 1997-03-03 | 2001-01-16 | Genus, Inc. | Processing chamber for atomic layer deposition processes |
US6183563B1 (en) * | 1998-05-18 | 2001-02-06 | Ips Ltd. | Apparatus for depositing thin films on semiconductor wafers |
US6197683B1 (en) * | 1997-09-29 | 2001-03-06 | Samsung Electronics Co., Ltd. | Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact of semiconductor device using the same |
US6200893B1 (en) * | 1999-03-11 | 2001-03-13 | Genus, Inc | Radical-assisted sequential CVD |
US6203613B1 (en) * | 1999-10-19 | 2001-03-20 | International Business Machines Corporation | Atomic layer deposition with nitrate containing precursors |
US6207487B1 (en) * | 1998-10-13 | 2001-03-27 | Samsung Electronics Co., Ltd. | Method for forming dielectric film of capacitor having different thicknesses partly |
US6224681B1 (en) * | 1992-12-15 | 2001-05-01 | Applied Materials, Inc. | Vaporizing reactant liquids for chemical vapor deposition film processing |
US20010000866A1 (en) * | 1999-03-11 | 2001-05-10 | Ofer Sneh | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition |
US6234672B1 (en) * | 1998-03-18 | 2001-05-22 | Fluoroscan Imaging Systems, Inc. | Miniature C-arm apparatus with C-arm mounted controls |
US20010009695A1 (en) * | 2000-01-18 | 2001-07-26 | Saanila Ville Antero | Process for growing metalloid thin films |
US20010009140A1 (en) * | 1999-05-10 | 2001-07-26 | Niklas Bondestam | Apparatus for fabrication of thin films |
US20020000196A1 (en) * | 2000-06-24 | 2002-01-03 | Park Young-Hoon | Reactor for depositing thin film on wafer |
US20020000598A1 (en) * | 1999-12-08 | 2002-01-03 | Sang-Bom Kang | Semiconductor devices having metal layers as barrier layers on upper or lower electrodes of capacitors |
US20020009544A1 (en) * | 1999-08-20 | 2002-01-24 | Mcfeely F. Read | Delivery systems for gases for gases via the sublimation of solid precursors |
US20020007790A1 (en) * | 2000-07-22 | 2002-01-24 | Park Young-Hoon | Atomic layer deposition (ALD) thin film deposition equipment having cleaning apparatus and cleaning method |
US6342277B1 (en) * | 1996-08-16 | 2002-01-29 | Licensee For Microelectronics: Asm America, Inc. | Sequential chemical vapor deposition |
US6348376B2 (en) * | 1997-09-29 | 2002-02-19 | Samsung Electronics Co., Ltd. | Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact and capacitor of semiconductor device using the same |
US20020021544A1 (en) * | 2000-08-11 | 2002-02-21 | Hag-Ju Cho | Integrated circuit devices having dielectric regions protected with multi-layer insulation structures and methods of fabricating same |
US20020020869A1 (en) * | 1999-12-22 | 2002-02-21 | Ki-Seon Park | Semiconductor device incorporated therein high K capacitor dielectric and method for the manufacture thereof |
US6358829B2 (en) * | 1998-09-17 | 2002-03-19 | Samsung Electronics Company., Ltd. | Semiconductor device fabrication method using an interface control layer to improve a metal interconnection layer |
US20020041250A1 (en) * | 2000-08-11 | 2002-04-11 | Thales | Method and device for the encoding and decoding of power distribution at the outputs of a system |
US6372598B2 (en) * | 1998-06-16 | 2002-04-16 | Samsung Electronics Co., Ltd. | Method of forming selective metal layer and method of forming capacitor and filling contact hole using the same |
US20020048635A1 (en) * | 1998-10-16 | 2002-04-25 | Kim Yeong-Kwan | Method for manufacturing thin film |
US20020052097A1 (en) * | 2000-06-24 | 2002-05-02 | Park Young-Hoon | Apparatus and method for depositing thin film on wafer using atomic layer deposition |
US6391785B1 (en) * | 1999-08-24 | 2002-05-21 | Interuniversitair Microelektronica Centrum (Imec) | Method for bottomless deposition of barrier layers in integrated circuit metallization schemes |
US6399491B2 (en) * | 2000-04-20 | 2002-06-04 | Samsung Electronics Co., Ltd. | Method of manufacturing a barrier metal layer using atomic layer deposition |
US20020066411A1 (en) * | 2000-12-06 | 2002-06-06 | Chiang Tony P. | Method and apparatus for improved temperature control in atomic layer deposition |
US20020076481A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Chamber pressure state-based control for a reactor |
US20020076507A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Process sequence for atomic layer deposition |
US20020073924A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Gas introduction system for a reactor |
US20020076837A1 (en) * | 2000-11-30 | 2002-06-20 | Juha Hujanen | Thin films for magnetic device |
US20020076508A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Varying conductance out of a process region to control gas flux in an ALD reactor |
US20030004723A1 (en) * | 2001-06-26 | 2003-01-02 | Keiichi Chihara | Method of controlling high-speed reading in a text-to-speech conversion system |
US20030010451A1 (en) * | 2001-07-16 | 2003-01-16 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US20030013320A1 (en) * | 2001-05-31 | 2003-01-16 | Samsung Electronics Co., Ltd. | Method of forming a thin film using atomic layer deposition |
US6511539B1 (en) * | 1999-09-08 | 2003-01-28 | Asm America, Inc. | Apparatus and method for growth of a thin film |
US20030023338A1 (en) * | 2001-07-27 | 2003-01-30 | Applied Materials, Inc. | Atomic layer deposition apparatus |
US20030031807A1 (en) * | 1999-10-15 | 2003-02-13 | Kai-Erik Elers | Deposition of transition metal carbides |
US20030042630A1 (en) * | 2001-09-05 | 2003-03-06 | Babcoke Jason E. | Bubbler for gas delivery |
US20030049942A1 (en) * | 2001-08-31 | 2003-03-13 | Suvi Haukka | Low temperature gate stack |
US20030053799A1 (en) * | 2001-09-14 | 2003-03-20 | Lei Lawrence C. | Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition |
US20030072975A1 (en) * | 2001-10-02 | 2003-04-17 | Shero Eric J. | Incorporation of nitrogen into high k dielectric film |
US20030072913A1 (en) * | 2001-10-12 | 2003-04-17 | Kuang-Chun Chou | Substrate strip with sides having flanges and recesses |
US6551406B2 (en) * | 1999-12-28 | 2003-04-22 | Asm Microchemistry Oy | Apparatus for growing thin films |
US20030075925A1 (en) * | 2001-07-03 | 2003-04-24 | Sven Lindfors | Source chemical container assembly |
US20030075273A1 (en) * | 2001-08-15 | 2003-04-24 | Olli Kilpela | Atomic layer deposition reactor |
US20030079686A1 (en) * | 2001-10-26 | 2003-05-01 | Ling Chen | Gas delivery apparatus and method for atomic layer deposition |
US20030082296A1 (en) * | 2001-09-14 | 2003-05-01 | Kai Elers | Metal nitride deposition by ALD with reduction pulse |
US20030106490A1 (en) * | 2001-12-06 | 2003-06-12 | Applied Materials, Inc. | Apparatus and method for fast-cycle atomic layer deposition |
US6578287B2 (en) * | 1997-07-11 | 2003-06-17 | Asm America, Inc. | Substrate cooling system and method |
US20030113187A1 (en) * | 2001-12-14 | 2003-06-19 | Applied Materials, Inc. | Dual robot processing system |
US20030116087A1 (en) * | 2001-12-21 | 2003-06-26 | Nguyen Anh N. | Chamber hardware design for titanium nitride atomic layer deposition |
US20040014320A1 (en) * | 2002-07-17 | 2004-01-22 | Applied Materials, Inc. | Method and apparatus of generating PDMAT precursor |
US20040015300A1 (en) * | 2002-07-22 | 2004-01-22 | Seshadri Ganguli | Method and apparatus for monitoring solid precursor delivery |
US20040011504A1 (en) * | 2002-07-17 | 2004-01-22 | Ku Vincent W. | Method and apparatus for gas temperature control in a semiconductor processing system |
US20040011404A1 (en) * | 2002-07-19 | 2004-01-22 | Ku Vincent W | Valve design and configuration for fast delivery system |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE393967B (en) | 1974-11-29 | 1977-05-31 | Sateko Oy | PROCEDURE AND PERFORMANCE OF LAYING BETWEEN THE STORAGE IN A LABOR PACKAGE |
FI57975C (en) | 1979-02-28 | 1980-11-10 | Lohja Ab Oy | OVER ANCHORING VIDEO UPDATE FOR AVAILABILITY |
DE3721637A1 (en) | 1987-06-30 | 1989-01-12 | Aixtron Gmbh | GAS INLET FOR A MULTIPLE DIFFERENT REACTION GAS IN REACTION VESSELS |
JPH0824191B2 (en) | 1989-03-17 | 1996-03-06 | 富士通株式会社 | Thin film transistor |
US5447569A (en) | 1990-12-12 | 1995-09-05 | Hiskes; Ronald | MOCVD system for forming superconducting thin films |
US5607009A (en) | 1993-01-28 | 1997-03-04 | Applied Materials, Inc. | Method of heating and cooling large area substrates and apparatus therefor |
US5443647A (en) | 1993-04-28 | 1995-08-22 | The United States Of America As Represented By The Secretary Of The Army | Method and apparatus for depositing a refractory thin film by chemical vapor deposition |
US5796116A (en) | 1994-07-27 | 1998-08-18 | Sharp Kabushiki Kaisha | Thin-film semiconductor device including a semiconductor film with high field-effect mobility |
US5674574A (en) | 1996-05-20 | 1997-10-07 | Micron Technology, Inc. | Vapor delivery system for solid precursors and method regarding same |
US5835677A (en) | 1996-10-03 | 1998-11-10 | Emcore Corporation | Liquid vaporizer system and method |
US5807792A (en) | 1996-12-18 | 1998-09-15 | Siemens Aktiengesellschaft | Uniform distribution of reactants in a device layer |
US6287965B1 (en) | 1997-07-28 | 2001-09-11 | Samsung Electronics Co, Ltd. | Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor |
KR100269306B1 (en) | 1997-07-31 | 2000-10-16 | 윤종용 | Integrate circuit device having buffer layer containing metal oxide stabilized by low temperature treatment and fabricating method thereof |
KR100261017B1 (en) | 1997-08-19 | 2000-08-01 | 윤종용 | Method for forming metal wiring of semiconductor device |
KR100274603B1 (en) | 1997-10-01 | 2001-01-15 | 윤종용 | Method and apparatus for fabricating semiconductor device |
FI104383B (en) | 1997-12-09 | 2000-01-14 | Fortum Oil & Gas Oy | Procedure for coating the inside of a plant |
KR100282853B1 (en) | 1998-05-18 | 2001-04-02 | 서성기 | Apparatus for thin film deposition using cyclic gas injection |
NL1009327C2 (en) | 1998-06-05 | 1999-12-10 | Asm Int | Method and device for transferring wafers. |
KR100275738B1 (en) | 1998-08-07 | 2000-12-15 | 윤종용 | Method for producing thin film using atomatic layer deposition |
KR100331544B1 (en) | 1999-01-18 | 2002-04-06 | 윤종용 | Method for introducing gases into a reactor chamber and a shower head used therein |
US6540838B2 (en) | 2000-11-29 | 2003-04-01 | Genus, Inc. | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition |
US6124158A (en) | 1999-06-08 | 2000-09-26 | Lucent Technologies Inc. | Method of reducing carbon contamination of a thin dielectric film by using gaseous organic precursors, inert gas, and ozone to react with carbon contaminants |
KR100319494B1 (en) | 1999-07-15 | 2002-01-09 | 김용일 | Apparatus for Deposition of thin films on wafers through atomic layer epitaxial process |
KR20010017820A (en) | 1999-08-14 | 2001-03-05 | 윤종용 | Semiconductor device and manufacturing method thereof |
JP3909792B2 (en) * | 1999-08-20 | 2007-04-25 | パイオニア株式会社 | Raw material supply apparatus and raw material supply method in chemical vapor deposition |
KR100360494B1 (en) * | 1999-09-21 | 2002-11-13 | 삼성전자 주식회사 | Bubbler |
TW515032B (en) | 1999-10-06 | 2002-12-21 | Samsung Electronics Co Ltd | Method of forming thin film using atomic layer deposition method |
FI117942B (en) | 1999-10-14 | 2007-04-30 | Asm Int | Process for making oxide thin films |
US6780704B1 (en) | 1999-12-03 | 2004-08-24 | Asm International Nv | Conformal thin films over textured capacitor electrodes |
KR100330749B1 (en) | 1999-12-17 | 2002-04-03 | 서성기 | Thin film deposition apparatus for semiconductor |
KR100624903B1 (en) | 1999-12-22 | 2006-09-19 | 주식회사 하이닉스반도체 | Method of manufacturing a capacitor in a semiconductor device |
FI118343B (en) | 1999-12-28 | 2007-10-15 | Asm Int | Apparatus for making thin films |
KR100378871B1 (en) | 2000-02-16 | 2003-04-07 | 주식회사 아펙스 | showerhead apparatus for radical assisted deposition |
KR100803770B1 (en) | 2000-03-07 | 2008-02-15 | 에이에스엠 인터내셔널 엔.브이. | Graded thin films |
FI117978B (en) | 2000-04-14 | 2007-05-15 | Asm Int | Method and apparatus for constructing a thin film on a substrate |
TW576873B (en) | 2000-04-14 | 2004-02-21 | Asm Int | Method of growing a thin film onto a substrate |
US6482733B2 (en) | 2000-05-15 | 2002-11-19 | Asm Microchemistry Oy | Protective layers prior to alternating layer deposition |
FI118805B (en) | 2000-05-15 | 2008-03-31 | Asm Int | A method and configuration for introducing a gas phase reactant into a reaction chamber |
KR100403611B1 (en) | 2000-06-07 | 2003-11-01 | 삼성전자주식회사 | Metal-insulator-metal capacitor and manufacturing method thereof |
KR100436941B1 (en) | 2000-11-07 | 2004-06-23 | 주성엔지니어링(주) | apparatus and method for depositing thin film |
US6613695B2 (en) | 2000-11-24 | 2003-09-02 | Asm America, Inc. | Surface preparation prior to deposition |
KR100385947B1 (en) | 2000-12-06 | 2003-06-02 | 삼성전자주식회사 | Method of forming thin film by atomic layer deposition |
KR100434487B1 (en) | 2001-01-17 | 2004-06-05 | 삼성전자주식회사 | Shower head & film forming apparatus having the same |
US6844604B2 (en) | 2001-02-02 | 2005-01-18 | Samsung Electronics Co., Ltd. | Dielectric layer for semiconductor device and method of manufacturing the same |
FI109770B (en) | 2001-03-16 | 2002-10-15 | Asm Microchemistry Oy | Growing transition metal nitride thin films by using compound having hydrocarbon, amino or silyl group bound to nitrogen as nitrogen source material |
KR100363332B1 (en) | 2001-05-23 | 2002-12-05 | Samsung Electronics Co Ltd | Method for forming semiconductor device having gate all-around type transistor |
-
2001
- 2001-09-14 US US09/953,451 patent/US6718126B2/en not_active Expired - Fee Related
-
2004
- 2004-03-03 US US10/792,323 patent/US20040170403A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4276243A (en) * | 1978-12-08 | 1981-06-30 | Western Electric Company, Inc. | Vapor delivery control system and method |
US4389973A (en) * | 1980-03-18 | 1983-06-28 | Oy Lohja Ab | Apparatus for performing growth of compound thin films |
US5294286A (en) * | 1984-07-26 | 1994-03-15 | Research Development Corporation Of Japan | Process for forming a thin film of silicon |
US4717596A (en) * | 1985-10-30 | 1988-01-05 | International Business Machines Corporation | Method for vacuum vapor deposition with improved mass flow control |
US4834831A (en) * | 1986-09-08 | 1989-05-30 | Research Development Corporation Of Japan | Method for growing single crystal thin films of element semiconductor |
US4993357A (en) * | 1987-12-23 | 1991-02-19 | Cs Halbleiter -Und Solartechnologie Gmbh | Apparatus for atomic layer epitaxial growth |
US4911101A (en) * | 1988-07-20 | 1990-03-27 | General Electric Company | Metal organic molecular beam epitaxy (MOMBE) apparatus |
US5098741A (en) * | 1990-06-08 | 1992-03-24 | Lam Research Corporation | Method and system for delivering liquid reagents to processing vessels |
US5225366A (en) * | 1990-06-22 | 1993-07-06 | The United States Of America As Represented By The Secretary Of The Navy | Apparatus for and a method of growing thin films of elemental semiconductors |
US5281274A (en) * | 1990-06-22 | 1994-01-25 | The United States Of America As Represented By The Secretary Of The Navy | Atomic layer epitaxy (ALE) apparatus for growing thin films of elemental semiconductors |
US5483919A (en) * | 1990-08-31 | 1996-01-16 | Nippon Telegraph And Telephone Corporation | Atomic layer epitaxy method and apparatus |
US5224202A (en) * | 1991-07-19 | 1993-06-29 | Leybold Aktiengesellschaft | Apparatus for the evaporation of liquids |
US5421895A (en) * | 1991-12-26 | 1995-06-06 | Tsubouchi; Kazuo | Apparatus for vaporizing liquid raw material and apparatus for forming thin film |
US5480818A (en) * | 1992-02-10 | 1996-01-02 | Fujitsu Limited | Method for forming a film and method for manufacturing a thin film transistor |
US5496408A (en) * | 1992-11-20 | 1996-03-05 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for producing compound semiconductor devices |
US6224681B1 (en) * | 1992-12-15 | 2001-05-01 | Applied Materials, Inc. | Vaporizing reactant liquids for chemical vapor deposition film processing |
US5503875A (en) * | 1993-03-18 | 1996-04-02 | Tokyo Electron Limited | Film forming method wherein a partial pressure of a reaction byproduct in a processing container is reduced temporarily |
US5377429A (en) * | 1993-04-19 | 1995-01-03 | Micron Semiconductor, Inc. | Method and appartus for subliming precursors |
US5645642A (en) * | 1994-02-04 | 1997-07-08 | Applied Materials, Inc. | Method for in-situ liquid flow rate estimation and verification |
US5595603A (en) * | 1994-02-22 | 1997-01-21 | Osram Sylvania Inc. | Apparatus for the controlled delivery of vaporized chemical precursor to an LPCVD reactor |
US5730802A (en) * | 1994-05-20 | 1998-03-24 | Sharp Kabushiki Kaisha | Vapor growth apparatus and vapor growth method capable of growing good productivity |
US5711811A (en) * | 1994-11-28 | 1998-01-27 | Mikrokemia Oy | Method and equipment for growing thin films |
US5855680A (en) * | 1994-11-28 | 1999-01-05 | Neste Oy | Apparatus for growing thin films |
US20020041931A1 (en) * | 1994-11-28 | 2002-04-11 | Tuomo Suntola | Method for growing thin films |
US6015590A (en) * | 1994-11-28 | 2000-01-18 | Neste Oy | Method for growing thin films |
US6572705B1 (en) * | 1994-11-28 | 2003-06-03 | Asm America, Inc. | Method and apparatus for growing thin films |
US5620524A (en) * | 1995-02-27 | 1997-04-15 | Fan; Chiko | Apparatus for fluid delivery in chemical vapor deposition systems |
US6084302A (en) * | 1995-12-26 | 2000-07-04 | Micron Technologies, Inc. | Barrier layer cladding around copper interconnect lines |
US5764849A (en) * | 1996-03-27 | 1998-06-09 | Micron Technology, Inc. | Solid precursor injector apparatus and method |
US6072939A (en) * | 1996-03-27 | 2000-06-06 | Micron Technology, Inc. | Solid precursor injector apparatus |
US5916365A (en) * | 1996-08-16 | 1999-06-29 | Sherman; Arthur | Sequential chemical vapor deposition |
US20020031618A1 (en) * | 1996-08-16 | 2002-03-14 | Arthur Sherman | Sequential chemical vapor deposition |
US6342277B1 (en) * | 1996-08-16 | 2002-01-29 | Licensee For Microelectronics: Asm America, Inc. | Sequential chemical vapor deposition |
US5923056A (en) * | 1996-10-10 | 1999-07-13 | Lucent Technologies Inc. | Electronic components with doped metal oxide dielectric materials and a process for making electronic components with doped metal oxide dielectric materials |
US6174377B1 (en) * | 1997-03-03 | 2001-01-16 | Genus, Inc. | Processing chamber for atomic layer deposition processes |
US6578287B2 (en) * | 1997-07-11 | 2003-06-17 | Asm America, Inc. | Substrate cooling system and method |
US5879459A (en) * | 1997-08-29 | 1999-03-09 | Genus, Inc. | Vertically-stacked process reactor and cluster tool system for atomic layer deposition |
US6197683B1 (en) * | 1997-09-29 | 2001-03-06 | Samsung Electronics Co., Ltd. | Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact of semiconductor device using the same |
US6348376B2 (en) * | 1997-09-29 | 2002-02-19 | Samsung Electronics Co., Ltd. | Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact and capacitor of semiconductor device using the same |
US6174809B1 (en) * | 1997-12-31 | 2001-01-16 | Samsung Electronics, Co., Ltd. | Method for forming metal layer using atomic layer deposition |
US6015917A (en) * | 1998-01-23 | 2000-01-18 | Advanced Technology Materials, Inc. | Tantalum amide precursors for deposition of tantalum nitride on a substrate |
US6379748B1 (en) * | 1998-01-23 | 2002-04-30 | Advanced Technology Materials, Inc. | Tantalum amide precursors for deposition of tantalum nitride on a substrate |
US6234672B1 (en) * | 1998-03-18 | 2001-05-22 | Fluoroscan Imaging Systems, Inc. | Miniature C-arm apparatus with C-arm mounted controls |
US6183563B1 (en) * | 1998-05-18 | 2001-02-06 | Ips Ltd. | Apparatus for depositing thin films on semiconductor wafers |
US6372598B2 (en) * | 1998-06-16 | 2002-04-16 | Samsung Electronics Co., Ltd. | Method of forming selective metal layer and method of forming capacitor and filling contact hole using the same |
US6358829B2 (en) * | 1998-09-17 | 2002-03-19 | Samsung Electronics Company., Ltd. | Semiconductor device fabrication method using an interface control layer to improve a metal interconnection layer |
US6207487B1 (en) * | 1998-10-13 | 2001-03-27 | Samsung Electronics Co., Ltd. | Method for forming dielectric film of capacitor having different thicknesses partly |
US20020048635A1 (en) * | 1998-10-16 | 2002-04-25 | Kim Yeong-Kwan | Method for manufacturing thin film |
US20010002280A1 (en) * | 1999-03-11 | 2001-05-31 | Ofer Sneh | Radical-assisted sequential CVD |
US20010000866A1 (en) * | 1999-03-11 | 2001-05-10 | Ofer Sneh | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition |
US6200893B1 (en) * | 1999-03-11 | 2001-03-13 | Genus, Inc | Radical-assisted sequential CVD |
US6042652A (en) * | 1999-05-01 | 2000-03-28 | P.K. Ltd | Atomic layer deposition apparatus for depositing atomic layer on multiple substrates |
US20010009140A1 (en) * | 1999-05-10 | 2001-07-26 | Niklas Bondestam | Apparatus for fabrication of thin films |
US20020009544A1 (en) * | 1999-08-20 | 2002-01-24 | Mcfeely F. Read | Delivery systems for gases for gases via the sublimation of solid precursors |
US6391785B1 (en) * | 1999-08-24 | 2002-05-21 | Interuniversitair Microelektronica Centrum (Imec) | Method for bottomless deposition of barrier layers in integrated circuit metallization schemes |
US6511539B1 (en) * | 1999-09-08 | 2003-01-28 | Asm America, Inc. | Apparatus and method for growth of a thin film |
US20030089308A1 (en) * | 1999-09-08 | 2003-05-15 | Ivo Raaijmakers | Apparatus and method for growth of a thin film |
US20030101927A1 (en) * | 1999-09-08 | 2003-06-05 | Ivo Raaijmakers | Apparatus and method for growth of a thin film |
US20030031807A1 (en) * | 1999-10-15 | 2003-02-13 | Kai-Erik Elers | Deposition of transition metal carbides |
US6203613B1 (en) * | 1999-10-19 | 2001-03-20 | International Business Machines Corporation | Atomic layer deposition with nitrate containing precursors |
US20020000598A1 (en) * | 1999-12-08 | 2002-01-03 | Sang-Bom Kang | Semiconductor devices having metal layers as barrier layers on upper or lower electrodes of capacitors |
US20020020869A1 (en) * | 1999-12-22 | 2002-02-21 | Ki-Seon Park | Semiconductor device incorporated therein high K capacitor dielectric and method for the manufacture thereof |
US6551406B2 (en) * | 1999-12-28 | 2003-04-22 | Asm Microchemistry Oy | Apparatus for growing thin films |
US20010009695A1 (en) * | 2000-01-18 | 2001-07-26 | Saanila Ville Antero | Process for growing metalloid thin films |
US6399491B2 (en) * | 2000-04-20 | 2002-06-04 | Samsung Electronics Co., Ltd. | Method of manufacturing a barrier metal layer using atomic layer deposition |
US20020052097A1 (en) * | 2000-06-24 | 2002-05-02 | Park Young-Hoon | Apparatus and method for depositing thin film on wafer using atomic layer deposition |
US6579372B2 (en) * | 2000-06-24 | 2003-06-17 | Ips, Ltd. | Apparatus and method for depositing thin film on wafer using atomic layer deposition |
US20020000196A1 (en) * | 2000-06-24 | 2002-01-03 | Park Young-Hoon | Reactor for depositing thin film on wafer |
US20020007790A1 (en) * | 2000-07-22 | 2002-01-24 | Park Young-Hoon | Atomic layer deposition (ALD) thin film deposition equipment having cleaning apparatus and cleaning method |
US20020021544A1 (en) * | 2000-08-11 | 2002-02-21 | Hag-Ju Cho | Integrated circuit devices having dielectric regions protected with multi-layer insulation structures and methods of fabricating same |
US20020041250A1 (en) * | 2000-08-11 | 2002-04-11 | Thales | Method and device for the encoding and decoding of power distribution at the outputs of a system |
US20020076837A1 (en) * | 2000-11-30 | 2002-06-20 | Juha Hujanen | Thin films for magnetic device |
US20020066411A1 (en) * | 2000-12-06 | 2002-06-06 | Chiang Tony P. | Method and apparatus for improved temperature control in atomic layer deposition |
US20020076507A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Process sequence for atomic layer deposition |
US20020076481A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Chamber pressure state-based control for a reactor |
US20020073924A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Gas introduction system for a reactor |
US20020076508A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Varying conductance out of a process region to control gas flux in an ALD reactor |
US20030013320A1 (en) * | 2001-05-31 | 2003-01-16 | Samsung Electronics Co., Ltd. | Method of forming a thin film using atomic layer deposition |
US20030004723A1 (en) * | 2001-06-26 | 2003-01-02 | Keiichi Chihara | Method of controlling high-speed reading in a text-to-speech conversion system |
US20030075925A1 (en) * | 2001-07-03 | 2003-04-24 | Sven Lindfors | Source chemical container assembly |
US20030010451A1 (en) * | 2001-07-16 | 2003-01-16 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US20030023338A1 (en) * | 2001-07-27 | 2003-01-30 | Applied Materials, Inc. | Atomic layer deposition apparatus |
US20030075273A1 (en) * | 2001-08-15 | 2003-04-24 | Olli Kilpela | Atomic layer deposition reactor |
US20030049942A1 (en) * | 2001-08-31 | 2003-03-13 | Suvi Haukka | Low temperature gate stack |
US20030042630A1 (en) * | 2001-09-05 | 2003-03-06 | Babcoke Jason E. | Bubbler for gas delivery |
US20030082296A1 (en) * | 2001-09-14 | 2003-05-01 | Kai Elers | Metal nitride deposition by ALD with reduction pulse |
US6718126B2 (en) * | 2001-09-14 | 2004-04-06 | Applied Materials, Inc. | Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition |
US20030053799A1 (en) * | 2001-09-14 | 2003-03-20 | Lei Lawrence C. | Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition |
US20030072975A1 (en) * | 2001-10-02 | 2003-04-17 | Shero Eric J. | Incorporation of nitrogen into high k dielectric film |
US20030072913A1 (en) * | 2001-10-12 | 2003-04-17 | Kuang-Chun Chou | Substrate strip with sides having flanges and recesses |
US20030079686A1 (en) * | 2001-10-26 | 2003-05-01 | Ling Chen | Gas delivery apparatus and method for atomic layer deposition |
US20030106490A1 (en) * | 2001-12-06 | 2003-06-12 | Applied Materials, Inc. | Apparatus and method for fast-cycle atomic layer deposition |
US20030113187A1 (en) * | 2001-12-14 | 2003-06-19 | Applied Materials, Inc. | Dual robot processing system |
US20030116087A1 (en) * | 2001-12-21 | 2003-06-26 | Nguyen Anh N. | Chamber hardware design for titanium nitride atomic layer deposition |
US20040013577A1 (en) * | 2002-07-17 | 2004-01-22 | Seshadri Ganguli | Method and apparatus for providing gas to a processing chamber |
US20040011504A1 (en) * | 2002-07-17 | 2004-01-22 | Ku Vincent W. | Method and apparatus for gas temperature control in a semiconductor processing system |
US20040014320A1 (en) * | 2002-07-17 | 2004-01-22 | Applied Materials, Inc. | Method and apparatus of generating PDMAT precursor |
US20040011404A1 (en) * | 2002-07-19 | 2004-01-22 | Ku Vincent W | Valve design and configuration for fast delivery system |
US20040015300A1 (en) * | 2002-07-22 | 2004-01-22 | Seshadri Ganguli | Method and apparatus for monitoring solid precursor delivery |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7709385B2 (en) | 2000-06-28 | 2010-05-04 | Applied Materials, Inc. | Method for depositing tungsten-containing layers by vapor deposition techniques |
US7674715B2 (en) | 2000-06-28 | 2010-03-09 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
US7745333B2 (en) | 2000-06-28 | 2010-06-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
US7732327B2 (en) | 2000-06-28 | 2010-06-08 | Applied Materials, Inc. | Vapor deposition of tungsten materials |
US7846840B2 (en) | 2000-06-28 | 2010-12-07 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
US7695563B2 (en) | 2001-07-13 | 2010-04-13 | Applied Materials, Inc. | Pulsed deposition process for tungsten nucleation |
US7749815B2 (en) | 2001-07-16 | 2010-07-06 | Applied Materials, Inc. | Methods for depositing tungsten after surface treatment |
US8668776B2 (en) | 2001-10-26 | 2014-03-11 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
US7699023B2 (en) | 2001-10-26 | 2010-04-20 | Applied Materials, Inc. | Gas delivery apparatus for atomic layer deposition |
US7780788B2 (en) | 2001-10-26 | 2010-08-24 | Applied Materials, Inc. | Gas delivery apparatus for atomic layer deposition |
US20080041313A1 (en) * | 2001-10-26 | 2008-02-21 | Ling Chen | Gas delivery apparatus for atomic layer deposition |
US7892602B2 (en) | 2001-12-07 | 2011-02-22 | Applied Materials, Inc. | Cyclical deposition of refractory metal silicon nitride |
US7745329B2 (en) | 2002-02-26 | 2010-06-29 | Applied Materials, Inc. | Tungsten nitride atomic layer deposition processes |
US7867896B2 (en) | 2002-03-04 | 2011-01-11 | Applied Materials, Inc. | Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor |
US7867914B2 (en) | 2002-04-16 | 2011-01-11 | Applied Materials, Inc. | System and method for forming an integrated barrier layer |
US8343279B2 (en) | 2004-05-12 | 2013-01-01 | Applied Materials, Inc. | Apparatuses for atomic layer deposition |
US8282992B2 (en) | 2004-05-12 | 2012-10-09 | Applied Materials, Inc. | Methods for atomic layer deposition of hafnium-containing high-K dielectric materials |
US7794544B2 (en) | 2004-05-12 | 2010-09-14 | Applied Materials, Inc. | Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system |
GR20040100467A (en) * | 2004-12-03 | 2006-09-21 | Εθνικο Κεντρο Ερευνας Φυσικων Επιστημων "Δημοκριτος" | System for repeatable and constant in the time supply of vapours produced by solid-state precursors |
US7964505B2 (en) | 2005-01-19 | 2011-06-21 | Applied Materials, Inc. | Atomic layer deposition of tungsten materials |
US7699295B2 (en) | 2005-10-07 | 2010-04-20 | Applied Materials, Inc. | Ampoule splash guard apparatus |
US7850779B2 (en) | 2005-11-04 | 2010-12-14 | Applied Materisals, Inc. | Apparatus and process for plasma-enhanced atomic layer deposition |
US9032906B2 (en) | 2005-11-04 | 2015-05-19 | Applied Materials, Inc. | Apparatus and process for plasma-enhanced atomic layer deposition |
US7682946B2 (en) | 2005-11-04 | 2010-03-23 | Applied Materials, Inc. | Apparatus and process for plasma-enhanced atomic layer deposition |
US7832432B2 (en) | 2006-03-30 | 2010-11-16 | Applied Materials, Inc. | Chemical delivery apparatus for CVD or ALD |
US8951478B2 (en) | 2006-03-30 | 2015-02-10 | Applied Materials, Inc. | Ampoule with a thermally conductive coating |
US7748400B2 (en) | 2006-03-30 | 2010-07-06 | Applied Materials, Inc. | Chemical delivery apparatus for CVD or ALD |
US20090314370A1 (en) * | 2006-03-30 | 2009-12-24 | Norman Nakashima | Chemical delivery apparatus for cvd or ald |
US7562672B2 (en) | 2006-03-30 | 2009-07-21 | Applied Materials, Inc. | Chemical delivery apparatus for CVD or ALD |
US20080149031A1 (en) * | 2006-03-30 | 2008-06-26 | Applied Materials, Inc. | Ampoule with a thermally conductive coating |
US20070235085A1 (en) * | 2006-03-30 | 2007-10-11 | Norman Nakashima | Chemical delivery apparatus for CVD or ALD |
US7798096B2 (en) | 2006-05-05 | 2010-09-21 | Applied Materials, Inc. | Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool |
US8821637B2 (en) | 2007-01-29 | 2014-09-02 | Applied Materials, Inc. | Temperature controlled lid assembly for tungsten nitride deposition |
US7678298B2 (en) | 2007-09-25 | 2010-03-16 | Applied Materials, Inc. | Tantalum carbide nitride materials by vapor deposition processes |
US7824743B2 (en) | 2007-09-28 | 2010-11-02 | Applied Materials, Inc. | Deposition processes for titanium nitride barrier and aluminum |
US8491967B2 (en) | 2008-09-08 | 2013-07-23 | Applied Materials, Inc. | In-situ chamber treatment and deposition process |
US9418890B2 (en) | 2008-09-08 | 2016-08-16 | Applied Materials, Inc. | Method for tuning a deposition rate during an atomic layer deposition process |
US8146896B2 (en) | 2008-10-31 | 2012-04-03 | Applied Materials, Inc. | Chemical precursor ampoule for vapor deposition processes |
US8758515B2 (en) | 2010-08-09 | 2014-06-24 | Rohm And Haas Electronic Materials Llc | Delivery device and method of use thereof |
KR20130133716A (en) * | 2010-08-09 | 2013-12-09 | 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨. | Delivery device and method of use thereof |
KR101658423B1 (en) * | 2010-08-09 | 2016-09-30 | 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 | Delivery device and method of use thereof |
US20160295925A1 (en) * | 2015-04-07 | 2016-10-13 | Chuhui Chen | Atomization core of electronic cigarette |
US20160357200A1 (en) * | 2015-06-08 | 2016-12-08 | Shimadzu Corporation | Heating control device, heating control method, and program for heating control device |
US10070483B2 (en) * | 2015-06-08 | 2018-09-04 | Shimadzu Corporation | Heating control device and heating control method |
Also Published As
Publication number | Publication date |
---|---|
US20030053799A1 (en) | 2003-03-20 |
US6718126B2 (en) | 2004-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6718126B2 (en) | Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition | |
KR100320614B1 (en) | Flash evaporator | |
JP5342139B2 (en) | Method and apparatus for promoting contact between gas and evaporating material | |
TWI362431B (en) | Vaporizer | |
CN112342526A (en) | Heater assembly including cooling device and method of using same | |
KR100328356B1 (en) | Liquid delivery system, heater apparatus for liquid delivery system, and vaporizer | |
TWI377092B (en) | Vaporizer and semiconductor processing system | |
US6797337B2 (en) | Method for delivering precursors | |
US20170029946A1 (en) | Method and apparatus to help promote contact of gas with vaporized material | |
KR20200020608A (en) | Solid source sublimator | |
KR19990022638A (en) | Reaction source liquid supply device and chemical vapor deposition device comprising the device | |
WO2001036702A1 (en) | Method of vaporizing liquid sources and apparatus therefor | |
JP2004036004A (en) | Method and device for pulsatively feeding vaporized liquid reactant | |
KR20040078643A (en) | Chemical vapor deposition vaporizer | |
WO1998031844A9 (en) | Flash evaporator | |
JP3893177B2 (en) | Vaporizer, CVD apparatus, and thin film manufacturing method | |
US7584942B2 (en) | Ampoules for producing a reaction gas and systems for depositing materials onto microfeature workpieces in reaction chambers | |
JPH05214537A (en) | Solid sublimating vaporizer | |
JPH07278818A (en) | Vaporizer for cvd powdery raw material | |
US6796313B2 (en) | Methods of cleaning vaporization surfaces | |
JPH0331477A (en) | Bubbler for cvd device | |
JP2000096242A (en) | Liquid material vaporizing device | |
KR100266030B1 (en) | The carburetor for fabricating semiconductor | |
KR100478744B1 (en) | suscetpor and manufacturing method the same | |
JPH01298167A (en) | Method and device for vaporizing liquid raw material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLIED MATERIALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEI, LAWRENCE CHUNG-LAI;REEL/FRAME:015047/0485 Effective date: 20010914 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |